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Abstract: Providing robust communication services to mobile users (MUs) is a challenging task due
to the dynamicity of MUs. Unmanned aerial vehicles (UAVs) and mobile edge computing (MEC)
are used to improve connectivity by allocating resources to MUs more efficiently in a dynamic
environment. However, energy consumption and lifetime issues in UAVs severely limit the resources
and communication services. In this paper, we propose a dynamic cooperative resource allocation
scheme for MEC–UAV-enabled wireless networks called joint optimization of trajectory, altitude,
delay, and power (JO-TADP) using anarchic federated learning (AFL) and other learning algorithms
to enhance data rate, use rate, and resource allocation efficiency. Initially, the MEC–UAVs are opti-
mally positioned based on the MU density using the beluga whale optimization (BLWO) algorithm.
Optimal clustering is performed in terms of splitting and merging using the triple-mode density peak
clustering (TM-DPC) algorithm based on user mobility. Moreover, the trajectory, altitude, and hover-
ing time of MEC–UAVs are predicted and optimized using the self-simulated inner attention long
short-term memory (SSIA-LSTM) algorithm. Finally, the MUs and MEC–UAVs play auction games
based on the classified requests, using an AFL-based cross-scale attention feature pyramid network
(CSAFPN) and enhanced deep Q-learning (EDQN) algorithms for dynamic resource allocation. To
validate the proposed approach, our system model has been simulated in Network Simulator 3.26
(NS-3.26). The results demonstrate that the proposed work outperforms the existing works in terms
of connectivity, energy efficiency, resource allocation, and data rate.

Keywords: unmanned aerial vehicle; mobile edge computing; anarchic federated learning; artificial
intelligence; cooperative dynamic resource allocation

1. Introduction

The advent increment of mobile communication devices in recent years needs resilient
communication services. State-of-the-art communication networks are critically limited,
with poor connectivity [1,2]. However, ground base stations (GBSs) are equipped with high
computation and communication capabilities. Due to their static nature, the connectivity
between mobile users (MUs) and GBSs is affected by environmental conditions during
emergencies [3,4]. In general, GBSs have encountered several challenges, including poor
connectivity to MUs and high sensitivity to natural disasters [5]. To address these issues of
GBSs, unmanned aerial vehicles (UAVs) are adopted. The UAVs can act as a relay for MUs
as well as act as a mobile base station (BS) [6,7].

UAVs as BSs are more advantageous to the MUs in terms of connectivity, coverage,
and latency-free communication [8,9]. However, their network lifetime is affected by
limited resource availability and battery life. In addition, the number of services, i.e.,
allocating resources, is also fewer due to their limited storage capacity [10]. Hence, a lot of
research has been done to address this issue. To resolve the issue of limited computation
and storage capacity, mobile edge computing (MEC) came into the picture [11]. MEC is
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being developed to enhance the computational capabilities of smart devices for executing
high-computational and latency-critical tasks. However, it faces various challenges, such
as improving computation, energy consumption, and latency [12]. The MECs, when
combined with UAVs, allow the MUs to perform local computations on the MEC–UAVs to
resolve the latency issues [13,14]. MEC–UAVs possess unique features that differentiate
them from terrestrial servers. First, UAVs can adapt their location in accordance with the
real-time offloading strategies of users, and their trajectory can be precisely planned for
various objectives, such as enhancing throughput and conserving energy [15]. Second,
MEC-assisted UAVs offer advantages compared to terrestrial servers due to their high
altitude, which improves coverage by enhancing the probability of LoS with MUs and
mitigates the impact of channel limitations. Leveraging these features, UAVs can make
significant contributions to MEC systems and can address the deployment challenges
that are associated with terrestrial servers [16]. Despite the deployment of MEC-assisted
UAVs, the existing studies still lack optimal resource allocation in terms of UAV and
MU constraints [17]. To achieve efficient resource allocation, the existing studies either
perform joint optimization of trajectory or the position of the UAV [18]. Additionally, they
consider delay, task scheduling, and offloading as sub-problems during resource allocation.
However, efficient resource allocation can be achieved by considering all the constraints in
a single picture [19].

Furthermore, the existing studies performed random resource allocation using deep
reinforcement learning (DRL) and adopted federated learning (FL), which may affect
the efficiency of resource allocation. The performance of conventional FL for resource
allocation is limited by poor convergence and less learning rate. DRL and FL require
significant communication overhead to transmit model parameters between nodes, which
is a significant challenge in MEC–UAVs with limited bandwidth and high latency. MEC–
UAVs operate in a dynamic and uncertain environment, which can make it difficult for the
DRL and FL to generalize and adapt to new situations. This can result in poor performance
and a high rate of failure. MEC–UAVs have limited computational and energy resources,
which can limit the complexity of the models that can be deployed on them. On the other
side, the existing works also consider the user constraints in terms of their density, resource
requirement, and capacity to achieve user association during resource allocation [20,21].
However, none of the prior studies investigated user mobility in the environment, leading to
service discontinuity [22,23]. The proposed scheme employs cooperative anarchic federated
learning (AFL)-based dynamic resource allocation in edge-assisted UAV (E-UAV) by jointly
optimizing UAV deployment, trajectory optimization, and altitude optimization using
artificial intelligence (AI) algorithms to address the aforementioned issues in prior works.

1.1. Motivations and Objectives

Achieving energy-efficient resource allocation in the edge-enabled UAV-based wireless
network remains challenging. Although state-of-the-art works have extensively considered
the resource allocation approaches, the precise solution that jointly considers UAV and user
constraints has not yet been provided. The state-of-the-art works are limited due to some
major challenges, which are discussed below.

• Inefficient Resource Allocation: Many existing works performed resource allocation, either
through optimizing the trajectory of the UAV, position of the UAV, or association between
users and UAV. However, none of them jointly consider all the constraints, which leads to
inefficient resource allocation. Furthermore, the resource allocation was made only using
limited parameters, which also reduced the efficiency of resource allocation.

• High Energy Consumption: The existing approaches mainly rely on independent re-
source allocation because UAVs independently perform resource allocation rather than
cooperation with other UAVs, which leads to high energy consumption. Furthermore,
every MU in the environment sends direct requests to the UAVs continuously, leading
to increased energy consumption.
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• Service Discontinuity: Most existing methods did not consider user mobility and its
characteristics. Generally, the MUs are highly dynamic; thus, it is important to consider
their dynamicity, otherwise, it may lead to service discontinuity and disruption.

• Random UAV Deployment: The existing works perform 3D UAV deployment, altitude
optimization, and position optimization, which are not efficient for random UAV
deployment and lead to unwanted energy consumption and poor connectivity.

Motivated by the discussion above, this paper jointly optimizes UAV allocation, tra-
jectory and altitude planning, delay, and power (JO-TADP), to achieve energy-efficient
resource allocation for E-UAV-based wireless networks. Moreover, this work also addresses
various resource allocation issues prevalent in existing UAV-based wireless networks. The
main objective of this paper is to ensure fair resource allocation among UAVs and MUs by
adopting AI algorithms and FL. To be more distinctive, the sub-objectives of this research
work are provided as follows:

• To reduce poor connectivity and energy consumption by performing optimum alloca-
tion of UAVs in the environment based on the density of MUs.

• The clustering of MUs is performed, which captures the mobility of MUs to reduce
unnecessary energy consumption and make the UAV more reliable.

• To reduce the hovering energy consumption and achieve better coverage by autonomous
trajectory planning, deep learning (DL) is employed to optimize the UAV altitude.

• To ensure optimal and dynamic resource allocation by performing request classifica-
tion, an FL-based cooperated auction mechanism using DRL is used.

1.2. Paper Contribution

This paper aims to provide adequate and optimal resources to MUs without affecting
network performance. The main contributions of this paper are listed below:

• The unwanted energy consumption and poor connectivity are reduced by optimally
allocating the edge-assisted UAVs in the environment based on the MU’s request using
the Beluga Whale Optimization (BLWO) algorithm.

• The energy consumption is minimized, and the mobility of users is captured by
clustering the MUs using the triple-mode density peak clustering (TM-DPC) algorithm.
This algorithm considers several parameters, such as mobility, density, acceleration,
trajectory, and speed. The algorithm also selects cluster heads (CHs) based on high
stability and less mobility.

• Self-simulated inner attention long short-term memory (SSIA-LSTM) is used to opti-
mize the hovering duration and reduce the energy consumption of MEC–UAVs during
flight intervals. The autonomous trajectory planning and altitude optimization using
SSIA-LSTM to enhance the coverage rate by optimally adjusting the altitude of UAVs.

• The robust resource allocation is achieved by applying an AFL-based cooperative
dynamic E-UAV, which classifies the user request and performs auction-based dynamic
resource allocation to MUs with less latency and optimized power consumption.

1.3. Novelty Highlights

This section emphasizes the novelty of the proposed work relative to existing methods.
Table 1 summarizes the proposed solutions for the existing schemes’ shortcomings.
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Table 1. Novelty highlights.

Existing Methods Proposed Novelties

The existing works deploy UAVs in the
environment in a random manner for resource
allocation, which leads to unwanted energy
consumption and leads to poor connectivity
issues. Even though they use 3D model
deployment, this issue affects the performance
of UAVs.

The proposed work mitigates that issue by
deploying optimum MEC–UAVs based on the
MU density. To increase the scalability and
speed during optimum UAV allocation, we
adopt a heuristics algorithm named BLWO
algorithm.

Most existing works did not consider MU
constraints regarding their mobility for
resource allocation in UAV-based wireless
networks. The MUs are not static, which leads
to service discontinuity.

We reduce the service discontinuity rate by
performing MU clustering using a novel
clustering algorithm named TW-DPC for
mobility control and user association. In
addition, the clusters are optimally managed
by clustering, splitting, and merging,
respectively.

The existing approaches provide resource
allocation using only limited strategies.
Specifically, they either optimize trajectory and
resource allocation or user association and
resource allocation, affecting resource
allocation efficiency.

In this paper, we jointly optimize the trajectory,
delay, altitude, and power of the MEC–UAVs.
Furthermore, we have proposed a cooperative
dynamic resource allocation method using an
AFL algorithm.

The proposed work is simulated and compared to the existing approaches in terms of
connectivity, energy consumption, data rate, utility rate, delay time, and resource allocation
efficiency. Table 2 summarizes the main notations used in this work.

Table 2. Summary of notations.

Notation Definition

∪m MEC–UAVs
Nn MUs
Z Channel sets of MEC–UAVs

BfzU (t), BnfzU (t) Bandwidth of familiar and non-familiar resources
Rreqn Resource request

E, D, P, C Energy, delay, power, and computation optimization
TR, AL Trajectory and altitude optimization
ℵ∪ Optimization constant

UAU ,n User association
hovE

U Hovering energy consumption
hovpow

U Hovering power consumption
hfac Harmonization factor

locni
den Local density

Edni,nj Euclidean distance among two MUs
pos(MUclK) Positive cluster region
θni↔nj Evidence theory co-efficient

.
ĵex(t) Jerk of MEC–UAVs
Val Value
v MTNP-SVM hyperplane constant
LRF L2 regularization function

1.4. Paper Organization

The rest of this paper is organized as follows. Section 2 provides a literature survey of
the existing techniques. The problem formulation for the proposed work is presented in
Section 3. Section 4 discusses the system model, and Section 5 further explores the system
model in detail with a suitable set of equations, algorithms, and figures. The experimental
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results are presented in Section 6. Finally, the conclusion is drawn and presented in
Section 7.

2. Literature Survey

This section surveys the existing literature on resource allocation for UAV-enabled
wireless networks and their deployment. For a better understanding, the main section is
further divided into two subsections, i.e., MEC–UAV-based resource allocation and UAV-
based resource allocation. Table 3 summarizes several related studies with their significant
research gaps.

Table 3. Literature survey.

Existing
Methods Reference Objective Algorithms/

Methods

Resource Allocation Strategies

LimitationsUAV-
Alloc TR AL DM PO UA CO

UAV-
assisted

Resource
Allocation

[24]

To increase the sum
rate of all the MUs in
UAV-based wireless

networks

Branch and
Bound Method 8 8 8 8 4 4 8

Resource Disruption,
High Energy
Consumption

[25]

To achieve optimal
resource allocation in

multi-connectivity
UAV networks

DRL 4 8 8 8 8 4 8

Deprived user
connectivity,

Inefficient resource
allocation

[26]

To preserve the
privacy of the

UAV-enabled MUs
during resource

allocation

FL, A3C
algorithm 4 8 8 8 8 4 8

Less network
lifetime,

Delayed service
provisioning

[27]

To enable a conjoined
resource allocation
for UAV-based IoT

networks

Iterative
Algorithm 8 4 8 8 8 8 8

Inefficient service
provisioning

[28]

To achieve
energy-efficient

resource allocation
for ultra-dense UAV

networks

MDP-based
DQN 8 8 8 8 4 4 8 Less Stability

[29]

To achieve the joint
optimal resource

allocation for
UAV-enabled WPCN

Iterative
Algorithm 8 4 8 4 4 4 8

Experiences
unwanted energy

consumption

[30]

To achieve
energy-constrained
resource allocation
for cellular-based

UAV

Water-filling
algorithm and

ruin theory
8 8 8 4 4 4 8

Unable to handle
more user density

[31]

To increase the QoS
and resource

allocation efficiency
by NOMA-based

UAV networks

Heuristic
Algorithm 8 4 8 8 4 8 8

Easily trapped with
local minima and

convergence
problems

[32]

To enhance the
communication

capability of UAVs
by combined

solutions

K-means
Clustering
Algorithm

4 4 8 8 4 8 8 Increased complexity

[33]

To increase the sum
rate by enabling

collaborative
resource allocation

using UAV

DQN and
Convex

Algorithm
4 8 8 8 4 4 8

Unwanted energy
consumption and
poor connectivity
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Table 3. Cont.

Existing
Methods Reference Objective Algorithms/

Methods

Resource Allocation Strategies

LimitationsUAV-
Alloc TR AL DM PO UA CO

[34]

To achieve
collaborative

resource allocation by
multiple UAV-based

IoT networks

Clustering and
DDPG algorithm 8 8 8 4 8 8 4

Poor service
provisioning

[35]

To enable resource
allocation in a virtual

manner using
5G-based UAV

networks

Two-stage
resource

allocation
method

8 8 8 8 4 4 8
Ineffective resource

allocation

[36]

To improve the
message efficiency by

enabling 3D-based
UAV resource

allocation

Iterative
Algorithm 4 8 8 4 4 8 8

High collision rate
and unwanted

hovering

[37]

To improve the
coverage by enabling
multiple UAV-based
resource allocation

DQN algorithm 8 4 8 4 8 8 8 Poor coverage rate

MEC–UAV-
Assisted
Resource

Allocation

[38]

To reduce the
resource allocation
rate by MEC-based

UAV resource
allocation methods

Combined
Resource

Allocation
Method

8 4 8 8 4 8 4

Ineffective resource
allocation and service

provisioning,
Poor trajectory
optimization

[39]

To improve the
resource allocation

efficiency by 3D
deployment in

MEC-based UAV
networks

Iterative
Algorithm 4 8 4 4 8 4 8

Service discontinuity,
Unwanted energy

consumption

[40]

To enhance the
resource allocation

efficiency by multiple
UAV-based 5G MEC

networks

Two-stage
method and

block successive
upper bound
minimization

algorithm

8 8 8 4 8 8 4
Increased energy

consumption

[41]

To improve the
connectivity among

MUs and UAVs
using MEC

Convex and
Lagrange-based

Methods
8 4 8 4 4 4 8

Experiencing poor
coverage

[42]

To enhance reliability
by enabling

combined offloading
in MEC-based UAV

networks

Power rate
semi-qualitative

relaxation
method and

Position
optimization

algorithm

4 8 8 8 8 4 4
Lack of considering
optimal user metrics

[43]

To improve the
connectivity in

disaster areas by
MEC-based UAVs

Iterative
Algorithm and

Lagrange
Method

8 4 8 8 4 8 8
Lack of resilient

coverage affects the
connectivity

Proposed Work
JO-TADP

To improve the
fairness and energy

efficiency of
MEC-assisted UAV

networks

Optimization
algorithm,
Clustering

algorithm, Deep
learning

algorithm, and
DRL algorithm

4 4 4 4 4 4 4

Less energy
consumption,

High connectivity,
Less delay,

Increased reliability

UAV-Alloc—UAV Allocation, TR—Trajectory Optimization, AL—Altitude Optimization, DM—Delay Minimiza-
tion, PO—Power Optimization, UA—User Association, CO—Computation Offloading.
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2.1. UAV-Assisted Resource Allocation

The authors in [24] jointly optimize MU association and position by formulating
a sum-rate maximization problem in UAV-enabled wireless networks. First, the UAV
positions in the environments are optimized using a genetic algorithm, then the branch
and bound methods are exploited to allocate resources to MUs. A load-balancing scheme
has been implemented specifically for overloaded resources to improve the fairness of
resource allocation. This scheme involves relaying MUs from overloaded resources to
underloaded resources. A DRL-based MU association and dynamic resource allocation in
UAV-enabled wireless networks are proposed in [25], where the authors deploy multiple
UAVs in the environment to improve service resiliency. Multiple MUs are allowed to
associate with UAVs jointly, and the UAV resources are dynamically allocated to the MUs
using multi-agent DRL algorithms.

A DRL-assisted FL-based UAV network for resource allocation and scheduling is
proposed in [26], where the authors exploit the global model and local model concepts for
UAVs and MUs. The scheme adopts an asynchronous FL-based actor-critic algorithm to
jointly optimize UAV deployment, MU association, and resource allocation. To maximize
coverage area while minimizing overall system delay, the authors in [27] propose a resource
allocation and trajectory optimization plan for the UAV-assisted Internet-of-Things (IoTs)
networks. This study incorporates both half-duplex and full-duplex communication modes
to relay and exchange information with MUs. Additionally, an iterative technique is
proposed to jointly optimize the channel model, size, power, weight, and speed of the UAV.

An energy-efficient resource allocation method for UAV-based ultra-dense networks
is proposed in [28], where the authors jointly optimize the power of UAVs and MUs by
exploiting the Markov decision process (MDP). The scheme shows that the adoption of
MDP-based deep Q-learning reduces the computation complexity, therefore increasing the
fairness in resource allocation. A joint resource allocation and trajectory optimization for
UAV-enabled wireless networks is proposed in [29], where the authors jointly optimize
UAV trajectory, power of UAVs and MUs, resource scheduling, and time to minimize the
overall system energy consumption. A ruin theory-based energy-saving technique for
cellular resource allocation is presented in [30], where the authors exploit the water-filling
algorithm to optimize power jointly and MU association by enabling a trade-off between
reliability and delay.

In [31], the authors formulate an energy consumption minimization problem in non-
orthogonal multiple access (NOMA)-empowered wireless networks. This work loops
three processes for optimal resource allocation, i.e., first, the MUs are selected based on
the heuristic algorithm, then the power allocation is performed, and finally, the data
rate, channel model, and energy level are taken into account to optimize the trajectory of
UAV. The authors in [32] jointly formulate resource allocation and UAV placement as an
energy consumption minimization problem and exploit the K-means clustering algorithm
to group multiple MUs into one cluster and optimally allocate power to them. A sum-rate
maximization problem for collaborative UAV-based wireless networks is proposed in [33].
The authors jointly optimize UAV position, MU association, power allocation, and channel
allocation using deep Q-learning (DQN).

A QoS-aware deep deterministic policy gradient (DDPG)-based algorithm for latency
minimization in a UAV-assisted wireless network is proposed in [34], where the authors
jointly optimize resource allocation and task offloading. The authors in [35] propose a
virtual cognitive resource allocation algorithm in a 5G-assisted UAV network. To assign
virtual resources to MUs, resources are initially allocated based on the MU’s on-demand
requests. Subsequently, resources are reallocated to the MUs to ensure QoS.

To minimize the overall system energy consumption for a UAV-enabled emergency
network, the authors in [36] jointly optimize UAV location and resource allocation. In [37],
the authors jointly optimize power allocation and UAV trajectory design and employ a
DRL-based algorithm to minimize the overall system delay. In this work, each UAV acts as
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an agent to perform resource allocation and trajectory planning in an optimized manner
based on path loss, transmission channel, and on-demand requests.

2.2. MEC–UAV-Assisted Resource Allocation

An energy consumption minimization-based joint trajectory planning and resource
allocation strategy is proposed in [38], where the authors introduce a partial task offloading
framework and propose an iterative algorithm to obtain the optimal strategies. A cooper-
ative resource allocation and communication framework is presented between the MUs
and UAVs in 3D space [39]. The authors jointly optimize UAV deployment and resource
allocation and formulate the original problem as a mixed integer non-linear programming
problem. An iterative algorithm is proposed that optimizes deployment, resource alloca-
tion, and the association problem jointly based on the UAV height, channel bandwidth, and
elevation angle.

In [40], the authors jointly optimize computation offloading and computation time in
a dual-stage edge-enabled UAV network. A block successive upper bound minimization
algorithm is proposed for the channel allocation, and the authors further consider that
if the UAV becomes unresponsive due to low battery power, a portion of the task is
offloaded to the terrestrial base station. A cooperative resource allocation strategy for a
UAV-assisted MEC network is proposed in [41], where the authors jointly optimize user
tasks, computation time, trajectory planning, and power allocation and use Lagrange-based
methods to obtain the optimal strategies.

A joint computation offloading and resource allocation scheme for edge-enabled
UAV networks is proposed based on the characteristics of the task, i.e., size and CPU
cycles required [42]. The authors propose a semi-qualitative relaxation method to optimize
bandwidth and power rate. Eventually, a position optimization algorithm is used to
optimize the placement of the UAV. An energy-efficient resource allocation strategy in an
edge-assisted UAV network for disaster-vulnerable areas is proposed in [43], where the
authors consider both the uplink and downlink communication scenarios to enable resilient
connectivity by optimizing the trajectories of UAVs. An iterative algorithm following the
Lagrange dual method-based scheme is used to ensure optimal resource allocation.

3. Problem Formulation

In this section, we jointly formulate the problem of UAV allocation, trajectory plan-
ning, altitude planning, delay minimization, power minimization, and offloading as a
maximization-minimization problem. To enhance resource allocation efficiency between
MUs and UAVs, the minimization problem can be formulated as follows:

min
E,D,P,C

∪
∑
U=1

N

∑
n=1

TotalE,D,P,C
U + TotalE,D,P,C

n (1)

eU ,n ≤ EU ,n, ∀U ∈ NU , ∀n ∈ ∪ (1a)

dU ,n ≤ DU ,n, ∀U ∈ NU , ∀n ∈ ∪ (1b)

0 < dcomp
U ,n ≤ 1, ∀U ∈ NU , ∀n ∈ ∪ (1c)

pU ,n ≤ PU ,n, ∀U ∈ NU , ∀n ∈ ∪ (1d)

0 < pcomp
U ,n ≤ 1, ∀U ∈ NU , ∀n ∈ ∪ (1e)

cU ,n ≤ CU ,n, ∀U ∈ NU , ∀n ∈ ∪ (1f)
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0 < coffloaded
U ,n ≤ 1, ∀U ∈ NU , ∀n ∈ ∪ (1g)

In Equation (1a) eU ,n represents the energy consumption of MUs and UAVs, EU ,n is
the total available energy for all MUs and UAVs. Equation (1a) represents the energy
consumption constraints of MUs and UAVs, which states that the energy consumed by the
users and UAVs must be less than or equal to the total available energy. In Equation (1b),
dU ,n is delay encountered by MUs and UAVs, and DU ,n is the maximum possible delay. In
Equation (1c), dcomp

U ,n represents the computational delay. Equation (1b,c) shows the delay
constraints to perform an action, which ensures that the delay encountered by the users
and UAVs must be less than the maximum possible delay for successful transmission. The
computational delay encountered by UAVs and MUs must be greater than 0 and less than
or equal to one. In Equation (1d), pU ,n denotes the power consumption of users and UAVs,
while PU ,n represents the overall power available for task completion. In Equation (1e),
pcomp
U ,n denotes computational power. Equation (1d,e) represent the power consumption

constraints of MU and UAVs for completing a task, which state that the power for the MUs
and UAVs must be less than or equal to the maximum available power allocated for all
tasks. The computational power consumed by UAVs and MUs must be greater than 0 and
less than or equal to one, as stated in Equation (1e). In Equation (1f), cU ,n represents the
computational time, while CU ,n is the total available computational time. In Equation (1g),
coffloaded
U ,n represents the offloaded computational time. Similarly, Equation (1f,g) show that

the offloading computation is performed within the total offloading computation time.

max
NSR
ℵ∪

∪
∑
U=1

N

∑
n=1

UAU ,n + ALhov
U ,n +

∪
∑
U=1

TRhov
U (2)

Having stated that,

M

∑
m=1

βm
U ,n ≤ 1, ∀U ∈ NU , ∀n ∈ ∪ (2a)

βm
U ,n ∈ {0, 1}, ∀U ∈ NU , ∀n ∈ ∪ (2b)

loCR(n) < ALU < upCR(n), ∀U ∈ NU , ∀n ∈ ∪ (2c)

TR[st] = TR(α), TR[end] = TR[γ], ∀U ∈ NU (2d)

‖TR[U ]− TR[U − 1]‖ ≤∝ran, ∀U ∈ NU (2e)

Equation (2) represents the overall sum-rate maximization problem, ℵ∪ denotes
the optimization constant to maximize the UAV constraints in the environment. In
Equations (2a) and (2b), βm

U ,n represents the sub-channel allocation. The constraints in
Equations (2a) and (2b) indicate that only one sub-channel can be allocated to the underlying
MUs n during resource allocation. Please note that the sub-channel assignment is only
for the associated MUs. Equation (2c) indicates altitude optimization constraint, where
the UAV altitude can be adjusted based on the user density level within the lower (lo)
and higher (up) connectivity ranges CR(n) of MUs. In Equation (2d), TR[st] and TR[end]
denote the starting and ending trajectory of UAVs. Equations (2d) and (2e) denote trajectory
optimization constraints, which determine the starting and ending points for UAV hovering
to reduce the collision rate.

4. System Model

This section explains the proposed JO-TADP for resource allocation in MEC–UAVs.
The major theme of the proposed work is to enable an energy-efficient resource manage-
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ment framework for MEC–UAVs using machine-learning algorithms. The proposed work
adopts an AFL for efficient resource allocation in a UAV-enabled network, improving the
convergence rate by allowing the MUs to intendedly participate in federated learning. By
implementing an AFL, MUs can decide when to participate in FL and how many steps
to perform during each round based on their battery life and communication channel. In
addition, it reduces the delay and helps to achieve distributed resource allocation, which
improves the MU data rate. The system model is composed of entities such as MUs, edge-
assisted UAVs (MEC–UAVs), 5G GBSs, and UAV controllers (UAV-Con). The E-UAVs
consist of three agents, namely trajectory planning agent (TPA), look-up agent (LUA),
and resource allocator agent (RAA). The proposed JO-TADP-based resource allocation
architecture is shown in Figure 1.
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Figure 1. The Overall Architecture of Proposed JO-TDAP-based Resource Allocation in MEC–UAV
Networks.

4.1. Network Model

In the proposed network, we consider a set of MEC–UAVs denoted as ∪m =
{U1,U2, . . . ,Um}, one GBS, and a set of MUs denoted as Nn = {n1, n2, . . . , nn}. Although
the GBS provides connectivity and services to the MUs, in real-time scenarios, the GBS can
easily flop and be affected by environmental changes. In that case, the UAVs are deployed
as BSs to serve the MUs; however, the conventional UAVs are resource-constraint devices,
i.e., they have limited computation and storage capabilities. The JO-TADP method provides
an alternate solution by deploying edge-assisted UAVs in an environment closer to the
network. More specifically, the deployment of MEC–UAVs improves MU association, as
MUs possess high mobility in the environment and can only perform less computationally
intensive tasks, while the other tasks are offloaded to the MEC–UAVs or the GBS.

MEC–UAVs are deployed in the environment to allocate resources dynamically be-
tween MUs, which enhances the sum rate and spectrum efficiency. The multiple MEC–
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UAVs collaborate to provide a set of Z channels denoted as Z = {1, 2, . . . , z} for each
time slot t. In the proposed environment, the channel assignment is given in two dif-
ferent bandwidth terms, i.e., familiar and non-familiar. The bandwidth of familiar and
non-familiar channels can be denoted as BfzU (t) and BnfzU (t), respectively. BfzU (t) =
{Bfz1(t), Bfz2(t), . . . , Bfzm(t)}, where Bfzm(t) represents the bandwidth allocation for the
familiar channel for the m th UAV at time slot t. Similarly, for the non-familiar chan-
nel, the bandwidth allocation is denoted as BnfzU (t) = {Bnfz1(t), Bnfz2(t), . . . , Bnfzm(t)}.
Following is a list of assumptions considered in the proposed work:

• A1: It is assumed that the MUs maintain a local database for executing fewer local
computations.

• A2: It is considered that the MEC–UAVs have a higher capability and capacity to
handle AI algorithms and execute computationally intensive tasks locally. Only in
rare cases are the tasks from the UAVs offloaded to the GBSs.

• A3: The MEC–UAVs know the locations of other MEC–UAVs and MUs in the
environment.

• A4: It is assumed that the MEC–UAVs generate local and shared global models for
resource allocation using an AFL.

• A5: It is assumed that the multiple MEC–UAVs in the proposed environment do not
collide with each other.

4.2. Modeling of Delay

The delay model is based on computation and transmission delay. The resource request
of each MU is characterized as Rreqn = {sizen, CPUn, Rtn}, where sizen, CPUn and Rtn
denote the size of the request, the number of CPU cycles required to compute the request,
and the type of resource, i.e., familiar or non-familiar. As we assumed, the MEC–UAV
resource is adequate for entertaining the MU’s request. We formulate the total delay here
as the sum of transmission and computation delays. The transmission delay among the
MUs and UAVs can be computed as:

trans(d)Un =
sizen

B
(3)

where trans(d)Un denotes the transmission delay, and B represents the channel bandwidth.
Similarly, the computational delay can be formulated as:

dUn =
sizenCPUnRtn

ResU
(4)

where dUn denotes the computational delay, and ResU is the resource availability of the
proposed MEC–UAVs. Please note that in this work, MEC–UAVs provide only one channel
to MUs as a token for the association, which can be represented as:

∪
∑
U=1

UAU ,n ≤ 1, ∀n (5)

UAU ,n ∈ {0, 1}, ∀n,U (6)

where UAU ,n ∈ {0, 1} is the MU association variable, i.e., if UAU ,n = 0, then the resources
are allocated by nearby GBS; otherwise, if UAU ,n = 1, then the resources are allocated
by MEC–UAVs. Therefore, the delay in computing the offloaded resources can be formu-
lated as:

DU ,n = UAU ,n

(
ynsizen

trateU ,n
+ yndUn

)
, ∀n,U (7)
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where yn ∈ {0, 1} denotes the task splitting ratio, i.e., if yn = 1, then the tasks of MUs
are completely executed at MEC–UAVs; otherwise, if yn = 0, then the tasks of MUs are
executed at GBS and can be formulated as:

DGBS
n =

{(
(1−yn)sizen

trateGBS
n

+ (1− yn)d
GBS
n

)
, ∀n ∈ N

0, ∀n @ N
(8)

Therefore, the overall delay of the proposed system can be modeled as:

D =
{

DU ,n + DGBS
n

}
, ∀n,U (9)

4.3. Modeling of MU Association and Resource Allocation

As the MEC–UAVs are in various locations, the channel gain may vary. Therefore,
the MEC–UAVs must optimize their power, MU association, and channel assignment
strategies. The proposed work adopts a 2× 2 (∪ ×N) matrix representation for am-
plifying the state of the UAV at a given time slot t. The matrix can be represented as

L(t) =
(

lT1 (t), lT2 (t), . . . , lTU (t)
)T

, where li(t) = (l1,i(t), l2,i(t), . . . , lN,i(t)).
We assume that every MU can only occupy one channel; therefore, for the sake of

simplicity, we consider the following constraints:

∑
i∈∪

lj,i(t) ≤ F, ∀j ∈ N (10)

∑
j∈N

lj,i(t) ≤ E, ∀i ∈ ∪ (11)

We assume that the channel resources are dynamically allocated to the MUs, which
leads to co-channel interference; therefore, the transmission power needs to be optimized,
which can be formulated as:

∑
j∈N

∑
s∈S

trans(p)t
j,i ≤ trans(p)maxi, ∀i ∈ ∪ (12)

where trans(p) denotes the transmission power, S represents the number of channels in the
MEC–UAV, and trans(p)maxi is the maximum budget for transmission power allocated by
MEC–UAVs.

4.4. Modeling of Energy Consumption

The energy consumption of MEC–UAVs can be modeled in terms of computation
offloading and hovering, respectively. Therefore, the energy consumption of MEC–UAVs
for computing the resource allocation requests can be formulated as:

EU ,n =
(1− δU ,n,0)sizen

off
U ,nsizenResU ,n

CPUfre
U ,n

(13)

where CPUfre
U ,n denotes the CPU frequency required to compute the MU request, and ResU ,n

represents the resource availability of MEC–UAVs. sizen
off
U ,n represents the offloaded data

size of MUs to MEC–UAVs, and δU ,n,0 denotes the amount of task portion offloaded to
MEC–UAVs. The MEC–UAVs encounter high computation overhead due to high mobility
and MU density. Therefore, in this case, the MU request can be offloaded to GBS. The
latency while offloading the MU request from MEC–UAVs to GBS can be expressed as:

latU ,n,0 =
δU ,n,0 sizen

off
U ,n sizen

BU ,0 log2(1 + SINRU ,0)
(14)
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where BU ,0 denotes the communication bandwidth for the MEC–UAVs to communicate
with the GBS, and SINRU ,0 denotes the signal-to-noise ratio of the channel among MEC–
UAVs and GBS. Therefore, the energy consumption of MEC–UAVs during task offloading
to GBS can be formulated as:

Eoff(MEC−UAV↔GBS)
U ,n,0 = latU ,n,0powU ,0 (15)

Based on the above equations, the total energy consumption for task computation in
MEC–UAVs and GBS can be formulated as:

ETotU ,n = EU ,n +
N

∑
n=0

Eoff(MEC−UAV↔GBS)
U ,n,0 (16)

We assume that the MEC–UAVs are not fixed during resource allocation and need
to hover around the location to provide the resources. Therefore, the hovering energy
consumption of MEC–UAVs can be formulated as:

hovE
U = hovpow

U hovt
U (17)

where hovE
U denotes the energy consumption, hovpow

U represents the power consumption,
and hovt

U denotes the time consumption of MEC–UAVs during hovering. hovpow
U can be

represented as:

hovpow
U =

ϕ
√

ϕ

τU
√

0.5π ` dia2σ
(18)

where τU denotes the power efficiency of MEC–UAV, σ and dia denote the density of air
and rotor diameter. ` represents the rotor requirement of the MEC–UAV, and ϕ denotes
the thrust of the MEC–UAV based on mass. Therefore, the total energy consumption of the
MEC–UAVs for hovering, relaying, i.e., offloading to GBS, and offloading can be written as:

ETotU = hovE
U +

| ∪|

∑
U=1

(
EU ,n + Eoff(MEC−UAV↔GBS)

U ,n,0

)
(19)

5. Proposed JO-TADP Model

In this section, the mathematical modeling of the proposed work is explained based
on the system model with suitable equations, pseudocode, and diagrammatic illustrations.
Specifically, the proposed JO-TADP model is composed of four significant steps:

• Optimum UAV allocation
• Mobility-aware dynamic MU clustering
• DL-based autonomous trajectory planning and altitude optimization
• AFL-based cooperative dynamic UAV resource allocation

5.1. Optimum UAV Allocation

Initially, the MUs are providing a request to the UAV controller regarding their density
level in the environment. The UAV controller is responsible for allocating the E-UAVs based
on the MU request for a reasonable cost. After receiving the request, the UAV controller
uses the BLWO method to optimally allocate the number of UAVs to the regions based
on the density of the MUs. The optimal placement of UAVs in the network reduces both
poor connectivity and unwanted energy consumption. By mimicking the behaviors such as
attacking, swimming, and falling of beluga whales, the BLWO algorithm is adopted. In
this work, the MEC–UAVs are considered the beluga whales, and MUs are the prey. The
BLWO algorithm consists of three main phases: exploitation, exploration, and fall of the
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beluga whale. First, the population of the MEC–UAVs is initialized based on the size of the
population and dimension, which can be represented as:

∪ =


U1,1 U1,2 · · · U1,dim
U2,1 U2,1 · · · U2,dim
...
Ups,1

...
Ups,2

...
· · ·

...
Ups,dim

 (20)

where dim denotes the dimension of variables, and ps represents the size of the population
of the MEC–UAVs. The fitness values of the MEC–UAVs can be formulated as:

Fit∪ =


fit(U1,1,U1,2, . . . .,U1,dim)
fit(U2,1,U2,2, . . . .,U2,dim)

...
fit
(
Ups,1,Ups,2, . . . ,Ups,dim

)
 (21)

The harmonizing factor between exploration and exploitation can be formulated as:

hfac = h0(1− Iter/2Itermaxi) (22)

where h0 denotes the deciding sub-factor for every iteration which is changed among
(0, 1), Iter denotes the present iteration, and 2Itermaxi denotes the maximum iteration. The
changes between exploration and exploitation can be given as:

• hfac > 0.5→ Exploration Phase
• hfac ≤ 0.5→ Exploitation Phase

5.1.1. Global Search Phase

The exploration or global search phase is based on a synchronized manner, i.e., two
MEC–UAVs can optimize their positions according to MU density. Therefore, the position
update of MEC–UAVs for every search can be formulated as:∪

Iter+1
j,i = ∪Iter

j,dimi
+
(
∪Iter

r,dimi
−∪Iter

j,dimi

)
(1 + R1)sin(2πR2), i = even

∪Iter+1
j,i = ∪Iter

j,dimi
+
(
∪Iter

r,dimi
−∪Iter

j,dimi

)
(1 + R1)cos(2πR2), i = odd

(23)

where ∪Iter+1
j,i denotes the updated position of the j-th MEC–UAV on the dimi dimension,

∪Iter
j,dimi

and ∪Iter
r,dimi

denote the current positions of the r-th and j-th MEC–UAV. R1 and R2

are the random numbers for enhancing the global search phase, sin(2πR2) and cos(2πR2)
represent the synchronization functions directed to the MEC–UAVs for optimal allocation.

5.1.2. Local Search Phase

The UAV controller allocates MEC–UAVs cooperatively during the local search phase,
i.e., the exploitation phase, to ensure that the position of each MEC–UAV is known by the
others. The levy flight method is used to improve the convergence rate in the local search
phase, which can be expressed as:

∪Iter+1
j = R3 ∪Iter

best −R4 ∪Iter
j +µ1.lf.

(
∪Iter

r −∪Iter
j

)
(24)

where ∪Iter+1
j denotes the updated position of the MEC–UAVs based on the MU density,

∪Iter
best denotes the best position of the MEC–UAVs, and µ1 denotes the intensity of the

levy flight.
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5.1.3. Optimum Allocation Phase

In the proposed scenario, we assume that the UAV controller optimally initializes
the positions of MEC–UAVs. The UAVs may fail to deliver reliable communication if the
number of UAVs randomly assigned is lower than the density level. In addition, deploying
UAVs for a limited number of MUs may result in unwanted energy consumption. Please
note that the optimum deployment of UAVs in the network reduces unwanted energy
consumption and enhances connectivity among the MUs. To model the optimum allocation
of MEC–UAVs, we jointly consider the size of the population, the position of the MEC–UAV,
and the step size, which can be written as:

∪Iter+1
j=1,..m = R5 ∪Iter

j=1,..m − R6 ∪Iter
j=1,..m + R7∪step size (25)

where ∪step size denotes the step size of the MEC–UAVs, which can be expressed as:

∪step size = (upvar − lowvar) exp(µ2 Iter/Itermaxi) (26)

where upvar and lowvar denote the upper and lower boundary variables, and µ2 denotes
the probability of the step factor. Therefore, the probability of MEC–UAVs falling can be
formulated as:

∪fall = 0.1− 0.05Iter/Itermaxi (27)

It can be noticed that the probability is decreased from 0.1 to 0.05, which shows that the
MEC–UAVs are deployed in an optimum number based on the MU density. The working
of optimum MEC–UAV allocation is proposed in Algorithm 1.

5.2. Mobility-Aware Dynamic Clustering

The MUs are clustered once the UAVs have been optimally allocated. The clustering
is made by LUA to reduce energy consumption and capture the mobility of MUs in the
environment. In this work, the MU clustering is based on their speed (sp), trajectory (TR),
position (pos), and acceleration (accr), which are collectively represented as Nmet using
the TM-DPC algorithm. The reason for adopting this algorithm is that it reduces the cluster
propagation error in the state-of-the-art DPC algorithm and ensures highly suitable clusters.
For MU clustering, the cluster centers are initially determined based on the state-of-the-art
density peak clustering algorithm, according to which a cluster center of MUs must satisfy
the following constraints:

• Cluster centers of MUs have increased local density
• Increased distance from the other cluster center

Based on the above constraints, local density
(

locni
den

)
and distance

(
disni

)
based on

Nmet must be computed for all the MUs, and is given as:

locni
den = ∑

nj∈[1,N]

∆
(
Edni,nj − cutdis

)
(28)

locni
den = ∑

nj∈[1,N]

exp

(
−

Ed2
ni,nj

cut2
dis

)
(29)
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Algorithm 1 Optimum MEC–UAV Allocation

Input: Itermaxi,ps
Output: Optimum MEC–UAV Allocation
Start

Population initialization and fitness evaluation using Equations (20) and (21)
While iter ≤ Itermaxi

Determine harmonization factor using Equation (22)
For every ∪j do

If hfac > 0.5 then
‘Global Search Phase’
Update the position of MEC–UAVs using Equation (23)

Else If hfac ≤ 0.5
‘Local Search Phase’
Computing levy flight and apprise the intensity factor
Update the position of MEC–UAVs using Equation (24)

End If
End For
For every ∪j do

‘Optimum MEC–UAVs Allocation Phase’
If hfac ≤ hfac then
Intensity factor updating
Compute the ∪step size using Equation (26)
Update the position
Determine the ∪fall using Equation (27)

End If
End For
iter = iter + 1

End While
Return Optimum MEC–UAV Allocation

End

disni =


min

nj:locni
den<locnj

den

Edni,nj, if locni
den < locnj

den

max
nj∈[1,N]

Edni,nj, Otherwise
(30)

From the above Equations (28)–(30), Edni,nj denotes the Euclidean distance between
the ni-th MU to the nj-th MU, and cutdis represents the cut-off distance. The cluster center
can be computed using

(
locni

den, disni
)

pairs, which can be formulated as:

cluN
cen =

{
inc
(

locni
den, disni

)}
(31)

From the set of N MUs, a MU with increased (inc), locni
den and disni can be selected as the

cluster center. The set of MU clusters can be represented as {MUcl1, . . . ., MUcli, . . . MUclK}.
To calculate the noise point or noisy MU, first the maximum Euclidian distance (EdmaxiK

ni )
between ni and its nearest neighbor is calculated. Then the mean of EdmaxiK

ni can be
calculated as:

i =
1
N ∑

ni∈V
EdmaxiK

ni (32)

If the EdmaxiK
ni is greater than the mean to maximum distance (i), i.e., EdmaxiK

ni > i,
then the ni-th MU is noisy. The set of noisy MUs can be represented as 0.

Once the noisy MUs and center of the MU cluster are computed, the proposed TM-
DPC cancels the noisy MUs from the cluster list and aims to determine the core MUs in the
environment. For every cluster center, i.e., cluN

ceni (i ∈ [1, K]), KNNcluN
ceni

is determined by
computing the mid-range based on Nmet, which can be formulated as:

EdmidR
N=(1,..,n) =

EdmaxiK
N + EdminiK

N
2

(33)
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Based on EdmidR
N=(1,..,n), if EdmidR

ni ≤ EdmidR
N=(1,..,n), then the point is added to the positive

cluster regions. The positive cluster regions are the core points which are represented as
{pos(MUcl1), . . . ., pos (MUcli), . . . pos (MUclK)}. Aside from the positive cluster regions
of each location, the MUs at the border of each cluster are considered negative regions.
The MUs in negative regions are processed based on evidence theory. The evidence theory
determines the appropriate cluster for those MUs in the negative region. Based on the
evidence theory, the co-efficient of support and mass function can be determined. The
co-efficient of support can be expressed as:

θni↔nj = ζni↔nj ×
ζni↔nj

∑h∈KNNnj
ζnjh

(34)

where ζni↔nj represents the similarity among the ni and nj. The mass function can be
written as:

mfni.nj

{
mfni.nj(MUcli) = nj ∗ θni↔nj
mfni.nj(Φ) = 1− nj ∗ θni↔nj

(35)

In Equation (35), if nj = 1, the negative MU is a cluster member of MUcli, else, nj = 0.
The first expression, i.e., mfni.nj(MUcli) denotes the negative MU nj is in the cluster MUcli
with sureness level nj∗θni↔nj. mfni.nj(Φ) denotes that there is no relation between the nj
and ni with a sureness level of 1− nj∗θni↔nj. In this case, the mass function is computed
for each negative MU (nj = {j = 1,2 . . . , k}). The final cluster formed can be represented as

cl(MUs) =
{
| MUcl1, nj = 1 |, | MUcl2, nj = 2 |, .., | MUclK, nk=1 |

}
. After clustering, the

CH is selected based on high stability and low mobility. The selected CH is responsible for
forwarding data to the UAVs by collecting information about their members. Since MUs
are highly dynamic, we perform intelligent cluster management by merging and splitting
clusters based on the MU density level and speed. The cluster management is based on
the pre-defined cluster density level threshold (χ). Based on χ, the cluster management
process is given by: {

den(cl(MUs) ≥ χ), cluster splitting
den(cl(MUs) < χ), cluster merging

(36)

Please note that the cluster management can be defined as follows: if the pre-defined
density threshold is less than the cluster density, the corresponding cluster is split up. If
the pre-defined threshold value is higher than the cluster density, the cluster is merged
with the other cluster. For both cases, the CH selection process is again initiated. Figure 2
represents the TM-DPC-based mobility-aware dynamic clustering.
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5.3. DL-Based Autonomous Trajectory Planning and Altitude Optimization

Eventually, the MEC–UAVs jointly optimize the trajectory and altitude autonomously
to reduce the energy consumption due to unwanted hovering and provide better coverage
to the MUs for efficient resource allocation. The proposed work uses SSIA-LSTM to perform
joint trajectory planning and altitude optimization using metrics such as the history of
weather records (his[W]), speed of the MEC–UAV (S[MEC−UAV]), the energy of the
MEC–UAV (ETotU ), kinematics properties

(
kinpro

)
, and mobility model (mmod) of the

MEC–UAV. The above metrics are collectively mentioned as (TRalmet). The standard
kinematics equation in [44] has been extended to 3D for the position, acceleration, and
jerk of the UAV. The kinematic properties of the MEC–UAVs can be determined by the
following equation:

.
X̂ =



.
ˆvelx(t).
ˆvely(t).
ˆvelz(t).
ˆposx(t).
ˆposy(t).
ˆposz(t).
ˆaccx(t).
ˆaccy(t).
ˆaccz(t)



=



.
ˆvelx(t).
ˆvely(t).
ˆvelz(t).
ˆaccx(t).

ˆaccy(t).
ˆaccz(t)

0
0
0


+



0
0
0
0
0
0

.
ĵex(t).
ĵey(t).
ĵez(t)


(37)

The kinematic properties of the MEC–UAVs are designed in a 3D plane.
.
ˆaccx(t),

.
ˆposx(t),

and
.
ˆvelx(t) denote the acceleration, position, and velocity of the MEC–UAVs in a 3D plane.

.
ĵex(t),

.
ĵey(t), and

.
ĵez(t) denote the jerks of the MEC–UAVs in a 3D plane. To estimate
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the position of a UAV, it is necessary to add the acceleration and jerk values over time.
Therefore, acceleration and jerk measurements in 3D coordinates can provide valuable
information for tracking the motion of a UAV. To provide the position of the UAV in x, y,
and z coordinates, the jerks in the x coordinate of the MEC–UAV can be formulated as:

.
ĵex(t) =

→
daccx(t)

dt
(38)

Similar equations can be formulated for the other two coordinates, i.e., y and z. The
proposed mobility model of MEC–UAVs in 3D reduces data loss during simulation. The
metrics (TRalmet) are provided as input to the SSIA-LSTM for trajectory planning and
altitude optimization as shown in Figure 3. The reason for adopting SSIA-LSTM is that it
improves the prediction rate by reducing unwanted biases.
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Figure 3. SSIA-LSTM-based trajectory and altitude optimization.

Using the predicted data from the SSIA-LSTM, the TPA controls the MEC–UAV more
efficiently in terms of optimal trajectory planning with high gain, altitude adjustment of
the UAV, and hover time of the UAV. The general LSTM network is composed of forget,
input, and output gates, respectively. Two activation functions, namely hyperbolic and
sigmoidal activation functions are adopted. The SSIA is placed above the hyperbolic
tangent (tanh) function to improve the information flow and prediction rate. For a given
input, i.e., ip(TRalmet), the metric for weight function and error can be written as:

ga(TRalmet) = ρ(We(TRalmet) + err) (39)

where We(TRalmet) denotes the weight matrix of the gate, err denotes the vector error, and
ρ denotes the sigmoid function. The given input (TRalmet), and previous hidden state
(hidt−1) is provided to the forget gate

(
fg
)
, which can be formulated as:

fg = ρ(Wef.[hidt−1, TRalmet(t)] + errf) (40)

where ρ is used to filter out the unwanted information from the provided input, Wef
denotes the weight of forget gate, and errf denotes the error during forget gate. Next,
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the input gate, i.e., IPg is shown, which takes TRalmet and hidt−1 as an input and can be
formulated as:

IPg = ρ(WeIP.[hidt−1, TRalmet(t)] + errIP) (41)

Similarly, ctt for the current time t can be computed based on TRalmet and hidt−1, and
can be formulated as:

ctt = tan h(Wect.[hidt−1, TRalmet(t)] + errct) (42)

After that, ctt is passed through the SSIA in the form of a matrix, which can be
represented as:

L = [L1, L2, . . . ,Lh]t×h (43)

The equations listed in the SSIA mechanism can be formulated as follows:

QMt×a = ρ
(
LWeq(h×a)

)
(44)

KMt×a = tan h
(
LWek(h×a)

)
(45)

ASMt×t = smax

(
ρ
(

QMKMT
))

(46)

op(ctt)t×h = ∑
(
L
⊗

ASMT
)

(47)

From Equations (44)–(47), h and a indicate the matrix dimension of the first and second
hidden unit, and t represents the length of the time step of the query matrix (QM) and key
matrix (KM). ASM denotes the attention score matrix, op(ctt) denotes the output of the
attention layer and

⊗
is the element-wise Hadamard multiplication operator. The current

state ctt is given below.

ctt = fg
⊗

ctt−1 + IPg
⊗

op(ctt) (48)

Algorithm 2 DL-based Trajectory Planning and Altitude Optimization

Input: Trajectory and Altitude Optimization Metrics (TRalmet)
Output: TR[U ], ALU , and hovt

U
Start

Initialize mmod, S[MEC−UAV], ETotU and his[W]
For all the MEC–UAVs do

Compute kinpro according to Equations (37) and (38)
For TRalmet do

Initialize the gates according to Equation (39)
Determine the forget gate fg according to Equation (40)
Determine the Input gate IPg according to Equation (41)
Determine ctt according to Equation (42)
\* Self-Stimulated Inner Attention (SSIA)\*

Represent ctt in the form of a matrix according to Equation (43)
Compute QM and KM according to Equations (44) and (45)
Compute ASM according to Equation (46)
Compute op(ctt)t×h according to Equation (47)

Determine ctt according to Equation (48)
Determine OPg and hidt according to Equations (49) and (50)

End For
Perform TR[U ]
Perform ALU
Perform hovt

U
End For

End
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The output gate, i.e., OPg controls the current output from the rest of the two gates
with SSIA, and can be formulated as:

OPg = ρ(WeOP.[hidt−1, TRalmet(t)] + errOP) (49)

hidt = OPg
⊗

tan h(ctt) (50)

5.4. AFL-Based Cooperative Dynamic MEC–UAV Resource Allocation

Finally, the RAA allocates cooperative resources by optimizing the MU delay and
power consumption. The task classification method and optimal migration are used to
reduce delay during resource allocation. The power consumption of MU and MEC–UAV
is reduced by adopting shared AFL. The proposed approach splits the resources into
two bandwidth levels: familiar resource bandwidth, i.e., online streaming videos, virtual
reality (VR), etc., and non-familiar resource bandwidth, i.e., an emergency which is rarely
happened and can be formulated as:

Resources =

{
BfzU (t), Familiar

BnfzU (t), Non− Familiar
(51)

Dividing resources into familiar and non-familiar groups can help optimize com-
munication costs and accelerate the convergence of the shared model in AFL. The CHs
in all clusters continuously send requests to the MEC–UAVs, which consist of metrics
such as MU battery level, channel quality information (CQI), required bandwidth, en-
ergy efficiency, spectral efficiency, delay, and resource type, which are collectively men-
tioned as Rmet

req . Rmet
req from the MUs are handled by the LUA, which uses MTNP-SVM to

perform request classification. The reason for adopting MTNP-SVM is that it improves
classification efficiency by reducing the problem of matrix inversion operation. The MTNP-
SVM is composed of two decision hyperplanes, i.e., positive and negative, denoted as
hyp1 and hyp2, where hyp1 = (w1; b1) and hyp2 = (w2; b2) , respectively. For the given

Rmet
req (t), the decision hyperplanes are represented as

(
w1(t); b1(t)

)
=
(

hyp1 + hyp1(t)

)
and(

w2(t); b2(t)

)
=
(

hyp2 + hyp2(t)

)
. The output of the given request can be determined

based on the two following decision hyperplanes:

$
(

Rmet
req (t)

)T
w1(t) + b1(t) = 0 (52)

$
(

Rmet
req (t)

)T
w2(t) + b2(t) = 0 (53)

Based on the above two decision hyperplanes, the output can be written as:

Rmet
req (t) =

{
hyp1 → familiar resource

hyp2 → Non− familiar resource
(54)

The classified results are forwarded to RAA for cooperated resource allocation. Based
on the classified results, the RAA agents initially allocate bandwidth to unfamiliar resources
due to their lower convergence rate. For familiar resources, there would be a high rate
of convergence. Therefore, the proposed work uses an AFL, which allocates resources
cooperatively. In conventional FL, the authorization is completed on the server side. The
server must decide which MU will perform, how many steps etc., which affects the fairness
because only the high-potential MUs benefit from this, while the less potential MUs with
limited computation and communication capabilities must wait until all the high-potential
MUs complete the FL process. The conventional FL issues are addressed by proposing an
AFL, in which MUs are independent in making their own decision regarding their local
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model generation, which improves fairness in the environment [45]. Table 4 denotes the
properties of servers and clients in the proposed AFL method.

Table 4. AFL properties.

Entities in AFL Properties

Global Server (Global model generator)

• Supports concurrency during local model collection, global model
generation, and distribution for reducing the server-side trap.

• Reduce energy consumption as the servers adopting an AFL did not
involve client selection.

Clients (Local model generator)

• Concurrency is also supported during local model generation to reduce
the local trap.

• Clients in an AFL can be idle after two successive rounds of local model
training to reduce energy consumption.

• Clients in an AFL can be independent of their requirements.

5.4.1. Local Model Generation

The local model is generated by the E-UAVs using a DL algorithm known as cross-scale
attention combination feature pyramidal network (CSACFPN). This algorithm is based on
the independent requests of the MUs participating in the FL, including their energy level,
the type of resources required, and the number of steps in which they participate in the
FL. The adoption of CSACPN improves the accuracy of model generation and refines the
output results using the attention and adaptive fusion method. The CSACFPN consists of a
convolutional block attention module with two sub-attention modules, namely channel
and spatial attention modules. First, the local input model of MUs, i.e., Rreq, is provided to
the convolutional layers (con1, con2, con3, con4). Rreq is processed by the convolutional
layer and provided to the feature layer fea1, . . . , fean for feature generation, which can be
formulated as:

p1 = con[concat(fea1 ↑, fean)] (55)

where p1 represents the output features from the feature generation layer, concat denotes
the operation of concatenation for extracting the important information during feature
generation, ↑ denotes the up-sampling operation, and con is the 3× 3 convolutional layer
operations. By performing the process of up-sampling, the important features might be
lost, which would affect the local model generation accuracy. For that, the extracted output
feature is provided to the convolutional block attention module, which generates the feature
map with enhanced information by suppressing the unwanted information, which can be
written as:

fea′n = fea1 + conBAM[p1] (56)

where conBAM denotes the convolutional block attention module. The enhanced features
are further provided to the channel attention module for extracting significant global
information. The channel attention module is composed of two layers of multi-layer
perceptron module for generating the feature map as:

p1′ = ρ(We1(We0pave) + We1(We0pmaxi)) (57)

where ρ denotes the activation function, We0 and We1 are the weights of two multi-layer
perceptrons, respectively. Similarly, for the spatial attention module, the generated feature
map can be represented as:

p1′′ = ρ(con7 + 7(concat(pmaxi, pave))) (58)
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After performing all the attention, the final feature map can be written as:

fea′′n = ReLu
(
fea′′n

(
con1

(
con3

(
fea′n

))))
(59)

where BAN and ReLU denote the batch normalization and activation function. The optimal
local model is generated from the feature map using the adaptive fusion method and
element-wise addition, which can be expressed as:

fea′′n =
{

fea′′1_1 + fea′′1_2+, . . . .,+fea′′n,n + fea′′n,n+1

}
(60)

The fused information is provided to the SoftMax layer for the final output, which can
be formulated as:

locmod
[
ffea′′n

]
= smax(BAN(con1(F))) (61)

From the above equation, the local model is obtained with rich information, fewer
errors, and higher accuracy. The generated local model of the MUs is provided to the MEC–
UAVs for developing shared global model generation, i.e., dynamic resource allocation.

5.4.2. Shared Global Model Generation

After generating the local model, each MEC–UAV shared its local model with all the
other MEC–UAVs within its coverage area to generate the global model collaboratively. All
the MEC–UAVs perform cooperative on-demand shared dynamic resource allocation by
auction mechanism using an enhanced deep Q-learning algorithm (EDQN). Conventional
Q-learning is enhanced by performing function regularization to ensure speed and stability
in target networks. In this work, all the MEC–UAVs are in a dual role as buyer and seller.
Since each MEC–UAV is configured differently, resources are sold and bought from other
participating MEC–UAVs based on MU requests. The shared results are considered a global
model and provided to MUs.

First, we model the dynamic resource allocation model for MEC–UAVs. Every MEC–
UAV has resource channels, i.e., BfzU (t), BnfzU (t), and CPU cycles. Based on the MU
request, the MEC–UAVs cooperate with the other MEC–UAVs. In the proposed method,
every MEC–UAV adjusts its global shared model generation strategy based on the MU
request to achieve ample resource allocation to MUs. Therefore, every MEC–UAV in the
environment tries to maximize the utility function, which can be formulated as:

max
CPU,BnfzU (t),cV

uti(CPU, BnfzU (t), cV)j

uti(CPU, BnfzU (t), cV)−j
(62)

where uti(CPU, BnfzU (t), cV)j represents the utility function of j-th MEC–UAV with the
constraint of providing the requested resources to the MUs, and uti(CPU, BnfzU (t), cV)−j
denotes the other cooperated MEC–UAV utility function excluding the j-th MEC–UAV.
Based on the utility function, each MEC–UAV generates a shared global model using the
EDQN algorithm, which uses the MDP to interact with the environment. The environment
is composed of tuples, such as [S, A,P,R,
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• S→ state : It denotes the current state of MEC–UAVs, i.e., availability of resources,
amount of CPU cycles, and current cost.

• A→ action : It denotes the actions taken by the MEC–UAVs in the environment, i.e.,
shared dynamic resource allocation based on the MU constraints.

• R→ reward : Maximizing the utility function and satisfying the QoS of MUs.

Other than that, P denotes the dynamic state metric for invoking future actions, which
can be represented as P(.|S, A),
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where π∗(A|S) denotes the optimal policy, and T denotes the target network. To
stabilize the learning rate, we adopt the function regularization approach, which can
compensate for the stability and speed of the proposed global model generation. The
regularization of penalizes can be formulated as:

LRF(θ) =
1
2
(
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where θ denotes the error of the Bellman equation for Q function regularization, denotes the
operator stop gradient, Qθ(St, At) and Qθ(St, At) denote the present and lagged estimate
of Q value, and LRF is the L-2 regularization function. Based on the above equations, the
shared global model can be presented as:

ResU1[CPU, BnfzU (t), cV]→ MU1, MU5
ResU2[CPU, BnfzU (t), cV]→ MU3, MU7

ResU3[CPU, BnfzU (t), cV]→ MU4
...

ResUm[CPU, BnfzU (t), cV]→ MU15, MU30, MUn

(65)

When MUs are within the coverage of MEC–UAVs, they act as a relay, and other
MEC–UAVs allocate resources to the MUs.

Algorithm 3 AFL-Based Shared Dynamic Resource Allocation

Input: Non-Familiar Resource Request from MUs
Output: Shared Dynamic Resource Allocation
Start

While all the non-familiar requests do
For all the MUs do

Perform local model generation according to Equations (55)–(61)
Provide the local model to MEC–UAVs

End For
For locmod[ffea′′n] do

For all the MEC–UAVs do
Perform shared dynamic global model generation using Equations (62)–(64)
AFL-based shared global model, according to Equation (65)

End For
End For

End While
End

Additionally, resource migration is performed to ensure fair resource allocation based
on mobility pattern of MUs and the availability of resources. The adoption of auction-based
DRL for local model generation reduces the risk of random resource allocation by optimally
allocating the resources to the MUs. Figure 4 denotes the dynamic resource allocation
model using the EDQN algorithm.
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6. Experimental Results

This section provides the experimental results of the proposed dynamic cooperative
resource allocation scheme using an AFL and AI algorithm. For a better understanding, we
divide the main section into three subsections: simulation setup, comparative analysis, and
research summary.

6.1. Simulation Setup

The proposed JO-TADP-based cooperative MEC–UAV resource allocation using an
AFL is tested and simulated using Network Simulator 3.26 (NS-3.26). To realize the resilient
simulation output, we have configured our system in terms of hardware and software
settings. The hardware setting includes a processor of Intel (R) Core (TM) i5-4590S CPU@
3.00 GHz, a hard disk of 1 Tera Bytes (TBs), and random-access memory (RAM) of 6GB.
The operating system required for simulating the proposed work is Ubuntu 14.04 LTS, and
the simulation tool package installed is NS-3.26. In addition to the system requirements,
the network parameters are also taken for simulation. Table 5 provides the simulation
configurations along with the algorithm parameters.
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Table 5. Simulation configuration.

Simulation and Network Parameters Values

No. of MUs 100
No. of MEC–UAVs 10

No. of 5G GBS 1
No. of UAV controllers 1

Bandwidth 2 MHz
Radius of the cell [250, 350, 550, 850, 1050]

Average sensing radius of MEC–UAVs 300 m
Minimum and Maximum height of MEC–UAVs 40–140m

Carrier frequency 3 GHz
Mobility model Random waypoint

Area of simulation 1500 m × 1500 m
Transmission power of MEC–UAVs 30 dBm

Velocity of MEC–UAVs ≈30 km/h
Velocity of MUs 7 km/h

Slot for resource allocation 25 ms
Interval of updation 1.5 s

Size of the data 50 MB
Noise of the MEC–UAVs 10 dB

Path loss exponent and constant [24,38] 3 and 1.54 × 10−5

Loss due to air propagation 0 dB
Loss in the free space 33 dB

6.2. Comparative Analysis

This subsection provides the comparative analysis of the proposed JO-TADP scheme
with the existing approaches such as JO-PUARA [24], EdgeUAV [38], and Multi-UAV [25]
in terms of simulation metrics such as connectivity, energy efficiency, utility rate, data rate,
delay time and resource allocation efficiency.

6.2.1. Analysis of Connectivity

The connectivity metric is defined by the range that the MEC–UAVs provide resilient
and reliable services to the underlying MUs. Figure 5 illustrates a comparison of connectiv-
ity between the proposed JO-TADP and existing works regarding MEC–UAV connectivity.
When the maximum number of MEC–UAVs are placed, i.e., 10, the proposed work achieves
the connectivity of 140. In contrast, the existing works such as JO-PUARA, EdgeUAVs, and
Multi-UAV achieve the connectivity for the same number of MEC–UAVs 70, 90, and 120,
respectively. From that, it can be noticed that the proposed work gains better connectivity
than the existing works.

The proposed scheme achieves high connectivity as it performs DL-based trajectory
planning and altitude optimization. SSIA-LSTM considers several key parameters, such
as the history of weather records, speed and energy of MEC–UAVs, mobility model of
MEC–UAVs, and kinematic properties, which are provided as input to the SSIA-LSTM
algorithm for predicting future trajectory path and altitude optimization. These parameters
are used as input to the SSIA-LSTM algorithm, which performs trajectory planning,
altitude optimization, and minimization of hovering time. The gated network in LSTM
passes these parameters for predicting trajectory, altitude, and hovering time, therefore
enhancing connectivity and reducing collision rates among MEC–UAVs. In contrast,
the existing work for Multi-UAVs uses a hybrid DRL algorithm to provide connectivity
but lacks trajectory and altitude optimization, leading to a higher collision rate and
poor performance. The simulation results demonstrate that the proposed JO-TADP
outperforms the existing JO-PUARA, EdgeUAVs, and Multi-UAV in terms of connectivity
between MUs and MEC–UAVs.
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6.2.2. Analysis of Energy Consumption

The comparison of energy consumption between the proposed JO-TADP and the
existing works with respect to the number of MEC–UAVs is shown in Figure 6. When the
number of MEC–UAVs is increased to 10, the energy consumption rate of the proposed
JO-TADP is 240 J, whereas the energy consumption rates of the existing works JO-PUARA,
EdgeUAVs, and Multi-UAV are 290 J, 270 J, and 260 J, respectively. The optimal allocation of
MEC–UAVs and cooperative dynamic resource allocation is responsible for such a reduction
in energy consumption. Unwanted energy consumption is reduced by optimizing the MEC–
UAV allocation based on user density using the BLWO optimization algorithm.
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Furthermore, energy consumption is also reduced by proposing cooperative resource
allocation using an AFL method, in which the MU request classification and auction-based
EDQN shared resource allocation are used to reduce the energy consumption of individual
MEC–UAVs. However, the existing works adopt an energy consumption minimization
method that fails to consider the deployment of UAVs and MU constraints, which results
in higher energy consumption than the proposed work.

6.2.3. Analysis of Utility Rate

Figure 7 represents the utility rate comparison of proposed JO-TADP and existing
works in terms of the number of MEC–UAVs. It can be noticed that when the number of
MEC–UAVs increases to 10, the utility rate of the proposed work increases to 380, whereas
the existing works JO-PUARA, EdgeUAVs, and Multi-UAV achieve lesser utility rates of
200, 250, and 300, respectively. The major reason for such a higher utility rate is that the
proposed MEC–UAVs use their resources by adopting three agents, namely TPA, LUA, and
RAA, for trajectory and altitude planning, handling MU requests, and resource allocation,
respectively.
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In addition, the proposed work splits the available channel’s bandwidth into two levels,
i.e., familiar and non-familiar levels for resource allocation, therefore achieving a higher
utility rate. In contrast, the existing works lack optimal management of resources in the
given scenario, leading to resource wastage and lower utility rates than the proposed work.

6.2.4. Analysis of Data Rate

Figure 8 illustrates the data rate comparison between the proposed JO-TADP and
the existing works in terms of the number of MEC–UAVs. The graph demonstrates that
when the number of MEC–UAVs reaches 10, the data rate of the proposed work increases
to 0.65 Mb/s, while the existing works JO-PUARA, EdgeUAVs, and Multi-UAV achieve
data rates of 0.4, 0.5, and 0.6 Mb/s, respectively. The higher data rate is because the
MEC–UAVs in the environment are optimally allocated using the BLWO algorithm, which
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increases connectivity and data rate. Furthermore, the MEC–UAV trajectory and altitude
are optimally adjusted using SSIA-LSTM based on several parameters, which increases
the data rate by reducing collision. The existing approaches are limited in terms of UAV
allocation and collision management, which ultimately leads to a decrease in data rates.
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Similarly, Figure 9 provides the comparison results of data rate between the proposed
JO-TADP and the existing works with respect to the number of MUs. It can be seen that
when the number of MUs reaches 100, the data rates decrease to 0.5 Mb/s, whereas the
existing works JO-PUARA, EdgeUAVs, and Multi-UAV achieve data rates of 0.25, 0.3, and
0.4 Mb/s, respectively, which are lower than the proposed work. The proposed work
achieves higher data rates even though the number of MUs increases in the environment.
The reason for such higher data rates is that the proposed scheme performs MU clustering
based on MU mobility using the TM-DPC algorithm. MU Clustering reduces energy con-
sumption, increasing data rate. Furthermore, the clusters are effectively managed through
cluster merging and splitting. However, the previous studies lacked MU management,
resulting in lower data rates than the proposed work.
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6.2.5. Analysis of Delay Time

Figure 10 depicts the delay comparison between the proposed JO-TADP and the
existing works in terms of the number of MUs. It can be noticed that when the number of
MUs increases to 100, the delay time increases to 2 s. In contrast, the existing works JO-
PUARA, Edge UAVs, and Multi-UAV achieve delays of 2.45 s, 2.38 s, and 2.3 s, respectively,
higher than the proposed method.
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The results show that the proposed work reduces delay time, even when the number
of MUs increases in the environment. The proposed method leverages mobility-aware
clustering using the TM-DPC algorithm, which effectively handles the mobility of MUs
and enhances their association with MEC–UAVs. This, in turn, reduces delay time and
improves communication efficiency between MUs and MEC–UAVs. In contrast, the existing
approaches fail to adequately address the dynamic nature of MUs in their environment.
This limitation results in decreased associativity between MUs, leading to increased delay
time in communication.

6.2.6. Analysis of Resource Allocation Efficiency

Figure 11 plots the comparison results of efficient resource allocation between the
proposed JO-TADP and the existing approaches with respect to the number of MEC–UAVs.
The simulation results illustrate that the resource allocation efficiency increases as the
number of MEC–UAVs; however, it can be seen that the proposed JO-TADP outperforms
the existing JO-PUARA, EdgeUAVs, and Multi-UAV approaches. The primary reason for
achieving higher resource allocation efficiency for the proposed scheme is that it adopts
an AFL and auction-based DRL method, which reduces the complexity burden by inde-
pendently allowing the MUs for resource allocation. The MTPSWM is used for request
classification and EDQN with an auction mechanism for shared resource allocation to the
MUs. In contrast, the existing works limit resource allocation efficiency as they do not
compensate for the MEC–UAVs and the MU constraints.
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The computation complexity of the proposed optimum MEC–UAV allocation is
O(UmNn Itermaxi + O(i) + O(Itermaxi), where Um is the number of MEC–UAVs, Nn is
the number of users, Itermaxi is the maximum iteration. The computational complexity of

proposed Algorithm 2 is O
(

LinLl +
L−1
∑

l=1
Ll + Ll+1

)
, where L, Lin, Ll represent the number

of layers, size of the input layer, and size of each layer of the network. The asymptotic com-
plexity of Algorithm 3 is O(INn(NnUm + 1)) where I denotes the number of iterations, Um
is the number of MEC–UAVs, Nn is the number of users. Figure 12 represents the computa-
tional time of the proposed approach with respect to the number of MUs.
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6.3. Summary

This section provides an overview of the proposed JO-TADP experimental results. The
simulation results from the comparative graphs Figures 5–11, show that the proposed work
outperforms the existing schemes. The optimum MEC–UAV allocation strategy addresses
unwanted energy consumption and connectivity issues using an optimization algorithm.
Furthermore, the energy consumption and connectivity improved by performing DL-based
autonomous trajectory planning and altitude optimization, increasing the hovering time of
MEC–UAVs. The energy consumption of the MUs is reduced by using the mobility-aware
clustering algorithm. MEC–UAV available bandwidth is split into two levels, familiar
and non-familiar. Finally, the tasks of MUs are classified as familiar and non-familiar
resources using MTNP-SVM, and optimal resources are allocated by performing auction-
based cooperative dynamic an AFL using the DRL algorithm. The average numerical
results of the proposed scheme and existing schemes are summarized in Table 6.

Table 6. Average numerical results of the proposed scheme and existing schemes.

Validation Metrics JO-PUARA EdgeUAVs Multi-UAV JO-TADP

Number of
MEC–UAVs

Connectivity 40.8 51.3 64.9 76.5
Energy Consumption (J) 249.8 225 215 203

Utility Rate 176.5 216.5 257 323.2
Data Rate (Mb/s) 0.278 0.347 0.408 0.464

Resource Allocation Efficiency (%) 47.8 56.7 62.6 71.6

Number of MUs
Data rate (Mb/s) 0.339 0.411 0.544 0.725

Delay Time (s) 2.095 2.008 1.855 1.63

7. Conclusions and Future Works

High energy consumption, lack of connectivity, and poor resource allocation are
the major problems faced by UAV-enabled wireless networks. The proposed architecture
comprises MUs, MEC–UAVs, GBS, and a UAV controller, in which the MEC–UAVs use three
learning agents named TPA, LUA, and RAA to enhance resource allocation. At the initial
stage, the UAV controller optimally allocates the MEC–UAVs based on the density of MUs
using the BLWO algorithm. Second, the MU’s constraints, such as energy consumption
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and dynamicity, are ensured by clustering using the TM-DPC algorithm based on the
mobility of MUs. The CHs are selected based on the mobility and stability of the MUs.
Furthermore, the clusters are managed optimally by cluster formation and splitting. At the
same time, the MEC–UAV altitude, trajectory, and hover time are optimized jointly using
the SSIA-LSTM algorithm. Finally, the bandwidth resources of MEC–UAVs are split into
two levels, namely familiar and non-familiar, MTNP-SVM is applied to categorize MU tasks
as familiar or non-familiar resources. The dynamic cooperative resource allocation is made
by the MEC–UAVs for MUs using an AFL-based CSACFPN (for local model generation)
and EDQN (for shared global model generation). The simulation results show that the
proposed work outperforms the existing approaches.

As a future initiative, it is essential to consider the security and privacy parameter
while allocating resources in an edge-assisted UAV environment. Furthermore, focusing on
other resource scheduling during resource allocation will be worth future study.
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