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Abstract: In this study, a sliding mode surface controller (SMC) designed for a quadcopter is
experimentally tested. The SMC was combined with disturbance observers in six degrees of freedom
of the quadcopter to effectively reject external disturbances. While respecting stability conditions all
control parameters were automatically initialized and tuned using a simulation-based offline particle
swarm optimization (PSO) algorithm, followed by onboard manual fine-tuning. To demonstrate its
superiority, the SMC was compared with a PSO-optimized PID controller in terms of agility, stability,
and the accurate tracking of hover, rectangular, and figure-eight pattern trajectories. To evaluate its
robustness, the SMC controller was extensively tested in a small, enclosed, turbulent space while
being subjected to a series of external disturbances, such as hanging payloads and lateral wind.

Keywords: sliding mode control; disturbance observer; unmanned aerial vehicles; quadcopter;
nonlinear control; particle swarm optimization; experimental validation; payload; trajectory tracking;
wind rejection

1. Introduction

Unmanned aerial vehicles (UAVs), specifically those with multirotors, are being used in a
growing number of applications that require robust and reliable performance under a variety
of operating conditions. These applications cover a range of civil use cases, such as product
delivery [1], structure inspection [2], aerial photography [3], agriculture and search [4],
disaster relief [5], and rescue [6,7]. Additionally, UAVs are used in a variety of defense
applications, including reconnaissance [8], threat identification [9], and surveillance [10].

Most commercially available multirotor UAVs, such as quadcopters, use PID (pro-
portional integral derivative) controllers [11]. These controllers have a simple and linear
structure that can be easily tuned. However, due to their simple nature and low complexity,
these controllers struggle under noise, latency, and external disturbances. In response to
these shortcomings, researchers have modified the PID controller structure to be more
robust to system disturbances and unknown parameters. For example, in [12], Goel et
al. provide a numerical investigation of the performance of the adaptive autopilot on a
quadcopter and propose an adaptive PID control scheme designed for a UAV with un-
known dynamics. Dong and He [13] propose fuzzy logic PID controllers for quadcopters
in simulations: a control method combining PID-ILC (iterative learning control) and fuzzy
control to achieve robustness to disturbances and model uncertainties. To further improve
the robustness of the controller against wind disturbances, Zhou et al. [14] designed a
cascade inner-loop PID angular rate control and an outer-loop PID attitude control for
the UAV. The PID gain automatically tuned by reinforcement learning neural networks is
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also discussed in the field of UAV control [15], where the proposed method demonstrates
effectiveness by both software- and hardware-in-the-loop simulations.

Some researchers have moved beyond PID controllers to more complex and robust
control schemes. Several adaptive and nonlinear controllers are proposed, including the
nonlinear adaptive intelligent controller [16], which incorporates fuzzy logic and neural
networks, model predictive controllers (MPC) [17], to provide a nonlinear model predictive
control law, and adaptive backstepping controllers [18,19], which can be used for velocity
field following and timed trajectory tracking. Sliding mode control offers a robust way
to maintain the stability of unknown UAV dynamics [20]. Indeed, sliding mode surface
controller (SMC) can overcome uncertainties in the system and provide good control on
nonlinear systems. Importantly, one can incorporate explicitly into SMC the upper bounds
of uncertainties in the dynamics. Lenaick et al. [21] theoretically show SMC’s characteristics
of a fast response, simple operation, and robustness to external environmental disturbances.

The basic idea of SMC is to design a switching hyperplane (sliding surface) according
to the dynamic characteristics of the system and then drive the tracking error from outside
the hyperplane to this hyperplane by sliding mode controllers. Once the states reach the
hyperplane, the controller then guides the error dynamics to zero. R. Guruganesh [22] veri-
fies a second-order sliding mode approach and implements it on a fixed-wing micro aerial
vehicle (MAV). Instead of multicopters, they experimentally show that the performance
of the sliding mode controller exceeds a benchmark classical controller with a fixed-wing
UAV. Another work by En-Hui in [23] demonstrates the effectiveness and robustness of
a proposed SMC control method through simulations. Currently, most of the research
related to sliding-mode-controlled quadcopters relies on computer simulations to vali-
date the proposed methods and theories. Although some attempts built real-world UAV
prototypes to achieve trajectory tracking tasks, such as a rectangular trajectory [24], the
prototypes were implemented in combinations of PID and SMC, i.e., partial SMC attitude
controllers without disturbance observers; meanwhile, the position is controlled by a tra-
ditional PID, which leads to potential performance degradation in flight dynamics when
exposed to disturbances.

In contrast to PID controllers, however, tuning SMC parameters is less intuitive. Par-
ticle swarm optimization (PSO) has been used to aid in the design and tuning of various
types of controllers, including PID [25], SMC [26], and fuzzy logic controllers [27]. PSO
is a computationally inexpensive optimization algorithm when dealing with nonlinear
functions. It works by tracking a set of particles through the parameter space of inter-
est, searching for the best solution parameters that optimize closed-loop performance as
quantified by certain metrics. The swarming behavior of the particles promotes exploring
regions adjacent to both a particle’s local best solution and the swarm’s current global best
solution [28].

While there are a number of options for control design, one should also consider
whether to design attitude controllers based on quaternions (see, e.g., [29]) or on Euler
angles (see, e.g., [30]). Quaternions are particularly useful for describing rotations in three
dimensions [31], with the main advantage of avoiding the problem of gimbal lock that may
otherwise occur with Euler angles when two of the rotation axes align [32], causing a loss
of one degree of freedom. However, Euler angles are more intuitive, representing rotations
around the principal axes (X, Y, and Z) or roll, pitch, and yaw, respectively. Most sensors
directly provide the measurements in Euler angles, making their integration into control
systems straightforward. Moreover, Euler angles can be more computationally efficient
in certain situations [32]. Quaternion-based controllers are not short of advantages; for
example, previous work demonstrates their promise in situations where aggressive drone
maneuvers might be preferred [33], including experimental results [34] and combining
them with SMC [35]. Given the importance of continuity from our previous work [26], we
utilize here the SMC controller from the cited study with Euler angles.

Based on our previous research [26] regarding a PSO-optimized SMC with distur-
bance observers (Figure 1: phases (1) to (3)), we have already developed the control theory
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and validated the controller using a simulated PX4-conducted (an open-source autopilot)
quadcopter. To summarize the work, we firstly designed the SMC controllers as well
as corresponding disturbance observers in MATLAB/SIMULINK for the theory valida-
tion and then optimized SMC parameters using an offline PSO method. We also built a
PX4-conducted quadcopter simulator to validate the optimized SMC. In simulations, we
compared this SMC with several PSO-optimized PID controllers and showed its superiority.
The PSO-optimized SMC with disturbance observers facilitated more accurate and faster
UAV adaptation against disturbances in the environment.

Design controller & PSO Tuning in 
MATLAB/SIMULINK

SMC Controller validation in 
Gazebo simulator

PID UAV

SMC UAV

Results analysis 
and comparison

Offboard trajectories 
Design & Compile

Offline PSO Tuning

Nom

Nom

Nom

a. HOVER

b. RECTANGLE

c. FIGURE-8

Indoor closed, turbulent cage

Prior work

Current work

Figure 1. Overall structure of this paper.

To further validate our proposed SMC controller, in this work, we designed a series
of indoor experiments for an actual quadcopter as shown in Figure 1 phases (4) to (6).
In order to be compatible with the actual UAV as well as its autopilot, we upgraded the
proposed control theory, improved the initialization and tuning of the PSO algorithm,
optimized the control signal mixing algorithm, and tested the fine-tuned SMC parameters.
Unlike most of the current theoretical research, here we validate not only the feasibility and
stability of SMC through nominal flights but also the reliability of SMC against dynamic
disturbances. These disturbances are designed as a series of imbalanced force/torque loads
and turbulence in narrow and closed spaces as shown in Figure 2. These disturbances were
applied to the UAV to mimic the most likely future indoor scenarios and to evaluate how
well SMC performs.

To the best of our knowledge, most studies on SMC rely on computer simulations
and remain in the theoretical phase [36–43], while implementation of SMC on actual quad-
copters is rare and limited [44], let alone extensive experiments in extreme environments.
This is likely because the hardware implementation is quite involved and bridging theory
with practice is not straightforward. First, the frequency of the control signal must not be
too low to ensure the stability of the control, so the signal synchronization process becomes
important. In this study, we use the PX4 open-source autopilot, which provides fixed-rate
and continuous feedback of sensor signals and actuator signal outputs. However, due to
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hardware limitations, the control frequency cannot be too high, so the controller frequency
and the fundamental sampling frequency are fixed at 250 Hz. Second, we need to filter
sensor data within a reasonable bandwidth due to unavoidable sensor uncertainties, such
as noise and signal gaps. Here, we use an extended Kalman filter (EKF) estimator with a
cutoff frequency of 30 Hz for the IMU/GYRO sensor to reduce computational consumption
and UAV vibration. Third, due to the delay and response time of the actuator, which can be
negligible in simulations but critical when dealing with real UAVs, we choose a reasonable
PWM update rate, which is 400 Hz, based on the type of motors utilized. At the same time,
the mixing process of the actuator signals is unavoidable for the hardware implementation,
without which the PWM signals can easily exceed or fall below the physical limit values,
causing instability. This can be also an issue for the sensitivity of disturbance observers,
which estimate dynamic disturbances and feedback these estimates to the main control
loop for disturbance rejection. Therefore, including a reasonable control signal mixing is
critical to ensure the aerial stability of the UAV in the real world. Fourth, the PSO algorithm
is not implemented in real time because of its high computation cost and time-consuming
process. Instead, the PSO tuning results are based on a purely mathematical model and
take into account the theoretical stability of the SMC. In more detail, the PSO is run and
iterated in conjunction with SIMULINK, after which we encode and embed PSO-tuned
parameters onboard the UAV. Note that not all PSO-tuned parameters are applicable to an
actual UAV; thus, a further manual tuning process is required. We modify the parameters
judiciously via an initial calibration phase first, according to different orientations (pitch,
roll, and yaw) and different directions (X, Y, and Z) of the quadcopter. Although we have
simultaneously developed an in-flight remote SMC parameter adjustment system that
relies on a lightweight wireless communication protocol called MAVLink, we do not rec-
ommend adjusting parameters in-flight because of the possibility of improper adjustment
leading to an accidental crash. Instead, we start a brand new flight after the hardware
coding and updating of each parameter and finally evaluate the flight performance in
terms of settling time, overshoot, and rise time based on the flight log data. Finally, after
each iteration of parameter tuning or controller modification, we use the MATLAB code
generator to automatically generate the C code and upload the new firmware to the actual
UAV microcontroller board.

KG

Figure 2. Experiments in a narrow, closed, turbulent indoor space.

In view of the above discussions, the novelty of our work can be summarized as fol-
lows: We first demonstrate what additional steps are needed when transitioning from [26]
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the particle swarm optimization (PSO)-tuned sliding mode control (SMC) with a distur-
bance observer (DOB) to real-time control, hardware implementation, and experiments.
This is a topic of strong interest but with little guidance in the open literature. Next, we
demonstrate how the drone performs at the face of a set of complex disturbances, such as
wind and unbalanced weights under SMC, and in particular show how a combination of
these disturbances can still be addressed by SMC—an experimental condition that does
not exist in the literature to the best of our knowledge. Furthermore, we complement the
SMC experiments with those by PID controllers as industry-standard benchmarks, for
comparisons with respect to SMC. Lastly, with the use of the DOB, we demonstrate how to
estimate wind direction and wind forces in real time—a critical capability in monitoring
the environment and atmospheric conditions. These results add to the body of literature
rapidly growing and will help support future research into the robust control of drones in
challenging environments.

In the next section, the system is defined and the equations of motion for the quad-
copter are summarized. In Section 3, the SMC control laws are developed for the attitude
and position dynamics, a disturbance observer is designed, improvements in the control
signal mixing process are explained, and the tuning process on the physical UAV is out-
lined. Next, in Section 4, the experimental setup is described, the step response of the
SMC is evaluated, and the trajectory following capabilities of the SMC are compared to a
commercial PID controller. Each controller is subject to a variety of disturbance conditions
in a narrow, closed, and turbulent chamber.

2. System Definition
Equations of Motion

In this manuscript, the north–east–down (NED) coordinate frame is used for the UAV
positioning, and Euler angles are used for the attitude control. The coordinate system
relative to the S500-frame UAV is shown in Figure 3, including X, Y, Z, p, q, r, φ, θ, and ψ.

x’

y’

z’

Roll (∅)
Angular velocity (p)

Pitch (𝜭)
Angular velocity (q)

Yaw (𝝍)
Angular velocity (r)

Motor 3
(CW)

Motor 1
(CCW)

Motor 4
(CW)

Motor 2
(CCW)

North
X

East
Y

Down
Z

Figure 3. Euler angles and coordinate system of the S500-frame quadcopter used in the experiments.

As seen from Figure 3, coordinates X, Y, and Z define the global NED coordinate
system; x′, y′, and z′ are in the UAV’s body coordinate system; p, q, and r are angular
velocities in the UAV body frame about x′, y′, and z′, respectively; and φ, θ, and ψ are Euler
angles for roll, pitch, and yaw, respectively.

The equations of motion (see [26,45,46]) are given by the following:
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ẍ = − 1
m [(sin φ sin ψ + cos φ sin θ cos ψ) · (T1 + T2 + T3 + T4)

+K1 · ẋ · |ẋ|]

ÿ = − 1
m [(− sin φ cos ψ + cos φ sin θ sin ψ) · (T1 + T2 + T3 + T4)

+K1 · ẏ · |ẏ|]

z̈ = − 1
m [(cos φ cos θ)(T1 + T2 + T3 + T4) + K1 · ż · |ż|] + g

ṗ = 1
Jx
[
√

2
2 l(T2 + T3 − T1 − T4)− q · r(Jz − Jy)− K2 · p · |p|]

q̇ = 1
Jy
[
√

2
2 l(T1 + T3 − T2 − T4)− p · r(Jx − Jz)− K2 · q · |q|]

ṙ = 1
Jz
[(Q1 + Q2 −Q3 −Q4)− p · q(Jy − Jx)− K2 · r · |r|]

φ̇ = p + q · tan θ sin φ + r · tan θ cos φ

θ̇ = q · cos φ− r · sin φ

ψ̇ = q sin φ
cos θ + r cos φ

cos θ

(1)

where model parameters are defined in Table 1, based on an evaluation of the UAV CAD
model and the specifications provided by the manufacturer. Here, T1−4 are the thrusts of
each propeller and Q1−4 are anti-torques at each motor caused by the propellers. From
the UAV model in Figure 3, each propeller generates a thrust in the −z′ direction and an
anti-torque around −z′ direction given by{

Ti = Tmax · vi

Qi = Qmax · vi
(2)

where vi are the normalized actuator signals v1−4, Tmax is the full thrust of one motor, and
Qmax is an anti-torque at the full thrust of one motor.

Table 1. Dynamics model parameters.

Parameter Value Unit Definition

m 1.300 kg Mass of UAV

g 9.810 m/s2 Gravity

l 0.250 m Distance between the center of the motor and the center
of the UAV

Jx 0.015 kg ·m2 Moment of inertia in x

Jy 0.016 kg ·m2 Moment of inertia in y

Jz 0.029 kg ·m2 Moment of inertia in z

K1 1.00 N
(m/s) The air drag force coefficient

K2 0.025 N·m
(rad/s) The air drag torque coefficient

Tmax 9.600 N The full thrust of one motor

Qmax 0.150 N ·m The anti-torque at the full thrust of one motor
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Utilizing the thrusts Ti and anti-torques Qi, we can define the normalized control
signals τT , τP, τR, and τY that affect the thrust, pitch motion, roll motion, and yaw motion
of the UAV, respectively:

τT =
T1 + T2 + T3 + T4

4Tmax

τR =
T2 + T3 − T1 − T4

4Tmax

τP =
T1 + T3 − T2 − T4

4Tmax

τY =
Q1 + Q2 −Q3 −Q4

4Qmax

(3)

where the thrust signal τT ranges from 0 to 1, while the other signals all range from −1 to 1.
It is important to note that the control signals τT , τP, τR, and τY are prescribed by SMC (see
Section 3) and are defined in the “body” frame of the drone. These signals appear in (p, q, r)
expressions in Equation (1) and are converted to the inertial frame through trigonometric
identities that can be found in the expressions of (φ̇, θ̇, ψ̇) in Equation (1).

The next step is to utilize the equations of motion of the UAV to design the control
laws such that the UAV can track trajectories in a stable manner. This is discussed in the
next subsection.

3. Control Design
3.1. Sliding Mode Control and Disturbance Observer

Sliding mode control (SMC) is a type of variable structure control with a nonlinear
control law. In this section, we first present a simple example without disturbances to show
the controller derivation process and then provide the details of SMC design for the UAV
in Appendix A.

Consider that we have a nonlinear system of the form ẅ = F(w) + βu, where
w ∈ [x, y, z, φ, θ, ψ] is the continuous UAV state, F(w) is a nonlinear function with continu-
ous derivatives with respect to each state, and β is a known constant. First, the controller u
is defined as u = usw + uo, where uo is the nominal part and usw is the switching part. The
goal is to track a desired, continuous, sufficiently smooth signal wdes, i.e., the tracking error
should satisfy ew = w− wdes → 0 as t→ ∞.

In SMC, a sliding surface is defined with the error dynamics of the system. While this
surface can be defined in various ways, here, the sliding surface is taken to be in the form
sw = αwew + ˙ew, where αw > 0 can be tuned. To perform the stability analysis, we choose
the Lyapunov function V(s) = 1

2 s2
w > 0, and therefore V̇(s) = sw ṡw < 0 must hold as the

sufficient condition for the system to be stable. Given that ṡw = αw ėw + ¨ew, we can write

V̇(s) = sw ṡw = sw(αw ėw + ëw)

= sw(αw ėw + ẅ− ẅdes)

= sw(αw ėw + F(w) + βu− ẅdes)

= sw(αw ėw + F(w) + βuo + βusw − ẅdes)

(4)

Next, the nominal terms in the last line above can be cancelled out by proposing the
nominal control law as

uo =
1
β
(−F(w) + ẅdes) (5)
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Hence, with the following switching control law,

usw =
1
β
(−E1sgn(s)− E2s− E3 ėw) (6)

where E1, E2, and E3 are positive values, and V̇ becomes

V̇(s) = s[(αw − E3) · ėw − E1 · sgn(s)− E2 · s] (7)

It is easy to show that by selecting E1, E2, and E3 as
E3 − αw = 0
E1 > 0
E2 ≥ 0

(8)

we can prove that V̇ < 0 always holds. This means the controller u = usw + uo will promote
the tracking error ew = w− wdes → 0 as t→ ∞.

To avoid actuator chattering, we next replace the sgn operation with a saturation
function as is the practice in the literature [47,48]. Specifically,

sat(
s
ε
) =


s
ε , |s| < ε

sgn( s
ε ) =

{
1, s ≥ ε

−1, s ≤ −ε
, |s| ≥ ε,

(9)

where ε > 0 is a small user-defined constant value. Thus, the final form of the control law reads

u =
1
β
(−E1sat(

s
ε
)− E2s− E3 ėw − F(w) + ẅdes) (10)

To enhance the surface reaching performance, we further define E1 as a positive time-
varying variable related to the instantaneous position and velocity errors in the X–Y–Z
coordinates. That is, a larger position error and a larger velocity error together contribute to
a larger E1 and hence the action on the UAV toward achieving e→ 0. However, to smooth
high-frequency system oscillations near the sliding surfaces and ensure system stability, it
is useful to define the minimum positive threshold k1 for horizontal XY movement and k3
for vertical Z movement. In attitude control, however, we fix E1 as a positive constant k7 to
achieve a more straightforward angular tracking. To summarize,

E1 =


max
w∈x,y

(k1, b1 · |ew|+ b2 · |ėw|)

max
w∈z

(k3, b3 · |ew|+ b4 · |ėw|)

k7, w ∈ φ, θ, ψ

(11)

where k1, k3, k7, b1, b2, b3, and b4 > 0 are tunable control gains for the sliding reaching laws.
When tuning these gains, stability conditions rendered from (8) must be strictly enforced.
We next define E2 as

E2 =


c, w ∈ x, y
0, w ∈ z
0, w ∈ φ, θ, ψ

(12)

where E2 is a positive tunable constant c only for XY, such that the E2 · s term in (7)
generates an exponentially decaying term to promote tracking efficiency. With the benefits
of this exponential term, the reaching rate in XY has a large value at the beginning of the
UAV motion, and then it decreases to zero gradually when reaching XY setpoints. Again,
for altitude and attitude control, E2 has been set to zero to reduce oscillations.
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Consequently, the above general SMC design approach can be implemented one by
one on X, Y, Z, roll (φ), pitch (θ), and yaw (ψ) motions of the UAV, paying attention to
the couplings among the six degrees of freedom (see Appendix A). This effort leads to six
baseline SMC control laws (u1, u2, τThrust (τT), τRoll (τR), τPitch (τP), τyaw (τY)) for each
DoF, respectively. The control structure of the overall flight controller is shown in Figure 4.

Decouple
angles

SMC Y 
controller

SMC Z 
controller

SMC Pitch 
controller

SMC X 
controller

SMC Roll 
controller

SMC Yaw 
controller

Mixer

Nonlinear 
drone 

dynamics

Disturbance 
observer Z

Disturbance 
observer X

Disturbance 
observer Y

Disturbance 
observer Yaw

Disturbance 
observer Roll

Disturbance 
observer Pitch

desired z

z

τ_𝑇ℎ𝑟𝑢𝑠𝑡′

Normalized 
signals
[𝑣1, 𝑣2 , 𝑣3, 𝑣4]

Actuators

Disturbance 
Force

Disturbance 
Torque

desired x

desired y

𝑢1′

𝑢2′

desired yaw

desired pitch

desired roll

yaw

pitch

roll

Sensor data

τ_𝑌𝑎𝑤′

τ_𝑃𝑖𝑡𝑐ℎ′

τ_𝑅𝑜𝑙𝑙′

x

y

SMC altitude controller

SMC position controller SMC attitude controlleryaw

Figure 4. The quadcopter sliding mode control structure diagram.

Furthermore, each SMC is equipped with a disturbance observer to correct for external
disturbances. When continuous force and torque disturbances are applied to the system
dynamics, these observers actively estimate the disturbances and reject them by adding the
magnitude of these disturbances in opposite polarity to the baseline control actions. Hence,
thrust, roll, pitch, and yaw control signals are resized as τ′T , τ′R, τ′P, and τ′Y, respectively, as
explained in Appendix A.

3.2. Control Signal Mixing

Control signal mixing is an unavoidable part of driving an actual quadcopter. In prac-
tice, the controller calculates the saturated control actions τ′T , τ′R, τ′P, and τ′Y, as determined
by SMC. These actions are a composite of the four motor speeds. Hence, they must be
mapped back to each motor. This is achieved by sending these control actions to the mixer,
which scales and converts them to actuators’ native units such as pulse-width modulation
(PWM); that is, this process converts the control output signals τ into PWM signals ranging
from 1000 to 2000, which is finally fed into the electronic speed controllers (ESCs). As a
result, the individual motors can be actuated accordingly using a mixer (see Figure 4).

v1
v2
v3
v4

 = (1000 ·


1 1 −1 1
1 −1 1 1
1 −1 −1 −1
1 1 1 −1

 ·


τ′T
τ′R
τ′P
τ′Y

− Pmin) ·
1

Pmax − Pmin
, (13)

where v1, v2, v3, and v4 are normalized PWM signals.
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As an introduction, a simple mixer architecture could be adopted, which has a straight-
forward diagram as shown in Figure 5. Moreover, τRoll and τPitch inputs are saturated to
the range from −0.05 to 0.05, τYaw ranges from −0.2 to 0.2, and τThrust ranges from 0.0 to
1.0. Based on our previous experimental results, this architecture was feasible for taking
off and even tracking some specific trajectories if ignoring its attendant over-saturation
problems. To remedy these issues and the potential crash risk at the face of uncertainty
in the environment and due to the sudden appearance of disturbances, a safer mixing
approach was adopted.

Figure 5. A simple mixer structure.

In the proposed method, the τRoll , τPitch, and τYaw inputs were limited to the range
from −1.0 to 1.0, and τThrust ranged from 0.0 to 1.0 as shown in Figure 6. Compared to
the previous simple mixer, although this new mixer can provide a larger control range
and thus be more flexible, in practice it may saturate a motor when the motor command
becomes negative. In other words, motor commands exceed the lower bound. This would
happen when a low thrust τ′T and large negative roll command τ′R are demanded, which
is physically impossible to execute unless the motors are reversible. In such a case, we
can unsaturate the τ values by increasing τ′T to boost the motors and in the meanwhile
reducing the attitude control commands τ′R, τ′P, and τ′Y such that none of motor commands
goes below zero. Our experiments also show scenarios where motor commands exceed the
upper boundary, e.g., for a high thrust τ′T and large positive roll control factor τ′R. In this
case, we can easily unsaturate the control signals by reducing the thrust τ′T to ensure that
no motor is commanded to exceed its maximum limitation.

Figure 6. Improved mixer structure.



Drones 2023, 7, 328 11 of 41

The top section of Figure 6 suggests mixing the pitch and roll but without yaw; that is
because the primary task is to make sure of the UAV’s position stability regardless of its
heading accuracy. In this procedure, the roll, pitch and thrust are mixed first:

Mixer Thrust/Roll/Pitch =



1 0.707107 −0.707107

1 −0.707107 0.707107

1 −0.707107 −0.707107

1 0.707107 0.707107

 (14)

where they are scaled by gains of 1/
√

2 to smooth the pitch and roll control effects for
the symmetric quadcopter frame. After this mixer is applied, the thrust control input is
unsaturated if needed. During this process, the τThrust term will be adjusted slightly by a
certain gain to meet the requirement of the maximum or the minimum actuator limitation.
After tuning the thrust, the roll and pitch terms are ready to be unsaturated if necessary to
reduce their angular acceleration effects.

The lower section in Figure 6 is proposed to mix the yaw using the yaw mixer matrix
as follows:

Mixer Yaw =



1

1

−1

−1

 (15)

This mixer remains unchanged from Figure 5. In this study, the diagonal arms of the
symmetric UAV have the same rotation direction, so the first and second rows in the yaw
mixer matrix have the same values and are both positive. Similarly, the third and fourth
terms have the same value but opposite directions with respect to the first two terms to
ensure their total torque in the Z direction is zero. After mixing the yaw for each control
output, another unsaturation function will be applied to the yaw control input to modify
yaw acceleration if needed. Finally, we adjust the τThrust again before feeding these control
inputs into the PWM calculator box.

Inside the PWM calculator box, the idle-speed terms and certain offsets will be added
to control signals to ensure actuators’ arming states, and baseline PWM will be applied to
respective motors, normally 1000; hence, PWM signals are constrained in the range of 1000
to 2000.

The necessity of improving and extending the mixer structure is that they tend to
easily overflow actuators’ limitations after adding the disturbance terms onto the control
inputs without the mixer in Figure 6, which leads to poor UAV tracking in attitude and
position, and even crashes, although the controllers are performing as desired. As shown
in Figure 7, when using the simple mixer the UAV loaded with a hanging weight could
not finish the pre-configured figure-eight pattern trajectory, and it crashed at the halfway
point of the flight. However, after improving the mixer, the UAV could finish this complex
flight pattern easily and successfully. Furthermore, it can be observed that the UAV motion
becomes much smoother with fewer oscillations in PWM as shown in Figure 7. In short,
the SMC control inputs are adjusted and modified through the proposed mixing algorithm
to avoid accidents caused by over-saturation.
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Figure 7. Figure-eight trajectory tracking experimental results: before and after mixer improvement.

3.3. Controller Tuning

The SMC designed above has over 30 tunable parameters, each having complex
nonlinear interactions with the other parameters. Tuning a controller of this complexity
manually would be extremely difficult and would likely result in a sub-optimal result.
Conversely, this controller is sensitive to model parameters and unmodeled actuator and
sensor dynamics, so a simulation-only optimization of the controller would not perform
well under real-world conditions. To this end, a hybrid tuning approach was adopted.
First, a PSO simulation-based tuning was performed as a coarse controller tuning approach
to bring the UAV as close as possible to the desired performance. Then, a manual fine-
tuning was performed through a series of experiments on the real UAV to optimize the
controller performance.

PSO was selected to tune the SMC since it is simple to implement and is effective at
optimizing high dimensional parameters spaces [49]. The tuning was performed only in
time simulations, using step inputs along the X, Y, Z, and yaw for training and using a
complex trajectory for validating. The scoring was based on an equal weight combination
of sub-scores based on ITAE (integral time absolute error), overshoot, undershoot, and
settling time. The scheme used for scoring was designed to minimize steady-state errors
and provide a fast, smooth response to inputs. The number of particles chosen was 50
and the optimization was run for 100 time iterations, though the scores leveled out within
20 iterations. The simulated results of the SMC before and after PSO tuning are in Figure 8.
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Figure 8. Simulated step response: before and after 100 iterations of PSO−tuning.

It is important to note that PSO is implemented here under the constrains imposed
by stability theory. Therefore, only stabilizing PSO parameters were iterated. Ultimately,
the output of the PSO tuning provided SMC parameters that outperformed benchmark
PID controllers in most trajectory tracking experiments in time simulations. This was
comprehensively documented in our recent paper [26]. However, SMC suffered from
chattering issues and caused oscillations in the attitude in real-world experiments. The
chatter in the configured PWM values going to the motors was significant, having a
deviation of over 20% of the entire PWM range. The response of the UAV with SMC after
the PSO tuning but before any manual fine-tuning is presented in Figure 9.

The manual fine-tuning adjusted the ai in the sliding surface while adjusting the ė gain
k6 for roll in the control law to maintain the stability condition. Then, the gain k5 on the
saturation function for roll was adjusted. The intuition for tuning the sliding surface and
related gains follows along the lines of tuning a PD controller. The inner attitude loop is
tuned first, then the outer loop. A comparison of the SMC performance on the real UAV
before and after the fine-tuning is provided in Figure 9.

The fine-tuning of the parameters improved the performance of the SMC in every axis
of motion. There was approximately a 2× reduction in position error in the Y axis, and the
maximum error in yaw was reduced from ±5 degrees to ±2 degrees. The chatter in the PWM
output was reduced, by a factor of 4, to a magnitude of 50 us in pulse width. The fine-tuning
on the physical hardware was essential to obtaining a high performance on the real UAV due
to model inaccuracies and overall less noise in the simulation versus the real world.
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Figure 9. Hover experimental results: before and after manual fine−tuning.

4. Experimental Results
4.1. Experimental Setup

The experiments were conducted in a narrow, closed, and turbulent space, as shown in
Figures 2 and 10. The testing field was built out of transparent acrylic sheets. The chamber
had a length of 2.15 m, width of 2.20 m, and height of 2.30 m. Three cameras were located
along each of the NED axes. The stationary wind source (location marked in Figure 10) was
turned on before the flight and turned off after the flight. The thrust produced by the fan
could be adjusted by a remote controller (RC). Rag strips were attached around the edges of
the wind source in order to illustrate the wind. The indoor navigation was achieved by the
onboard realistic states measurement system consisting of a visual inertial odometry (VIO)
system and three redundant inertial measurement units (IMU). In addition, to validate the
data from the onboard sensors, the position and trajectory of the UAV was also recorded by
three external, fixed high-resolution depth cameras.

As the UAV changes its attitude frequently during the flight, winds with dynamic
amplitude and changing direction generated by UAV motors combined with a stationary
wind source tend to create turbulent airflow in a small, enclosed room. The inertial wind
forces dominate over the viscous forces, especially at relatively low altitudes (under 1 m)
or near the walls. Based on our measurements, the ratio of the length of the UAV to the
length of the cage is around 0.25, which means even when the UAV is located at the center
it is still easily affected by the airflow near the walls.

Five representative cases of experiments were designed, as shown in Figure 11. The
first case was nominal flight without intentionally added disturbances, which means the
disturbances perceived by the flight controller were mainly induced by the UAV itself
(physical characteristics) as well as the diffused turbulent airflow within the small testing
field, for example, the imbalance caused by varying battery positions, sensor distribution,
the vibration from the actuators, and the changing turbulent flow, which depends on the
UAV’s position and speed. The second scenario was flying with a suspended spherical
weight that was attached at the center of mass (CM) of the UAV. The length of the string
was 0.35 m and its weight was negligible, and the mass of the metal ball was 131.7 g. As
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shown in Figure 11b, when flying, disturbance force would be decomposed into X–Y–Z
directions and the force magnitude in each axis could change due to the back and forth
swinging of the metal ball. The third scenario, which is shown in Figure 11c, was similar
to the second case except the suspended weight was attached to the end of the right-rear
landing gear; thus, this time not only were dynamic disturbance forces in X–Y–Z induced,
but also variable disturbance torques in pitch roll and yaw were generated.

Wind source

Quadcopter
Right Camera

Front camera

Figure 10. Testing field located in a narrow, closed, transparent space, with three fixed cameras (top,
right, front) and a stationary point wind source.

a. Nominal
b. Hanging 
Weight(CM)

c. Hanging 
Weight(OFFSET)

d. Wind e. Wind & Hanging Weight(CM)

Figure 11. Experimental scenarios: (a) nominal flight; (b) mounting a hanging weight (CM) at the
center of mass of the UAV; (c) mounting a hanging weight (OFFSET) at the end of the right-rear leg
of the quadcopter; (d) adding wind in front of the UAV; (e) adding wind together with the hanging
weight (CM).

Due to the uncertainty of the real-world environment, such as unpredictable wind
gusts, variable weather conditions, and so on, a series of comprehensive wind experiments
are necessary in developing a new, reliable, robust flight controller, as shown in Figure 11d,e.
The fourth scenario was to hold the position under a unidirectional wind. This was also
regarded as the wind-only case since no extra disturbance was added except the wind.
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From the 3D environment diagram in Figure 2, the wind was produced directly in front
of the UAV. The maximum wind speed at the position of the UAV was 9 m/s. Since the
wind tends to spread and disperse over a range, the effective distance of the lateral wind
would be limited, and the magnitude and direction of the wind depends on the flight
position of the UAV. The fifth case of experiments, shown on the bottom-right of Figure 11e,
was an extension of the wind-only experiment, and the UAV was loaded with a spherical
suspended weight.

4.2. SMC Performance Analysis

The SMC was subject to step inputs in the X, Y, Z, and Yaw axes in four separate
experiments to evaluate the error dynamics of the controller. Plots of the velocity error ė
against the position error e with the s = 0 hypersurface included on the graph are described
throughout this section. In the X axis, a step input of 0.5 m was applied. The response can
be seen in Figure 12.

Figure 12. Sliding surface for X−trajectory step tracking. Color code indicates time (s).

The error exhibits both the reaching and sliding phases, as expected. In the reaching
phase, the velocity only reaches 0.5 m/s, producing a flat reaching mode response, and
the sliding mode is achieved as the controller drives the error to 0 (see Figure 12). The Y
axis was also subject to a 0.5 m step input. The error dynamics performed very similarly to
the X controller, as shown in Figure 13. The slow reaching mode dynamics of the X and Y
controllers is because of the nested-loop controller structure. That is, the X and Y responses
are subject to the pitch and roll dynamics. Figures 14 and 15 show the pitch and roll sliding
modes during the respective X and Y step inputs. The pitch and roll error dynamics very
quickly pass through the reaching mode and enter the sliding mode, which is what causes
the flat reaching mode curves in X and Y.

The Z axis was subject to a 0.3 m altitude step input. As shown in Figure 16, the
reaching mode overshoots the sliding surface but then smoothly re-approaches it while
entering the sliding mode. This relatively smooth oscillation about the sliding surface is
allowed by the saturation function. If the saturation function were not used, the sliding
mode would be achieved faster, but there would almost certainly be chatter about the
sliding surface at the transition from the reaching mode to the sliding mode.
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Figure 13. Sliding surface for Y−trajectory step tracking. Color code indicates time (s).

Figure 14. Sliding surface for pitch during the X−step response. Color code indicates time (s).

Figure 15. Sliding surface for roll during Y−step response. Color code indicates time (s).
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Finally, the yaw was subject to a 90 degrees clockwise step rotation (Figure 17). Simi-
larly to the Z error dynamics, without the saturation function the transition from reaching
mode to sliding mode would occur sooner. Instead, there is some undershoot of the sliding
surface initially, then a smooth convergence towards the sliding surface. The yaw motion
here may be a bit conservative, but due to the coupling of the attitude dynamics, this is
required for a smooth system response. More aggressive yaw control introduces chatter
into all of the attitude control variable outputs, which propagates through the system.

Figure 16. Sliding surface for Z−trajectory step tracking. Color code indicates time (s).

Figure 17. Sliding surface for Yaw−trajectory step tracking. Color code indicates time (s).

All of the axes subject to step inputs following the conventional reaching mode to
sliding mode error dynamics, as expected. The X and Y response is limited by the attitude
dynamics. The Z controller overshoots the sliding surface slightly when reaching the
sliding mode, while the yaw controller undershoots the sliding surface. The overshoot and
undershoot of the sliding surface are allowed by the use of the saturation functions on the
switching portion of the control law, instead of a more aggressive sign function.

4.3. Trajectory Tracking

The tracking performance of the SMC was tested on three different trajectories: hover-
ing, a rectangle, and a figure eight. In each trajectory, the UAV ascended to an altitude of
1 m at 0.1 m/s then performed the desired trajectory and returned to the ground at 0.1 m/s.
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For the hovering trajectory, the setpoint (0 cm, 0 cm, 100 cm, 0 deg), in X, Y, Z, and
Yaw was sent to the UAV for the entirety of the trajectory.

The rectangle was comprised of four sides with a length of 30 cm, which were traversed
in 3 s each. There was a 1 s hover at each corner of the rectangle. Yaw of 0 degrees was
maintained throughout the trajectory. The pattern was repeated twice before landing.

The figure-eight pattern had a radius of 30 cm and the UAV was commanded to face
in the direction of travel for the entirety of the trajectory. A total of four loops of the figure
eight, each 8 s in duration, were completed prior to landing.

Each of the trajectories was completed with no disturbance applied to the UAV (the
nominal case); with a weight hanging from the center of mass of the UAV (weight CM case);
and with a hanging weight offset under one of the motors (weight offset case). In addition
to these disturbances, for the hover trajectory, the UAV was subject to a wind disturbance
along the −X axis. This wind disturbance was applied with no weight added to the UAV
(wind case) and with the hanging weight at the center of mass (wind and weight case).

The results are organized by trajectories through the remainder of this subsection in
the following order: hover, rectangle, figure eight. The primary quantitative metric for
comparing the performance of the controllers is the root mean square (RMS) error in each
axis. The RMS error is reported in centimeters for the translational axes and degrees for the
rotational axes.

4.3.1. Hover

The RMS error along each axis for the hover trajectory subject to each of the types of
disturbances is summarized in Table 2. As a general trend, the RMS error increased with
each experiment to the right along the table. This suggests that, as intended, the difficulty
of the control problem increased as more severe disturbances were added.

Table 2. Root mean square position and angular error for hover trajectory.

Nominal Weight Weight Wind Wind and
CM Offset Weight

X (cm) PID 2.20 2.46 3.56 9.85 9.51
SMC 0.75 0.73 0.76 1.90 2.27

Y (cm) PID 2.01 2.05 2.02 7.81 5.11
SMC 0.87 0.91 0.97 2.30 1.85

Z (cm) PID 13.38 11.57 12.70 15.20 15.05
SMC 1.24 1.76 1.82 1.25 2.17

Roll (deg) PID 1.09 1.24 1.20 1.88 1.92
SMC 1.04 1.15 1.22 2.31 1.86

Pitch (deg) PID 0.85 1.05 1.27 2.24 1.99
SMC 0.98 1.06 1.05 1.32 1.61

Yaw (deg) PID 2.04 2.16 2.09 6.70 4.90
SMC 0.90 0.94 0.85 2.06 1.87

In the nominal case, the SMC had an over 2× reduction in RMS error compared to
the PID for X and Y tracking. That improvement increased up to a 5–10× error reduction
when disturbances, especially wind disturbances, were added. The Z error for the SMC
was less than or around 2 cm for all experiments, regardless of the disturbance applied.
Conversely, the PID had a Z error larger than 15 cm and a higher tracking delay for all
experiments. The graphs of the experiments revealed that there was a steady-state error of
10–20 cm present for all of the PID results. The PID controller was unable to maintain the
desired altitude especially under disturbances. The yaw error was 2× better with the SMC
and relatively improved when the wind was added. However, the pitch and roll errors
were comparable between the two controllers.
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Graphs comparing the X, Y, Z, and heading tracking of the PID and SMC controllers
for the nominal case are presented in Figure 18 based on the flight logs, along with overlays
of the trajectories captured by the top and side cameras in top of the figure. Similar results
could be obtained from the camera recording images or the onboard flight logs that the
drift area of SMC was significantly smaller than that of PID during hovering. From the
sensors’ data, the SMC clearly had less variance in X, Y, and yaw than the PID controller.
Additionally, there was a steady-state error of over 15 cm for the PID controller in the Z axis.
Similar trends can be seen in Figures 19 and 20, when the hanging weights were added.
The PID had a larger fluctuation in yaw angle of over 5 degrees, while the SMC fluctuated
less than 2 degrees.

v2

Figure 18. Hover pattern−nominal cases (top: cameras; bottom: onboard flight logs).

In Figure 19, hanging weights were attached to the center of mass or to the end of the
landing gear. The SMC was able to maintain its setpoints with or without the payloads. In
contrast, the PID had a relatively larger position and heading error, and its drift area in the
XY plane increased when an offset hanging weight was added. In addition, the suspended
payload had a significant effect on the tracking of the PID in the Z direction. From the
results, the PID pulled up and down the UAV when the weights swung from side to side.
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Finally, the plots and overlays for the case when the wind was added are in Figure 20.
The PID was blown in the direction of the wind on several occasions (green and blue), while
the SMC was able to resist the wind disturbance and more accurately maintain the setpoint
position (red and pink). There was an oscillation in the Z axis of the PID-controlled UAV
caused by it being pushed up and down in the wind. Furthermore, the SMC-controlled
UAV fluctuated less than the PID-controlled UAV in terms of heading.

Hanging Weight

Figure 19. Hover pattern−hanging weight cases (top: cameras; bottom: onboard flight logs).

When hovering, the UAV should maintain its current position, heading, and altitude,
and it was designed to actively reject any externally applied disturbances, such as forces and
torques, with the help of the omnidirectional disturbance observers. In the nominal case,
Figure 21i shows nonzero disturbances of 0.75 N in the X direction,−0.2 N in the Y direction,
and −3 N in the Z direction, which remained constant throughout the experiment. These
baseline disturbances might be caused by small space turbulence, i.e., airflow synthesized
from forward, leftward, and downward winds. In other words, ideally, these values should
be 0 N if the UAV was located in a large open and undisturbed space. When the UAV was
on the ground, as shown in the beginning of experiments in Figure 21i(c), the force in the Z
direction shows the same magnitude as the UAV’s weight of 12.75 N but in the opposite
direction, which indicated a disarmed status without any propeller speed.

The force disturbances in the hanging weight cases should have no difference from
the nominal case except an additional downward force in the Z direction. By analyzing the
average differences between the nominal and weighted cases, we can estimate the weight of
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the payload to be ≈1 N, while the actual weight of the payload was 131.5 g (1.29 N). When
the hanging weight was mounted on the left-rear leg of the UAV, i.e., the weight-offset case
in the figure, the observer-estimated forces increased due to the additional thrust produced
to balance the torque.

Hanging Weight

Figure 20. Hover pattern−wind and weight cases (top: cameras; bottom: onboard flight logs).

Finally, the magnitude of forces increased significantly in -X and -Y after applying the
lateral wind. The force in X surged in the beginning and gradually stabilized at 0.25 N. We
estimated the wind force in X as ≈−0.5 N by calculating the steady state offsets between
the nominal case and the wind cases, and the wind force in Y was estimated as ≈−0.2 N.
Figure 21i shows the airflow inside the cage was blowing from north-east to south-west
with an approximated angle of ≈21 degrees. The disturbance peaks in the initial and final
phases represented the transition into and out of the main wind field, where the forces may
change abruptly.

The torque disturbances estimated by the observers were plotted in Figure 21ii. The
roll torque means the torque around the X axis, the pitch torque represents the torque
around the Y axis, and the yaw torque means the torque around the Z axis, respectively. In
the case of a weight offset, by comparing the differences between nominal and weighted
cases, it could be seen that the torques in pitch and roll were both ≈0.2 Nm, compared to
the actual torque (0.2278 Nm). In addition, because the hanging weight was mounted to
the right-rear leg of the UAV, both disturbances in pitch and roll should be positive in the
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NED coordinates, which was validated by the blue curves in Figure 21ii(d,e). Both nominal
and weighted cases show small yaw torques that wobbled around zero.

(i) Estimated forces (ii) Estimated torques

Figure 21. The SMC−based actual UAV flying in hover mode: (i) estimated forces (N) in X, Y, and Z
by the disturbance observer and (ii) estimated torque (Nm) in roll, pitch, and yaw by the disturbance
observer.

In the wind cases, torque disturbances had more intense oscillations in pitch and roll
due to a more frequent need of attitude correction, as shown in Figure 21ii(d,e). From
Figure 21ii(f), compared with the nominal case, a clear increase in yaw could be observed,
which indicated an increase in positive torque around the Z axis. From the force estimation
results in Figure 21i, we already know the fan was located in the north-east direction
relative to the UAV. However, the wind generated by the fan was still to the south, which
would produce a positive yaw torque around the Z axis. In fact, a misalignment of the
center of the UAV and the center curve of the wind tunnel is a common cause of yaw torque
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for the indoor aerial vehicle. This misalignment could also be verified by the north-east
wind in Figure 22.

Even though we did not have the real-time information on the actual turbulence profile
around the UAV, from the disturbance observer results in Figure 21i,ii, the magnitude and
direction of the airflow could be estimated. As a practical application, the disturbance
observer can also be used to estimate the real-time wind direction and magnitude and
sketch the wind profile. As an example, in the wind case, the horizontal force applied to
the UAV was shown on the polar plot in Figure 22. Based on the NED coordinate frame,
the UAV was located at the origin, with 0 degree corresponding to the +X and 90 degrees
representing the +Y. The wind generated by the fan was blowing in the −X direction.
The color bar is associated with the time-series of the experiment, starting from blue and
landing at yellow, where the maximum magnitude of the wind and its corresponding
direction could be retrieved after the flight. From this polar map, the wind was ≈0.5 N,
blowing from the north-east towards the UAV during most of the flight, with the maximum
wind occurring at the beginning and at the end.

Figure 22. Disturbance-observer-estimated wind force direction (deg) and magnitude (N) in the XY
plane.

As a short summary of the hover flight experiment, the total error was calculated
according to Table 2 and by ‖epos‖2 =

√
∑i=x,y,z ‖ei‖2

‖eatt‖2 =
√

∑j=r,p,yaw ‖ej‖2
(16)

where epos denotes the total position error, eatt denotes the total attitude error, i and j
represent each degree of freedom, and x, y, z, r, p, and yaw correspond to X, Y, Z, roll,
pitch, and yaw, respectively. The RMS error distribution for a particular controller in each
case was scattered and formed a region in Figure 23, with the horizontal and vertical
coordinates indicating the position error and attitude error, respectively. In addition, to
distinguish the differences between SMC and PID, their results were displayed in different
colors and textures.
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In Figure 23, each marker denotes a different experiment. For example, comparing the
SMC with the PID under the nominal condition, the blue circle was farther from the origin
than the red circle, which indicated the PID has a larger position and attitude error than
the SMC. The colored region enclosed by each experiment has the meaning of deviation
under uncertainty, and a smaller area means better adaptation to external disturbances; in
other words, the controller adapts faster when uncertainty occurs. When a hanging weight
was mounted, the UAV tended to track poorly, with larger position and attitude errors
compared to the nominal case, although some exceptions occur; for example, when looking
at the PID weight case in Figure 23 the PID had a smaller attitude error than the SMC. In
the presence of the wind, there was no doubt that both SMC and PID had larger tracking
errors compared to their own nominal cases. In short, it was clear that SMC showed a better
tracking accuracy as well as a better disturbance rejection capacity than the PID controller.

Figure 23. Hover: position and attitude error ( _nom: nominal condition; _weight: centered hanging
weight condition; _o f f set: offset hanging weight; _ww: centered hanging weight together with the
wind; _wind: wind-only condition).

4.3.2. Rectangle

The rectangle trajectory was completed for the nominal, center of mass weight, and
offset weight cases. The RMS error from each of these experiments is summarized in Table 3
for the PID and SMC.

The SMC offered more than a 4× improvement in X and Y position tracking. Addi-
tionally, the Z tracking was improved by over 5× with the SMC versus the PID controller.
The pitch and roll performance of the SMC was slightly worse than that of the PID. Finally,
the yaw error was reduced by a factor of 2. In the yaw error plots, it can be seen that the
oscillations for the PID controller are approximately double the amplitude of the SMC yaw
oscillations (Figure 24). This 2 to 1 relationship holds regardless of the applied disturbance.
However, when a weight disturbance is added there are some spikes in the PID yaw angle
error larger than ±5 degrees, which are not present in the nominal case.
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Table 3. Root mean square position and angular error for rectangle trajectory.

Nominal Weight CM Weight Offset

X (cm) PID 4.81 5.08 5.43
SMC 0.91 0.89 0.90

Y (cm) PID 4.31 5.14 4.28
SMC 1.16 1.09 1.23

Z (cm) PID 10.79 11.54 9.07
SMC 1.61 2.13 1.55

Roll (deg) PID 1.28 1.36 1.43
SMC 1.78 1.74 1.82

Pitch (deg) PID 1.07 1.25 1.17
SMC 1.96 1.97 1.99

Yaw (deg) PID 2.03 2.54 2.63
SMC 0.99 1.07 0.91

v2

Figure 24. Rectangle pattern—nominal weight cases (top: cameras; bottom: onboard flight logs).

The XY position plots in Figure 24, as well as the captured trajectories from the
tracking cameras, show a consistent overshoot in +X with the PID after the first side of the
rectangle is traced. This overshoot was present both with and without added disturbances
(see Figure 25). Interestingly, despite this large and consistent overshoot, the RMS error
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values in X and Y are comparable for the PID controller, suggesting that the overshoot did
not single-handedly degrade the X tracking performance.

The Z plots show a consistent undershoot in the altitude for the PID, regardless of
the applied disturbance. This result is consistent with the 10 cm undershoot seen in the
hover-trajectory tracking as well (see Figures 24 and 25).

v2

Hanging Weight

Figure 25. Rectangle pattern—hanging weight cases (top: cameras; bottom: onboard flight logs).

Figure 26i shows the estimated linear forces on the UAV, calculated by the SMC
disturbance observer. Unlike the hover case, due to the swinging pendulum motion, there
were small disturbance fluctuations with respect to XY. However, the Z disturbances were
slightly larger than the nominal case due to the attached weight.

In Figure 26ii, the estimated torque disturbances are plotted. With the offset weight,
constant torque disturbances of ≈0.2 Nm can be seen in pitch and roll. There were minimal
differences in yaw disturbance between the test with the center weight and the test with
the offset weight; however, their fluctuations became larger compared to the nominal case
due to the swinging pendulum.

During the rectangular trajectory tracking experiments, the PID has a larger tracking
error than the SMC, as shown in Figure 27. The overall position error reached over 6× of the
SMC, and the average attitude error was about the same; however, the deviation of attitude
error of PID was much larger than the one of SMC (about 30×). The large blue region
enclosed by three standalone experiments implies the behaviors of the PID varying under
different uncertainties. Although it had a better angle tracking in the nominal scenario,
PID’s performance reduced dramatically in the other disturbance scenarios. Again, from
the rectangular experiment results, the SMC overwhelms the PID in both tracking accuracy
and disturbance rejection.
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(i) Estimated forces (ii) Estimated torques

Figure 26. The SMC−based actual UAV flying in rectangle mode: (i): estimated forces (N) in X, Y, and
Z by the disturbance observer. (ii): estimated torque (Nm) in roll, pitch, and yaw by the disturbance
observer.

Figure 27. Rectangle: position and attitude error ( _nom: nominal condition; _weight: centered
hanging weight condition; _o f f set: offset hanging weight; _ww: centered hanging weight together
with the wind; _wind: wind-only condition).
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4.3.3. Trajectory of a Figure Eight

The figure-eight trajectory was completed for the nominal case and both hanging
weight cases. The RMS error from each of these experiments is summarized in Table 4 for
the PID and SMC (Figure 28).

Table 4. Root mean square position and angular error for a figure-eight trajectory.

Nominal Weight CM Weight Offset

X (cm) PID 7.89 7.61 8.24
SMC 4.70 4.53 5.61

Y (cm) PID 5.64 5.60 6.24
SMC 4.77 4.09 4.38

Z (cm) PID 3.92 6.17 5.47
SMC 1.75 1.79 1.71

Roll (deg) PID 1.57 1.68 1.56
SMC 1.44 1.71 1.49

Pitch (deg) PID 1.46 1.69 1.89
SMC 1.27 1.31 1.44

Yaw (deg) PID 5.85 5.69 7.53
SMC 4.78 4.67 4.57

v2

Figure 28. Figure-eight pattern—nominal cases (top: cameras; bottom: onboard flight logs).
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In the XY position tracking, the PID had around 1.2–1.5 times the RMS error of that of
SMC. The Z tracking was a little more than 2× better with the SMC. In pitch and roll, the
SMC error did not change compared to the rectangular trajectory; however, the PID error
increased slightly. The difference between the two controllers for pitch and roll tracking was,
again, not very significant. In yaw, the SMC outperformed the PID by a small margin with the
exception of the offset weight. The PID had around 2×more error in yaw tracking with the
offset weight, where the SMC’s performance did not change relative to the other cases.

In the XY position plots (Figure 29), the SMC follows a more symmetric path than the
PID. The PID has a larger circle on the second half of the trajectory, the left side, than on
the first half. This difference is a result of the PID not returning to the origin between the
first loop and the second loop. It overshoots the origin on the first loop and is unable to
compensate in the second loop.

The Z tracking steady-state offset was not present in the PID controller for the figure-
eight trajectory, unlike with the other trajectories, though there was an initial height error
after takeoff that was reduced within the first 10 s of the trajectory following. The Z
regulation was still poor compared to the SMC. The PID yaw tracking had a slight delay
and some overshoot as the direction changed.

Figure 30i shows the estimated linear force disturbances, from the SMC disturbance
observer. The reciprocal oscillations of disturbances in XY showed the aerodynamic forces
opposing the motion. As the UAV would yaw and turn, the weight would swing out
accordingly. Thus, for the offset weight case, due to a larger centrifugal force, the X and Y
disturbances grew larger, with sharper oscillations; meanwhile, Z had a larger downward
force. Because of the UAV’s aggressive flight motion and rapidly changing attitude, the
offset weight could usually swing at an angle of about 30–45 deg.

Hanging Weight

v2

Figure 29. Figure-eight pattern—hanging weight cases (top: cameras; bottom: onboard flight logs).
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(i) Estimated forces (ii) Estimated torques

Figure 30. The SMC−based actual UAV flying in figure-eight mode: (i) estimated forces (N) in
X, Y, and Z by the disturbance observer; (ii) estimated torque (Nm) in roll, pitch, and yaw by the
disturbance observer.

The pitch and roll disturbances in Figure 30ii show constant torque offsets of≈0.2 Nm for
the offset weight case, similarly to the rectangle and hover trajectories (Figures 21ii and 26ii).
The yaw disturbance had oscillations, which were caused by a larger aerodynamic moment as
the UAV followed the figure-eight yaw setpoints (Figure 30ii(f)).

As for the complex figure-eight pattern tracking test, the UAV was commanded to
change position and attitude all the time. Both the SMC and the PID have larger position
and attitude errors in this case. For the figure-eight nominal case, the PID had 1.5× position
error and more than 1.2× attitude error than that of SMC (Figure 31). For the CM weight
case, the PID had 1.8× position error and more than 1.2× attitude error than that of SMC.
For the offset weight case, the PID had 1.6× position error and more than 1.5× attitude
error than that of SMC. Overall, SMC had a better performance than the PID in this case.
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Figure 31. Figure eight: position and attitude error ( _nom: nominal condition; _weight: centered
hanging weight condition; _o f f set: offset hanging weight; _ww: centered hanging weight together
with the wind; _wind: wind-only condition).

5. Conclusions and Future Work

In this work, a 6-degrees-of-freedom sliding mode controller was designed for a UAV
to operate in real-world scenarios. A simulated UAV was developed first for roughly tuning
the control parameters using a PSO algorithm, followed by a manual fine-tuning process
on the actual UAV. The proposed controller was tested in an enclosed and turbulent space,
where it showed a better tracking accuracy and higher robustness than PID, especially
under severe disturbances, such as loads, torques, and wind.

The SMC controller outperformed an industry-standard PID controller across a variety
of tests. When subject to disturbances while following complex trajectories, the SMC
responded faster and more precisely, thanks to its disturbance observers, and always main-
tained an RMS positional error below 10 cm. The SMC had more than a 2× improvement
over a PID controller in position tracking across a variety of trajectories under nominal
conditions, with more than a 5× improvement under severe disturbances.

In future work, a second-order sliding mode controller could be used to reduce
chattering from the controller and reduce the susceptibility to noise. This would especially
improve the attitude control. Another possible direction would be to create an online tuning
process, potentially using neural networks, instead of relying on a manual fine-tuning
process. These results can further be combined with obstacle avoidance algorithms that
can serve to generate real-time safe trajectories along which the drone should navigate.
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Appendix A

Appendix A.1. X and Y Controllers

For the completeness of the work, here we summarize from [26] the SMC design
supported by stability theory. The designs of the X and Y controllers are very similar, so
the derivation of the X controller is presented in detail and the Y controller result will be
shown by analogy. We have the following definition for the UAV:{

u1 = sin φ sin ψ + cos φ sin θ cos ψ

u2 = − sin φ cos ψ + cos φ sin θ sin ψ
(A1)

According to (1), (3) and (A1),

ẍ = − 1
m [u1 · 4Tmax · τT + K1 · ẋ · |ẋ|] (A2)

where u1 is the control signal. Next, consider the sliding surface:

sx = a1ex + ėx (A3)

where ex = x− xd, with xd as the X setpoint. Then, use Equations (A2) and (A3) and apply
the SMC design summarized in Section 3. A Lyapunov stability analysis is conducted,
using the Lyapunov function V(sx) =

1
2 s2

x, whose time derivative reads as follows:

V̇(sx) = sx ṡx = sx(a1 ėx + ëx) = sx(a1 ėx + ẍ− ẍd)

= sx

[
a1 ėx −

1
m
(u1 · 4TmaxτT + K1 · ẋ · |ẋ|)− ẍd

]
= sx[a1 ėx − (k′1sat(

sx

ε
) + k2 ėx + csx − ẍd

− K1 · ẋ · |ẋ| ·+K1 · ẋ · |ẋ|)− ẍd]

= sx

[
(a1 − k2)ėx −

(
k′1sat(

sx

ε
) + csx

)]
(A4)

From Equation (A4), 
a1 − k2 = 0
k′1 > 0
c > 0

(A5)

are sufficient conditions to ensure stability with V̇(sx) < 0, where k′1, c, and k2 represent E1,
E2, and E3 in Section 3, respectively. Following the same procedures in Section 3, we obtain
the control law as follows:

u1 =
1

4TmaxτT
[m
(

k′1sat(
sx

ε
) + k2 ėx + csx − ẍd

)
− K1 · ẋ · |ẋ|]

(A6)

where +cs is an additional control term used on the X and Y controllers, and k′1 is a variable
gain that reduces large position errors quickly without causing instability for small position
errors:

k′1 =

{
k1, (b1 · |e|+ b2 · |ė|) < k1

(b1 · |e|+ b2 · |ė|), (b1 · |e|+ b2 · |ė|) ≥ k1

where b1 and b2 are tunable constants.
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Following by analogy, and considering the same stability conditions given by (A5),
the Y control law is given by the following:

u2 =
1

4TmaxτT
[m
(

k′1sat(
sy

ε
) + k2 ėy + csy − ÿd

)
− K1 · ẏ · |ẏ|]

(A7)

With u1 and u2 given in (A6) and (A7), recall (A1) we can solve for φ and θ to retrieve
the roll and pitch setpoints for the attitude controller:

{
φdes = arcsin(u1 sin ψ− u2 cos ψ)

θdes = arcsin
(

u1 cos ψ + u2 sin ψ
cos φ

) (A8)

Appendix A.2. Altitude Controller

For the Z controller, start with the Z equation from (1), (3)

z̈ = − 1
m [(cos φ cos θ) · 4Tmax · τT + K1 · ż · |ż|] + g (A9)

and let the sliding surface be the following:

sz = a2e + ė (A10)

The stability analysis follows similarly to X with a Lyapunov function of V(sz) =
1
2 s2

z ,
whose time derivative reads as follows:

V̇(sz) = sz ṡz = sz[a2 ėz + ëz]

= sz[(a2 −
4Tmax

m
k4)ėz

− (k′3
4Tmax(cos φ cos θ)

m
sat(

sz

ε
))]

(A11)

Then, the sufficient conditions for achieving V̇(sz) < 0 become the following:{
a2 − 4Tmax

m k4 = 0
k′3 > 0

(A12)

where k′3 and k4 are in the form of E1 and E3 in Section 3, respectively, and k′3 is defined
similar to k′1 in the X and Y controllers:

k′3 =

{
k3, (b3 · |e|+ b4 · |ė|) < k3

(b3 · |e|+ b4 · |ė|), (b3 · |e|+ b4 · |ė|) ≥ k3

Then, following the SMC design summarized in Section 3, rewrite (A9) and (A10) in
the form of τT :

τT = k′3sat
( sz

ε

)
+

k4

cos θ cos φ
ėz

+
−K1 · ż · |ż|+ mg−mz̈d

4Tmax cos φ cos θ

(A13)

Appendix A.3. Attitude Controllers

The design of the attitude control laws was similar to the design of the altitude
controller. The primary difference is that there is a coupling between the τ variables. For
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example, τRoll controller depends on τPitch and τYaw. This coupling will be resolved at the
end of Appendix A after the attitude control laws are derived.

In the design of the roll controller, an expression for φ̈ needs to be obtained. By
differentiating the φ̇ equation from (1), the following is obtained:

φ̈ = −2
√

2 · l · Tmax

Jx
τR −

2
√

2 · l · Tmax · tan θ sin φ

Jy
τP

+
4Qmax tan θ cos φ

Jz
τY + fφ

(A14)

where fφ

fφ =q · ( 1
cos2 θ

· θ̇ · sin φ + tan θ cos φ · φ̇)

+ r · ( 1
cos2 θ

· θ̇ · cos φ− tan θ sin φ · φ̇)

−
Jz − Jy

Jx
· qr− K2

Jx
· p · |p| − Jx − Jz

Jy
·

pr · tan θ sin φ− K2

Jy
· q · |q| · tan θ sin φ

−
Jy − Jx

Jz
· pq · tan θ cos φ

− K2

Jz
· r · |r| · tan θ cos φ

(A15)

Next, the sliding surface is selected:

sφ = a3eφ + ėφ (A16)

Similarly to the altitude controller, the control law becomes

τR =k5 · sat(
sφ

ε
) + k6 · ėφ −

Jx

Jy
· tan θ sin φ · τP

+
4Jx ·Qmax · tan θ cos φ

2
√

2Jz · l · Tmax
· τY

+
Jx

2
√

2 · l · Tmax
· ( fφ − φ̈des)

(A17)

Then, the Lyapunov stability condition can be calculated using the Lyapunov function
V(sφ) = s2

φ, and, imposing V̇(sφ) < 0, we have the following:

V̇(sφ) = sφ ṡφ = sφ(a3 ėφ + φ̈− φ̈des)

= sφ[(a3 −
2
√

2 · l · Tmax

Jx
· k6)ėφ

− 2
√

2 · l · Tmax

Jx
· k5 · sat(

sφ

ε
)]

(A18)

Sufficient conditions for roll stability become the following:{
a3 − 2

√
2Tmax l
Jx

k6 = 0

k5 > 0
(A19)
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Through analogy with the roll controller, the pitch controller is found to be

τP =
1

cos φ
· k5 · sat(

sθ

ε
) +

k6

cos φ
· ėθ −

4Jy ·Qmax · tan φ

2
√

2Jz · l · Tmax

· τY +
Jy

cos φ · 2
√

2 · l · Tmax
· ( fθ − θ̈des)

(A20)

where fθ

fθ =− (q · sin φ · φ̇ + r · cos φ · φ̇

+
Jx − Jz

Jy
· pr · cos φ +

K2

Jy
· q · |q| · cos φ)

+
Jy − Jx

Jz
· pq · sin φ +

K2

Jz
· r · |r| · sin φ

(A21)

and the stability condition is also given by (A19). The yaw sliding surface is selected next,
as in (A22).

sψ = a4eψ + ėψ (A22)

Then, through the same method as for the pitch and roll controller derivation, the yaw
control law becomes

τY = − cos θ

cos φ
· k7 · sat(

sψ

ε
)− k8 ·

cos θ

cos φ
· ėψ

+
2
√

2Jz · l · Tmax · tan φ

4Jy ·Qmax
· τP

− Jz · cos θ

4 ·Qmax · cos φ
· ( fψ − ψ̈des)

(A23)

where

fψ =q · cos φ cos θ · φ̇ + sin φ sin θ · θ̇
cos2 θ

+ r · − sin φ cos θ · φ̇ + cos φ sin θ · θ̇
cos2 θ

−
cos φ(Jy − Jx)

cos θ · Jz
· pq− cos φ · K2

cos θ · Jz
· r · |r|

− sin φ(Jx − Jz)

cos θ · Jy
· pr− sin φ · K2

cos θ · Jy
· q · |q|

(A24)

Finally, using a Lyapunov function of V(sψ) = s2
ψ and obtaining its time derivative,

V̇(s) = sψ ṡψ = sψ(a4 ėψ + ψ̈− ψ̈des)

= sψ[(a4 −
4Qmax

Jz
· k8)ėψ

− cos φ · 4Qmax

cos θ · Jz
· k7 · sat(

sψ

ε
)]

(A25)

The yaw stability conditions are found to be the following:{
a4 − 4Qmax

Jz
· k8 = 0

k7 > 0
(A26)
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satisfying V̇(sφ) < 0.
As mentioned, the attitude control laws (A17), (A20), (A23) are all coupled. The

coupling of these control terms is linear, so these equations form a linear system of equations
Aτ = B. Then, the control variables are given by the solution τ = A−1B. The expressions
for A, B, and τ are as follows:

A =


1 Jx

Jy
· tan θ sin φ − 4Jx ·Qmax ·tan θ cos φ

2
√

2Jz ·l·Tmax

0 1 4Jy ·Qmax ·tan φ

2
√

2Jz ·l·Tmax

0 − 2
√

2Jz ·l·Tmax ·tan φ
4Jy ·Qmax

1

 (A27)

B =



k5 · sat( sφ

ε ) + k6 · ėφ + Jx
2
√

2·l·Tmax
· ( fφ − φ̈des)

1
cos φ · k5 · sat( sθ

ε ) +
k6

cos φ · ėθ +
Jy

cos φ·2
√

2·l·Tmax

·( fθ − θ̈des)

cos θ
cos φ · −k7 · sat( sψ

ε )− k8 · cos θ
cos φ · ėψ

− Jz ·cos θ
4·Qmax ·cos φ · ( fψ − ψ̈des)


(A28)

τ =

τR
τP
τY

 (A29)

Appendix A.4. Disturbance Observer

From the UAV model in Figure 3, each propeller generates thrust in the−z′ direction. The
real thrust factor for each propeller is denoted as uri = (PWMri − PWMmin)/(PWMmax −
PWMmin), and uri ∈ [0, 1], which is used to calculate the actual τr:

τTr =
ur1 + ur2 + ur3 + ur4

4

τRr =
ur2 + ur3 − ur1 − ur4

4

τPr =
ur1 + ur3 − ur2 − ur4

4

τYr =
ur1 + ur2 − ur3 − ur4

4

(A30)

These τr values are then fed back into the disturbance observers to construct the final
control laws, as explained next. From [50], the disturbance observer is designed to drive
the state tracking error asymptotically to zero in the presence of constant force and torque
disturbances. The constant force disturbances are represented by d f = [d fx , d fy , d fz ] in
X–Y–Z directions, respectively, and constant torque disturbances dt = [dtx , dty , dtz ] around
X–Y–Z axes, respectively.

Unlike the design in [50], which only concerns a three-dimensional force disturbance
observer and was only tested in simulations, the proposed method uses a six-dimensional
disturbance observer including forces and torques and is tested in UAV experiments.
Similar to [50], each observer error dynamic is decoupled from the rest of the loop.

First, the state variables v and w are defined as [ẋ, ẏ, ż] and [p, q, r], respectively, where

v̇ =


− 1

m [u1 · 4Tmax · τTr + K1 · ẋ · |ẋ|]
− 1

m [u2 · 4Tmax · τTr + K1 · ẏ · |ẏ|]
− 1

m [(cos φ cos θ) · 4Tmax · τTr + K1 · ż · |ż|] + g

 (A31)
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ẇ =


1
Jx
[2
√

2l · Tmax · τRr − q · r(Jz − Jy)− K2 · p · |p|]
1
Jy
[2
√

2l · Tmax · τPr − p · r(Jx − Jz)− K2 · q · |q|]
1
Jz
[4Qmax · τYr − p · q(Jy − Jx)− K2 · r · |r|]

 (A32)

where τTr , τPr , τRr , and τYr are the actual feedback thrust factors calculated by the actuator
speed measurement factors ur. To estimate disturbance acceleration d f in X–Y–Z directions,
we consider the observer structure{

d̂ f = z f + k f · vr

ż f = −k f · d̂ f − k f · v̇
(A33)

where vr is the actual velocity after disturbances v̇r = v̇ + d f . With the error of disturbance
defined as e = d f − d̂ f , the error dynamics become

ė = ḋ f − ˙̂d f = ḋ f − ż f − k f v̇r

= −k f · e + ḋ f
(A34)

Assuming that d f changes slowly compared to the tracking dynamics, then at any
instant it can be approximated by a constant, meaning ḋ f ≈ 0. Under this assumption, the
error dynamics become

ė = −k f · e (A35)

which is globally exponentially stable for k f > 0. Here, k f = 5 is selected in the experiments.
To estimate the disturbance in angular acceleration dt around X–Y–Z axes, a similar

observer structure is considered:{
d̂t = zt + kt · wr

żt = −kt · d̂t − kt · ẇ
(A36)

where wr is the actual angular velocity after applying disturbances and ẇr = ẇ + dt. With
the error of disturbance defined as e∗ = dt − d̂t, the error dynamics become

ė∗ = ḋt − ˙̂dt = ḋt − żt − ktẇr

= −kt · e∗ + ḋt
(A37)

Again, assuming dt changes slowly, which means ḋt ≈ 0, the error dynamics become

ė∗ = −kt · e∗ (A38)

which is globally exponentially stable for kt > 0. The larger kt > 0 is, the faster the distur-
bances observer converges. In this study, we chose kt = 5. The disturbance terms (d̂ f , d̂t)
can thus be added into the system dynamics to compensate the constant disturbances.
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Referring to Equations (A6), (A7), (A13), (A17), (A20), (A23), (A33), and (A36), we add
the estimated disturbances terms in the control laws, which ultimately read as follows:

u′1 = u1 + d̂ fx ·
m

4Tmax ·τTr

u′2 = u2 + d̂ fy ·
m

4Tmax ·τTr

τ′T = τT + d̂ fz ·
m

4·Tmax cos θ cos φ

τ′R = τR + d̂tx ·
Jx

Tmax ·2
√

2·l
τ′P = τP + d̂ty ·

Jy

Tmax ·2
√

2·l
τ′Y = τY + d̂tz ·

Jz
4·Qmax

(A39)
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