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Abstract: This article presents a novel autonomous navigation approach that is capable of increasing
map exploration and accuracy while minimizing the distance traveled for autonomous drone landings.
For terrain mapping, a probabilistic sparse elevation map is proposed to represent measurement
accuracy and enable the increasing of map quality by continuously applying new measurements
with Bayes inference. For exploration, the Quality-Aware Best View (QABV) planner is proposed for
autonomous navigation with a dual focus: map exploration and quality. Generated paths allow for
visiting viewpoints that provide new measurements for exploring the proposed map and increasing
its quality. To reduce the distance traveled, we handle the path-cost information in the framework of
control theory to dynamically adjust the path cost of visiting a viewpoint. The proposed methods
handle the QABV planner as a system to be controlled and regulate the information contribution
of the generated paths. As a result, the path cost is increased to reduce the distance traveled or
decreased to escape from a low-information area and avoid getting stuck. The usefulness of the
proposed mapping and exploration approach is evaluated in detailed simulation studies including a
real-world scenario for a packet delivery drone.

Keywords: path planning; sparse elevation map; map exploration; measurement accuracy

1. Introduction

The academic research on drones is increasing as drone applications have been success-
fully used in search and rescue missions [1,2], warehouse management [3,4], surveillance
and inspection [5,6], agriculture [7], and package delivery [8]. Although most drone au-
topilots have autonomous take-off and cruise functions [9,10], landing in an unknown
environment is still one of the challenges to be tackled. To accomplish a safe landing, the
drone must be aware of the area underneath to pick a safe landing area autonomously. In
this context, large unmanned aerial vehicles use lidar-based active scanners to generate
elevation maps [11,12], yet the usage of these scanners increases not only the weight but
also its energy consumption. Alternatively, drones are equipped with camera systems that
are lightweight and energy efficient. In developing a camera-based method for autonomous
landing, the main challenges are (1) terrain mapping and (2) exploration.

For terrain mapping, a single-camera setup can be used for distance measurements
of the terrain. In one of the earliest works [13], a method based on the recursive multi-
frame planar parallax algorithm [14] is presented to map the environment via a single
camera. In [15], a dense motion stereo algorithm processing a single camera is presented to
concurrently assess feasible rooftop landing sites for a drone. In [16], a drone equipped
with a single camera explores a previously unknown environment and generates a 3D
point cloud map with a monocular visual simultaneous localization and mapping system
(SLAM). Then, a grid map is generated from the point cloud data and appropriate landing
zones are selected. In [17], fast semi-direct monocular visual odometry (SVO) [18] with a
single camera is used for generating a sparse elevation map with Bayes inference to select
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a safe landing area away from obstacles. SVO has the highest computational efficiency
among monocular state estimation and mapping techniques according to [19]. On the other
hand, a stereo-camera setup is useful for depth measurements based on [20–22]. Compared
to a single camera, a stereo camera (compromising a depth sensor) provides more accurate
measurements, but they are heavier and more expensive than a single camera. Additionally,
the resulting measurement error is a challenge. For instance, in [23], a stereo-camera system
is used for the depth map generation of catastrophe-struck environments. In the depth
map, measurements from higher altitudes have higher costs due to lower accuracy, and
landing area selection is performed by considering the cost.

For exploration, there are many methods in the literature for path planning. In [13],
a box-search method as a global plan combined with a predictive controller acts as a
local path planner with online sensor information. In [15], to improve the landing site
assessment, a path planner calculates optimal polynomial trajectories while ensuring the
requirement for providing visual monitoring of a point of interest. In [24], the use of SVO
is extended to a perception-aware receding horizon approach for drones to solve the active
SLAM [25] problem and reach a target location safely and accurately. They generate arc-
shaped candidate trajectories with [26] by using the information from SVO, then they select
the best trajectory that maximizes the following metrics: collision probability, perception
quality, and distance to the target location. To calculate the perception quality of each
candidate trajectory, position samples are taken from each trajectory using a constant time
interval. Then for each sample, the position estimation error is calculated by using the
visible landmarks from SVO. The intuition is that more visible landmarks result in less
position estimation error and accurate pose estimation along the trajectory can help better
triangulate new landmarks, which is beneficial for the pose estimation afterward. In [20],
the receding horizon “Next-Best-View” (NBV) planner is employed. The NBV planner
makes use of rapidly-exploring random tree (RRT) [27] and suggests a receding horizon
planning strategy. In every planning iteration, an RRT is generated and the best branch of
the tree (i.e., a sequence of waypoints) is determined for map exploration. The intuition
is that when a drone visits a waypoint in an RRT branch that provides a better viewpoint
for map exploration, the exploration will be faster. The NBV planner selects the best
branch with this intuition, but only the first step is executed as is in the receding horizon
fashion. This process continues until the environment is explored except for residual
locations such as occluded places and narrow pockets between objects. To improve the
NBV planner regarding global map exploration, Schmit et al. [21] proposed using RRT* [28];
it obtains global exploration by continuously expanding a single trajectory tree, allowing
the algorithm to maximize a single objective function. This enables the method to reason
about the global utility of a path and refine trajectories to maximize their value. For the
same purpose, Selin et al. [22] suggest using frontier exploration planning [29] as a global
planner while using the NBV planner as a local planner.

In this study, we propose a novel autonomous navigation approach by considering
map exploration and accuracy while minimizing the distance traveled for autonomous
drone landings. The proposed overall approach is illustrated in Figure 1.

For terrain mapping, we propose a “Probabilistic Sparse Elevation Map” to represent
the area underneath a drone. As illustrated in Figure 1, the SVO approach takes image
frames from a down-looking single camera attached to the drone, estimates the drone
position, and generates point cloud data where each point is represented with a normal dis-
tribution. To generate the proposed map, we use point cloud data as height measurements
and apply new measurements continuously with Bayes inference to increase the accuracy
of the measurements. During this process, a path planner is also required to process map
information and guide the drone to take the necessary measurements for map exploration
and quality. When the map generation is completed, the final map can be used to identify
safe landing areas for the drone.
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Figure 1. Probabilistic sparse elevation map generation and the QABV planner, marked in blue, are
the main components of the proposed autonomous navigation approach for map exploration and
accuracy toward drone landing. The flight controller and the vision system are used by the proposed
approach during the map generation process.

For exploration, we propose the “Quality-Aware Best View (QABV) planner” to
increase not only the accuracy of the map but also to decrease the traveled distance. To
accomplish such a goal, we develop a novel information gain and dynamic path cost
that allows the QABV planner to generate local waypoints considering map accuracy and
exploration with traveled distance. In every planning iteration of QABV, an RRT with root
node drone position is built and the best branch of the RRT is determined according to the
information gain, which comprises the sum of the information contribution of each visible
map cell for the subject branch. The intuition is that the more information we obtain from
the visible area when we follow the RRT branch, the higher the map quality and exploration
will increase. In this context, we calculate the information contribution of a visible map cell
using its variance from the proposed probabilistic sparse elevation map information if it is
updated before. If it is not, then we estimate its information contribution by calculating the
height deviation of the visible area. After determining the best branch, the first node of
the branch is sent to the position controller as the best waypoint. Through the proposed
dynamic path cost approach, the QABV is capable of increasing the map exploration and
accuracy while not increasing the traveled distance, thus ensuring traveling efficiency. We
proposed using the node count between the subject node and the root node as the path
cost and handling the dynamic path cost problem within the framework of control theory.
We developed four novel approaches to increase efficiency by handling the QABV planner
as the system to be controlled in order to regulate the information contribution of the
generated paths. As a result, the path cost is increased to reduce the distance traveled or
decreased to escape from a low-information area and avoid getting stuck.

The main contributions and outcomes of the study are summarized as follows:

• A probabilistic sparse elevation map generation algorithm with Bayes inference using
SVO point cloud data and a down-looking single-camera setup. The generated map
enables the representation of the sensor measurement accuracy to increase map quality
by cooperating with the planner.

• A novel QABV planner for autonomous navigation with a dual focus: map explo-
ration and quality. Generated paths via the novel information gain allow for visiting
viewpoints that provide new measurements that increase the performance of the
probabilistic sparse elevation map concerning exploration and accuracy.

• A novel dynamic path cost representation for the QABV planner to reduce the distance
traveled and escape from a low-information area. To dynamically adjust the path cost,
we propose four control methods: method 1 offers a simple approach with an on–off
controller while method 2 employs a PD controller to adjust the path cost, and method
3 switches its control action depending on the reference while method 4 generates its
reference depending on the map information.

• To show the performance improvements of the proposed approach, we present com-
parative simulation results. We demonstrate that the developed QABV planners have
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significantly better performances compared to the NBV planner regarding measure-
ment accuracy and distance traveled.

• To verify the performance, we also solve the safe landing problem of a delivery drone
within a realistic simulation environment. The results verify the usefulness of the
proposed mapping and exploration approach.

2. Probabilistic Sparse Elevation Map Generation with SVO Point Cloud Data

In this section, we present the generation of the proposed probabilistic sparse elevation
map that enhances the SVO point cloud data through the deployment of Bayes inference.
The generated map provides measurement accuracy alongside the height of the terrain,
which is processed by the proposed QABV planner to increase the accuracy of a location
through Bayes inference.

2.1. SVO Point Cloud Data Generation

SVO estimates the position of image features (e.g., edges, points, and lines), and the
estimation accuracy is defined by its uncertainty model [17,30]. In a single down-looking

camera scenario, as illustrated in Figure 2, SVO first finds the transition vector d =
→

C0C1
between camera positions, and then solves the feature correspondence problem between
consecutive images I0 and I1. Once an image feature correspondence is found between two
images as u and u′, the position of the feature p is estimated with triangulation.
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As shown in Figure 2, the accuracy of this estimation is modeled as N
(
µ, σ2) and

σ2 corresponds to the assumption that a pixel error has occurred along the epipolar line
passing through u and u′ while solving the feature correspondence problem. In this case,
the position of the feature p occurs in p+, and the distance between them determines σ2.
To provide a clear explanation of the calculation of σ2 and p+, let us define the unit vector

f =
→

C0p
→
‖C0p‖

and the vector a =
→

C1p as follows:

a =
→

C0p− d. (1)

By using vector algebra, we can define the angle α between vectors f and d as:

α = arccos
(

f·d
‖d‖

)
(2)

and the angle β between vectors a and −d as follows:

β = arccos
(
− a·d
‖a‖‖d‖

)
. (3)
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We can add the angle spanning a pixel to β to find β+ when ζ is the camera focal
length as [30]:

β+ = β+ 2 tan−1
(

1
2ζ

)
. (4)

Now, we can calculate the angle γ illustrated in Figure 2 by using the triangle sum theorem
as follows:

γ = π− α− β+. (5)

Then, the norm of
→

C0p+ is defined via the law of sines:

→
‖C0p+‖ = ‖d‖ sinβ+

sin γ
. (6)

Therefore, when there is a pixel error while solving the feature correspondence problem for
p, the measurement uncertainty is [30]:

σ2 = (‖
→

C0p+‖ − ‖
→

C0p ‖)
2

. (7)

2.2. Probabilistic Sparse Elevation Map Generation via Bayesian Inference

The proposed probabilistic sparse elevation map M uses a 2D matrix to represent the
area underneath the drone on a grid, with each element (Cell(i, j)) corresponding to a point
on the grid and representing a height measurement. During the generation of the map, each
point p = [x, y, z] in the SVO point cloud, along with its corresponding uncertainty (σ2), is
continuously processed using Bayesian inference to update the corresponding Cell(i, j) in
M. This process takes place as the drone flies over an area, as shown in Figure 3.

Drones 2023, 7, x FOR PEER REVIEW 3 of 22 
 

(7)

2.2. Probabilistic Sparse Elevation Map Generation via Bayesian Inference 
The proposed probabilistic sparse elevation map 𝑴 uses a 2D matrix to represent 

the area underneath the drone on a grid, with each element (𝐶𝑒𝑙𝑙(𝑖, 𝑗)) corresponding to a 
point on the grid and representing a height measurement. During the generation of the 
map, each point 𝒑 = [𝑥, 𝑦, 𝑧] in the SVO point cloud, along with its corresponding uncer-
tainty (𝜎 ), is continuously processed using Bayesian inference to update the correspond-
ing 𝐶𝑒𝑙𝑙(𝑖, 𝑗) in 𝑴. This process takes place as the drone flies over an area, as shown in 
Figure 3. 

 

 

Figure 3. Update of a map cell with a point from SVO point cloud. By analyzing consecutive images 
from a single down-looking camera, the SVO algorithm does a probabilistic measurement of a point 𝒑 = [𝑥, 𝑦, 𝑧] represented as normal distribution 𝑁(𝝁, 𝜎 ). 𝐶𝑒𝑙𝑙(𝑖, 𝑗) is updated with 𝑧 and 𝜎  af-
ter matching 𝒑 in the 2D 𝑥𝑦 map 𝑴. 

In Algorithm 1, the pseudo-code of the proposed map generation approach is pre-
sented. Here, each 𝐶𝑒𝑙𝑙(𝑖, 𝑗) of 𝑴 is initialized with an unmapped cell defined as fol-
lows: 𝑈𝑛𝑚𝑎𝑝𝑝𝑒𝑑 𝐶𝑒𝑙𝑙 = 𝐶𝑒𝑙𝑙(𝑖, 𝑗) | 𝐶𝑒𝑙𝑙(𝑖, 𝑗) ∈ 𝑴, 𝑎𝑛𝑑 𝐶𝑒𝑙𝑙(𝑖, 𝑗) =  ∅ . (8) 

Then, 𝐺𝑒𝑡𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑() parses the SVO data stream and extracts every 𝒑 = [𝑥, 𝑦, 𝑧] to-
gether with its 𝜎 . For each 𝒑 in the point cloud, 𝐺𝑒𝑡𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝐶𝑒𝑙𝑙 (𝑴, 𝒑) retrieves the 
corresponding 𝐶𝑒𝑙𝑙(𝑖, 𝑗) according to the 𝑥 and 𝑦 positions of 𝒑 so that it can be up-
dated. In updating 𝐶𝑒𝑙𝑙(𝑖, 𝑗): 
• If it is an unmapped cell, then its height 𝑧 and variance 𝜎  are updated via 𝒑.  
• If it is updated before but has more than  1 cm height error (i.e., a threshold value), 

then it is defined as an inaccurate cell as follows: 𝐼𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝐶𝑒𝑙𝑙 = 𝐶𝑒𝑙𝑙(𝑖, 𝑗) | 𝐶𝑒𝑙𝑙(𝑖, 𝑗)  ∈ 𝑴, 𝑎𝑛𝑑  𝜎 0.00001 , (9) 

and updated with 𝑁(𝝁, 𝜎 ) by applying the Bayes inference that is defined as follows: 𝑁 (𝝁 , 𝜎 ) = 𝑁 (𝝁 , 𝜎 ) 𝑁(𝝁, 𝜎 ). (10) 

where 𝝁 is the height measurement 𝑧, and 𝑁 (𝝁 , 𝜎 ) is the prior distribution. The re-
sulting 𝝁  and 𝜎  are defined using Bayes inference as: 

Figure 3. Update of a map cell with a point from SVO point cloud. By analyzing consecutive images
from a single down-looking camera, the SVO algorithm does a probabilistic measurement of a point
p = [x, y, z] represented as normal distribution N

(
µ, σ2). Cell(i, j) is updated with z and σ2 after

matching p in the 2D xy map M.

In Algorithm 1, the pseudo-code of the proposed map generation approach is pre-
sented. Here, each Cell(i, j) of M is initialized with an unmapped cell defined as follows:

Unmapped Cell = {Cell(i, j) | Cell(i, j) ∈ M, and Cell(i, j) = ∅}. (8)

Then, GetPointCloud() parses the SVO data stream and extracts every p = [x, y, z] to-
gether with its σ2. For each p in the point cloud, GetRelatedCell (M, p) retrieves the
corresponding Cell(i, j) according to the x and y positions of p so that it can be updated. In
updating Cell(i, j):

• If it is an unmapped cell, then its height z and variance σ2 are updated via p.
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• If it is updated before but has more than ± 1 cm height error (i.e., a threshold value),
then it is defined as an inaccurate cell as follows:

Inaccurate Cell =
{

Cell(i, j)
∣∣∣ Cell(i, j) ∈ M, and σ2 > 0.00001

}
, (9)

and updated with N(µ, σ2) by applying the Bayes inference that is defined as follows:

Nnew(µn, σ2
n) = Nold(µo, σ2

o ) N(µ, σ2). (10)

where µ is the height measurement z, and Nold
(
µo, σ2

o
)

is the prior distribution. The
resulting µn and σ2

n are defined using Bayes inference as:

µn =
σ2

o
σ2

o + σ2 µ +
σ2

σ2
o + σ2 µo (11)

σ2
n =

1
1

σ2
o
+ 1

σ2

. (12)

The generation of M continues by parsing the SVO point cloud and updating the corre-
sponding Cell(i, j) until one of the selected stop criteria, such as map exploration or map
accuracy, is satisfied. The map exploration measure is defined as follows:

MMap (%) =
n(M)− n(Unmapped Cell)

n(M)
x 100. (13)

Map accuracy, on the other hand, is a more challenging measure since inaccurate cells
include all unmapped cells and is defined as:

MAcc (%) =
n(M)− n(Inaccurate Cell)

n(M)
x 100. (14)

The computational complexity of Algorithm 1 cannot be calculated since satisfying
the stop criterion is dependent on external processes such as the QABV planner and SVO;
however, for a single run inside the while loop, the complexity of the GetPointCloud()
is O

(
sizepc

)
where sizepc is the size of the point cloud data. The for loop runs for every

point in the cloud, and inside the loop, every operation costs the same amount of time, so
its complexity is O

(
sizepc

)
. Lastly, the complexity of checking either of the stop criterion

defined in (13) and (14) is O(sizeM), where sizeM is the size of M. In this case, total
complexity is O

(
2sizepc + sizeM

)
.

Algorithm 1. Sparse Elevation Map Generation via Bayes Inference

1: M← Initialize with unmapped cells
2: while the stop criterion is not satisfied (MMap or MAcc)
3: pc← GetPointCloud()
4: for each p in pc do
5: Cell(i, j)← GetRelatedCell(M, p)
6: if Cell(i, j) is Unmapped Cell
7: Cell(i, j).height← p.height
8: Cell(i, j).variance← p.variance
9: else if Cell(i, j) is Inaccurate Cell
10: Cell(i, j).height← BayesIn f erence(Cell(i, j).height, p.height)
11: Cell(i, j).variance← BayesIn f erence(Cell(i, j).variance, p.variance)
12: end if
13: end for
14: end while
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Figure 4 is an example 3D illustration of the proposed probabilistic sparse elevation
map constructed from M. Different than showing only height information such as in [17],
our map keeps the variance information of the SVO point cloud and presents height
information in a probabilistic way.

Drones 2023, 7, x FOR PEER REVIEW 4 of 22 
 

Figure 4 is an example 3D illustration of the proposed probabilistic sparse elevation 
map constructed from 𝑴. Different than showing only height information such as in [17], 
our map keeps the variance information of the SVO point cloud and presents height in-
formation in a probabilistic way. 

 

 

Figure 4. An example of constructed 3D sparse elevation map with SVO point cloud data. Here, the 
ground area is 12 m × 18.6 m and it consists of 10 cm × 10 cm map cells. Color codes indicate the 
status of the cells; green indicates inaccurate cells, and color tones between blue and red indicate 
cell height: blue for low, and red for high height. Void sections indicate unmapped cells. 

3. Autonomous Navigation for Map Exploration and Accuracy 
In this section, we present the proposed autonomous navigation method for map ex-

ploration and accuracy that is illustrated in Figure 1. Here, the developed QABV planner  
camera and the direct line of sight does not cross other cells, so the cells are not oc-

cluded. In this case, the gain of a node 𝐺𝑎𝑖𝑛(𝑛) is the summation of unmapped cells that 
can be explored by the nodes along the branch. The gain of the node 𝑘 is as follows [20]: 𝐺𝑎𝑖𝑛(𝑛 ) =  𝐺𝑎𝑖𝑛(𝑛 ) + 𝑉𝑖𝑠𝑖𝑏𝑙𝑒(𝓜,  𝝃 )𝑒  (16) 

where 𝜆 is the tuning factor for penalizing high path costs. 
As presented in Algorithm 2, after every replanning of the NBV, the first segment of 

the branch to the best node 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐵𝑒𝑠𝑡𝑃𝑎𝑡ℎ𝑆𝑒𝑔𝑚𝑒𝑛𝑡(𝑛 ) is returned and executed by 
the drone, where 𝑛  is the node with the highest gain. The remainder of the best branch 
is used to reinitialize 𝕋 in the next run after re-evaluating its gain using the updated 
map 𝓜 [20]. The creation of 𝕋 is stopped at 𝑁𝕋 = 𝑁  in general, but if the best gain 𝑔  remains zero, tree construction is continued, until 𝑔  0. In the NBV algorithm, 
the map exploration problem is considered to be solved when 𝑁𝕋 = 𝑁  while 𝑔  
The path cost function in (15) uses the distance between adjacent nodes; when the algo-
rithm runs periodically and drone speed is constant, then the distance between adjacent 
nodes is equal. Thus, the NBV planner cannot punish long-path costs. For a clear under-
standing, let us explain this issue via the scenario depicted in Figure 5. In this case, the 
path cost (15) is the same for the following paths: 

𝑐(𝑙 ) =  𝑐(𝑙 ) =  𝑐(𝑙 ). (18) 

When visible unexplored map information at RRT Branch 1 is equal to the visible 
unexplored map information of both 𝑛 (𝝃 ) and 𝑛 (𝝃 ) in RRT Branch 2 as follows: 𝑉𝑖𝑠𝑖𝑏𝑙𝑒(𝓜,  𝝃 ) =  𝑉𝑖𝑠𝑖𝑏𝑙𝑒(𝓜, 𝝃 ) +  𝑉𝑖𝑠𝑖𝑏𝑙𝑒(𝓜, 𝝃 ), (19) 

then, according to (16), the gain of 𝑛 (𝝃 ) and 𝑛 (𝝃 ) are identical since (18) and (19) are 
equal. Thus, we can state that: 

Figure 4. An example of constructed 3D sparse elevation map with SVO point cloud data. Here, the
ground area is 12 m × 18.6 m and it consists of 10 cm × 10 cm map cells. Color codes indicate the
status of the cells; green indicates inaccurate cells, and color tones between blue and red indicate cell
height: blue for low, and red for high height. Void sections indicate unmapped cells.

3. Autonomous Navigation for Map Exploration and Accuracy

In this section, we present the proposed autonomous navigation method for map
exploration and accuracy that is illustrated in Figure 1. Here, the developed QABV planner
generates the best viewpoints for map exploration while considering measurement accuracy
and distance traveled. The proposed QABV planner, similar to the NBV planner [20],
generates a geometric tree with RRT [27] and selects the best branch of the tree (i.e., a
series of waypoints that provides the best viewpoints) by analyzing the map M. The main
differences between the QABV and NBV planners are:

• The QABV planner is capable of acquiring information and guiding the drone with a
single down-looking camera unlike using a dual camera as in the NBV planner, as it
uses the generated sparse probabilistic elevation map described in Section 2.

• Unlike the NBV planner which focuses only on map exploration, the proposed QABV
planner has a dual focus on map exploration and quality thanks to a novel information
gain function definition. The QABV analyzes the unmapped and inaccurate cells
defined in (8) and (9) to generate the best waypoints such that new map cells are
updated while the accuracy of previously updated cells is improved.

• The NBV planner has a global map coverage problem and gets stuck in large environ-
ments [21,22]. This increases the distance traveled or even causes failure in exploring
all regions. On the other hand, the QABV planner uses a dynamic path cost to reduce
the distance traveled.

• Especially in real-world applications, the path cost of the NBV planner becomes
ineffective when the drone operates at a constant speed and the planner algorithm
runs periodically. The QABV planner tackles this issue by processing the node numbers
of the RRT branch as the path cost and adjusting its behavior dynamically while the
map is being generated.

In the remaining part of this section, we first present a brief information NBV planner
and describe its potentiation issues, then present all the details of the proposed QABV planner.

3.1. The NBV Planner: The Receding Horizon Next Best View Planner

As presented in Algorithm 2, the NBV planner employs a sampling-based receding
horizon path planning paradigm for exploring a bounded 3D space V ⊂ R3 via a drone
equipped with a stereo camera [20]. Through the acquired information from depth images
of the stereo camera, it generates an occupancy map M, dividing V into cubical volumes
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m ∈M [31]. These cubical volumes can either be marked as free, occupied, or unmapped.
The map M is used for both collision-free navigation through the known free space and
for determining the exploration progress.

In [20], a collision-free vehicle position is ξ = (x, y, z, ϕ)T , a path from ξk−1 to ξk is
denoted by lk

k−1, and the cost of following this path is defined as:

c
(

lk
k−1

)
=

√
(xk − xk−1)

2 + (yk − yk−1)
2 + (zk − zk−1)

2 (15)

In every planning iteration, starting from the current position of the vehicle ξ0, a geometric
tree T is incrementally built with RRT [27] by adding a new node n. The resulting T contains
NT nodes connected with collision-free and trackable paths, considering the dynamic and
kinematic constraints of the drone.

NBV planner determines the best branch of T with a gain function, focusing on map
exploration. For a given M, the set of visible and unmapped cells from position ξ is
denoted as Visible(M, ξ) [20]. Every cell in this set lies in the Field of View (FoV) of the
camera and the direct line of sight does not cross other cells, so the cells are not occluded.
In this case, the gain of a node Gain(n) is the summation of unmapped cells that can be
explored by the nodes along the branch. The gain of the node k is as follows [20]:

Gain(nk) = Gain(nk−1) + Visible(M, ξk)e
−λc(lk

k−1) (16)

where λ is the tuning factor for penalizing high path costs.
As presented in Algorithm 2, after every replanning of the NBV, the first segment of

the branch to the best node ExtractBestPathSegment(nbest) is returned and executed by the
drone, where nbest is the node with the highest gain. The remainder of the best branch is
used to reinitialize T in the next run after re-evaluating its gain using the updated map
M [20]. The creation of T is stopped at NT = Nmax in general, but if the best gain gbest
remains zero, tree construction is continued, until gbest > 0. In the NBV algorithm, the map
exploration problem is considered to be solved when NT = NTOL while gbest remained
zero. NTOL is a tolerance value that is significantly higher than Nmax.

Algorithm 2. Receding Horizon Next Best View Planner [20]

1: ξ0 ← Current vehicle position
2: Initialize T with ξ0 and, unless the first planner call, also previous best branch
3: gbest ← 0 , set the best gain to zero
4: nbest ← n0 (ξ0), set the best node to the root
5: NT ← Number of initial nodes in T
6: while NT < Nmax or gbest = 0 do
7: Incrementally build T by adding nnew(ξnew)
8: NT ← NT + 1
9: if Gain(nnew) > gbest then
10: nbest ← nnew
11: gbest ← Gain(nnew)
12: end if
13: if NT > NTOL then
14: Terminate exploration
15: end if
16: end while
17: l ← ExtractBestPathSegment(nbest)
18: Delete T
17: return l

The computational complexity of Algorithm 2 is dependent on the number of nodes
in the tree NT, stereo camera range dsensor, and a bounded 3D space to be explored V. The
RRT creation complexity in a fixed environment is O(NTlog(NT)), and the query of the
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best node is O(NT) [20]. A query complexity to map M is O
(
log
(
V/v3)), where v3 is a

map element volume and collision check complexity is O
(

NT/v3log
(
V/v3)) for planning

paths through known free space in M [20]. Additionally, the gains for every node in the
RRT are computed. While considering a visible area by the stereo camera proportional to
Vsensor ∝ (dsensor)3, the number of queries to M approximates to Vsensor/v3 for a node gain
calculation. Additionally, the map elements on the ray dsensor/v are checked for visibility.
So, the complexity of gain calculation for one node is O

(
(dsensor/v)4log

(
V/v3)) [20]. As a

result, the total complexity of a single planning iteration is the sum of tree construction,
collision-checking, and gain computation as follows [20]:

O(NTlog(NT) + NT/v3log(V/v3) + NT(dsensor/v)4log(V/v3)). (17)

The potential issues and improvement points of the NBV planner are as follows:

(P-i) The gain function presented in (16) focuses only on map exploration without con-
sidering map quality; however, the measurement accuracy of the camera affects
the quality of the map. By improving the Visible(M, ξ) function, determining the
exploration progress can be performed while improving the map quality.

(P-ii) The path cost function in (15) uses the distance between adjacent nodes; when the
algorithm runs periodically and drone speed is constant, then the distance between
adjacent nodes is equal. Thus, the NBV planner cannot punish long-path costs. For
a clear understanding, let us explain this issue via the scenario depicted in Figure 5.
In this case, the path cost (15) is the same for the following paths:

c(l2
1) = c(l3

1) = c(l4
3) (18)

When visible unexplored map information at RRT Branch 1 is equal to the visible unex-
plored map information of both n3(ξ3) and n4(ξ4) in RRT Branch 2 as follows:

Visible(M, ξ2) = Visible(M, ξ3) + Visible(M, ξ4), (19)

then, according to (16), the gain of n2(ξ2) and n4(ξ4) are identical since (18) and (19) are
equal. Thus, we can state that:

Visible(M, ξ2)e−λc(l2
1) = Visible(M, ξ3)e−λc(l3

1) + Visible(M, ξnew)e−λc(l4
3) (20)

Gain(n2) = Gain(n4). (21)

This shows that the NBV planner cannot decide in favor of Branch 1 despite having the
same visible unexplored map information as Branch 2 at a shorter distance. Therefore,
there is a need to improve the path cost function definition.
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(P-iii) As mentioned in [21,22], the NBV planner has a global map coverage problem and
gets stuck in large environments. This can partly be handled by the careful tuning
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of the λ parameter in (16); however, this has to be completed for every environ-
ment and it typically requires several attempts. As a better approach, λ can be
updated while the map is being explored rather than keeping it constant as is in the
NBV planner.

3.2. The Proposed QABV Planner: Quality-Aware Best View Planner

The QABV planner presented in Algorithm 3 is a new local planner for guiding the
drone to the best viewpoints with a dual focus, namely map exploration and quality. It
increases the map quality during exploration, as it processes the probabilistic sparse eleva-
tion map M presented in Section 2. The QABV planner employs a sampling-based receding
horizon path planning paradigm such as the NBV planner as presented in Algorithm 3. In
every planning iteration (r), T is generated with RRT, starting from ξ0, by incrementally
adding new collision-free nodes (i.e., waypoints) until the number of nodes reaches NT.

The QABV planner provides solutions to the underlined issues of the NBV planner
while determining the best branch of T in Algorithm 3 as follows:

• As a solution to (P-i), with a novel information gain function, the QABV planner
determines the best branch of T to increase the measurement accuracy of M and
explores new areas. We propose the In f ormationGain(M, ξ), instead of Visible(M, ξ)
of the NBV planner, to calculate the information contribution of the visible unmapped
and inaccurate cells from position ξ. The In f ormationGain(M, ξ) is defined as follows:

In f ormationGain(M, ξk) = vuccσk +
vicc

∑
m=1

σm (22)

vucc = VisibleUnmappedCellCount(M, ξk) (23)

vicc = VisibleInaccurateCellCount(M, ξk) (24)

where vucc is the set of visible unmapped cells defined in (8) and vicc is the set of inaccurate
cells defined in (9) which are calculated via M as illustrated in Figure 6. Every cell in these
sets lies in the FOV of the camera, and the direct line of sight does not cross other cells.
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Algorithm 3. Quality-Aware Best View Planner

1: ξ0 ← Current vehicle position
2: Initialize T with ξ0 in the first run, unless the previous best branch
3: Initialize ǵbest with −1 in the first run, unless the previous gbest
4: Initialize ∆gbest as an empty vector in the first run
5: Initialize λ with λinit in the first run
6: Set λ, update method in the first run: method ∈ { 1, 2, 3, 4}
7: gbest ← 0 , set the best gain to zero
8: nbest ← n0 (ξ0), set the best node to the root
9: NT ← Number of initial nodes in T
10: switch method
11: case 1: λ← Method1(∆gbest, λ )
12: case 2: λ← Method2(ǵbest, ∆gbest, λ )
13: case 3: λ← Method3(ǵbest, ∆gbest, λ )
14: case 4:
15: MAcc ← GetMapAccuracy(M)
16: λ← Method4(ǵbest, ∆gbest, λ, MAcc)
17: end switch
18: while NT < Nmax or gbest = 0 do
19: Incrementally build T by adding nnew(ξnew)
20: NT ← NT + 1
21: if Gain(nnew, λ) > gbest then
22: nbest ← nnew
23: gbest ← Gain(nnew, λ)
24: end if
25: end while
26: if ǵbest ≥ 0
27: ∆gbest ← gbest − ǵbest
28: Append ∆gbest to ∆gbest
29: end if
30: wp← ExtractBestPathWaypoint(nbest)
31: Delete T
32: return wp

The variance of visible inaccurate cells (σm) is obtained from the Bayes inference
defined in (10), whereas that of visible unmapped cells (σk) is calculated from height
deviations for the visible area ξk as follows:

σk = CalculateSigma(M, ξk). (25)

• As stated in (P-ii), if the planner algorithm runs periodically every rT seconds, where
r is the planning iteration, and T is the sampling period, while the drone flies at a
constant speed, then the cost function given in (15) of the NBV planner becomes
ineffective. Here, we solve (P-ii) by using the number of nodes between the subject
node and the root node as the path cost instead of (15). Together with the new path
cost and the information gain, the new gain function for RRT nodes to determine the
best branch in Algorithm 3 in steps 21 and 23 is constructed as follows:

Gain(nk, λ) = Gain(nk−1) + In f ormationGain(M, ξk)e−λη . (26)

In (26), η is the path cost representing the number of nodes between the root and the subject
node, and λ > 0 determines the behavior of the path cost. To test our proposal, let us
handle the scenario again depicted in Figure 5. When the information contribution of
visible unmapped and inaccurate cells in RRT Branch 1 is equal to that of both n3(ξ3) and
n4(ξ4) in RRT Branch 2 as below:

In f ormationGain(M, ξ2) = In f ormationGain(M, ξ3) + In f ormationGain(M, ξ4) (27)



Drones 2023, 7, 278 12 of 34

then by using (26), the relation of node gain between n2(ξ2) and n4(ξ4) becomes:

In f ormationGain(M, ξ2)e−λ2 > In f ormationGain(M, ξ3)e−λ2 + In f ormationGain(M, ξ4)e−λ3 (28)

Gain(n2, λ) > Gain(n4, λ). (29)

As can be seen from (29), the QABV planner always decides in favor of the shorter branch
by using the new gain function given in (26).

• For (P-iii), we propose updating λ > 0 to dynamically change the path cost within (26)
while M is being generated or updated. This allows the QABV planner to reduce the
distance traveled while maintaining map coverage as follows:

# When there are many areas to explore nearby the drone, the information contri-
bution of the nodes in T increases. In this case, we increase λ to aggressively
penalize long paths. This increases the focus of the drone to explore nearby
information-rich areas. Additionally, the distance traveled reduces since closer
paths are being followed.

# The information contribution of the nodes diminishes while the nearby areas
are being explored. In this case, the drone should exit the area, but aggressive
path cost prevents further exploration and causes the drone to get stuck. We
decrease λ to prevent this situation so that the drone can reach information-rich
areas at longer distances.

In this context, we handle the λ generation problem from a control-theoretic perspec-
tive. The proposed QABV planner, presented in Algorithm 3, can be seen as a system to
be controlled via the hyperparameter λ (i.e., control signal) such that the best node gain
(gbest) (i.e., output signal) results in a waypoint satisfying the presented effects. We propose
4 novel methods to be used in Algorithm 3 in steps 11, 12, 13, and 16 based on control
system theory to regulate the proposed QABV planner. The proposed control methods are
shown in Figure 7 and will be explained in the remaining part of this section.

After obtaining the best branch of T via (22) and (26), the change in the best node gain
(gbest) is stored in Algorithm 3 in step 28 to be used in the proposed λ update methods
in the next planning iterations. Then, the first waypoint of the branch to the best node
wp is determined with ExtractBestPathWaypoint(nbest) and returned to the drone position
controller, where nbest is the node with the highest gain. The rest of the branch is used for
initializing T after the first iteration. The creation of T is stopped at NT = Nmax in general,
but if the best gain gbest remains zero, tree construction is continued until gbest > 0. The
QABV planner depends on the generation of the probabilistic sparse elevation map, and it
is terminated when Algorithm 1 finishes. Therefore, NTOL in Algorithm 2 is not used in the
termination of the exploration.

The computational complexity of Algorithm 3 is dependent on the number of nodes
NT for RRT creation, the distance between adjacent nodes for collision checking, and the
visible map segment Mv, which is centered at the drone position and proportional to the
flight altitude for the node gain calculations. The complexity of the λ update methods
is insignificant compared to the rest of the algorithm, and it will be mentioned in the
remaining part of this section. The RRT creation complexity is O(NTlog(NT)) as is in the
NBV planner, and the query of the best node is O(NT). The complexity of a single query to
M is O(1) because the presented map in Section 2 stores data in a 2D matrix, and positions
are encoded into matrix indexes as M[x][y]. The collision check complexity for NT − 1
path in the RRT is O(NTsizeMp), where sizeMp is the size of a rectangle map segment with
adjacent nodes in diagonal vertices. For node gain calculations of the RRT, the number of
queries to M is equal to the size of Mv (sizeMv). For visibility, a rectangle area with drone
and subject positions in diagonal vertices is checked, and in the worst case, the number
of queries to M is equal to the size of Mv(sizeMv /4) when checking for edges of Mv. So,
the complexity of gain calculation for one node is O((sizeMv)2/4). As a result, the total
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complexity of a single planning iteration is the sum of tree construction, collision check,
and gain computation as follows:

O(NTlog(NT) + NTsizeMp + NT(sizeMv)2/4). (30)
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Figure 7. The proposed λ updating methods for the QABV planner: (a) Method 1: on–off controller,
(b) Method 2: PD controller, (c) Method 3: switching controller, and (d) Method 4: 2 DOF PD controller.

3.2.1. λ Update Method 1: On–Off Controller Approach

As shown in Figure 7a, Method 1 acts like an on–off controller [32] to generate λ;
however, rather than using an error signal, the QABV planner with Method 1 (QABV-1)
observes ∆gbest to understand if the information contribution of the area is increasing or
decreasing and updates λ according to our update strategy as presented in Algorithm 4.
∆gbest is calculated with the backward difference method:

∆gbest = gbest − ǵbest (31)

in Algorithm 3 step 27, where ǵbest is the previous gbest value from the previous planning
iteration. Based on ∆gbest, QABV-1 increases λ when ∆gbest > 0:

λnew = K λ. (32)

On the other hand, when ∆gbest < 0, QABV-1 decreases λ:

λnew = λ/K, (33)

the λ change rate can be adjusted by K > 1. Every operation in Method 1 takes constant
time, therefore the computational complexity is O(1).
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Algorithm 4. Method 1: On–off controller

1: Method1(∆gbest, λ)
2: if size(∆gbest) > 0
3: ∆gbest ← ∆gbest[end]
4: if ∆gbest > 0
5: λnew ← K λ

6: else
7: λnew ← λ/K
8: end if
9: else
10: λnew ← λ

11: end if
12: return λnew

3.2.2. λ Update Method 2: PD Controller Approach

As shown in Figure 7b, rather than directly setting λ such as in Method 1, the QABV
planner with Method 2 (QABV-2), updates λ as follows:

λnew = λ + ∆λ (34)

where ∆λ is generated via PD controller defined as:

∆λ = KPE + KD∆gbest. (35)

Here, KP and KD are the proportional and derivative gains of the PD controller, respectively.
As shown in Figure 7b, the derivative action of the PD controller is placed in the feedback
loop to eliminate derivative kicks [33], and is implemented with a moving average filter
over the past w values of ∆gbest (∆gbest) from previous planning iterations of the planner:

∆gbest =
1
w

w−1

∑
h=0

∆gbest[end− h]. (36)

The proportional action of the PD controller is driven via the error signal E:

E = R− ǵbest, (37)

where R is the desired information contribution value (i.e., the reference signal) so that the
best nodes provide the expected information contribution in every planning iteration. Note
that (34) and (35) can be also seen as the velocity form of a PI controller. In defining R in
(37), we need to consider:

• If the value of R is too big, then λ may become saturated at later stages of the map
generation process. Because when the stop criterion is close to being met, there will
be limited information available in the environment, so the drone may not be able to
collect enough information and the PD controller keeps decreasing λ to elevate gbest to
a big R value until λ saturates.

• If R is too small, then the PD controller may increase λ excessively at the first stages of
the map generation process. Because in the beginning, there is plenty of information to
gather from the environment, and information gain is at its highest point, this situation
can slow down the exploration process and even make the drone get stuck in the
early stages.

The implementation of Method 2 is presented in Algorithm 5. Note that if λnew ≤ 0,
to satisfy λ > 0, we set λnew to positive small value ε. The computational complexity is
O(w) and is dependent on the filter size in (36).
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Algorithm 5. Method 2: PD controller

1: Method2(ǵbest, ∆gbest, λ)
2: if size(∆gbest) ≥ w
3: calculate ∆gbest using (36)
4: E← R− ǵbest
5: ∆λ← KPE + KD∆gbest
6: λnew ← λ + ∆λ

7: if λnew ≤ 0
8: λnew ← ε

9: end if
10: else
11: λnew ← λ

12: end if
13: return λnew

3.2.3. λ Update Method 3: Switching Controller Approach

The QABV Planner with Method 3 (QABV-3) is a variation of QABV-2 with the same
computational complexity and can be seen as a switching controller as shown in Figure 7c.
In Algorithm 6, we presented the implementation where ∆gbest is calculated in (36).

We defined two switching conditions:

• When R > ǵbest, the proportional action in the forward loop is activated to update
λ using (35). Because when ∆gbest is small, only derivative action cannot decrease λ
fast enough, and the drone gets stuck in the information-poor area. The proportional
action solves this problem by reducing λ proportionally to the magnitude of E.

• When R < ǵbest, the proportional action is deactivated. Because, in this case, map
exploration and accuracy will increase beyond the desired level, therefore, only a
derivative action updates λ to allow extra information and stabilize gbest as follows:

∆λ = KD∆gbest. (38)

In this way, when there is a change in gbest, the derivative action updates λ as much as
∆gbest to change gbest in the reverse direction. So, the best viewpoints collect a similar
amount of information from the environment during map generation.

Note that, if λnew ≤ 0, λnew is set to ε > 0.

Algorithm 6. Method 3: Switching controller

1: Method3(ǵbest, ∆gbest, λ)
2: if size(∆gbest) ≥ w
3: calculate ∆gbest using (36)
4: E← initialize with zero
5: if R > ǵbest
6: E← R− ǵbest
7: end if
8: ∆λ← KPE + KD∆gbest
9: λnew ← λ + ∆λ

10: if λnew ≤ 0
11: λnew ← ε

12: end if
13: else
14: λnew ← λ

15: end if
16: return λnew



Drones 2023, 7, 278 16 of 34

3.2.4. λ Update Method 4: 2 DOF PD Controller Approach

As shown in Figure 7d, rather than keeping R as a constant, the QABV planner with
Method 4 (QABV-4) generates R dynamically while the map is generated via:

R = Rmin + (Rmax − Rmin)e−MAcc/τ (39)

where MAcc is the map accuracy of the current planning iteration and is defined in (14).
The desired information contribution value R is decreased exponentially from Rmax to Rmin
as Macc is increasing. The speed is determined by the exponential decay constant τ, and
lower τ values speed up the decay from Rmax to Rmin as shown in Figure 8.
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The motivation behind using MAcc is to estimate the amount of information the drone
can gather from the environment is as follows:

• In the first planning iterations, the drone can gather maximum information from the
environment as there is no prior information on the map and MAcc is zero. That is
why we prefer a big R value in the first planning iteration and set it to Rmax, which is
equal to the value of gbest in the first planning iteration.

• As we progress through the planning iterations and represent the gathered information
on the map, MAcc increases. As a result, available information in the environment
becomes limited; therefore, we gradually decrease R until it reaches its minimum
value, Rmin, towards the end of the map generation process.

In Algorithm 7, we presented the implementation of Method 4. Here, E is defined in
(37) and calculated with R as defined in (39). λ is updated using (35) after calculating ∆gbest
via (36). Similarly, if λnew ≤ 0, λnew is set to ε > 0. When calculating the computational
complexity, notice that the precalculated MAcc is obtained from the proposed map in
Section 2. So, the complexity of Method 4 is the same as Methods 2 and 3.

Algorithm 7. Method 4: 2 DOF PD controller

1: Method4(ǵbest, ∆gbest, λ, MAcc)
2: if size(∆gbest) ≥ w
3: calculate ∆gbest using (36)
4: R← Rmin + (Rmax − Rmin)e−MAcc/τ

5: E← R− ǵbest
6: ∆λ← KPE + KD∆gbest
7: λnew ← λ + ∆λ

8: if λnew ≤ 0
9: λnew ← ε

10: end if
11: else
12: λnew ← λ

13: end if
14: return λnew
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4. Comparative Performance Analysis

In this section, to validate our proposed approach and show its superiority, we present
comparative experimental results. All experiments were conducted in Gazebo [34] simula-
tion environment and the test drone used in the environment is specified in Table 1. The
test drone has a down-looking camera that is used by SVO for position estimation and the
creation of the point cloud. Figure 9 shows the simulation environment alongside a sample
snapshot from the down-looking camera.

Table 1. Specifications of the simulation environment.

Drone Specifications

Motor-to-motor dimension 550 mm
Height 100 mm
Weight (with battery) 1282 g

Propellers (2) 10 × 4.7 normal-rotation
(2) 10 × 4.7 reverse-rotation

Motors AC 2830, 850 kV
Camera Specifications

Image width 752 pixels
Image height 480 pixels
Image format Black and white
Horizontal FOV 115 degrees
Update rate 20 Hz
Simulation Environment Apecifications for Rendering

Near clip plane 0.05
Far clip plane 15,000
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Figure 9. The test drone flies at a 2 m altitude in the simulation environment on the left side. On the
right side, a sample picture captured by the down-looking camera is shown. The camera can see a
4 m × 6.2 m ground area at a 2 m altitude. Green points in the picture are corner features that are
measured by SVO for position estimation and point cloud data.

The performance of the NBV planner and our proposal QABV planner are tested
against 3 different maps shown in Figure 10. To compare the performances of the planners,
the following criteria are used:

• Map exploration as defined in (13);
• Map accuracy as defined in (14);
• Distance traveled to indicate the path length followed by the drone during the execu-

tion of Algorithm 1.
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Figure 10. Test maps in Gazebo simulation environment: (a) map 1; (b) map 2; and (c) map 3. In the
maps, cubes with side lengths of 1 m and 0.5 m are put on a flat surface with different positions, and
each map is 18.6 m × 12 m in size.

To consider the random behavior of RRT and to have a general understanding of the
performance of the planners, all tests are repeated three times for each map.

In the test scenarios, the drone flies at a 2 m constant height on the XY plane in the
map. ArduPilot flight controller [10] is used for the position controller of the drone and
position estimations are supported by SVO. In our simulation studies, there was a need
for the closed-loop system model since both planners require a system model of the drone
to generate a feasible node tree considering the dynamic and kinematic constraints on the
XY plane. In this context, we performed a naïve system identification experiment with a
sampling (i.e., planning) period T = 3 s and fixed the linear velocity V = 0.2 m/s. The
XY dynamics are obtained via the system identification toolbox of Matlab® [35] and are
as follows:

X(t) ∼= 0.9944X(t− 1) + 9.197× 10−12X(t− 2) + 2.86Ux(t− 1) + 0.1169Ux(t− 2), Ux(t) = Vcosθ(t) (40)

Y(t) ∼= 0.9968Y(t− 1) + 3.209× 10−15Y(t− 2) + 2.894Uy(t− 1) + 0.08926Uy(t− 2), Uy(t) = Vsinθ(t), (41)

where θ(t) is the yaw angle (−π < θ < π).

4.1. NBV Planner Results

NBV planner focuses on map exploration and does not consider map accuracy as given
in (16). Thus, we defined the stop criterion as 95% map exploration. Additionally, as an
enhancement to the NBV planner and for a fair comparison, we used the map representation
defined in Section 2 instead of the occupancy map in the original study [20].

In Table 2, the averaged test results are shown for each map when λ in (16) is set as 0.5.
On average, the drone travels 79.29 m to explore 95% of the map and 74.2% of the explored
map is accurate according to Bayes inference defined in (10) in Section 2 with SVO point
cloud measurements.

Table 2. Experiment results for the NBV planner.

Performance Criteria Map 1 Map 2 Map 3 Average

Map Exploration (%) 95.00 95.00 95.00 95.00
Map Accuracy (%) 72.00 73.00 77.70 74.20
Distance Traveled (m) 82.60 73.50 81.76 79.29
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To obtain more insight into the NBV planner, we can look at the test result in Figure 11.
The resultant elevation map from the top view is shown in Figure 11a. Although inaccurate
cells also need to be visited again to become accurate with Bayes inference, the path created
by the planner focuses on only exploring empty cells. Furthermore, the drone got stuck as
mentioned in (P-iii). Because in Figure 11b, map exploration, and accuracy remain stable at
iterations between 70 and 100, and a tangle occurs in Figure 11c. This results in low gbest,
as we can see from Figure 11d, and the drone stays at the local minimum until the local
minimum gain drops off.

4.2. QABV-1 Planner Results

The QABV-1 planner focuses on map accuracy and exploration at the same time as
given in (22) and (26) in Section 3, so the stop criteria are chosen as 75%, 80%, and 85%
map accuracy as defined in (14). We set λinit in Algorithm 3 to the same λ value of NBV as
λinit = 0.5.

In the QABV-1 planner tests, we examined how K is affecting the performance by
analyzing the results for K ∈ {1.2, 1.3, 1.4}. Tables 3–5 show the averaged test results for
each test map and each K value. As can be seen from the results, the drone generally travels
more in Map 1 to achieve similar results in other maps. The reason for this behavior can
be explained by the number and different positions of the cubes. Because of the nature of
the camera view angle, cubes occlude the area behind if they are intercepting the line of
sight of the camera. The planner finds alternative routes for those occluded areas which
naturally causes longer distance traveled.

Table 3. QABV-1 planner test results for K = 1.2.

Performance Criteria Map 1 Map 2 Map 3 Average

Map Accuracy 75% Map Exploration (%) 96.60 93.60 93.25 94.48
Distance Traveled (m) 68.03 64.45 57.15 63.21

Map Accuracy 80% Map Exploration (%) 96.80 96.80 95.25 96.28
Distance Traveled (m) 87.00 71.94 67.06 75.33

Map Accuracy 85% Map Exploration (%) 98.50 97.75 96.50 97.58
Distance Traveled (m) 101.48 83.85 73.35 86.23

Table 4. QABV-1 planner test results for K = 1.3.

Performance Criteria Map 1 Map 2 Map 3 Average

Map Accuracy 75% Map Exploration (%) 95.00 93.33 91.66 93.33
Distance Traveled (m) 63.59 68.13 68.28 66.67

Map Accuracy 80% Map Exploration (%) 97.20 97.00 95.50 96.57
Distance Traveled (m) 81.55 73.15 73.00 75.90

Map Accuracy 85% Map Exploration (%) 98.60 98.00 97.66 98.09
Distance Traveled (m) 91.50 94.37 77.15 87.67

Table 5. QABV-1 planner test results for K = 1.4.

Performance Criteria Map 1 Map 2 Map 3 Average

Map Accuracy 75% Map Exploration (%) 95.00 94.80 89.00 92.93
Distance Traveled (m) 82.8 59.21 59.69 67.23

Map Accuracy 80% Map Exploration (%) 97.20 95.00 95.33 95.84
Distance Traveled (m) 95.24 74.00 69.70 79.65

Map Accuracy 85% Map Exploration (%) 98.60 97.25 97.00 97.62
Distance Traveled (m) 119.55 85.29 87.82 97.55
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Figure 11. A detailed result for the NBV planner: (a) generated sparse elevation map (top view);
(b) map rxploration and map accuracy; (c) the planned path; and (d) gbest and λ.

To compare the performance of the QABV-1 planner against different K values, we
qabv-1can look at the average performance of the method on the test maps. In Figure 12,
the average performances of map exploration and distance traveled are presented. Map
accuracy is the stop criterion, which is why it is the same for all test cases. As can be seen
from the figure, QABV-1 performs better with K = 1.2 because the drone travels less while
having a better map exploration on average compared to K = 1.3 and K = 1.4.
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Figure 12. Analyzing test results for different hyperparameters for QABV-1 planner. Average map
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To obtain more insight into the QABV-1 planner, we can look at the test result in
Figure 13 when K = 1.2 and the stop criterion is 75% map accuracy. The resultant elevation
map is shown in Figure 13a. Notice that QABV-1 is updating λ during map exploration
differently than NBV. Although the drone stays in a low-gain area during iterations between
70 and 100 because map statistics remain stable in Figure 13b, and a tangle occurs in the
followed path in Figure 13c, QABV-1 decreases λ to escape from the low-gain area and go
to high-gain areas at a longer distance. After that, QABV-1 starts to increase λ to reduce the
distance traveled. After iteration 70, λ is decreased according to the decreasing gbest value
and is increased again after iteration 100 with the increasing gbest value (See Figure 13d).
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4.3. QABV-2 Planner Results

In the QABV-2 planner tests, we set the moving average filter size as w = 5, λinit = 0.5,
and KP = −0.0001 and KD = 0.001 to scale with the magnitude of E and ∆gbest in (35).
Note that we set KP < 0 as there is an inverse relation between λ and gbest. We examined
the performance for R ∈ {200, 300}. Tables 6 and 7 show the averaged test results for
test maps.

Table 6. QABV-2 planner test results for R = 200.

Performance Criteria Map 1 Map 2 Map 3 Average

Map Accuracy 75% Map Exploration (%) 95.67 93.33 91.66 93.55
Distance Traveled (m) 62.81 65.27 59.12 62.40

Map Accuracy 80% Map Exploration (%) 97.33 94.66 94.66 95.55
Distance Traveled (m) 75.56 79.75 71.65 75.65

Map Accuracy 85% Map Exploration (%) 98.00 98.66 96.00 97.55
Distance Traveled (m) 102.5 84.18 83.08 89.92

Table 7. QABV-2 planner test results for R = 300.

Performance Criteria Map 1 Map 2 Map 3 Average

Map Accuracy 75% Map Exploration (%) 95.67 94.33 93.67 94.56
Distance Traveled (m) 57.45 56.00 52.61 55.35

Map Accuracy 80% Map Exploration (%) 97.00 96.50 95.00 96.17
Distance Traveled (m) 73.79 77.13 78.10 76.34

Map Accuracy 85% Map Exploration (%) 97.67 98.00 96.67 97.45
Distance Traveled (m) 93.18 80.66 91.55 88.46

To compare the performance of the QABV-2 planner against different R values, we can
look at the average performance of the method on the test maps. In Figure 14, the average
performance of map exploration and distance traveled are shown. As can be seen from the
figure, QABV-2 performs better with R = 300 because the drone travels less while having
more map exploration on average compared to R = 200.
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To obtain more insight into the QABV-2 planner, we can look at the test result in
Figure 15 when R = 300 and the stop criterion is 75% map accuracy. The resultant elevation
map from the top view is shown in Figure 15a. Notice that QABV-2 updates λ more
smoothly by using a PD controller than QABV-1 in Figure 13. On the other hand, QABV-2
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waits before updating λ more than QABV-1 until enough information is gathered because
of the moving average filter that is defined in (36) in Section 3.2.2; however, QABV-1 only
waits for the calculation of ∆gbest and starts updating λ in the third iteration.
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4.4. QABV-3 Planner Results

In the QABV-3 planner tests, we used the same values as the QABV-2 planner tests.
Tables 8 and 9 show the averaged test results for each test map and each R value.
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Table 8. QABV-3 planner test results for R = 200.

Performance Criteria Map 1 Map 2 Map 3 Average

Map Accuracy 75% Map Exploration (%) 94.00 94.66 93.00 93.89
Distance Traveled (m) 68.41 54.86 53.62 58.96

Map Accuracy 80% Map Exploration (%) 97.33 96.00 95.33 96.22
Distance Traveled (m) 75.18 66.16 63.27 68.20

Map Accuracy 85% Map Exploration (%) 97.33 97.33 98.00 97.55
Distance Traveled (m) 89.76 95.88 89.62 91.75

Table 9. QABV-3 planner test results for R = 300.

Performance Criteria Map 1 Map 2 Map 3 Average

Map Accuracy 75% Map Exploration (%) 96.00 95.00 94.00 95.00
Distance Traveled (m) 55.30 52.12 56.70 54.71

Map Accuracy 80% Map Exploration (%) 97.00 96.33 94.33 95.89
Distance Traveled (m) 66.46 62.78 71.31 66.85

Map Accuracy 85% Map Exploration (%) 97.66 96.66 96.00 96.77
Distance Traveled (m) 77.90 87.43 89.42 84.92

To compare the performance of the QABV-3 planner against different R values, we can
look at the average performance of the method on the test maps. In Figure 16, the average
performance of map exploration and distance traveled are shown. As can be seen from the
figure, QABV-3 performs better with R = 300 because the drone travels less while having
more map exploration on average compared to R = 200.

Drones 2023, 7, x FOR PEER REVIEW 16 of 22 
 

 
 

Figure 16. Analyzing test results for different hyperparameters for QABV-3 planner. Average map 
exploration and distance traveled from 75%, 80%, and 85% map accuracy test results are shown. 

To obtain more insight into the QABV-3 planner, we can look at the test result in 
Figure 17 when 𝑅 

 

 = 300 and the stop criterion is 75% map accuracy. The resultant elevation map from 
the top view is shown in Figu 

 

 

 

 

 

re 17a. Notice that QABV-3 allows for 𝑔 𝑅 with its switching controller com-
pared to QABV-2 in Figure 15. 

Figure 16. Analyzing test results for different hyperparameters for QABV-3 planner. Average map
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To obtain more insight into the QABV-3 planner, we can look at the test result in
Figure 17 when R = 300 and the stop criterion is 75% map accuracy. The resultant elevation
map from the top view is shown in Figure 17a. Notice that QABV-3 allows for gbest > R
with its switching controller compared to QABV-2 in Figure 15.
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4.5. QABV-4 Planner Results

In the QABV-4 tests, we set Rmax = 1000 and examined the performance for Rmin ∈ {200,300}
and τ ∈ {20, 30, 40}. The remaining parameters are set to the same values as QABV-3.
Tables 10 and 11 show the results for Rmin = 200 and Rmin = 300, respectively.
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Table 10. QABV-4 planner test results for Rmin = 200.

Decay Constant Performance Criteria Map 1 Map 2 Map 3 Average

τ = 20

Map Accuracy 75% Map Exploration (%) 95.00 94.00 95.00 94.67
Distance Traveled (m) 71.99 64.82 62.52 66.44

Map Accuracy 80% Map Exploration (%) 96.60 96.00 96.00 96.20
Distance Traveled (m) 73.53 72.56 71.67 72.59

Map Accuracy 85% Map Exploration (%) 98.00 98.60 97.60 98.07
Distance Traveled (m) 95.78 88.61 86.86 90.42

τ = 30

Map Accuracy 75% Map Exploration (%) 93.66 93.00 95.33 94.00
Distance Traveled (m) 67.87 64.78 62.52 65.06

Map Accuracy 80% Map Exploration (%) 96.00 93.66 96.33 95.33
Distance Traveled (m) 92.26 88.13 71.67 84.02

Map Accuracy 85% Map Exploration (%) 98.33 98.33 97.66 98.11
Distance Traveled (m) 96.18 100.1 86.86 94.38

τ = 40

Map Accuracy 75% Map Exploration (%) 95.66 93.33 91.33 93.44
Distance Traveled (m) 69.37 60.07 64.12 64.52

Map Accuracy 80% Map Exploration (%) 95.66 96.33 95.00 95.66
Distance Traveled (m) 72.24 70.76 71.56 71.52

Map Accuracy 85% Map Exploration (%) 97.33 97.66 95.66 96.88
Distance Traveled (m) 94.74 86.67 85.76 89.06

Table 11. QABV-4 planner test results for Rmin = 300.

Decay Constant Performance Criteria Map 1 Map 2 Map 3 Average

τ = 20

Map Accuracy 75% Map Exploration (%) 93.00 92.33 92.00 92.44
Distance Traveled (m) 70.36 62.40 60.00 64.25

Map Accuracy 80% Map Exploration (%) 96.00 96.33 93.66 95.33
Distance Traveled (m) 80.94 78.72 69.45 76.37

Map Accuracy 85% Map Exploration (%) 97.33 97.00 96.00 96.78
Distance Traveled (m) 93.29 97.04 78.58 89.64

τ = 30

Map Accuracy 75% Map Exploration (%) 96.33 95.66 94.00 95.33
Distance Traveled (m) 50.39 56.61 57.08 54.69

Map Accuracy 80% Map Exploration (%) 96.33 95.33 96.00 95.89
Distance Traveled (m) 70.5 73.19 68.6 70.76

Map Accuracy 85% Map Exploration (%) 98.00 98.20 97.00 97.73
Distance Traveled (m) 107.6 92.61 76.35 92.19

τ = 40

Map Accuracy 75% Map Exploration (%) 94.33 94.00 93.00 93.70
Distance Traveled (m) 69.81 58.06 61.81 63.23

Map Accuracy 80% Map Exploration (%) 96.00 95.00 95.00 95.33
Distance Traveled (m) 78.95 78.71 69.51 75.72

Map Accuracy 85% Map Exploration (%) 97.66 97.66 97.00 97.44
Distance Traveled (m) 93.02 82.93 86.56 87.50

To compare the performance of the QABV-4 planner with different Rmin and τ settings,
we can examine the average performances presented in Figure 18. As can be seen, QABV-4
performs better with Rmin = 300 and τ = 30 since the drone travels less while having more
map exploration on average than other combinations.

To obtain more insight into the QABV-4 planner, we can look at the test result in
Figure 19 when Rmin = 300, τ = 30, and the stop criterion is 75% map accuracy. The
resultant elevation map from the top view is shown in Figure 19a. In Figure 19b, notice that
map exploration and accuracy remain stable at iterations between 70 and 100 because in
Figure 19c, we can see that the planned path is overlapping. In Figure 19d, notice that λ is
decreased at the same iterations to keep gbest at R. Also notice that λ is not increased at the
first iterations as is in QABV-2 in Figure 15d because R is set to Rmax at the first iteration
according to (39) in Section 3.2.4, and λ is decreased to elevate gbest. On the other hand, in
the QABV-2 test, R is set to 300, and λ is increased to reduce gbest.
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Figure 19. A detailed result of the QABV-4 planner: (a) generated sparse elevation map (top view);
(b) map exploration and map accuracy; (c) the planned path when Rmin = 300, τ = 30; and (d) gbest
and λ.
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4.6. Overall Performance Comparison

To make an overall performance comparison, we tabulate the baseline NBV planner
results against the best resulting QABV planners which are:

• QABV-1 when K = 1.2;
• QABV-2 when R = 300, KP = −0.0001, KD = 0.001, w = 5;
• QABV-3 when R = 300, KP = −0.0001, KD = 0.001, w = 5;
• QABV-4 when Rmax = 1000, Rmin = 300, τ = 30, KP = −0.0001, KD = 0.001, w = 5.

As tabulated in Table 12, when the test stop criterion is 75% map accuracy, the QABV
planner significantly reduces the distance traveled compared to the NBV planner:

• 20.28% less distance traveled using QABV-1;
• 30.19% less distance traveled using QABV-2;
• 31% less distance traveled using QABV-3;
• 31.02% less distance traveled using QABV-4;

while having negligible differences in map exploration and accuracy.

Table 12. Baseline NBV planner performance results against the best resulting QABV planners.

Planner Performance Criteria Map 1 Map 2 Map 3 Average

NBV
planner

Map Accuracy (%) 72.00 73.00 77.70 74.20
Map Exploration (%) 95.00 95.00 95.00 95.00
Distance Traveled (m) 82.60 73.50 81.76 79.29

QABV-1
planner

Map Accuracy (%) 75.00 75.00 75.00 75.00
Map Exploration (%) 96.60 93.60 93.25 94.48
Distance Traveled (m) 68.03 64.45 57.15 63.21

QABV-2
planner

Map Accuracy (%) 75.00 75.00 75.00 75.00
Map Exploration (%) 95.67 94.33 93.67 94.56
Distance Traveled (m) 57.45 56.00 52.61 55.35

QABV-3
planner

Map Accuracy (%) 75.00 75.00 75.00 75.00
Map Exploration (%) 96.00 95.00 94.00 95.00
Distance Traveled (m) 55.30 52.12 56.70 54.71

QABV-4
planner

Map Accuracy (%) 75.00 75.00 75.00 75.00
Map Exploration (%) 96.33 95.66 94.00 95.33
Distance Traveled (m) 50.39 56.61 57.08 54.69

From the results presented in Table 13, when the test stop criterion is 80% map accuracy,
the QABV planner continues to reduce the distance traveled although 7.8% more map
accuracy is being asked compared to the NBV planner:

• 5% less distance traveled using QABV-1;
• 3.72% less distance traveled using QABV-2;
• 15.69% less distance traveled using QABV-3;
• 10.76% less distance traveled using QABV-4;

while having negligible differences in map exploration; however, the distance traveled
increases when the stop criterion is 85% map accuracy.

Lastly, to compare the performance of the dynamic λ update methods, Figure 20
visualizes the test results in Tables 12 and 13 for average map exploration and distance
traveled. Referring to the figure, the average map exploration is around 96% for each
method, and QABV-4 performs slightly better than others; however, the average distance
traveled differs between the methods, and QABV-3 performs significantly better than the
others with 68.82 m. Although the map exploration performance of the QABV-4 is slightly
better, its performance in reducing the distance traveled makes the QABV-3 to be the first
choice of implementation. On the other hand, QABV-1 is the least performant method but
the easiest to implement at the same time.
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Table 13. The best resulting QABV planners with stop criteria of 80% and 85% map accuracy.

Planner Performance Criteria Map 1 Map 2 Map 3 Average

QABV-1
planner

Map Accuracy 80% Map Exploration (%) 96.80 96.80 95.25 96.28
Distance Traveled (m) 87.00 71.94 67.06 75.33

Map Accuracy 85% Map Exploration (%) 98.50 97.75 96.50 97.58
Distance Traveled (m) 101.48 83.85 73.35 86.23

QABV-2
planner

Map Accuracy 80% Map Exploration (%) 97.00 96.50 95.00 96.17
Distance Traveled (m) 73.79 77.13 78.10 76.34

Map Accuracy 85% Map Exploration (%) 97.67 98.00 96.67 97.45
Distance Traveled (m) 93.18 80.66 91.55 88.46

QABV-3
planner

Map Accuracy 80% Map Exploration (%) 97.00 96.33 94.33 95.89
Distance Traveled (m) 66.46 62.78 71.31 66.85

Map Accuracy 85% Map Exploration (%) 97.66 96.66 96.00 96.77
Distance Traveled (m) 77.90 87.43 89.42 84.92

QABV-4
planner

Map Accuracy 80% Map Exploration (%) 96.33 95.33 96.00 95.89
Distance Traveled (m) 70.5 73.19 68.6 70.76

Map Accuracy 85% Map Exploration (%) 98.00 98.20 97.00 97.73
Distance Traveled (m) 107.6 92.61 76.35 92.19
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Figure 20. Analyzing test results for different QABV planner dynamic λ update methods. Average
map exploration and distance traveled for 75%, 80%, and 85% map accuracy test results are shown.

5. A Real-World Scenario

To see the performance of the proposed planner in a real-world scenario such as
delivering a package to a residential area, the map in Figure 21 is generated. In the scenario,
the drone flies at a 5 m constant height on the x-y plane. Thus, the down-looking camera
of the drone can see a broader area than before since the drone flight altitude is increased.
Additionally, the distance between adjacent nodes in the RRT tree is increased in response
to a broader visible area of the camera.
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Figure 21. Test map for real-world scenario tests. The map is 37.2 m × 24 m in size, and it represents
the backyard of the houses.

Table 14 shows test results when the stop criterion is 95% map exploration for the NBV
planner and 75% map accuracy for the QABV planner. Tests are repeated for each dynamic
λ update method with the same parameters as given in Section 4.6. Referring to Table 14,
there is a noticeable increase in the average distance traveled results because of two main
reasons. First, the map area is doubled, and second, big objects are causing occlusions for
the camera; more specifically, the houses in the environment are affecting the visibility of
the area behind since they are closer to the camera because of their height.

Table 14. Performance measures of NBV and QABV planners in real-world scenario test.

Performance Criteria NBV
Planner

QABV-1
Planner

QABV-2
Planner

QABV-3
Planner

QABV-4
Planner

Map Exploration (%) 95.00 95.00 95.50 95.50 95.50
Map Accuracy (%) 74.00 75.00 75.00 75.00 75.00
Distance Traveled (m) 276.34 216.41 205.90 200.88 203.29

When the planners are calculating the gain of the RRT nodes, the nodes nearby the
houses obtain low gains because of the occlusion. That is why in Figure 22, we can see that
the drone prefers to travel in the non-occluded area until the information depletes because
in Figure 22a, the middle of the map is marked with blue cells indicating that the garden is
relatively lower than other objects, and the drone prefers to stay in this region more as we
can see from the tangles in the followed path in Figure 22c; however, when the drone finds
itself in a low-information gain area, the dynamic cost function decreases λ and the QABV
planner selects the nodes nearby the houses as the best viewpoints.
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Figure 22. A detailed result of the QABV-3 planner in a real-world scenario: (a) generated sparse
elevation map (top view); (b) map exploration and map accuracy; (c) the planned path when
R = 300, kp = 0.0001, kd = 0.001, w = 5; and (d) gbest and λ.

6. Conclusions and Future Work

In this study, we proposed a new terrain mapping and exploration system to be
used for autonomous drone landings. For mapping, we presented the probabilistic sparse
elevation map to enable the representation of sensor measurement error. For exploration,
we presented the QABV planner for autonomous drone navigation with a dual focus:
map exploration and quality. We showed that by exploiting the probabilistic nature of the
proposed map with the novel information gain function, the QABV planner increases the
measurement accuracy while exploring the map.
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To reduce the distance traveled, we presented that using the node count as path cost is
very effective in our scenario rather than the distance between adjacent nodes as was in the
NBV planner. Furthermore, we presented four different control methods to dynamically
adjust the path cost. We showed that the QABV planner can be seen as a system to be
controlled via λ such that shorter paths are generated when the drone is in an information-
rich area, or longer paths are allowed to exit from an information-poor area and to avoid
getting stuck. In simulation studies, we tested our proposals against the NBV planner and
verified their usefulness. In particular, QABV-3 and QABV-4 achieved superior results
regarding the distance traveled and map quality. Although QABV-4 has slightly better
map exploration performance, its performance in reducing the distance traveled makes the
QABV-3 the first option for implementation.

One limitation of our proposed system is that the drone flies at a constant altitude
while the probabilistic sparse elevation map is generated. This may limit the accuracy
and resolution of the map, especially in areas with varying terrain or elevation. Another
limitation is the use of hyperparameters in the λ update methods such as K, R, and τ which
must be determined in a heuristic mannner. In the test results section, our analysis shows
that the performance of the methods is sensitive to these parameters, and better-determined
values can result in better performances.

As for our future work, we will focus on addressing these limitations by exploring adaptive
control methods for generating elevation maps and automating the determination of hyperpa-
rameters. Furthermore, we plan to work on the proposed approach and deploy it in a real-world
environment to examine how it performs in the presence of real-world uncertainties.
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