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Abstract: Unmanned aerial vehicles (UAVs) can experience significant performance issues during
flight due to heavy CPU load, affecting their flight capabilities, communication, and endurance. To
address this issue, this paper presents a lightweight stereo-inertial state estimator for addressing the
heavy CPU load issue of ORB-SLAM. It utilizes nonlinear optimization and features to incorporate
inertial information throughout the Simultaneous Localization and Mapping (SLAM) pipeline. The
first key innovation is a coarse-to-fine optimization method that targets the enhancement of tracking
speed by efficiently addressing bias and noise in the IMU parameters. A novel visual–inertial pose
graph is proposed as an observer to assess error thresholds and guide the system towards visual-only
or visual–inertial maximum a posteriori (MAP) estimation accordingly. Furthermore, this paper
introduces the incorporation of inertial data in the loop closure thread. The IMU data provide
displacement direction relative to world coordinates, which is serving as a necessary condition
for loop detection. The experimental results demonstrate that our method maintains excellent
localization accuracy compared to other state-of-the-art approaches on benchmark datasets, while
also significantly reducing CPU load.

Keywords: sensor; SLAM; lightweight; UAV system; loop closure; EuRoC UAV dataset

1. Introduction

With the continuous advancement of modern technology, the application range of
UAVs is becoming increasingly widespread. In recent years, UAVs have been appear-
ing more frequently in people’s sight. During UAV flights, surveying tasks need to be
completed in preparation for future navigation inspections. The SLAM process in the
UAV system requires high real-time performance, especially in terms of CPU information
processing speed, which has become the main research direction at present. Based on the
type of sensor used, SLAM systems can be categorized as visual SLAM, lidar SLAM, and
multi-sensor fusion SLAM.

The camera offers abundant visual information at a low cost and in a compact form
factor, enabling robot localization and navigation. However, purely visual SLAM perfor-
mance often deteriorates in low-textured environments. To address this issue, researchers
have combined points with other geometric entities such as lines as lines [1] or planes [2].
In human-made environments, a pose-graph optimization strategy can be used to take
advantage of structural constraints such as parallelism or orthogonality of walls. Another
well-known approach for reducing rotation drift is to adopt the Manhattan World (MW)
assumption [3]. However, most of the methods discussed above use RGB-D cameras in
human-made environments, which may not be universally applicable. Moreover, the accu-
racy of the system depends heavily on the estimation of the ground plane and Manhattan
Axes (MA). Recently, with the development of deep learning, a combined system of SLAM
and a Convolutional Neural Network (CNN) has emerged. In [4], a table retrieval method
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is proposed for data association and loop closure using semantic information in a dynamic
environment. Each landmark is associated with its own semantic and location information
to improve the accuracy of the system.

To address the limitations of purely visual SLAM, the fusion of vision and IMU data
have become mainstream. The IMU is primarily used to measure acceleration and rota-
tional motion, providing high-frequency and outlier-free inertial measurements. However,
the IMU’s long-term operation may result in significant accumulated drift, which necessi-
tates the initialization of all IMU parameters and real-time optimization in the later stages.
This is critical for visual–inertial odometry (VIO) and visual–inertial SLAM systems, and
researchers are actively seeking ways to quickly complete the initialization of the IMU
and suppress its noise and bias. Currently, the initialization methods of VIO systems
can be broadly categorized into two main approaches: loosely coupled [5,6] and tightly
coupled [7]. The loosely coupled approach involves separate initialization processes for
the IMU and the camera, followed by minimizing the distance between their poses. In
VINS-Mono [5], keyframes and map points are initially obtained using visual odometry,
and IMU parameters are optimized through aligning the IMU pre-integrated rotation
with visual measurements by covariance propagation of the error term. However, this
approach estimates the velocity as an unknown variable and overlooks the accelerometer
bias, leading to incomplete initialization information. On the other hand, ORB-SLAM3 [6]
is a visual–inertial tightly coupled system that employs MAP estimation to estimate scale,
gravity direction, biases, and velocity during IMU initialization, while the tightly cou-
pled approach directly establishes constraints between the camera and IMU during the
initialization process to optimize various parameters. OpenVINS [7] is a tightly coupled ini-
tialization approach that leverages camera poses to establish visual constraints, enabling the
estimation of initial velocity, gravity, and three-dimensional coordinates of feature points.
Subsequently, multiple-frame velocity and position relationships are obtained through
first-order and second-order integration, respectively. BASALT [8] employs a two-level
SLAM system that optimizes the noise and bias of the IMU in both stages. In contrast
to other systems, it does not directly utilize the pre-integrated IMU measurements in the
mapping stage. Instead, it extracts short-term visual–inertial tracking information from
the marginalized information of the VI-odometry stage. This approach not only reduces
the dimensionality of the global optimization problem but also enhances the accuracy of
the optimization results. GVINS [9] employs a coarse-to-fine approach to initialize GNSS
visual–inertial states using MAP estimation and integrates their raw measurements within
a probabilistic framework. It is capable of providing drift-free 6-DoF global pose estimation
in complex environments where GNSS signals may be obstructed or entirely unavailable.

One of the challenges in developing SLAM systems is ensuring algorithm robustness
and real-time performance while working with limited computing resources, such as cheap
and low-performance processors. This is especially important for battery-powered robots,
where computational efficiency is crucial for extending the robot’s endurance. To address
these challenges, researchers have proposed various approaches. For example, Ref. [10] uses
a direct method to initialize the system and tracks non-keyframes for state estimation at the
front-end. At the back-end, sliding window and marginalization are adopted to limit the
number of keyframes and perform nonlinear optimization. Similarly, FastORB-SLAM [11]
tracks keypoints between incoming frames without computing descriptors, exploiting
motion smoothness and constraints on epipolar geometry to refine the correspondence.
ORB-SLAM2S [12] includes a lightweight front-end that uses a sparse optical flow method
for non-keyframes and descriptors, achieving faster speed performance compared to ORB-
SLAM2. However, these methods often replace ORB features with direct methods and
optical flow methods to track feature points, which can lead to reduced system accuracy if
feature points are not extracted properly.

Our laboratory is developing an inspection robot that relies on the Robot Operat-
ing System (ROS) and object detection algorithms to achieve mapping and monitoring.
Endurance and real-time tracking are key factors for inspection robots. Therefore, we
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propose a lightweight stereo-inertial SLAM based on nonlinear optimization and feature
tracking, which achieves fast tracking, better robustness, and a lower CPU load. The overall
system architecture is shown in Figure 1. Our three main contributions focus on speeding
up tracking, reducing CPU consumption, and maintaining system accuracy. The main
contributions are summarized as follows:

Figure 1. The whole frame of system.

• A coarse-to-fine optimization approach. Coarse optimization is for faster IMU ini-
tialization to replace the constant velocity model and speed up the tracking process,
while fine optimization ensures localization accuracy.

• A novel visual–inertial pose graph as an observer decides which variables need to be
optimized to prevent over-optimization.

• Fusion of IMU data with loop closure to further reduce CPU load.

The rest of the paper is structured as follows: in Section 2, we introduce the state-of-
the-art relevant systems. Section 3 is the main contribution and framework of the system.
The experiment setup and comparison with other systems are given in Section 4. The last
section covers the conclusions of this work.

2. Related Work

In recent years, visual SLAM has gained increasing attention from researchers due to
advancements in sparse nonlinear optimization theory and computer performance. Most
visual SLAMs rely on point features and MAP estimation because of their general appli-
cability. In the feature-based method, the system’s robustness and localization accuracy
are improved by minimizing the feature reprojection error, while photometric Bundle
Adjustment (BA) is used to optimize the pose by minimizing the photometric error of a
set of pixels in the direct method. Cameras provide rich visual information at low cost.
However, point features have several drawbacks. First, point features extracted by vision
sensors are highly sensitive to environmental conditions and fail to track when the texture
is poor or the image is blurred. Moreover, they are vulnerable to illumination changes.
Finally, point features are sparse, making them challenging to use in robot path planning.

SLAM involves three types of data association [13]: short-term data association for
feature point tracking, medium-term data association for bundle adjustment in local maps,
and long-term data association for loop closure. This approach is followed by most current
visual SLAM systems. Nonlinear optimization methods have been shown to have better
accuracy than filtering, so the current mainstream approach is to select representative
frames (keyframes) for input into backend optimization. The keyframe-based approach
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provides better accuracy with less computation, and has become an important standard
for current SLAM systems. PTAM [14] is a representative system for keyframes, with
two parallel threads for camera pose tracking and mapping to achieve short-term and
medium-term data association. ORB-SLAM [15,16] has three parallel threads for tracking,
local mapping, and loop closing, representing short-term, medium-term, and long-term
data association, respectively. ORB features are used for short-term data association to
compute the pose between frames. Medium-term data association uses keyframes and
map points to minimize reprojection errors with bundle adjustment, while the loop closure
thread uses the bag-of-words library DBoW2 [17] for long-term data association. These
methods have greatly improved the accuracy of ORB-SLAM.

Multi-sensor fusion systems can significantly improve state estimation accuracy and
robustness due to the complementarity between sensors. Adding an IMU can solve the
problem of scale in monocular SLAM, where the image frame lacks depth information of the
environment. Most visual–inertial fusion SLAM systems are tightly coupled and classified
as either filter-based or optimization-based systems. The earliest multi-sensor fusion
SLAM, MSCKF [18], relies on the feature method and adopts the EKF filtering method for
optimization, adding camera poses at different times to the state vector. On the other hand,
OKVIS [19] is the most representative system based on the nonlinear optimization method
and uses keyframes, relying on the error propagation model to optimize the inertial. Some
previous methods, such as [20,21], have limitations in their solution process or initialization
scale accuracy. Recently, Ref. [22] proposed a robust stereo inertial odometry based on
self-supervised feature points, using an improved multi-task CNN to extract feature points
and incorporating an IMU to deal with rapid camera movements.

3. System Overview

The ORB-SLAM3’s three threads can be taxing for certain processors and lack real-time
monitoring of optimized inertial parameters. Therefore, our proposed system builds upon
it with further refinement to improve real-time performance and decrease computation
load, which is especially beneficial for low-end Intel Next Unit of Computing (NUC). We
chose stereo because it directly measures scale without the need for additional computation
and optimization via inertial information. According to our experiments (presented in
Section 4.1), the stereo-inertial system is more accurate than the monocular-inertial system.
The system is divided into three threads: tracking, local mapping, and loop closure, with
each thread serving a specific function, which will be discussed later. It is worth noting
that some of the formulas presented are not a contribution of this work, but are mainly
from [23].

3.1. Coarse-to-Fine IMU Optimization
3.1.1. IMU Pre-Integration

From the parameters of inertial measurement between frame bk and bk+1, the position,
velocity, and rotation of the object are expressed by

pω
bk+1

= pω
bk

+ vω
bk

t +
∫∫ k+1

k

(
qwbt a

bt − gwd
)

δt2 (1)

vω
bk+1

= vω
bk

+
∫ k+1

k

(
qwbt a

bt − gw
)

δ t (2)

qwbk+1
=
∫ k+1

k
qwbt

⊗[
0

1
2 ωbt

]
δt (3)

qwbk
= qwbt

⊗
qbtbk

(4)

where pω
bk

, vω
bk

are, respectively, the position and velocity of bk frame in the world reference.
qwbk+1

is a quaternion which represents the transformation from bk+1 frame to the world
reference,

⊗
denotes the transformation operation, ωbk , abk represent angular velocity and
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acceleration in bk frame reference, respectively, g is the gravity vector, t is the time variation
between frame bk and bk+1.

Due to the high sampling frequency of the IMU, the IMU pre-integration method can
convert the integration of multiple measurement values into a single one, which improves
the calculation efficiency. Transform Equations (1)–(3) according to Equation (4):

pω
bk+1

= pω
bk

+ vω
bk

t − 1
2

g
w

t2 + qwbk

∫∫ k+1

k

(
qbkbt a

bt
)

δt2 (5)

vω
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= vω
bk
− gwt + qwbk

∫ k+1

k
(qbkbt a

bt) δt (6)

qwbk+1
= qwbk

∫ k+1

k
qbkbt

⊗ [
0

1
2 ωbt

]
δt (7)

From Equations (5)–(7), the IMU’s pre-integration between frame bk and bk+1 can be
expressed as follows:

∆pbkbk+1
=
∫∫ k+1

k

(
qbkbt a

bt
)

δt2 (8)
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2 ωbt

]
δt (10)

where ∆pbkbk+1
, ∆vbkbk+1

, and ∆qbkbk+1
are the position, velocity, and rotation variation,

respectively.

3.1.2. Coarse IMU Optimization

Since both the accelerometer and gyroscope of IMU have noise and bias, it will have
a bad influence on the measurement results. We set a covariance matrix τk,k+1 to contain
∆pbkbk+1

, ∆vbkbk+1
, and ∆qbkbk+1

. Residual models can be used for IMU initialization and
visual–inertial BA optimization.

r∆qbkbk+1
= ∆qbk+1bk

⊗
(qbkw

⊗
qwbk+1

) (11)

r∆pbkbk+1
= qbkw(pω

bk+1
− pω

bk
− vω

bk
t +

1
2

g
w

t2 ) − ∆pbkbk+1
(12)

r∆vbkbk+1
= qbkw(v

ω
bk+1
− vω

bk
+ gwt) − ∆vbkbk+1

(13)

rτbkbk+1
= [ r∆qbkbk+1

, r∆vbkbk+1
, r∆pbkbk+1

] (14)

In local mapping thread, we adopt a maximum a posteriori estimation to estimate
the IMU variables as a coarse but fast optimization. Assuming that all variables are
independent, the noise of the variables follows a Gaussian distribution with a mean of zero.
The scale of the stereo camera is known and does not require optimization. The estimated
parameters are as follows:

yk = {Rwg, ba, bg, v0:k} (15)

where Rwg represents the rotation matrix from ENU reference to the world reference. The
direction of gravity in ENU is (0, 0, g). ba, bg are the biases of the accelerometer and
gyroscope, respectively. v0:k denotes the up-to-scale velocity vector accumulation from the
first to current frame. The parameters in yk are optimized by inertial-only MAP:
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y∗k = argmax p(yk | τk,k+1)

= argmax (p(yk)p(τk,k+1 | yk))

= argmin

(
‖ba‖2

∑−1
ba

+ ‖bg‖2
∑−1

bg
+

k

∑
i=1
‖rτk,k+1‖

2
∑−1

rτk,k+1

) (16)

where p(τk,k+1 | yk) is likelihood, and p(yk) stands for prior knowledge.
MAP estimation can further transform the graph optimization problem, using the

parameters in yk as vertices and gyroscope bias, acceleration bias, velocity, etc., as edges.
The inertial residual model is then adopted to minimize the distance between IMU biases
and zero, as shown in Figure 2a. This approach to IMU initialization is a coarse optimization
method. Compared with [19–21], it is faster. Furthermore, feature point matching between
consecutive frames is time-consuming, with a maximum time complexity of N2 (where N is
the number of feature points). However, this problem can be addressed by using optimized
IMU data for the initial estimation of the camera pose, rather than relying on the constant
velocity model. By leveraging IMU information, the feature points from the previous frame
are projected onto the pixel plane of the current frame, and matching feature points can
only be found within a few pixels, thereby speeding up feature point search and improving
tracking performance.

(a) inertial-only (b) vision-only (c) vision-inertial

Figure 2. Three methods of graph optimizations along the system.

When the system starts, the pure vision module is required to initialize and generate
map point clouds, and the world reference may not be aligned with the ENU, which will
cause serious errors in the IMU integration and affect the positioning accuracy. After IMU
initialization is completed, the optimized Rwg is used to align the Z axis of the world
reference with the direction of the gravity G to ensure more accurate IMU preintegration.
Finally, the system obtains all keyframes in the map, adjusts their poses according to
Equation (17), and completes the transformation to the new world reference.

Rwbk
= RT

wgRwbk
(17)

3.1.3. Fine IMU Optimization

When IMU initialization has not started, pure visual MAP estimation is adopted,
which is converted into graph optimization as shown in Figure 2b. The system runs in
pure vision mode for 2 s to initialize the entire system, generating keyframes at 4 Hz and
3D map points. We define a local window to contain the co-visible keyframes and other
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keyframes that can observe the 3D map points in the current keyframe. Then, reprojection
error is used in the local window to optimize the pose and 3D map points.

rbi ,j = ubi ,j − Tbiw
⊗

xj (18)

where ubi ,j is the observation of pixel j in the bi frame, Tbiw ∈ SE(3) represents the transfor-
mation between the world reference and bi frame,

⊗
is the transformation operation of

SE(3) group over R3 elements, and xj stands for the 3D map point j.
To judge whether IMU variables have good initialization, we introduce a vision–

inertial pose graph:
r∆Rbkbk+1

= ∆R−1
bbkbk+1

⊗
∆Rcbkbk+1

(19)

where ∆RT
bbkbk+1

is the pose in the IMU reference, and ∆Rcbkbk+1
stands for the pose in the

camera reference.
When there is no bias, Equation (19) must be equal to the identity matrix since the

transform between frames computed by the IMU and the camera should be the same. How-
ever, during system operation, IMU parameters are affected by noise such as temperature.
Therefore, we set a threshold, and when r∆Tbkbk+1

is within the threshold range, indicating
that the IMU parameters do not need to be optimized in this frame, the visual-only MAP es-
timation (Equation (18)) is performed between the current keyframe and its local keyframes.
Otherwise, a joint visual–inertial MAP estimation as Equation (20) is used to combine
the inertial residual and visual residual to further refine the solution (Figure 2c). This
approach is a finer optimization method for inertial variables and camera poses. Multiple
BA methods can be used to reduce the time of back-end optimization and prevent some
parameters from being over-optimized.

min ( ∑
i=1
‖rτk,k+1‖

2
∑−1

rτk,k+1

+ ∑
j∈bi

k

∑
i=1

ρHub‖rbi ,j‖
2
∑−1

rτk,k+1

) (20)

where bi is the current keyframe and its local keyframe, rτk,k+1 stands for the inertial residual,
rbi ,j represents the visual residual, ρHub is the robust kernel which is used to reduce the
influence of wrong matching.

3.2. Inertial and Loop Closing

In the loop closing thread, the DBoW2 word-bag library is utilized to solve the position
recognition problem, which converts the features in keyframes into bag-of-words vectors
and queries the DBoW2 database to retrieve the most similar keyframes

As the SLAM system operates, the number of keyframes gradually increases, leading
to an increase in query time and CPU energy consumption. This can be problematic
for some embedded systems. To address this issue, we propose a new method for loop
closure detection that uses IMU for rough judgment. Our inspiration for this method
comes from [22–24], where the incremental consistent measurement set maximization
(PCM) method is proposed to check the quality of loop closures and remove outliers after
bag-of-words vectors matching. This post-operation effectively reduces the occurrence of
false fusion, but it also increases the amount of calculation required. Our method differs in
that it performs coarse loop closure detection before bag-of-words database traversal. This
reduces the number of queries to the database, thereby reducing the burden on the CPU.

When a loop closure occurs, a portion of the sensor’s trajectory must be in close
proximity to a ring structure. This means that if the sensor revisits a previous location, it
must be moving in the opposite direction of some of its previous trajectory, as shown in
Figure 3. Leveraging this feature, we propose a method for coarse loop closure detection
that incorporates IMU information. By using the acceleration and angular velocity of the
IMU, we can determine the direction of movement of the robot. When the direction aligns



Drones 2023, 7, 338 8 of 16

with the positive direction of the IMU reference frame, the value is set to 1; otherwise, if the
direction is opposite, the value is set to 0.

In this way, when a keyframe enters the loop closure detection thread, a change in the
direction of motion along one axis indicates that the sensor may be moving in the opposite
direction and a loop closure may occur. This is the rough detection method using IMU
data. However, it is impractical to match all keyframes based on orientation requirements.
To address this, we introduce a threshold radius r to filter out keyframes that meet the
orientation requirements. In [25], a search radius of 10 meters was used for lidar SLAM,
but this method is sensitive to point cloud density and depth accuracy. Thus, we set the
threshold radius r to 20 times the stereo baseline. This prevents the system from missing
loops and reduces unnecessary keyframe matching. For 3D scenarios, such as drone flight
as shown in Figure 3b, the principle is similar to the 2D case. We simply expand the circle
of radius r into a sphere and search for possible matching keyframes within it. If there are
other keyframes within the threshold, loop closure detection will begin. Features will be
converted into bag-of-words vectors, and the DBoW2 database will be searched within the
threshold radius. This method can significantly reduce unnecessary calculations and CPU
usage as the number of keyframes increases. Furthermore, the longer the system runs, the
more evident this advantage becomes.

(a) On a plane (b) In a three-dimensional space

Figure 3. Schematic diagram of coarse loop closure detection.

3.3. Main Process

The tracking thread is responsible for feature extraction from sensor input and tracking
them. Initially, the system relies on pure visual initialization, which uses stereo disparity
to calculate the depth of feature points and backprojects them into the map. With the
input of multi-sensor information, the inertial data are used to calculate the transformation
Tbkw between bk and the world reference as the initial value for nonlinear optimization
instead of the constant velocity model. Then, map points observed in the previous frame
are projected onto the current frame with Tbkw. Finally, an optimization procedure is carried
out to estimate the orientation R ∈ SO(3) and translation t ∈ R3 of the current frame. Once
the pose has been estimated, the current frame is evaluated to determine whether it should
be considered as a new keyframe in a similar strategy to ORB-SLAM3. In cases of rapid
rotation or occlusion where feature points between frames cannot be matched, the pose is
calculated by integrating the inertial data, and the system continues to track. If occlusion
persists in the two incoming image frames, then the tracking fails and relocalization is
performed using the DBoW2 bag-of-words model to increase the robustness of tracking.

The local mapping thread is responsible for performing BA optimization to refine
the pose and 3D map points of keyframes in the map. Whenever a keyframe is inserted,
it establishes a co-visible graph with a set of connected keyframes, calculates the depth
through binocular disparity, back-projects the unmatched feature points into the world
reference, and fuses redundant 3D feature points in the map. Other keyframes that observe
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the current keyframe points but are not connected are included in the optimization, but
their poses remain fixed. Within 2 s of the system running, BA optimization is performed
with the pure vision module using Equation (18). Then, the IMU parameters are initialized
and refined using the MAP estimation technique shown in Equation (19). Finally, the
vision–inertial pose graph is used to judge the quality of variable optimization and guide
the system to choose a better nonlinear optimization method, preventing some parameters
from being over-optimized.

The loop closing thread is responsible for correcting the accumulated drift, especially
over long-term operations. When a new keyframe is inserted, the direction of movement of
the current frame relative to the world reference is calculated using the IMU data and stored
in a unit-bearing vector. The system then performs a coarse judgment of loop detection
by searching in real-time for all keyframes within a radius r and two opposite directions
described in Section 3.2. If the coarse judgment passes, the system starts the loop detection
approach, and matches features between the current keyframe and other keyframes within
the radius in a fine detection process. If the match is successful, the SE(3) transformation
between the current frame and the matching keyframe is calculated, correcting the poses of
keyframes in the co-visible graph, and the map points through pose propagation to correct
the accumulated drift. After a loop correction, a full BA is executed in a new thread to
further refine the map without affecting real-time performance.

4. Experimental Results

To demonstrate the performance of our system, we have conducted experiments
using the EuRoC [26] dataset. The datasets consist of recordings of aircraft flying in
large industrial environments, which are divided into three modes based on illumination,
speed, and texture: easy, medium, and hard. We conducted multiple experiments on each
of the 11 sequences and compared our system with other state-of-the-art systems. The
experiments were divided into three parts: Section 4.1 is the simulation of single-session
sequences, Section 4.2 discusses the IMU and loop closure, and Section 4.3 is a comparison
of computing time. We aligned the estimated trajectory with ground-truth using SE(3)
transformation in stereo-inertial sensor configurations. All experiments were performed
on a machine running Ubuntu18.04 with an Intel Core i5-1135CPU, at 2.4 GHz, and 16 Gb
memory, using only the CPU.

Histogram equalization is applied to each input image to enhance its contrast, which is
highly significant for solving under- or over-exposed environments. FAST feature points are
extracted from an 8-scale pyramid model with a scale factor of 1.2. Additionally, the system
uses the quadtree algorithm to recursively search for groups of points and employs the
point with the highest corresponding value of the FAST corner point in the neighborhood
of local feature points for non-maximum suppression and fast screening. The descriptor is
calculated using the BRIEF algorithm to enable the matching of feature points.

4.1. EuRoC Sequences

We select the most representative SLAM systems for each method. BASALT relies on
optical flow and BA optimization. OKVIS is considered a pioneering work in the field of
visual–inertial SLAM, based on nonlinear optimization. ORB-SLAM3 is considered the
most advanced system currently available. KIMERA is an open-source SLAM library based
on metric semantics. It consists of multiple modules and introduces semantic segmentation
alongside SLAM. We use the Absolute Trajectory Error (ATE) to compare our system with
other state-of-the-art SLAM systems, as shown in Table 1. The data in the table are obtained
from the corresponding papers, and some missing data are from our reproduction of
their papers.

ATE =

√√√√ 1
N

N

∑
i =1
‖trans(T−1

gt,iTesti,i)‖
2

(21)
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where N represents the number of keyframes, trans stands for the translation of the trans-
formation, Testi,i represents the estimated trajectory, and Tgt,i is the real trajectory.

Table 1. Comparison of various state-of-the-art systems on the EuRoC dataset.

EuRoC Mono-Inertial Stereo-Inertial
Sequences OKVIS [27] VI-DSO [28] ORB-SLAM3 [6] VINS-Fusion [27] BASALT [8] KIMERA [29] ORB-SLAM3 [6] Ours

MH01 0.16 0.062 0.071 0.166 0.08 0.08 0.042 0.04
MH02 0.22 0.044 0.041 0.152 0.06 0.09 0.037 0.035
MH03 0.24 0.117 0.068 0.125 0.05 0.11 0.041 0.043
MH04 0.34 0.132 0.088 0.28 0.131 0.15 0.079 0.088
MH05 0.47 0.121 0.054 0.284 0.08 0.24 0.08 0.075
V101 0.09 0.059 0.042 0.076 0.04 0.05 0.043 0.045
V102 0.2 0.067 0.031 0.069 0.02 0.11 0.018 0.014
V103 0.24 0.096 0.042 0.114 0.03 0.12 0.033 0.042
V201 0.13 0.04 0.051 0.066 0.03 0.07 0.028 0.023
V202 0.16 0.062 0.02 0.091 0.02 0.1 0.024 0.022
V203 0.29 0.174 0.041 0.096 - 0.19 0.038 0.056
Avg 0.231 0.089 0.05 0.138 0.051 0.119 0.041 0.044

It can be concluded that the ATE of the stereo-inertial system is slightly better than
that of the monocular-inertial system, and has a lower dependence on scale optimization.
At the beginning of the system, the stereo system only requires one frame to initialize,
while the monocular system requires multiple inputs to triangulate. Additionally, for the
calculation of the depth of feature points, the stereo-inertial system can choose between
stereo triangulation or using the left (or right) camera from the previous frame to the
current frame. These advantages are the reasons why the stereo system is more robust.

To summarize the system’s performance, we presented the median of ten executions
for each sequence. KIMERA emphasizes SLAM with semantic segmentation, while VINS-
Fusion utilizes keypoint extraction and optical flow for tracking. However, the rapid
movement of unmanned aerial vehicles may result in blurriness. As a result, our system
demonstrated significantly higher accuracy than VINS-Fusion and KIMERA in certain
scenarios, highlighting the advantages of medium-term and long-term data association.
Our system achieves comparable accuracy to BASALT and ORB-SLAM3, except in the case
of the V203 sequence in EuRoC where BASALT fails due to missing frames and severe
motion blur. In contrast to BASALT, which relies on optical flow and cannot track pixel
intensity variations during motion blur, our tightly-coupled approach, combined with MAP
estimation, allows for rapid IMU initialization and the utilization of optimized inertial
variables, resulting in improved accuracy. The local mapping thread’s joint visual–inertial
optimization further refines the solution, making the system more accurate and faster. Our
coarse-to-fine optimization method’s advantage is the two cooperating threads that make
the system more robust. Every time a loop is detected, a full BA is performed to optimize
all camera poses in the map, ensuring the localization accuracy of the entire system. Our
system achieved the highest accuracy in most of the Machine Hall (MH), V102, and V201
sequences. In complex flight scenarios, our system’s trajectory closely follows the ground
truth from start to finish, as shown in Figure 4, demonstrating our system’s advantages in
short-term, medium-term, and long-term data association.
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(a) Motion trajectory in V102 (b) Motion trajectory in V202

Figure 4. Comparison of our system with ground truth.

Figure 5 illustrates the tracking errors in the x, y, and z directions over time. As shown,
the relative error of our system does not increase with distance, nor does the drift suffer
from drifting in any of the three directions, remaining consistently low. This indicates
that our system effectively suppresses noise. The tightly coupled approach and coarse-
to-fine optimization we proposed, combining the characteristics of the tracking and local
mapping threads, enable the system to run for extended periods without accumulating drift,
achieving global consistency and building a reliable map. In Figure 6, our system and ORB-
SLAM3 show a similar trend in ATE error, with both systems remaining within a constant
range over time. Our system exhibits slightly superior positioning accuracy, which aligns
with our objective of proposing a lightweight solution while upholding high precision.

(a) (b)

Figure 5. Motion track in X, Y, and Z directions. (a) Motion track in three directions for V102. (b) Motion
track in three directions for V202.

4.2. IMU and Loop Closure

As shown in the partial map in Figure 7, our loop closure detection method effectively
identifies loop closures and forms a nearly closed trajectory shape each time a loop is
detected. The use of IMU data to calculate the sensor’s displacement direction and a
radius threshold of 20 times the stereo baseline from the current keyframe’s camera optical
center are key factors in achieving accurate and reliable loop closure detection. Our system
then utilizes the DBoW2 database to identify three consecutive keyframes with temporal
consistency to ensure higher recall. Once a feature matching is successful, we project the
feature points of the three co-visible keyframes into the matching frame and check if the
number of feature points is sufficient to close the loop.
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Figure 6. ATE comparison with ORB-SLAM3 on EuRoC. The top of this group of pictures is the ATE
comparison of V102, and the bottom is ATE comparison for V202.

In order to filter out unnecessary keyframes and reduce computational costs, we use a
radius r to separate possible keyframes for loop detection, as shown in Figure 7. However,
it is important to ensure that this approach does not miss any loops. To evaluate the effect
of different radii, we conducted experiments and plotted the results in Figure 8. As SLAM
is a probabilistic event, the mode was used as the evaluation criterion to reflect the effect of
different radii on loop closure. We found that a radius of 20 times the stereo baseline was
optimal for the EuRoC dataset, as it ensured both accuracy and reduced CPU utilization. A
larger radius would be closer to the original DBoW2 calculation method, while a smaller
radius would negatively impact loop detection. Overall, our approach strikes a good
balance between accuracy and computational efficiency.

(a) Loop for MH05 (b) Loop for V203 (c) Loop for V102

Figure 7. Fusion of IMU data and loop closure. The red line represents the motion trajectory of the
camera, the green frame is the current keyframe, the blue frame is the keyframe in the map, and the
red point represents the 3D map point.

Compared to ORB-SLAM3, our system has clear advantages in terms of CPU load.
In ORB-SLAM3, the loop detection is triggered every time a new keyframe is added, and
the DBoW2 database is searched to check if the robot revisits a previous location. As
shown in Figure 9, the CPU usage of ORB-SLAM3 fluctuates regularly. When the matching
between the current frame and the database is successful, the CPU needs to process the
similar transformations between them and use graph optimization to approximate the
optimal solution, resulting in the highest CPU usage. Our algorithm has a similar trend
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to ORB-SLAM3, but due to the coarse-to-fine optimization using IMU data, it is no longer
necessary to search the DBoW2 database every time, leading to lower CPU usage. Figure 9
demonstrates that ORB-SLAM3 and our system have the same number of peaks (once the
loop merge occurs successfully, a new thread will be started, so that the CPU usage will
reach its peak), which indicates that our system does not miss any loops despite using
additional constraints. Not every successful coarse judgment will trigger a loop closure.
Nevertheless, our system is already very friendly to some low-end processors compared to
real-time loop detection.

Figure 8. The number of loops per sequence. Each sequence is performed 5 times, with the mode as
the statistical standard.

(a) MH05 sequence (b) V103 sequence

Figure 9. CPU comparison in loop closure.

4.3. Computing Time

Table 2 shows the running time of the main operations in the tracking and local
mapping thread between the stereo-inertial ORB-SLAM3 and our system on V102 and V202.
As for loop closure thread, this paper relies on the IMU data to analyze the motion trajectory
of the camera, while ORB-SLAM3 performs place recognition on incoming keyframes every
time, so it is not fair to compare the time of loop closure thread between them.

Table 2. Time comparison of the systems on EuRoC (ms).

Sequence System Tracking Local Mapping
ORB Extract Stereo Match Track KF Insert IMU Init Local BA

V102 ORBSLAM3 12.66 2.84 12.11 6.49 30.33 153.3
Ours 14.24 2.75 5.94 6.71 32.62 103.88

V202 ORBSLAM3 16.37 3.26 13.53 8.51 35.79 181.62
Ours 15.98 2.79 7.65 9.13 33.85 118.48

Compared to ORB-SLAM3, our system boasts a significant advantage by operating
in real-time, processing up to 50 frames with around 8 keyframes per second. The system
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maintains a consistent range of time differences in operations such as feature extraction
and stereo matching, ensuring a reliable and efficient performance. While ORB-SLAM3
employs a constant velocity motion model for feature point tracking, our system uses
the optimized IMU variables to generate a more accurate initial value for the pose. This
approach enables us to reduce the number of iterations required for pose optimization,
resulting in a higher frame rate.

Our local mapping thread incorporates three graph optimization techniques: inertial-
only, vision-only, and vision–inertial. However, we have an additional variable state
observer that selects the appropriate graph optimization method based on the joint visual–
inertial error. This ensures that certain variables are not over-optimized and enhances the
accuracy of the system.

Furthermore, we compared the CPU load of our system with that of ORB-SLAM3
in the local mapping thread. The results demonstrated the effectiveness of our visual–
inertial pose graph as an observer in reducing CPU load, as depicted in Figure 10. Overall,
our system presents a significant improvement over ORB-SLAM3, achieving real-time
operation and offering notable advantages in accuracy and efficiency.

(a) V203 sequence (b) V103 sequence

Figure 10. CPU comparison in local mapping.

5. Conclusions

In this paper, we present a lightweight stereo-inertial SLAM system that employs
nonlinear optimization and feature-based techniques while leveraging IMU information
throughout the pipeline. To optimize the inertial bias and noise efficiently, we propose a
coarse-to-fine variable optimization method that enables the use of IMU data for tracking
from the outset, thus reducing the number of BA iterations. Moreover, we incorporate
optimized inertial data as a temporary replacement for feature point tracking in challenging
scenarios such as fast rotation, occlusion, or poor texture, thereby enhancing the system’s ro-
bustness. In the local mapping thread, we enhance the solution through joint visual–inertial
optimization. We propose a novel visual–inertial pose graph that effectively identifies the
variables requiring optimization, preventing continuous over-optimization of IMU param-
eters and reducing CPU load. In the loop closure thread, we integrate inertial data and
sensor motion information as a prerequisite for loop detection. Additionally, we introduce a
threshold radius to selectively filter out keyframes that satisfy the orientation requirements.
This ensures that the system avoids missing potential loops and reduces the frequency of
unnecessary DBoW2 database retrieval, thereby further alleviating CPU pressure on the
system. Experimental results demonstrate that our system achieves improved accuracy
with low CPU consumption and enhanced robustness compared to other state-of-the-art
approaches on benchmark datasets.

However, our system has higher requirements for IMU data as they are utilized
for initializing the pose between consecutive frames. Additionally, the selection of the
threshold value for keyframe filtering is fixed, limiting its generalization to other cameras
or datasets. Our future research direction will focus on setting the threshold as an adaptive
value to accommodate a wider range of scenarios.
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