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Abstract: Numerous services and applications have been developed to monitor anomalies or collect
various sensing information in large-scale monitoring areas using drones. Nonetheless, interruptions
of drone missions in such areas occasionally occur due to network errors, low battery levels, or
physical defects, such as damage to the rotor and propeller. Checkpointing is a technique that
periodically saves the system’s state, allowing it to be restored to that point in the event of a failure.
In such circumstances, checkpointing techniques can be used to periodically save information related
to the drone mission and replace a malfunctioning drone with the saved checkpoint information. In
this paper, we propose a dynamic checkpoint interval decision algorithm for a live migration-based
drone-recovery system. The proposed scheme minimizes the drone’s energy consumption while
efficiently performing checkpointing. According to the basic experimental results, the proposed
scheme consumed only about 3.51% more energy, while performing about 25.97% more checkpoint
operations compared to the FIC (Fixed Interval Checkpointing) scheme. By using the proposed
scheme, it is possible to increase the availability of checkpoint information and quickly resume drone
missions, while minimizing the increase in energy consumption of the drone by saving checkpoints
more frequently. Therefore, the proposed scheme can improve the reliability and stability of drone-
based services.

Keywords: checkpointing; drones; energy consumption modeling; fault tolerance; dynamic interval

1. Introduction

Various drone-based services are being studied and applied to real life [1,2]. Mobile
devices such as drones have excellent mobility. This is why they are suitable for moni-
toring and collecting data over a wide area [3]. Various sensors, cameras, and network
communication devices can be attached to devices such as drones, making it possible to
collect various information from a large-scale monitoring area. For example, a drone with a
camera attached can effectively perform roles such as detecting forest fires in large-scale
monitoring areas such as mountains. Although it has these advantages, drones also have
a considerable disadvantage in that they operate on a limited battery [4]. Therefore, the
energy-consumption efficiency of drones is significant in drone-based services.

To ensure that a drone can continue to carry out its mission effectively, even in the
event of software or hardware errors caused by energy depletion during monitoring or
sensing, checkpointing techniques can be used to save and restore the drone’s mission
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status in advance. Many Virtual Machine (VM)-based checkpointing systems have been
proposed [5], but these mechanisms are difficult to use for resource-constrained drones.
This is because VM-based checkpointing requires more computing power, storage, and
network bandwidth than lightweight container-based checkpointing mechanisms [6]. There
are lightweight checkpointing systems; for instance, the CRIU (Checkpoint/Restore In
Userspace) technique can be applied to drones [7]. Periodic checkpointing not only protects
the executing processes from failures but also reduces wastage of resources by avoiding
redundant execution of the same process [8]. The more frequently the drone generates and
stores checkpoint information, the faster it can resume its previous mission [9]. However,
frequent storing of checkpoint information may delay mission performance and consume
additional energy [10]. Therefore, a checkpoint technique with a checkpoint interval that
minimizes the energy consumption of the drone is required to efficiently resume the mission.
In the case of drones, saving checkpoint information to the local device makes it difficult
to resume the mission in case of hardware errors. For drones performing missions in
large-scale monitoring areas, the checkpoint information should be transmitted to a remote
DCC (Drone Control Center) for storage to overcome hardware errors or problems such
as battery depletion while the drone is performing its mission [11]. When drones perform
missions in large-scale monitoring areas, it may be difficult to communicate directly with
the DCC [12], so they can communicate with Ground Stations (GS) scattered throughout
the monitoring area to transmit the checkpoint information. Therefore, when deciding the
checkpoint execution interval, it is necessary to dynamically adjust it, considering both the
increase in energy consumption of the drone and the communication availability between
the drone and the ground station.

In this paper, we propose a dynamic checkpoint interval decision algorithm for a live
migration-based drone-recovery system. We show that an optimal checkpoint interval that
minimizes the energy consumption of the drone exists by modeling the energy consump-
tion of the drone according to the checkpointing interval and communication availability
between the drone and the ground stations. The proposed scheme periodically attempts
to transmit checkpoint information in consideration of communication availability with
the Drone Control Center (DCC). Moreover, the proposed scheme dynamically adjusts the
checkpoint execution interval based on the availability of communication with the ground
stations when performing checkpointing. The main contributions of this paper can be
summarized as the follows:

• Container-based lightweight migration mechanisms can improve the mission success
rate of a drone such as an UAV-based delivery system [13]. The proposed scheme that
is designed based on a container-based checkpointing mechanism can support a fast
recovery to resume the most recent point of a faulty drone’s operation.

• When communication facilities are not sufficient to cover the entire monitoring area,
a drone communicates with GSs opportunistically [14]. The proposed scheme can
send the drone’s checkpoint image to the DCC via GSs without requiring the location
information of the GSs.

• We adaptively adjust the checkpointing interval to maximize the number of successful
checkpoint operations between a drone and a GS. The proposed scheme can increase
the availability of the saved checkpoint image compared with the static checkpointing
interval scheme.

To compare and analyze the performance of the proposed scheme, we compared it
with Optimal Checkpointing (OPT) and Fixed Interval Checkpointing (FIC) schemes in
terms of the energy consumption and the number of checkpoint operations performed.
FIC is a scheme that performs checkpointing at a fixed interval without considering the
communication availability between the GS and the drone. Therefore, in the case of FIC,
the performance varies depending on the checkpoint interval used. OPT is a scheme that
performs checkpointing when communication with the GS is possible without the need to
check the availability of communication between the drone and the GS. Therefore, OPT
always shows the best performance in terms of the energy consumption and the number
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of checkpoint operations performed when compared to the proposed scheme and the FIX
scheme. The simulation results show that the proposed scheme can effectively perform
periodic checkpointing while minimizing the increases in the energy consumption of a
drone. Depending on the simulation environment for the drone’s mission, there were
differences in performance among the OPT, FIC, and proposed schemes. It was confirmed
that the reliability of the drone can be increased by increasing the number of checkpoint
operations performed. According to the basic experimental results, the proposed scheme
consumed a slightly higher amount of energy, approximately 3.51%, but performed a
significantly greater number of checkpoint operations, approximately 25.97%, compared to
the FIC scheme.

The rest of this paper is organized as follows. Section 2 describes existing checkpoint-
ing and migration schemes. Section 3 presents our system model for the proposed scheme
and describes our dynamic checkpoint interval decision algorithm for live migration-based
drone recovery. In Section 5, we present the results of our performance evaluation. In
Section 6, we explain the constraints and limitations of the proposed scheme along with its
advantages. Finally, in Section 7, we conclude the paper and discuss future works.

2. Related Works
2.1. Fault Diagnosis and Fault-Tolerant Control Methods

A drone consists of three main components: the main structure, sensors, and actua-
tors. Ukaegbu et al. designed a drone prototype including these three components and
conducted cost analysis and performance evaluation for each component to use the drone
for real-world applications [15]. The drone located the target field and selectively sprayed
herbicide using its camera module and a CNN-model-based target-detection algorithm.
The research topics for fault diagnosis and fault-tolerant control have been studied by
focusing on sensors and actuators, which are the primary sources of faults [1]. In terms of
fault-tolerant control, there are two types of systems: passive and active systems. A passive
system only reacts to predefined faults, while an active system detects and classifies faults
to dynamically change system parameters [16].

In [17], the authors proposed both offline and online fault-detection schemes for pre-
dicting faults in the actuators (rotors) of a drone. In the offline method, predefined control
criteria are used to analyze existing experimental results with various fault prospects. The
offline method requires low computational power and immediately provides an optimal
solution. In contrast, the online method detects a faulty rotor while the drone is running.
However, the online method requires hardware modification and a lot of resources to
maintain an online optimizer. Kim et al. proposed an energy-efficient adaptive wireless
network interface selection scheme called AWNIS [18]. This method dynamically adjusts
the detection period of available network interfaces to use more energy-efficient network
interface. The proposed method improves the energy efficiency of mobile devices by
dynamically selecting and using a more energy-efficient network interface.

Another approach is to focus on the accuracy of data. Wang et al. proposed a multi-
variate regression-based fault detection scheme for recovering flight data from a drone [19].
The authors estimated missing data and reduced noise by using long short-term memory
with the residual filtering method. In another study, Wang et al. proposed a fault-tolerant
UAV data acquisition scheme [20]. The authors attempted to find the optimal path to collect
data from a terrestrial wireless sensor network. The next nearest-node-detection algorithm
was used to determine the next position of the UAV, and fault tolerability was improved by
reducing communication loss.

There are various machine-learning-based methods for fault diagnosis and fault-
tolerant control. Yang et al. proposed an intelligent fault diagnosis method based on
a stack denoising auto-encoder to reduce information loss, and a Convolutional Neural
Network (CNN) model to improve training speed and accuracy [21]. The authors converted
a one-dimensional time-domain signal collected by four rotors into a two-dimensional
grayscale image to improve fault diagnosis accuracy with limited data sets. Hua et al.
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proposed a method that combines the backpropagation neural network and the genetic
algorithm to detect faults in sensors equipped with a drone [22]. The authors adjusted the
coding method by changing parameters such as crossover and variant operators to improve
accuracy. Arani et al. proposed a 3D trajectory planning scheme using a reinforcement
learning algorithm to maximize the energy efficiency of drones [23]. Drones adaptively
adjust their velocities and locations based on the reinforcement learning algorithm to
provide a network connection to ground users who cannot reach the terrestrial BS due
to interference.

A fault recovery system was proposed for a leader–follower-based multiple drone
system. If one of the drones experiences an unrecoverable engine problem, the remaining
drones reconfigure their positions to bypass the faulty drone [24]. Redundancy is a critical
solution for fault-tolerant control to ensure mission success for drones. In [25], the authors
estimate a sufficient redundancy level for nonlinear systems using a fault recoverability
measure. The number of backup drones added does not guarantee mission success in a
linear way. The authors applied a nonlinear model to estimate the effect of redundancy.
Tousi et al. proposed an optimal hybrid fault-recovery scheme for swarm drones [26]. In
this scheme, drones cooperate to accomplish the desired mission. This hybrid system is
composed of a low-level and a high-level fault recovery system. The low-level system uses
controller parameters to recover a member of the group. In the high-level system, a discrete-
event system model is used to estimate the minimum recovery cost of a faulty drone. Huang
et al. proposed a drone loss detection and auto-replacement protocol for a communication
network of multiple drones [27]. In the detection step, drones exchange heartbeats and fuse
neighbors’ response and their data to detect a lost drone. In the auto-replacement step, a
task from the lost drone is assigned to a drone that runs the lowest-priority task.

Table 1 shows a comparison of features between our approach and previous studies.
Hardware fault-detection schemes do not consider communication issues between a drone
and ground base stations. In the case of data-accuracy improvement, path planning, and
clustering schemes, the authors assume static links and a single type of communication
method between a drone and ground base stations. However, network connectivity is
limited in real-world applications [28,29]. Therefore, we designed a process for storing
states to resume from the recently saved state under opportunistic network environments,
although issues related to multiple drones remain for future work.

Table 1. A comparison between our approach and previous works.

Features [1,15–17] [19,20] [21–23] [25–27] Our Approach

Purpose Hardware fault Data accuracy Path planning Redundancy Store process state
and resume

Prerequisite Yes (H/W spec) Yes (previous data
stream) None Yes (Neighbor

drones) None

Communication
with BS Not considered Static Static Static Opportunistic

Multiple drones No No Yes Yes No

Methodology Matching
predefined faults Filtering Machine learning Clustering Continuous

Markov Process
Optimization
target None Noise level Shortest path Number of replicas Checkpointing

interval

2.2. Lightweight Migration Schemes

Checkpointing scheme is a fault-tolerable methods to improve the sustainability of a
drone. The checkpointing scheme saves a snapshot (checkpoint) of an application status
as files and restarts (restore) the application from the checkpoint in the case of failures.
Periodically saved checkpoints protect the executing process from failures and reduce
the resource waste from the redundant execution of the same process [8]. However, the
checkpointing cost increases with the scale and the frequency of checkpointing [30]. Live
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migration refers to the process of moving a running task from one host to another host
without downtime [31]. There are three levels of live migration: Virtual Machine (VM)
migration, container migration, and user-space migration. VM migration has significant
performance problems with the seamless hand-off, and container migration is lightweight
and able to provide a specific degree of isolation [32]. However, these two techniques are
still heavy when using them for live migration for drones. Checkpoint/Restore In User-
space (CRIU) enables the checkpointing of Linux processes within a single namespace [33].
CRIU saves the status of a process to a set of files forming the checkpoint including file
descriptors, memory maps, child processes, thread, and so on. CRIU can implement the
post-copy live-migration technique. In [34], the authors implemented a live migration
system between two remote servers by using CRIU. Experimental results showed that
checkpoint and restore performance of CRIU is lighter than VM and container-based live
migration in terms of CPU, memory, and network bandwidth. We also designed our
checkpoint-and-restore system based on CRIU for live migration because the lightweight
feature of CRIU properly applies to a drone system.

3. System Model

In this section, we explain our system model for our dynamic checkpoint interval
decision algorithm. We also demonstrate through mathematical analysis that there exists a
checkpoint execution interval that minimizes energy consumption of the drone. Table 2
shows the notations and descriptions used in the system model.

Table 2. Notations and their descriptions.

Notations Descriptions

EECTotal Expected total energy consumption of the drone
EECMission Expected total energy consumption of the drone to perform a given mission
EECCheckpointing Expected total energy consumption of the drone to perform a checkpointing operation

EECCheckNetwork
Expected total energy consumption of the drone to check the network connection status whether the
drone can communicate with the GS

PValid The probability that the checkpoint information is valid
PInvalid The probability that the checkpoint information is invalid

λEnabled
State transition rate from the Communication Disabled State (CDS) to the Communication Enabled
State (CES)

µDisabled
State transition rate from the Communication Enabled State (CES) to the Communication Disabled
State (CDS)

δCheckpointing An interval to check whether communication with GS is possible or not to perform checkpointing

PSuccess(δCheckpointing)
The probability that communication is possible when checking whether communication with GS is
possible to perform checkpointing in the δCheckpointing interval

PFail(δCheckpointing)
The probability that communication is impossible when checking whether communication with GS is
possible to perform checkpoint in δCheckpointing interval

eMission Average energy consumption per second for performing a drone’s mission
eCheckpointing Average energy consumption per second for performing a drone’s checkpointing

eInitialStart
Total amount of energy required for the drone to perform its mission at the initial state due to invalid
checkpoint information

eResume
Total amount of energy required for the drone to resume its mission based on valid checkpoint
information

eCheckNetwork
The amount of energy consumed by the drone to check the network connection status whether the
drone can communicate with the GS

eTrans f er
Energy consumption per unit time required for the drone to transmit data to the GS using the network
interface

SCheckpoint The total size of checkpoint information that stores the status of the drone’s mission
TRD2G Data transfer rate between the drone and GS
ETCDS Average expected time that the drone is in CDS
ETCES Average expected time that the drone is in CES
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3.1. Assumptions and System Service Scenarios

Figure 1 shows an example of the service scenario of the proposed scheme, where
the drone performs monitoring or data collection missions while flying over a large-scale
monitoring area. As it moves, the drone can communicate with the GS (Ground Station)
to send the monitored data or its checkpoint information as an image of the current task
execution status. The GS then sends this information to the DCC (Drone Control Center).
In the event of a failure due to battery shortage, etc., a replacement drone can use the valid
checkpoint information stored in the DCC to resume the mission instead of the failed drone.

Drone Control Center

Checkpointing Server

Communicate with Ground Stations

GS1

GS2

GS3

GS4

t0

t1
t2

t3

t4

t5

GS5

GS5

Internet

: Drone

: Checkpoint Image

: Ground Station

: Flight Path

Figure 1. A service scenario of the proposed scheme.

In this service scenario, we assume that the drone does not have prior knowledge of the
location information of the GSs that transmit monitoring or checkpoint information. Based
on this assumption, the proposed scheme dynamically adjusts the checkpoint execution
interval by estimating the communication availability between the drone and the Ground
Stations even without knowing the location information of the GSs.

3.2. Checkpointing Success Probability Model According to Checkpoint Interval

Depending on the movement of the drone, it is possible to create a model consisting
of two states: the state in which the drone can communicate with the GS and the state in
which communication is not possible. This can be modeled based on the two-state model
proposed by Kim et al. in [18]. Figure 2 shows the two-state diagram of the possibility of
communication between the drone and the GS. As shown in Figure 2, it consists of two
states, each of which is the Communication Disabled State (CDS) and the Communication
Enabled State (CES). We assume that the initial state of the drone is the Communication
Disabled State (CDS) state. We also define the checkpoint cycle. One checkpoint cycle is
defined as the transition of the drone’s state from the CDS to the CES state and performing
one checkpoint operation. Therefore, the drone’s state continuously transitions between
the CDS and CES states and the iteration of the checkpoint cycle repeats according to the
movement of the drone, as shown in Figure 1.
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Communication 

Disabled State

(CDS)

Communication 

Enabled State

(CES)

μDisabled

λEnabled

Figure 2. Two-state diagram of the possibility of communication between a GS and a drone.

The probability that the drone is in the CES state with the GS after t seconds equals
the transient state probability of the Continuous Markov Process (CMP). Equation (1) is
the probability that the drone is in the CDS state after t seconds when it is in the CDS state.
Similarly, Equation (2) is the probability that the drone is in the CES state after t seconds
when it is currently in the CDS state. Therefore, when the possibility of communication with
the GS is checked to perform checkpointing at an interval of δCheckpointing, the probability
that communication is possible and the probability that communication is impossible can
be calculated as in Equations (3) and (4), respectively.

P[CDS after t seconds | CDS] =
µDisabled

λEnabled + µDisabled
+

λEnabled
λEnabled + µDisabled

× e−(λEnabled+µDisabled)t (1)

P[CES after t seconds | CDS] =
λEnabled

λEnabled + µDisabled
− λEnabled

λEnabled + µDisabled
× e−(λEnabled+µDisabled)t (2)

PSuccess(δCheckpointing) =

λEnabled
λEnabled + µDisabled

− λEnabled
λEnabled + µDisabled

× e−(λEnabled+µDisabled)δCheckpointing (3)

PFail(δCheckpointing) =

µDisabled
λEnabled + µDisabled

+
λEnabled

λEnabled + µDisabled
× e−(λEnabled+µDisabled)δCheckpointing (4)

3.3. Drone Energy Consumption Model

The energy consumption of a drone can be modeled by composing four main compo-
nents as shown in Equation (5). Our goal is to minimize the drone’s energy consumption
and find the optimal checkpointing interval δOptimal , which is used to check the possibility
of communicating with the GS to perform the checkpointing. Our goal is expressed by
Equation (6).

EECTotal = EECMission + EECCheckpointing + EECCheckNetwork+

PValid × eResume + PInvalid × eInitialStart (5)

δOptimal = arg min
δCheckpointing

EECTotal (6)

Each operation checking the possibility of communication with the GS can be consid-
ered a Bernoulli trial. Therefore, in the case of checking whether communication with the
GS is possible or not in a δCheckpointing interval, the expected value of the number of attempts
to check the communication possibility until communication with GS is possible on average
can be calculated using Equation (7). The average expected time that the drone is in the
CDS state, ETCDS, can be calculated as shown in Equation (8). The average expected time
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that the drone is in the CES state, ETCES, can be calculated as in Equation (9) according to
the memoryless property of exponential distribution [35,36]. Although the drone moves
to carry out its mission, it continues to perform its task in both CDS and CES states. The
expected total energy consumption of the drone to perform a given mission, EECMission can
be expressed by Equation (10). EECCheckpointing can be expressed by Equation (11). It can be
calculated by dividing the checkpoint image’s size (SCheckpoint) by the drone’s communica-
tion speed with the GS (TRD2G) and multiplying the energy consumption (eTrans f er) in the
time unit used for data transmission. EECCheckNetwork can be calculated as Equations (12).
PValid and PInvalid can be expressed by Equations (13) and (14), respectively.

E[δCheckpointing] =
1

PSuccess(δCheckpointing)
(7)

ETCDS = E[δCheckpointing]× δCheckpointing (8)

ETCES =
1

µDisabled
(9)

EECMission = (ETCDS + ETCES)× eMission (10)

EECCheckpointing =
SCheckpoint

TRD2G
× eTrans f er (11)

EECCheckNetwork = E[δCheckpointing]× eCheckNetwork (12)

PValid =
ETCES

ETCDS + ETCES
(13)

PInvalid =
ETCDS

ETCDS + ETCES
= 1− PValid (14)

3.4. Mathematical Analysis of the Proposed Energy Consumption Model

In this subsection, we show that there is a detection interval for checking the possibility
of communication with the GS to perform a checkpointing operation that minimizes
the energy consumption of the drone by mathematically analyzing the proposed energy
consumption model of the drone. Table 3 shows the parameters and their values used in the
mathematical analysis. eTrans f er and eCheckNetwork were set based on [18]. Other parameters
were set to reflect various environments in which drones can perform their missions.

Table 3. Parameters and their values used in the mathematical analysis.

Notations Descriptions

λEnabled 1/500, 1/400, 1/300, 1/200, 1/100
µDisabled 1/500, 1/600, 1/700, 1/800, 1/900
eMission 20 J/s
eCheckpointing 3 J/s
eInitialStart 100 J, 200 J, 400 J, 800 J, 1600 J
eResume 100 J
eCheckNetwork 5.9 J/Checking
eTrans f er 12.9 J/s
SCheckpoint 10 MB, 20 MB, 40 MB, 80 MB
TRD2G 10 MB/s

Figure 3 shows the energy consumption according to the size of the checkpoint infor-
mation, where λEnabled = 1

100 , µDisabled = 1
900 , and eInitialStart = 800 J. As shown in Figure 3,
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as the size of the checkpoint image decreases, it can be seen that using a shorter δCheckpointing
minimizes the overall energy consumption of the drone. For example, a δCheckpointing
value that minimizes energy consumption is about 48 s in the case of SCheckpoint = 10 MB.
A δCheckpointing value that minimizes energy consumption is about 56 s in the case of
SCheckpoint = 80 MB. This implies that performing checkpoint operations at shorter intervals
is more desirable because it results in lower energy consumption required for checkpointing
and transmitting checkpoint images to the GS.
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Figure 3. Energy consumption results according to the size of the checkpoint information (λEnabled =
1

100 , µDisabled = 1
900 , and eInitialStart = 800 J).

Figure 4 shows the energy consumption results according to the ETCDS and ETCES,
where SCheckpoint = 80 MB and eInitialStart = 800 J. In Figure 4, 500/500 means that ETCDS is
about 500 s and ETCES is about 500 s, respectively. In other words, the energy consumption
is same when λEnabled is 1

500 and µDisabled is 1
500 . As shown in Figure 4, It can be seen

that δCheckpointing, which minimizes the energy consumption, becomes shorter as ETCDS
decreases and ETCES increases.

Figure 5 shows the energy consumption results according to the total amount of en-
ergy required for the initial start of the drone, where λEnabled = 1

100 , µDisabled = 1
900 , and

SCheckpoint = 80 MB. If the drone’s checkpoint information is not valid, it is necessary to
restart its mission from the beginning. Therefore, it is required to perform the checkpoint
frequently as the cost of restarting the drone’s mission from the beginning increases. As
shown in Figure 5, δCheckpointing that minimizes the drone’s energy consumption becomes
shorter as eInitialStart increases. For example, δCheckpointing that minimizes energy consump-
tion is about 32 s in the case of eInitialStart = 1600 J. In the case of eInitialStart = 800 J,
δCheckpointing that minimizes energy consumption is about 55 s.

Figures 3–5 show that there is a checkpoint execution interval that minimizes drone
energy consumption, depending on various factors such as initial start cost and checkpoint
image size. Therefore, it is necessary to perform checkpoints dynamically by adjusting the
checkpoint execution interval to minimize the increase in drone energy consumption while
considering various factors in the drone’s mission environment.
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Figure 4. Energy consumption results according to the ETCDS and ETCES (SCheckpoint = 80 MB and
eInitialStart = 800 J).
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Figure 5. Energy consumption results according to the total amount of energy required for the initial
start of the drone (λEnabled = 1

100 , µDisabled = 1
900 , and SCheckpoint = 80 MB).

4. Dynamic Checkpoint Interval Decision Algorithm

In this section, we present our dynamic checkpoint interval decision algorithm. Algorithm 1
shows the proposed algorithm, and Table 4 lists the notations and their descriptions used to
explain it. We will provide a detailed explanation of the operation process of our dynamic
checkpoint interval decision algorithm.

As shown in Algorithm 1, it initializes the variables δCurrent, t, i, and StatusDrone in
lines 1 to 4. δCurrent represents the current value of the checkpoint execution interval. t
represents the current time value, and i represents the current checkpoint cycle value. The
remaining steps demonstrate how the drone dynamically adjusts the checkpoint interval
and performs checkpointing during the mission.
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Algorithm 1: Proposed dynamic checkpoint interval decision algorithm

1 δCurrent ← δInitial ; /* Initialize δCurrent */
2 t← 0 ; /* Initialize t */
3 i← 0 ; /* Initialize i */
4 StatusDrone ← CDS ; /* Initialize the status of the drone */
5 while True do
6 if StatusDrone == CDS and t == δCurrent then
7 ResCheck ← Check the network connection status ;
8 if ResCheck == True then
9 StatusDrone ← CES ; /* Change the status of the drone */

10 Make a network connection to the GS ;
11 Do checkpoint drone’s status and send the checkpoint image to the GS ;
12 t← 0 ; /* Reset t */
13 end
14 else
15 t← t + 1 ; /* Increase t */
16 end
17 if The network connection is disconnected? then
18 StatusDrone ← CDS ; /* Change the status of the drone */
19 Calculate TCDS[i] and TCES[i] ;
20 ETCDS ← (1− α)× ETCDS + α× TCDS[i] ; /* Update ETCDS */
21 ETCES ← (1− α)× ETCES + α× TCES[i] ; /* Update ETCES */
22 λApproxEnabled ← 1

ETCDS
; /* Approximate λApproxEnabled */

23 µApproxDisabled ← 1
ETCES

; /* Approximate µApproxDisabled */

24 Estimate the δOptimal based on Equation (6) with λApproxEnabled and
µApproxDisabled ; /* Estimate δOptimal */

25 δCurrent ← δOptimal ; /* Update δCurrent */
26 i← i + 1 ; /* Increase i */
27 t← 0 ; /* Reset t */
28 end
29 end

Table 4. Notations and their descriptions used for explaining the proposed algorithm.

Notations Descriptions

δInitial Initial value of checkpoint execution interval
δCurrent Current value of checkpoint execution interval
t Current time value
i Current checkpoint cycle value
ResCheck The result of checking whether the drone can communicate with the GS or not

StatusDrone
It represents the current state of the drone and can be one of two states: CDS
(Communication Disabled State) or CES (Communication Enabled State)

TCDS[i]
The time (in seconds) that the drone spent in the CDS state during the i-th
checkpoint cycle

TCES[i]
The time (in seconds) that the drone spent in the CES state during the i-th
checkpoint cycle

ETCDS The expected time (in seconds) that the drone spent in the CDS state
ETCES The expected time (in seconds) that the drone spent in the CES state

λApproxEnabled
Approximate state transition rate from the Communication Disabled State (CDS)
to the Communication Enabled State (CES)

µApproxDisabled
Approximate state transition rate from the Communication Enabled State (CES)
to the Communication Disabled State (CDS)

α The coefficient value that reflects the latest TCDS[i] and TCES[i]
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Lines 6 to 13 of the algorithm work as follows: If the drone is in the CDS state and
the current time t reaches the checkpoint execution time, the drone checks for connection
availability with the GS. If communication with the GS is possible, the drone changes its
state to CES, sets up a communication link, checkpoints its current state, and sends the
corresponding information to the GS.

Lines 17 to 26 of the algorithm work as follows: If the network connection with the
GS is disconnected (line 18), the drone changes its state to CDS. Then, it calculates the
times TCDS[i] and TCES[i] during the current i-th checkpoint cycle. The algorithm calculates
ETCDS and ETCES as described in lines 20 and 21 and approximates λApproxEnabled and
µApproxDisabled using the expressions in lines 22 and 23. The algorithm then calculates the
δOptimal for the current situation (lines 24–25) and resets δCurrent to this value.

By repeating this process, the proposed method dynamically adjusts the checkpoint
interval and performs checkpointing during the mission. The coefficient α reflects the ratio
of the latest TCDS[i] and TCES[i] when updating ETCDS and ETCES. As the α value increases,
TCDS[i] and TCES[i] have a stronger influence on the update. The α value needs to be set
appropriately, and we used a value of 0.1 in our performance evaluation. The performance
change due to the proposed method according to the change in the α value is explained in
more detail in the performance evaluation.

In our dynamic checkpoint interval decision algorithm, the most time-consuming part
is finding the optimal value of δ, denoted as δOptimal , based on Equation (6) described in line
24 of the algorithm. This process involves calculating the predicted energy consumption of
the drone by incrementally increasing the value of the checkpoint execution interval from
the minimum to the maximum, using Equation (6). Therefore, if the number of values of
the checkpoint execution interval that need to be checked is n, the time complexity of the
algorithm is O(n). As a result, it can be easily applied to real-world applications due to its
low time complexity.

Figure 6 shows a flowchart of the proposed scheme. As shown in Figure 6, the
drone performs its mission based on the proposed scheme while periodically carrying
out checkpointing operations. Before performing its mission, the drone goes through an
initialization process, such as setting the initial checkpoint execution interval related to
its mission. The drone then checks whether it has reached the checkpoint execution time
and whether it can continue its mission. When it is time to perform the checkpoint, the
drone performs a checkpoint operation and transmits the checkpoint image to the DCC
via GS. If communication with the Ground Station (GS) is unavailable at that time, the
checkpoint cannot be finally executed. After performing the checkpointing operation, the
drone approximates the communication availability with the GS and readjusts the optimal
checkpoint execution interval. As shown in Figure 6, if the drone is unable to continue
its mission, a substitute drone is prepared by using the latest checkpoint image stored in
the DCC. Then, a substitute drone takes over the mission, and the current drone quits
the mission.

Drone mission 

environment 

initialization

Start

Perform a drone 

mission

Check if it is time to 

perform a 

checkpointing

Perform a checkpointing, and 

transmit the checkpoint image 

to the DCC via GS

YES

NO

Approximating the 

communication availability 

with the GS and readjusting 

the optimal checkpoint 

execution interval

Check if the drone 

can continue its 

mission

YES

NO Preparing a substitute drone 

using the latest checkpoint 

image stored in the DCC

The substitute drone takes over 

the mission ( and the current 

drone quits the mission)

Figure 6. A flowchart of the proposed scheme.
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5. Performance Evaluation
5.1. Performance Evaluation Environments

We conducted simulations to compare and analyze the performance of the proposed
scheme. Our simulation scenario for the proposed scheme is depicted in Figure 1. Table 5
shows parameters used in the simulation and their descriptions. eTrans f er and eCheckNetwork
were set based on [18]. For eMission, we set the power consumption considering devices that
can be used for drone missions, such as Jetson Xavier. Generally, the energy consumption
of Jetson Xavier ranges from 10 W to 30 W. For eResume, we set it to 100 J, assuming that
it would take about 5 s for the drone to resume the mission using the saved checkpoint
information. Other parameters were set to reflect various environments in which drones
can perform their missions.

We compared the proposed scheme to two other schemes in terms of the average
energy consumption and the number of checkpoint operations performed:

• Fixed Interval Checkpointing (FIC): a scheme that performs checkpointing at a fixed
interval without considering the communication availability between the drone and
the GS.

• Optimal Checkpointing (OPT): a scheme that performs a checkpoint when communi-
cation with the GS is possible without the need to check the availability of communi-
cation between the drone and the GS.

For convenience, we will refer to the Fixed Interval Checkpointing scheme as FIC
and the Optimal Checkpointing scheme as OPT in this paper. The Fixed Interval Check-
pointing (FIC) scheme performs checkpointing at a fixed interval without considering the
communication availability between the drone and the GS. Therefore, the performance in
terms of energy consumption or the number of performed checkpoint operations varies
depending on the checkpoint intervals used. On the other hand, we assume that the Opti-
mal Checkpointing scheme performs a checkpoint when communication with the GS is
possible without the need to check the availability of communication between the drone
and the GS. Thus, it can minimize the energy consumption when compared to the proposed
scheme and the FIC scheme. Furthermore, compared to the proposed scheme and the
FIC scheme, the OPT scheme is capable of performing the highest number of checkpoint
operations. Each experiment was performed 10 times, and the average value was used for
performance evaluation.

Table 5. Parameters used in the simulation and their descriptions.

Notations Descriptions

Monitoring Area Size 2000 m × 2000 m
The Number of Ground Stations (NGS) 20, 25, 30, and 35
The Mobility of the Drone 1–5 m/s
Service Radius of GS 150 m
Fixed Checkpoint Interval for the FIC Scheme (δFIC) 5 s, 10 s, 15 s, and 20 s
δInitial 30 s
eMission 20 J/s
eCheckpointing 3 J/s
eInitialStart 200 J, 400 J, 800 J, and 1600 J
eResume 100 J
eCheckNetwork 5.9 J/Checking
eTrans f er 12.9 J/s
SCheckpoint 40 MB, 80 MB, 160 MB, and 320 MB
TRD2G 10 MB/s
α 0.1
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5.2. Performance Evaluation Results
5.2.1. Basic Performance Results

Figure 7 shows the simulation results when NGS = 30, SCheckpoint = 80 MB, eInitialStart =
800 J, and δFIC = 20 s. As shown in Figure 7a, the energy consumptions of OPT, ours, and
FIC are about 20.40 J/s, 21.23 J/s, and 20.51 J/s, respectively. As shown in Figure 7b, the
number of performed checkpointing operations of OPT, ours, and FIC are about 3026, 2861,
and 2271, respectively. Among the three schemes, OPT showed the best performance in
terms of energy consumption and the total number of checkpoint operations performed. In
terms of energy consumption, the proposed scheme consumed about 4.04% more energy
compared to the OPT scheme. When compared to the FIC scheme, the proposed scheme
consumed about 3.51% more energy. The OPT scheme performed about 5.79% more check-
point operations compared to the proposed scheme. The proposed scheme performed
about 25.97% more checkpoint operations than the FIC scheme. In summary, compared to
the FIC scheme, the proposed scheme has an increase in energy consumption due to the
dynamic adjustment of the checkpoint execution interval but can perform more checkpoint
operations to increase the availability of checkpoint information.
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Figure 7. Simulation results when NGS = 30, SCheckpoint = 80 MB, eInitialStart = 800 J, α = 0.1, and
δFIC = 20 s.

5.2.2. Performance Results According to the Coefficient Value α

Figure 8 shows the simulation results according to the coefficient value α when
SCheckpoint = 80 MB, eInitialStart = 800 J, δFIC = 20 s, and NGS = 30. As the coefficient
value, alpha, which affects the performance of the proposed scheme, increased, both the en-
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ergy consumption and the number of checkpointing operations performed by the proposed
scheme increased. As the α value increased, the increase in the number of checkpointing
operations performed relative to the increase in energy consumption tends to decrease. In
order to balance the trade-off between increasing energy consumption and the number
of checkpoint operations, a proper value for α must be set to maximize the number of
checkpoint operations compared to the increasing energy consumption. Therefore, in the
following experiments, all experiments were conducted with the α value set to 0.1.
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Figure 8. Simulation results according to the coefficient value α when SCheckpoint = 80 MB,
eInitialStart = 800 J, δFIC = 20 s, and NGS = 30.

5.2.3. Performance Results According to the Checkpoint Execution Interval of FIC

Figure 9 shows the simulation results of the FIC scheme at different checkpoint exe-
cution intervals, with SCheckpoint = 80 MB, eInitialStart = 800 J, and NGS = 30. As shown in
Figure 9, the energy consumption of the FIC scheme increases as the checkpoint execution
interval decreases, and the total number of performed checkpoints also increases. When
the checkpoint execution interval of the FIC scheme is 5 s, the energy consumption of the
FIC scheme is almost the same as our proposed scheme, but the FIC scheme performs
fewer checkpointing operations. Specifically, the proposed scheme performed 16 more
checkpointing operations than the FIC scheme. When compared with the proposed method,
as the checkpoint execution interval of FIC becomes longer, the performance in terms of
the total number of performed checkpointing operations decreases significantly.
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Figure 9. Simulation results according to the checkpoint execution interval of FIC when SCheckpoint =

80 MB, eInitialStart = 800 J, α = 0.1, and NGS = 30.

5.2.4. Performance Results According to the Number of GS

Figure 10 shows the simulation results according to the number of GSs when SCheckpoint
= 80 MB, eInitialStart = 800 J, and δFIC = 20 s. As shown in Figure 10, when the total num-
ber of GS increases, it can be seen that the overall number of checkpointing operations
performed increases. This is because the higher the number of GSs, the higher the proba-
bility that the drone can communicate with the GS and thus perform checkpointing more
frequently. The proposed scheme dynamically adjusts the checkpointing interval according
to the network environment, so that even as the number of GSs increases, it does not
show a tendency to increase energy consumption. However, the OPT and FIC schemes
show a tendency to increase energy consumption as the total number of GSs increases.
The proposed scheme consumed approximately 4.43% more energy than FIC on average,
but it performed approximately 29.80% more checkpointing operations on average. The
proposed scheme consumed an average of about 5.12% more energy than the OPT Scheme,
and the OPT scheme performed an average of about 5.49% more than the proposed scheme
in terms of the number of checkpointing operations performed. In summary, while the
proposed scheme may not perform as well as the OPT scheme, it can effectively increase
the number of checkpointing operations while minimizing the energy consumption of the
drone compared to the FIC scheme.
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Figure 10. Simulation results according to the number of GSs when SCheckpoint = 80 MB, eInitialStart =

800 J, α = 0.1, and δFIC = 20 s.

5.2.5. Performance Results According to the Initial Start Costs

Figure 11 shows the simulation results according to the initial start costs when
SCheckpoint = 80 MB, δFIC = 20 s, and NGS = 30. As the initial start cost increases, it
is more advantageous to perform checkpoints more frequently in terms of recovery costs
for responding to drone error situations. As shown in Figure 11, in the proposed scheme,
as the initial start cost increases, it uses a bit more energy, but it can be observed that it
performs more checkpoint operations. In other words, it can be observed that the proposed
scheme can dynamically adjust the checkpointing interval well by considering the initial
start cost.

5.2.6. Performance Results for Different Checkpoint Image Sizes

Figure 12 illustrates the simulation results according to the checkpoint image size
when NGS = 30, eInitialStart = 800 J, and δFIC = 20 s. As shown in the figure, overall energy
consumption increased as the size of the checkpoint image increases. This is because the
time it takes for drones to create the checkpoint image and transmit it to the ground station
increases with the size of the checkpoint image. The time it takes for drones to create
the checkpoint image and transmit the generated checkpoint image to the ground station
also increases.
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Figure 11. Simulation results according to the initial start costs when SCheckpoint = 80 MB, δFIC = 20 s,
α = 0.1, and NGS = 30.

Comparing the proposed scheme with FIC and OPT schemes showed that the energy
consumption was about 3.35% and 4.13% higher when the size of checkpoint image was
40 MB. When the size of the checkpoint image was 320 MB, the proposed scheme consumed
about 4.42% and 3.53% more energy compared to FIC and OPT, respectively. As the size of
the checkpoint image increased, the performance gap between the proposed scheme and
OPT in terms of energy consumption decreased. This is because the energy consumption of
generating each checkpoint image and transmitting it to the DCC through the GS became
relatively larger than the periodic checkpointing operation costs.

5.2.7. Performance Results According to the Speed of the Drone

Figure 13 shows the simulation results according to the speed of the drone. As depicted
in Figure 13, all OPT, FIC, and the proposed scheme demonstrated an increase in energy
consumption and the number of performed checkpointing operations as the maximum
speed of the drone increased. The reason for obtaining such results is that as the maximum
speed of the drone increases, it can monitor a wider area multiple times. Therefore, it can
obtain more opportunities to communicate with the GS and perform more checkpointing
operations by communicating with the GS.
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Figure 12. Simulation results according to the size of checkpoint image when NGS = 30, eInitialStart =

800 J, α = 0.1, and δFIC = 20 s.
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Figure 13. Simulation results according to the speed of the drone when SCheckpoint = 80 MB,
eInitialStart = 800 J, δFIC = 20 s, α = 0.1, and NGS = 25.
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In terms of the total number of performed checkpointing operations, it was shown
that the relative performance of the proposed method improves as the speed of the drone
increases. When comparing the proposed scheme with OPT, it was found that the rela-
tive performance of the proposed scheme improved as the maximum speed of the drone
increased in terms of the total number of checkpointing operations performed. At a maxi-
mum drone speed of 5 m/s, OPT performed about 5.31% more checkpointing operations
than the proposed scheme, while at a maximum drone speed of 20 m/s, OPT performed
about 2.58% more checkpointing operations than the proposed scheme. In summary, the
performance gap between OPT and the proposed method decreased. This shows that the
proposed scheme works effectively even when the speed of the drone is fast.

6. Discussion

The advantage of the proposed scheme is that it works even without prior information,
such as the location of the ground stations. However, the proposed scheme also has the
following limitations and constraints. Although the proposed scheme can dynamically
adjust the checkpoint execution interval to ensure communication feasibility with the
Ground Stations, periodic checking is still required. Therefore, if the location information
of the Ground Station is known in advance, the proposed scheme can be improved by
allowing the drone to use its GPS-based location information to check the communication
feasibility with the Ground Stations and perform checkpointing. In this case, additional
computing costs are incurred as the drone continuously calculates its position based on
GPS information and checks communication feasibility with nearby Ground Stations.

Additionally, during drone missions, there are other factors that affect energy con-
sumption, such as those required for controlling and moving the drone. Controlling and
moving a drone consumes a significant amount of energy, which varies depending on
factors such as wind speed and the drone’s altitude. The proposed dynamic checkpoint
interval decision algorithm in this paper has a limitation: it only considers the energy con-
sumption required for application-level tasks and periodic checkpointing, without taking
into account the energy consumption for motor control to maintain the drone’s attitude
according to the drone’s altitude, wind speed, and other factors. However, it is possible to
include the energy consumption required for controlling the drone in the proposed scheme,
while considering factors such as the drone’s altitude and wind speed. In summary, even if
factors such as the drone’s altitude and wind speed are reflected in the energy consumption
model required for the drone’s mission, the operation procedures and structure of the
proposed scheme largely remain unchanged.

7. Conclusions and Future Works

In this paper, we propose a dynamic checkpoint interval decision algorithm for a live
migration-based drone recovery system. The proposed method can dynamically adjust the
checkpoint execution interval by considering the communication availability between the
drone and the Ground Station. We compared the performance of our proposed scheme
with the OPT (Optimal) and FIC (Fixed Interval Checkpoint) schemes. Although our
proposed scheme showed lower performance than the OPT method in terms of energy
consumption and the number of checkpointing operations performed, it demonstrated the
ability to perform more frequent checkpointing while minimizing the increase in drone
energy consumption by dynamically adjusting the checkpoint interval, compared to the
FIC scheme. Although the performance evaluation results varied slightly depending on the
experimental environment, based on the basic experimental results, the proposed scheme
consumed approximately 3.51% more energy and performed about 25.97% more checkpoint
operations compared to the FIC scheme. Therefore, it is expected that the proposed scheme
will effectively reduce the number of missions to be performed again when resuming the
mission due to hardware errors in the drone.

Since the proposed scheme can operate effectively even without prior knowledge of
the ground station’s location that supports drone communication, it is expected to perform
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the drone’s mission effectively in monitoring environments where the drone performs its
mission for the first time. In future work, we plan to analyze and evaluate how much the
loss of performed missions can be reduced when drone missions are resumed through
additional modeling.
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