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Abstract: Due to the high stability and adaptability, quadruped robots are currently highly discussed
in the robotics field. To overcome the complicated environment indoor or outdoor, the quadruped
robots should be configured with an environment perception system, which mostly contain LiDAR
or a vision sensor, and SLAM (Simultaneous Localization and Mapping) is deployed. In this paper,
the comparative experimental platforms, including a quadruped robot and a vehicle, with LiDAR
and a vision sensor are established firstly. Secondly, a single sensor SLAM, including LiDAR SLAM
and Visual SLAM, are investigated separately to highlight their advantages and disadvantages.
Then, multi-sensor SLAM based on LiDAR and vision are addressed to improve the environmental
perception performance. Thirdly, the improved YOLOv5 (You Only Look Once) by adding ASFF
(adaptive spatial feature fusion) is employed to do the image processing of gesture recognition and
achieve the human–machine interaction. Finally, the challenge of environment perception system for
mobile robot based on comparison between wheeled and legged robots is discussed. This research
provides an insight for the environment perception of legged robots.

Keywords: quadruped robot; simultaneous localization and mapping; image processing; deep learning

1. Introduction

According to the type of motion, mobile robots can be classified into three categories,
wheeled, crawler, and legged [1]. Wheeled robots are suitable for simple terrains, crawler
robots can move on complex terrains, but their movement flexibility is poor. Compared to
the former two, legged robots only require discrete points instead of continuous motion
when planning their motion path, allowing them to adapt to more complex terrains [2].
Legged robots can be further divided into monopods [3], bipeds [4], quadrupeds [5],
hexapods [6], etc. Among them, quadruped robots offer both high stability and adapt-
ability, allowing them to navigate more complex terrains than biped robots without the
complexity of hexapod robots. As a result, they have become a research hotspot in the
field of robotics. In the research of quadruped robots, improving their adaptability to
the external environment, specifically their ability to autonomously perceive and interact
with the external environment, is a highly researched topic. An autonomous legged robot
requires an accurate, real-time running, simultaneous localization and mapping (SLAM)
algorithm without human intervention [7].

Most outdoor navigation systems, such as surface ships, use Global Navigation Satel-
lite Systems (GNSS) [8], such as the Global Positioning System (GPS), to measure their
position. Xia X et al. proposed An autonomous vehicle sideslip angle estimation algorithm
based on consensus and vehicle kinematics/dynamics synthesis. Based on the velocity
error measurements between the reduced Inertial Navigation System (R-INS) and the
GNSS, a velocity-based Kalman filter is formalized to estimate the velocity errors, attitude
errors, and gyro bias errors of the R-INS [9]. Gao L et al. proposed a vehicle localization
system based on vehicle chassis sensors considering vehicle lateral velocity to improve the
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accuracy of vehicle stand-alone localization in highly dynamic driving conditions during
GNSS outages [10]. However, these signals are weak and vulnerable to intentional or unin-
tentional interference. To address these problems, SLAM has emerged as a research hotspot
in the field of robot autonomous navigation. Two mainstream technologies in SLAM are
laser-SLAM and visual-SLAM, which are based on LiDAR sensors and visual sensors,
respectively. Each sensor has its advantages and disadvantages. Visual sensors can obtain
relatively accurate detection results at close distances, but their detection distance is limited
and they are more sensitive to the external environment. They are usually used for semantic
interpretation of the scene but cannot perform well in harsh lighting conditions. On the
other hand, LiDAR sensors can detect further distances and have stronger anti-jamming
capabilities, making them important for obstacle detection and tracking. However, they
have poor performance in the detection of color, texture, and features. Therefore, fusing
LiDAR and visual information can overcome their drawbacks and improve the stability
and accuracy of detection [11].

In addition, machine learning and deep learning techniques are widely used for more
complex object detection and scene perception, including image classification and object
detection. Commonly used algorithms include Convolutional Neural Networks (CNNs)
and the YOLO (You Only Look Once) network. Liang Y et al. presented a novel lightweight
convolutional module (LCM), namely convolutional layers module (CEModule), focusing
on the CE part. CEModule increases the number of key features to maintain a high level
of accuracy in classification. In the meantime, CEModule employs a group convolution
strategy to reduce floating-point operations (FLOPs) incurred in the training process [12].
Zhou P et al. proposed a lightweight unmanned aerial vehicle video object detection
based on spatial-temporal correlation, an efficient deep learning model on unmanned
aerial vehicles (UAVs) to fit the restriction of low computational powers and low power
consumption [13].

1.1. Single Sensor Detection

The current research on the perception of the external environment using a single
sensor is relatively mature. Manuel et al. proposed an algorithm that performs autonomous
3D reconstruction of an environment using a single 2D LiDAR sensor and implemented it
on a mobile platform using the Robot Operating System (ROS) [14]. Woo et al. proposed
a Ceiling Vision-based Simultaneous Localization and Mapping (CV-SLAM) technique
using a single ceiling vision sensor [15]. They addressed the rotation and affine transform
problems of the ceiling vision by using a 3D gradient orientation estimation method and
multi-view description of landmarks. Based on that, they reconstructed the 3D landmark
map in real-time using the Extended Kalman filter-based SLAM framework. Andrew et al.
presented the MonoSLAM algorithm, which can recover the 3D trajectory of a monocular
camera [16]. The core part of the research is to online create a sparse but persistent map of
natural landmarks within a probabilistic framework. The work also extended the range
of robotic systems to humanoid robots and augmented reality with a hand-held camera.
Dominik Belter applied a simultaneous localization and mapping algorithm to localize a
hexapod robot using data from compact RGB-D sensors. This approach employed a new
concept that combines fast visual odometry to track sensor motion and visual features to
track radar scans. Experiments showed that visual radar features can be used to accurately
estimate ship trajectories across a wide range of datasets [17].

1.2. Multi-Sensor Fusion

Multi-sensor fusion is an effective method to improve a robot’s ability to perceive
the external environment [18]. For example, one common fusion approach is to combine
cameras and LiDARs. Cameras can obtain complex external environment information
with a high frame rate and high pixel count, but they are easily affected by lighting condi-
tions. On the other hand, LiDAR is less affected by light and can provide more accurate
position and depth information, but it cannot capture visual information. By fusing the
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data from these two sensors, the robustness of perception can be greatly improved [19].
Joel et al. fused LiDAR and color imagery for pedestrian detection using CNNs [20]. They
incorporated LiDAR by up-sampling the point cloud to a dense depth map and extracting
three features representing horizontal disparity, height above ground, and angle (HHA)
features. These features were then used as extra image channels and fed into CNNs to learn
a deep hierarchy of feature representation. Mohamed Dhouioui proposed an embedded
system based on two types of data, radar signals and camera images, aiming to identify
and classify obstacles on the road. They used machine learning methods and signal pro-
cessing techniques to optimize the overall computation performance and efficiency [21].
Elena incorporated vision and laser fusion techniques for simultaneous localization and
mapping of Micro Air Vehicles (MAVs) in indoor rescue and/or identification navigation
missions. The technique fused laser and visual information, as well as measurement data
from inertial components, to obtain reliable 6DOF pose estimation of MAV within a local
map. Experimental results showed that sensor fusion can improve position estimation
under different test conditions and obtain accurate maps [22]. When considering robotic
applications in complex scenarios, traditional geometric maps appear inaccurate due to
their lack of interaction with the environment. Based on this, Jing Li et al. proposed
building a three-dimensional (3D) semantic map with large-scale and precise integration of
LiDAR and camera information to more accurately present real-time road scenes [23]. First,
they performed SLAM through multi-sensor fusion of LiDAR and inertial measurement
unit (IMU) data to locate the robot’s position and build a map of the surrounding scene
while the robot moves. Furthermore, they employed a CNN-based image semantic seg-
mentation to develop a semantic map of the environment. To address the incompleteness
of environmental perception when using only a 2D LiDAR, they calibrated the point cloud
information from the RGBD camera Kinectv2 and the 2D LiDAR using internal and external
parameters based on the Cartographer algorithm [24]. Precise calibration of the rigid body
transform between the sensors is crucial for correct data fusion. To simplify the calibration
process, Michelle et al. presented the first framework that makes use of CNNs for odometry
estimation by fusing data from 2D laser scanners and monocular cameras without requiring
sensor calibration [25]. Mary et al. presented a fusion of a six-degrees-of-freedom (6-DoF)
inertial sensor and a monocular vision [26]. They integrated a monocular vision-based
object detection algorithm using Speeded-Up Robust Feature (SURF) and Random Sample
Consensus (RANSAC) algorithms to improve the accuracy of detection. By fusing data
from inertial sensors and a camera using an Extended Kalman Filter (EKF), they estimated
the position and orientation of the mobile robot. Xia X et al. proposed an automated driving
systems data acquisition and analytics platform. It presents a holistic pipeline from the
raw advanced sensory data collection to data processing, which is capable of processing
the sensor data from multi-CAVs (connected automated vehicle) and extracting the objects’
Identity (ID) number, position, speed, and orientation information in the map and Frenet
coordinates [27]. Liu W et al. proposed a novel kinematic-model-based VSA (vehicle slip
angle) estimation method by fusing information from a GNSS and an IMU [28]. Xia X et al.
proposed a method for the IMU and automotive onboard sensors fusion to estimate the
yaw misalignment autonomously [29].

1.3. Deep Learning Method

In the application of assisted driving systems, a model that can accurately identify
partially occluded targets in complex backgrounds and perform short-term tracking and
the early warning of fully occluded targets is required. Based on this, Kun Wang et al.
proposed a method based on YOLOv3 [30], which can improve the detection accuracy
while supporting real-time operation and realize real-time alarm for completely occluded
targets. They first obtained a more appropriate prior frame setting through categorical
K-means clustering. Then, they used DIOUNMS instead of the traditional non-maximum
suppression (NMS) technique. Additionally, to improve the system’s ability to identify
occluded targets, they proposed a tracking algorithm based on Kalman filter and Hungarian
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matching. Qiu et al. proposed an Adaptive Spatial Feature Fusion (ASFF) YOLOv5
network (ASFF-YOLOv5) to improve the accuracy of recognition and detection of multiple
multiscale road traffic elements [31]. The first step was to use the K-means algorithm for
clustering statistics on the range of multiscale road traffic elements. Then, they employed
a spatial pyramid pooling fast (SPPF) structure to enhance the accuracy of information
extraction. To address the problems in object detection in drone-captured scenarios due to
different altitudes and high drone speeds, Zhu et al. proposed TPH-YOLOv5 to handle
different object scales and motion blur [32]. Based on YOLOv5, they added an additional
prediction head to detect objects of different scales. They replaced the original prediction
heads with Transformer Prediction Heads (TPH) and integrated the Convolutional Block
Attention Model (CBAM) to identify attention regions in scenarios with dense objects.
Experiments on the VisDrone2021 dataset demonstrated that TPH-YOLOv5 performed
well, with impressive interpretability, in drone-captured scenarios. Liu W et al. proposed a
novel algorithm referred to as YOLOv5-tassel to detect tassels in UAV-based (Unmanned
aerial vehicle) RGB imagery [33].

In this paper, environment perception system of quadruped robots based on LiDAR
and vision is investigated. The paper is organized as follows. In Section 2, the comparative
experimental platforms are set up. In Section 3, the single sensor SLAM is studied. In
Section 4, the multi-sensor SLAM is investigated. In Section 5, the human–machine inter-
action via gesture recognition is addressed. In Section 6, the challenge of environment
perception system for legged robots is analyzed. In Section 7, conclusions are drawn and
future works are issued.

2. System Overview

To investigate the environmental perception performance of different mobile platforms,
different sensors, and different algorithms, we used two platforms, a quadruped robot and
a vehicle are set up with LiDAR and vision sensor.

2.1. Hardware Architecture

The comparative experimental platforms for this research are a quadruped robot and a
vehicle, as depicted in Figure 1. The system hardware is shown in Table 1. The measurement
angle, range and accuracy of 3i LiDAR Delta2A are 360◦, 8 m and 20 mm, respectively.
The measurement range, color map resolution, and depth map resolution of Kinect V2 are
0.5∼8 m, 1920 × 1080@15FPS, 512 × 424@30FPS, respectively. The measurement range,
color map resolution, and depth map resolution of Astra Pro are 0.6∼8 m, 640× 480@30FPS,
640 × 480@30FPS, respectively. The controller Jetson Nano is with TegraX1, 1.43 GHz,
4 cores (A57), 4 GB RAM AND 0.5TFLOPS GPU.

(a) (b)

Figure 1. (a,b) The comparative experimental platforms with LiDAR and depth-camera.
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Table 1. The comparative experimental platforms: quadruped robot and vehicle.

Platform Quadruped Robot (Unitree Go1) Vehicle (Nano Pro)

LiDAR 3i LiDAR Delta2A

Vision Kinect V2 Astra Pro

Controller Jetson Nano

Algorithm Both platforms use the same algorithm

2.2. Software Architecture

The software architecture is shown in Figure 2. The environmental perception software
system can be utilized in the following four modules:

• A single sensor (LiDAR or RGB-D camera) is used for localization and mapping;
• Kalman Filter Fusion method is used to fuse the data obtained by the two sensors for

localization and mapping;
• Gesture recognition is achieved by utilizing the enhanced YOLOv5 network with

ASFF, enabling the quadruped robot to recognize basic instructions.
• The same multi-sensor fusion method is employed in the quadruped robot and vehicle

to analyzed the extra problem of environmental perception of legged robots.

Note that the objective of gesture recognition is to achieve the human–machine inter-
action. Based on the recognition result of different gesture, the quadruped robot is expected
to understand human intentions and do some corresponding actions.

Figure 2. Software architecture.
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3. Single Sensor SLAM

In the section, the single sensor, LiDAR or vision, is used to do the SLAM for a
quadruped robot. In addition, different Visual SLAM algorithms are studied.

3.1. LiDAR SLAM

Figure 3 illustrates the mapping process of the quadruped robot, wherein it builds a
map of the surrounding room. Due to the indoor environment’s limited scene character-
istics, the Gmapping algorithm is employed. Gmapping utilizes the Rao–Blackwellized
Particle Filter (RBPF) and combines data from both the laser sensor and robot pose to
generate a 2D grid map[34]. The mapping result is presented in Figure 4. The outermost
border depicts the wall locations, while the black dots represent the obstacle positions on
the map. Subsequently, the map is saved for navigation purposes. It is worth noting that
since only the LiDAR sensor is utilized for mapping, there is no three-dimensional visual
information available.

Figure 3. Mapping process of the quadruped robot with LiDAR.

Figure 4. Mapping result of the quadruped robot with LiDAR.

3.2. Visual SLAM

Figure 5 showcases the successful tracking outcome achieved with ORB-SLAM2. The
primary objective of ORB-SLAM2 is to attain long-term and globally consistent localization,
prioritizing it over creating highly detailed dense reconstructions. The ORB-SLAM2 system
operates through three main parallel threads, (1) tracking, which localizes the camera
by identifying feature matches in the local map and minimizing projection errors using
bundle adjustment; (2) local mapping, responsible for managing and optimizing the local
map, including local bundle adjustment; (3) loop closing, which detects significant loops
and corrects accumulated drift through pose-graph optimization [35]. The resulting point
cloud map is presented in Figure 6. Additionally, Figure 7 demonstrates a tracing failure.
Two primary reasons contribute to this failure. Firstly, the database lacks window angle
datasets, making it impossible to obtain valid feature points; secondly, the scene is relatively
monotonous and features are scarce. When tracking fails, the robot needs to return to
the starting position for relocalization. While this mapping method enables effective
localization, it is unsuitable for navigation due to the resulting sparse map. Consequently,
the subsequent experiment utilizes the RTAB-MAP algorithm for dense mapping.
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(a) View angle 1 (b) View angle 2

(c) View angle 3 (d) View angle 4

(e) View angle 5 (f) View angle 6

Figure 5. The successful tracking outcome achieved with ORB-SLAM2: feature points is labeled and
point cloud map can be generated.

Figure 6. The resulting point cloud map achieved with ORB-SLAM2.
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(a) View angle 1 (b) View angle 2

Figure 7. The failed tracking outcome achieved with ORB-SLAM2: No feature points are labeled and
a point cloud map can not be generated.

To obtain a dense mapping result, we employed RTAB-MAP after the sparse mapping
achieved by ORB-SLAM2. RTAB-MAP is a graph-based SLAM approach. The visual
odometry process in RTAB-MAP involves feature detection, feature matching, motion
prediction, motion estimation, local bundle adjustment, pose update, and key frame and
feature map update [36]. Figure 8 illustrates the experiment result using RTAB-MAP on the
quadruped robot. Figure 8a presents the top view of the map, Figure 8b shows the two-
dimensional grid map for navigation, Figure 8c displays exhibits the three-dimensional
point cloud maps. The resulting map presents three-dimensional stereoscopic visual
information, and additional visual features can be extracted after processing. However, the
small field of view angle of the depth camera results in the omission of certain scene angles
in the constructed map.

(a) (b)

(c)

Figure 8. The experiment result using RTAB-MAP on the quadruped robot. (a) Top view of the map;
(b) Two-dimensional grid map for navigation; (c) Three-dimensional point cloud maps.

4. Multi-Sensor Fusion SLAM

To make up for deficiencies of Single Sensor SLAM, multi-sensor Fusion SLAM based
on LiDAR and vision is investigated by using Extended Kalman Filter fusion method.
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4.1. Problems with Single Sensor SLAM

Laser SLAM is a relatively mature approach, especially for two-dimensional mapping.
Its main advantage is the 360◦ scanning range of LiDAR, which typically exceeds the
detection range of depth cameras, allowing for direct use of the obtained map for navigation.
However, it also has some drawbacks, such as the lack of semantic information, difficulties
in loop detection, and degradation in environments with limited scene diversity, such as
structurally consistent corridors or tunnels, where laser-based SLAM is more susceptible
to degradation compared to vision-based methods. Additionally, two-dimensional laser
SLAM can only capture information in the same plane as the transmitter, resulting in
limited height information that may pose challenges for large robots [37].

Visual SLAM is a prominent research direction for the future, although it still faces
certain challenges. These include (1) estimating posture accurately or even possible becomes
difficult when the camera moves too quickly, as the overlapping area between frames
decreases. Furthermore, motion blur caused by camera movement can significantly affect
the extraction and matching of feature points. It also includes (2) insufficient field of view;
(3) limited depth measurement range with lower accuracy; (4) information blockage when
the camera reaches corners or is inadvertently obscured by the operator; and (5) dynamic
light sources, which can lead to inaccurate feature extraction and matching. Moreover,
strong light can cause significant interference with Kinect-based systems.

4.2. Fusion Method

The specific fusion process is as follows. When visual tracking is successful, the visual
localization results and the laser localization results are fused using the Extended Kalman
Filter method. When visual tracking fails, the system switches to laser mapping mode
while simultaneously restarting visual tracking. If the visual tracking is successful, the
laser localization result is integrated into the mapping. If the visual tracking remains
unsuccessful, laser SLAM continues to be utilized. There is no priority between visual
tracking and laser localization.

In this study, the fusion of laser and vision was accomplished using the Extended
Kalman Filter, as shown in Equation (1) [38]:{

xk = f (xk−1, uk) + wk

zk = h(xk) + vk
(1)

where xk is the state variable, zk is the observed output, uk is the control input, wk is the
process noise, and vk is the observation noise. Both wk and vk are assumed to be Gaussian
noises with zero mean. The function f is used to calculate the current state, while the
function h is used to predict observations based on the calculations.

The extended Kalman filter fusion method can be divided into two parts, prediction
and update [38].

In the prediction part:
xk|k−1 = f (xk−1|k−1, uk) (2)

Pk|k−1 = FkPk−1|k−1FT
k + Qk (3)

In the update part,
yk = zk − h(xk|k−1) (4)

Kk = Pk|k−1HT
k [HkPk|k−1HT

k + Rk]
−1 (5)

xk|k = xk|k + Kkyk (6)

Pk|k = (I − Kk Hk)Pk|k−1 (7)
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where Fk is the state transition matrix, Qk is the prediction noise covariance matrix, Rk is
the observation noise covariance matrix, Hk is the observation matrix, and I is the identity
matrix.

In the prediction section, Equation (2) shows the state prediction, which obtains the
prior of the current moment xk|k−1 from the previous moment posterior xk−1|k−1 and the
control input at this time uk. Equation (3) is used to predict the covariance priors.

In the update section, Equation (4) shows the calculation of the residual yk. Equation (5)
calculates the gain Kk. Equation (6) corrects the prediction, where xk|k is the estimated state
at the current moment. Equation (7) yields a posterior estimate Pk|k.

During fusion, the 3D visual information obtained by the camera needs to be de-
composed into a two-dimensional plane in order to achieve fusion with the informa-
tion obtained by the two-dimensional LiDAR. Since the LiDAR and RGB-D cameras
are horizontally mounted, this decomposition can be easily performed. Therefore, the
fusion problem can be transformed into an Extended Kalman filter fusion problem of
two two-dimensional planes.

4.3. Fusion Result

The fusion results on the quadruped robot are shown in Figure 9. Figure 9a presents
the top view of the map, Figure 9b shows the two-dimensional grid map for navigation,
Figure 9c displays the side view of the map, and Figure 9d exhibits the three-dimensional
point cloud maps. In comparison to single sensor SLAM, the fusion mapping overcomes the
issue of incomplete mapping caused by the limited field of view angle of the depth camera.
Simultaneously, it supplements the missing visual information in the laser mapping.

(a) Top view of the map (b) Two-dimensional grid map for navigation

(c) Side view of the map (d) Three-dimensional point cloud maps

Figure 9. The results of multi-sensor fusion SLAM on the quadruped robot.

This fusion solution has the following advantages:

• When the laser and visual information are tracked normally, the fusion algorithm can
be used to improve the accuracy of mapping.

• When visual tracking fails, the localization from laser SLAM can be used to obtain
continuous results.

• The two-dimensional laser can compensate for the limited field of view of the depth
camera, which enhances the navigation safety.
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5. Human–Machine Interaction

For mobile robots, apart from environment perception, interaction with humans is
also essential. Human–machine interaction helps robots understand human intentions,
enabling them to make informed decisions. Here, 13 gesture recognitions are studied as an
interaction method.

5.1. Improved YOLOv5 by Adding ASFF

The original YOLOv5 network is shown in Figure 10. The original YOLOv5 consists of
three parts, backbone, neck, and head. Among them, PANet performs feature fusion in the
network. However, in PANet, simple addition is used for feature fusion, which does not
fully utilize the feature information of different scales. Therefore, the improved YOLOv5
with ASFF can incorporate information from different scales to improve the accuracy of
detecting objects of different scales.

Figure 10. The original YOLOv5 network.

Figures 11 and 12 illustrate the process of feature fusion using ASFF. In this process,
features X1, X2, and X3 from level 1, level 2, and level 3, respectively, are multiplied by
weight parameters α, β, and γ to obtain weighted features. These weighted features are
then summed up to obtain the fused feature ASFF, as shown in Equation (8) [39],

yl
ij = αl

ij · x1→l
ij + βl

ij · x2→l
ij + γl

ij · x3→l
ij (8)

where yl
ij implies the (i, j)-th vector of the output feature maps yl among channels. αl

ij, βl
ij,

and γl
ij refer to the spatial importance weights for the feature maps at three different levels

to level l, which are adaptively learned by the network [39].
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ASFF-1

ASFF-2

ASFF-3

Level 1

stride 32
predict

predict

predictLevel 2

stride 16

Level 3

stride 8

𝛼3Χ1→3 𝛾3Χ3→3𝛽3Χ2→3

+ +
ASFF-3

Figure 11. Illustration of the ASFF mechanism. For each level, the features of all the other levels are
resized to the same shape and spatially fused according to the learned weight maps [39].

Figure 12. The simplified ASFF principle.

The weight parameters α, β, and γ are calculated by applying 1× 1 convolution to the
feature maps of level 1 to level 3 after resizing. These parameters are then stacked, ensuring
that their values range from 0 to 1 and their sum is 1, as shown in Equation (9) [39],

αl
ij =

eγl
αij

eγl
αij + eγl

βij + eγl
γij

(9)

where αl
ij, βl

ij, and γl
ij are defined by using the softmax function with γl

αij, γl
βij, and γl

γij as
control parameters, respectively. We use 1×1 convolution layers to compute the weight
scalar maps γl

α, γl
β and γl

γ from x1→l , x2→l and x3→l , respectively, and they can thus be
learned through standard back-propagation [39].

5.2. Training Result

The confusion matrix diagrams of YOLOv5 and the improved YOLOv5 with ASFF are
shown in Figure 13a,b. It can be observed that the probabilities of correctly identifying the
human hand and the pedestrian are 0.82 and 0.86, respectively, which is consistent with
the values of 0.82 and 0.85 obtained by YOLOv5. The probability of incorrectly identifying
the pedestrian is 0.45, slightly lower than the 0.46 obtained by YOLOv5. The probability of
failing to identify the pedestrian is 0.13, which is lower than the 0.15 obtained by YOLOv5.
Based on the confusion matrix, the improved network performs slightly better than the
original network, but the improvement is limited.
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(a) Confusion matrix of YOLOv5

(b) Confusion matrix of improved YOLOv5

Figure 13. Confusion matrix of different gesture recognition.

As depicted in Figure 14a,b, the curves represent the training results. The Box curve
represents the mean loss function, where a smaller value indicates more accurate prediction
box positioning. Objectness represents the mean loss of object detection, and a smaller
value indicates more accurate object detection. Classification represents the mean loss of
classification, where a smaller value indicates more accurate classification. This can be
expressed as Equation (10). The Precision curve represents precision, where a higher value
indicates higher accuracy.

Precision =
TP

TP + FP
(10)

where TP represents the number of predicting positive classes as positive classes, and FP
represents the number of predicting negative classes as positive classes.
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The calculation formula for recall is shown in Equation (11). A higher value of recall
indicates higher accuracy.

Recall =
TP

TP + FN
(11)

where TP is the number of predicting positive classes as positive classes, FN is the number
of predicting positive classes as negative classes. mAP indicates the area enclosed by the
two axes of accuracy and recall. The higher the value, the more accurate the detection.

F1 is another indicator of classification. The calculation formula of F1 is shown as
Equation (12).

F1 =
2× recall × precision

recall + precision
(12)

As depicted in Figure 14a,b, the mean loss function of the improved YOLOv5 is
approximately 0.15, which is significantly lower than the 0.03 of YOLOv5. The classification
loss is around 0.0010, slightly lower than the 0.0015 of YOLOv5. The highest accuracy
reaches approximately 0.9, slightly higher than the nearly 0.9 of YOLO v5. The recall rate
is approximately 0.83, higher than the 0.8 of YOLO v5. The mAP is nearly 0.9, which is
significantly higher than the around 0.85 of YOLO v5. Overall, the improved network with
ASFF outperforms the original network.

(a) Training Result of YOLOv5

(b) Training Result of Improved YOLOv5

Figure 14. Training results of different gesture recognition.
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5.3. Test Result

It can be observed from the above experiments that the improved YOLOv5 network
achieves better recognition accuracy. Therefore, the improved YOLOv5 network is utilized
to enable the recognition of additional gestures in the quadruped robot, facilitating the
basic understanding and judgment of pedestrians by the quadruped robot. As depicted in
Figure 15, the experiment successfully realizes the recognition of 13 gestures. Figure 14a
illustrates the gesture recognition experiment, where the quadruped robot adjusts its
elevation angle to approximately 30◦, and the camera detects the gestures. Figure 15b
presents the detection results of gesture recognition. Notably, gestures “4” and “5” are
prone to confusion. To address this issue, a larger dataset, image preprocessing methods,
and network improvements are required.

Figure 15. Test results of different gesture recognition.
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6. Challenge of Environment Perception System for Legged Robots

To further investigate the differences in environment perception performance between
wheeled and legged robots, a comparative experimental platform was set up using a vehicle
equipped with LiDAR and vision sensors. The same hardware and software configurations
were employed to highlight the challenges faced by the environment perception system of
legged robots.

The fusion results obtained from the vehicle are presented in Figure 16. Figure 16a
depicts the top view of the map, Figure 16b shows the two-dimensional grid map for
navigation, Figure 16c displays the side view of the map, and Figure 16d exhibits the three-
dimensional point cloud maps. Comparing these results with the multi-sensor fusion SLAM
results obtained from the quadruped robot, it can be observed that the map boundaries in
the vehicle’s mapping results are clearer. This indicates that the SLAM mapping resolution
on the vehicle is higher compared to that on the quadruped robot.

(a) Top view of the map (b) Two-dimensional grid map for navigation

(c) Side view of the map (d) Three-dimensional point cloud maps

Figure 16. The results of multi-sensor fusion SLAM on the vehicle.

The factors that weaken the environment perception performance of legged robots
may include:

• Oscillating body.
• Changing attitude.
• Non-smooth speed.

To reduce the influence of the above three factors, maybe IMU or other sensors for
positioning should be considered into multi-sensor fusion SLAM.

7. Conclusions

In this paper, the environment perception system of quadruped robots based on
LIDAR and vision is investigated by comparative platforms, sensors, and algorithms.

In the SLAM part, initial experiments are conducted on quadruped robots using a
single laser and visual sensor for map construction. However, these experiments reveal the
limitations of a single sensor, including the lack of visual information and incomplete map
construction. To address these issues and achieve more accurate and robust localization
results, we employ the Extended Kalman Filter method to fuse data from the LiDAR
and depth camera. The fusion approach effectively compensates for the missing visual
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information in the laser map and addresses the limited field of view angle. Moreover, when
one sensor fails, the other sensor ensures uninterrupted positioning.

In the visual recognition part, we establish a human–machine interaction system and
enhance gesture recognition using the added ASFF improved YOLOv5 network. Experi-
mental results demonstrate a significant improvement in gesture recognition accuracy with
the improved YOLOv5 network.

In addition, the difference of environmental perception performance between wheeled
and legged robots is studied. Additionally, the results shows the environmental perception
performance of the quadruped robot is weaker than that of the vehicle, since the vehicle is
more stable in the movement.

With the rapid advancements in artificial intelligence and computer vision, quadruped
robots are poised to find extensive applications in various fields such as surveying, search
and rescue operations, courier services during epidemics, and assistance for the disabled
as guide dogs. Furthermore, the environmental perception system developed in this study
can be applied not only to quadruped robots but also to autonomous driving, offering
promising prospects for broad applications.

However, the mapping results of the quadruped robot in this study still suffer from
noise and blurred boundaries due to unstable motion. To address these issues, the following
methods can be employed:

• Involve IMU or other sensors for positioning into multi-sensor fusion SLAM.
• Reduce the walking speed of the quadruped robot during map construction and

implement intermittent stops to mitigate motion instability.
• Enhance the stability of the robot’s motion by improving gait planning methods and

reducing shaking during movement. Additionally, incorporating cushioning materials
at the foot end can help minimize ground impact while walking.

• Utilize mechanical anti-shake techniques and specialized sensors, such as gyroscopes
and accelerometers, to detect robot movement and compensate for camera motion.

• Introduce filtering algorithms in the mapping algorithm to remove image noise.
• Apply digital video stabilization methods to estimate and smooth motion, filter out

unwanted motion, and reconstruct stable video.
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