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Abstract: In applications of the L1 adaptive flight control system, we found two limitations to be
extended: (1) the system cannot meet the demands of engineering in terms of nonlinearity and
adaptation in most flight scenarios; (2) the adaptive control law generates a transient response in the
tracking error, hindering the system from reaching the steady-state error, and ultimately decreasing
control accuracy. In response to these problems, an extended flight control system for L1 adaptive
theory is proposed and rigorously proved. This system involves considering the nonlinear function
matrix of state variables, which serves as an extension of the regression matrix in the original L1

adaptive control system, thus enhancing its nonlinear characteristics. The problem of calculating
the adaptive laws, caused by the extended regression matrix, is solved by using the pseudo-inverse
matrix. To eliminate the transient response, the state vector and its estimate are recorded and
employed just like an integrator. Finally, the proposed system is verified on a high-subsonic flight
subject to nonlinear uncertainties, with simulation results showing improved control accuracy and
enhanced robustness. The proposed system resolves the limitations of the L1 adaptive control
system in nonlinearity, providing the possibility for further theoretical development to improve the
performance of adaptive control systems.

Keywords: nonlinear control; adaptive control; drone development; pseudo-inverse matrix; Monte
Carlo

1. Introduction

Unmanned aerial vehicles (UAV) are controlled by computational flight control instead
of human pilots. The autopilot is the most critical piece of equipment for UAVs to achieve
autonomous flight, and the controller within the autopilot serves as the core for its proper
functioning. Early laws of the controller for autopilots usually involved the use of linear
time-invariant (LTI) controllers. These controllers often exhibit poor performance in the
presence of nonlinear uncertainties, and the autopilots utilizing such controllers are not
adaptive. Adaptive autopilots can enhance the flight control and navigation capabilities
required for autonomous flight. They can also adjust to changes in flight conditions,
such as wind gusts or turbulence, and make real-time adjustments to the UAV’s flight
path to maintain stability, accuracy, etc. In recent years, the requirements for reliability,
comfort, and maneuverability of new-generation UAVs have raised the bar for control
accuracy, control response, and control stability of autopilot controllers. It is still necessary
to develop adaptive autopilots and controllers within them [1]. The controller of new-
generation adaptive autopilots has attracted extensive interest among researchers, and
numerous control theories have been proposed. Various effective control methods have
been applied to control UAV flight, which have delivered good performance. Mohammad
utilized model reference adaptive control (MRAC) to track the attitude of medium-scale
UAVs [2]. Karim Ahmadi conducted applications of nonlinear dynamic inversion control
to quad-rotors [3], and L. A. Blas achieved similar applications with active disturbance
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rejection control [4]. JR Montoya-Morales applied sliding mode variable structure control to
solve an autonomous trajectory-tracking problem [5]. Wenbo Gao employed deep learning
control in the aeroengine control system and significantly improved the performance of this
engine [6]. Guerrero-Sánchez presented a passivity-based control scheme and enhanced
the performance of UAVs in load transportation [7,8]. Among all theories, the MRAC
controller, offering high control accuracy, robustness, and adaptability [9–13], is one of
the most mature and widely used adaptive controllers. As an extension of MRAC, the
L1 adaptive controller preserves these advantages while introducing novel features. It is
worth conducting more in-depth research on this controller.

Unlike MRAC or other adaptive control theories, L1 adaptive control does not require
accurate knowledge of system parameters or model structures. Instead, it uses a novel
“fast adaptation” mechanism that rapidly estimates system parameters and adapts the
control law accordingly. The key advantage of L1 adaptive control is that it provides high
robustness to parameter uncertainty and disturbances, while maintaining good tracking
performance. The abbreviation “L1” precisely highlights this key advantage, as it stands for
performance in terms of attenuating external disturbances while maintaining or improving
the system’s response to internal signals. L1 adaptive control is usually used to solve
control system problems that are nonlinear, time-varying, multivariable, and uncertain.
Overall, this controller is highly suitable for the control systems of new-generation UAVs.

An L1 adaptive controller consists of a state predictor, laws of adaptation, and a control
law. In the context of differences in the laws of adaptation, L1 adaptive control can be
divided into L1 adaptive control based on the Lyapunov stability theorem (L1-Ly) and
control based on the piecewise constant laws of adaptation (L1-Pc). L1-Ly provides a conve-
nient theoretical approach for the proof of stability and the analysis of control performance
and has been subjected to greater research and generated more applications [14–20] than
L1-Pc. However, minor changes in the parameters can result in significant changes in the
performance of the L1-Ly controller, and this poses challenges in terms of adjusting its
parameters. The L1-Pc controller is more suitable for engineering applications than the
L1-Ly controller because it has fewer parameters and thus is easier to use. Further, this
controller can achieve high adaptive speeds through improvements in the performance of
the hardware. We thus investigate the L1-Pc controller here.

In recent years, a growing number of scholars have devoted themselves to theoret-
ical research [21–24], the evaluation [25–27] and the application [28–32] of L1-Pc. Jinta-
sit [29] combined model-predictive path integral control with L1 adaptive control to achieve
effective trajectory tracking for quad-rotor aircraft. However, high-frequency oscillations in
the body rate were observed in some cases in the literature. Hanover [31] further optimized
this theory, but the problem remained unsolved. We suspected that these oscillations
might be due to the inadequate adaptability of the L1 adaptive controller. Additionally, we
observed deviations between the actual and reference states in several papers [24,30,31].
Thus, we examined the L1 controller and eventually identified that the L1-Pc control system
still has two limitations that remain unresolved. On the one hand, L1-Pc can be regarded
as an LTI control system in most flight scenarios (as proved in Section 3), but cannot meet
the demands of engineering in terms of nonlinearity and adaptation. On the other hand,
L1-Pc controllers generate transient responses that always exist. This inference can be
obtained by the following reasoning: If the state predictor of the L1-Pc controller works
perfectly, the estimate of a state vector (or an uncertainty) should be the same as its actual
value. In addition, the original laws of adaptation show that the estimate of uncertainty
can be regarded as a linear combination of deviations between the actual state vector and
its estimate. Thus, when the actual state vector is equal to its estimate in a steady state of
control response, the estimate of uncertainty should be zero. Then, the uncertainty of the
object of control should also be zero, which is impossible for actual flight. Therefore, either
steady-state deviations or a dynamically stable state must exist, and both result in poor
performance of L1-Pc controllers.
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To optimize the L1-Pc controller, we made numerous revisions to it and finally pro-
posed an adaptive flight control system with the extension of a regression matrix (L1-PcEx).
To prevent an L1-Pc controller from becoming an LTI controller, we extended the regression
matrix in the laws of adaptation, i.e., we replaced a constant with a column vector. The
column vector is a nonlinear function matrix of state variables, and the entries in it consist
of “1” and the time-variant state variables of the object of control. In this way, we enhanced
the nonlinearity of the original controller. We also used the pseudo-inverse matrix [33], so
that all matrices can perform a division-like operation to calculate the laws of adaptation.
Furthermore, to avoid unexpected transient responses, a cumulative value of the state
errors between the state vector and its estimate was applied to the laws of adaptation like
an integrator. In this way, the L1-PcEx controller can gradually remove the unexpected
transient response. In general, we modified the framework of the L1-Pc control system
in accordance with the laws of adaptation, which enhances the safety and comfort of
automatic cruise piloting of civil airliners. This, in turn, improves the reputation of the civil
aviation administration and customer satisfaction. L1-PcEx controllers can also ensure that
high-speed UAVs deliver good performance, even under extreme conditions, and thus can
reliably be applied to military scenarios including defense reconnaissance, air combat, and
extreme escape.

The remainder of this paper is organized as follows: Section 2 introduces a model of
a high-speed UAV, and Section 3 discusses the control framework of L1-PcEx. Section 4
reports a performance analysis of L1-PcEx, consisting mainly of the analysis of the reference
system, transient performance, and steady-state performance. Section 5 presents the results
of simulations based on high-subsonic UAVs, including the results of flight feasibility
simulations and algorithmic comparison, as well as Monte Carlo simulations. Section 6
presents the conclusion of this study.

2. Problem Formulation

Mathematical models are the basis for the analysis of the characteristics of a UAV, the
design of its control system, and its simulation. The model of an UAV is usually expressed
as a 12th-order equation with six degrees of freedom, containing triaxial speeds, angles,
angular rates, and positions.

In this section, we will introduce the general state-space equation form for a controlled
system, which is applicable to a wide range of controlled objects, including UAVs. This
equation form is commonly used in control engineering to model and design control
systems and can be tailored to meet the specific requirements and characteristics of the
controlled object. A nonlinear model of a UAV can be linearized around an equilibrium
state using small-perturbation theory [34]. The linearized model of a UAV can easily
be expressed in the form of state-space equations. The transformation of the 12th-order
equation into a state-space equation has been provided in Refs. [35,36].

Consider the following multiple-in multiple-out (MIMO) system:

ẋ(t) = Amx(t) + Bmu(t) + f (t, x(t), z(t)), x(0) = x0,

ẋz(t) = g(t, xz(t), x(t)), xz(0) = xz0,

z(t) = g0(t, xz(t)),

y(t) = Cx(t),

(1)

where x(t) ∈ Rn is the state vector of this system; u(t) ∈ Rm is the control signal(m ≤ n);
y(t) ∈ Rm is the regulated output; Am ∈ Rn×n is a known Hurwitz matrix that defines
the desired dynamics of a closed-loop system; Bm ∈ Rn×m is a known full-rank constant
matrix [(Am, Bm) is controllable]; C ∈ Rm×n is a known full-rank constant matrix [(Am, C)
is observable]; z(t) ∈ Rp is the output vector of internal unmodeled dynamics; xz(t) ∈ Rl

is the state vector of internal unmodeled dynamics; and f : R× Rn × Rp → Rn, g0 :
R×Rl → Rp, and g : R×Rl ×Rn → Rl are unknown nonlinear functions satisfying the
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standard assumptions of existence and uniqueness. The initial condition x0 is assumed to
be inside an arbitrarily large known set, i.e., ‖x0‖∞ ≤ ρ0 < ∞ for ρ > 0.

For subsequent analyses, the model of the UAV can be rewritten in the following form:

ẋ(t) = Amx(t) + Bm[u(t) + f1(t, x(t), z(t))] + Bum f2(t, x(t), z(t)),

ẋz(t) = g0(t, xz(t), x(t)), xz(0) = xz0,

x(0) = x0, xz(0) = xz0,

z(t) = g0(t, xz(t)),

y(t) = Cx(t),

(2)

where Bm ∈ Rn×(n−m) is a constant matrix, such that BT
m · Bum = 0, rank[Bm, Bum] = n,

f1 : R×Rn×Rp → Rm, and f2 : R×Rn×Rp → R(n−m) are unknown nonlinear functions
that satisfy: [

f1(t, x(t), z(t)
f2(t, x(t), z(t)

]
= B−1 f (t, x(t), z(t), B = [Bm, Bum]. (3)

Furthermore, because of the low level of coupling between the longitudinal and the
lateral flight modes [35,36] it is reasonable to study them separately. This paper examines
the longitudinal motion of high-subsonic UAVs. Because changes in the pitch angle and
the pitch rate greatly affect flight performance, the state vector we are interested in in this
article is x = [ϑ, Q]T , and the input value we are interested in is u = δE. ϑ is the pitch angle
of the UAV, Q is its pitch rate, and δE is the elevator.

3. L1-PcEx Architecture

The L1-PcEx architecture with its main elements is shown in Figure 1.

Figure 1. Closed-loop L1-PcEx system.

Following Ref. [14], let H(s) = Bm(sIm − Am)−1 and let C(s) be a filter. Thus we
have Equation (4), implying that the reference system of L1-Pc is equivalent to that of an
LTI controller:

ure f (s) =
C(s)

1− C(s)
Kgr(s)− C(s)

1− C(s)H(s)
xre f (s). (4)

Moreover, by using Ref. [21] with a given adaptation sampling time Ts > 0, we can
arrive at the following conclusions for a L1-Pc control system:

∆σ̂ =

[
∆σ̂1
∆σ̂2

]
= −Φ−1(Ts)eAmTs ∆x̂ + Φ−1(Ts)eAmTs ∆x, (5)
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where Φ(Ts) =
∫ Ts

0 eAm(Ts−τ)Bdτ, ∆x = x((k + 1)Ts)− x(kTs), ∆x̂ = x̂((k + 1)Ts)− x̂(kTs),
and ∆σ̂ = σ̂((k + 1)Ts)− σ̂(iTs). The variable k represents the index of the moment, while
x(kTs) represents the value of x at the kTs-th discrete time point.

Let ∆σ = Fx|x0
∆x + Fx̂|x̂0

∆x̂, where Fx|x0
= Φ−1(Ts)eAmTs and Fx̂|x̂0

= −Φ−1(Ts)eAmTs .
Then, using Ref. [14]:

∆u(s) = K∆x(s)∆x(s) = C(s)[1− Fx̂|x̂0
H(s)(1− C(s))]−1Fx|x0

∆x(s). (6)

Further, we have:

lim
Ts→0

K∆x(s) = lim
Ts→0

C(s)Φ−1(Ts)eAmTs

1 + Φ−1(Ts)eAmTs H(s)(1− C(s))
=

C(s)
H(s)(1− C(s))

. (7)

With the gain K∆x(s) in Equation (6), we conclude that L1-Pc is an LTI system. When
Ts is small enough (Equation (7)), the performance of L1-Pc depends solely on the L1 filter
and H(s), and is not affected by nonlinearity or initial conditions.

To enable the controller to adaptively adjust to the influence of nonlinearity and initial
conditions, we designed the L1-PcEx controller. The architecture of L1-PcEx is defined
as below:
State Predictor

Consider the following state predictor:

˙̂x(t) = Am x̂(t) + Bm[u(t) + θ̂T
1 (t)x(t) + σ̂1(t)] + Bum[θ̂

T
2 (t)x(t) + σ̂2(t)]

ŷ(t) = Cx̂(t),
(8)

where θ̂T
1 (t), θ̂T

2 (t)∈ Rm×n and σ̂1(t), σ̂2(t)∈ Rm are both adaptive estimates.
Adaptation laws

The laws of adaptation for θ̂T
1 (t), θ̂T

2 (t), σ̂1(t), σ̂2(t) are defined as:[
θ̂T

1 (t) σ̂1(t)
θ̂T

2 (t) σ̂2(t)

]
=

[
θ̂T

1 (iTs) σ̂1(iTs)
θ̂T

2 (iTs) σ̂2(iTs)

]
, t ∈ [iTs, (i + 1)Ts],[

θ̂T
1 (iTs) σ̂1(iTs)

θ̂T
2 (iTs) σ̂2(iTs)

]
= [−Φ−1(Ts)eAmTs x̃(iTs) + Φ−1h(iTs)][Ψ(iTs)]

+,

h(iTs) = −x̃(iTs) + h[(i− 1)Ts], h(0) = 0,

(9)

where Φ(t) =
∫ t

0 eAm(t−τ)Bdτ, Ψ(t) = [x(t), 1]T , [Ψ(t)]+ is the pseudo-inverse matrix
of Ψ(t), the variable i is the index of the moment, and Ts > 0 is the sampling time
for adaptation.
Control Law

The control signals are generated as outputs of the system:

u(s) = −KD(s)[u(s) + η̂1(s) + η̂2m(s)− rg(s)], (10)

where

η̂1(s) =
[
θ̂T

1 (t), σ̂1(s)
]
·Ψ(s),

η̂2m(s) = H−1
m (s)Hum(s)η̂2(s),

Hm(s) = C(sIn − Am)
−1Bm,

Hum(s) = D(sIn − Am)
−1Bum,

η̂2(s) =
[
θ̂T

2 (t), σ̂2(s)
]
·Ψ(s),

rg = kg(s)r(s).

(11)
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4. Analysis of the L1-PcEx
4.1. Assumptions and Definitions

The model given in Section 2 is extremely complex. For the sake of argument, the
following four assumptions are made. Assumption 1 ensures that the f (t, x(t), z(t)) is
bounded when x(t, z(t)) = 0; Assumption 2 is the semiglobal Lipschitz condition; Assump-
tion 3 ensures the stability of unmodeled dynamics; Assumption 4 ensures the stability of
matched transmission zero. The system in Section 2 verifies those assumptions. All results
are based on them.

Assumption 1. For all t ≥ 0, there exists B1, B2 > 0, such that ‖ f1(t, 0)‖∞ ≤ B1 and
‖ f2(t, 0)‖∞ ≤ B2 hold.

Assumption 2. Define X1 = [x1, z1]
T , X2 = [x2, z2]

T . For arbitrary δ > 0, for ‖X1‖∞, ‖X2‖∞
≤ δ, there exists positive Kiδ(i = 1, 2), such that ‖ fi(t, X1)− fi(t, X2)‖∞ ≤ Kiδ‖X1 − X2‖∞
uniformly holds.

Assumption 3. With respect to both initial conditions xz0 and input x(t), the xz-dynamics are
bounded input and bounded output (BIBO) stable, i.e., for all t ≥ 0, there exists Lz, Bz > 0, such
that the following equation holds: ‖zt‖∞ ≤ Lz‖xt‖∞ + Bz.

Assumption 4. The transmission zeros of the transfer matrix Hm(s) = C(sIn − Am)−1Bm lie in
the open left half-plane.

For convenience, let:

Hxm(s) = (sIn − Am)
−1Bm,

Hxum(s) = (sIn − Am)
−1Bm,

Hm(s) = CHxm(s) = (sIn − Am)
−1Bm,

Hum(s) = CHxum(s) = (sIn − Am)
−1Bum.

(12)

Let xin(t) be the signal with Laplace transform xin(t) = (sIn − Am)−1x0. If ρin =
‖(sIn − Am)−1‖L1 ρ0, then ‖xin‖L∞ ≤ ρin

For every δ > 0, let

Liδ = δ(δ)Kiδ/δ, δ(δ) = max{δ + γ1, Lz(δ + γ1) + Bz} (13)

where i = 1, 2 and γ1 is defined as follows:

γ1 =
‖Hxm(s)C(s)H−1

m (s)C‖L1

1− ‖Gm(s)‖L1 L1ρr − ‖Gum(s)‖L1 L2ρr

γ0 + β (14)

where both γ0 and β are arbitrarily small positive constants and γ1 ≤ γ1.
The design of the L1-PcEx controller involves a feedback gain matrix K ∈ Rm×m and a

strictly proper transfer matrix D(s), leading to a strictly proper filter:

C(s) = (Im + KD(s))−1KD(s), (15)

with C(0) = Im. The choice of D(s) ensures that C(s)H−1
m (s) is a proper stable transfer

matrix.
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For the proofs of stability and performance bounds, the choices for K and D(s) must
ensure that, for a given ρ0, there exists ρr > ρin, such that the following L1-norm condi-
tion holds:

‖Gm(s)‖L1 + ‖Gum(s)‖L1 l0 <
ρr − ‖Hxm(s)C(s)Kg(s)‖L1‖r‖L∞ − ρin

L1ρr ρr + B0
, (16)

where

Gm(s) = Hxm(s)(Im − C(s)),

Gum(s) = [In − Hxm(s)C(s)H−1
m (s)C]Hxum(s),

l0 = L2ρr /L1ρr , B0 = max{B10, B20}.
(17)

Kg(s) is a BIBO-stable feedforward prefilter. Notably, Equation (16) is a prerequisite
for the stability and good performance of L1-PcEx.

Let

ρ = ρr + γ1,

ρu = ρur + γ2,
(18)

where

ρur = ‖C(s)‖L1(L1ρr ρr + B10) + ‖C(s)H−1
m (s)Hum(s)‖L1(L2ρr ρr + B20)

+ ‖C(s)Kg(s)‖L1‖r‖L∞ ,

γ2 = ‖C(s)‖L1 L1ρr γ1 + ‖C(s)H−1
m (s)Hum(s)‖L1 L2ρr γ1 + ‖C(s)H−1

m (s)C‖L1 γ0.

(19)

Moreover, let Ts > 0 be the sampling time for adaptation, which is associated with the
sampling rate of the available CPU. Let ζ(Ts) be:

ζ(Ts) = κ1(Ts)∆1 + κ2(Ts)∆2, (20)

where κ1(Ts) and κ2(Ts) are defined as:

κ1(Ts) =
∫ Ts

0
‖eAm(Ts−τ)Bm‖2dτ,

κ2(Ts) =
∫ Ts

0
‖eAm(Ts−τ)Bum‖2dτ,

(21)

and ∆1, ∆2 are given by:

∆1 = (Lmρρ + Bm0)
√

m,

∆2 = (Lumρρ + Bum0)
√

n−m.
(22)

Let α1(t), α2(t), α3(t), α4(t) be defined as:

α1(t) = ‖eAmt‖2,

α2(t) =
∫ t

0
‖eAm(t−τ)Φ−1eAmTs‖2dτ,

α3(t) =
∫ t

0
‖eAm(t−τ)Bm‖2dτ,

α4(t) =
∫ t

0
‖eAm(t−τ)Bum‖2dτ.

(23)
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where Φ(t) is a square matrix of order n defined as:

Φ(t) =
∫ t

0
eAm(t−τ)Bdτ. (24)

Moreover, let α1(Ts), α2(Ts), α3(Ts), α4(Ts) be defined as:

α1(Ts) = max
t∈[0, Ts ]

α1(t), α2(Ts) = max
t∈[0, Ts ]

α2(t),

α3(Ts) = max
t∈[0, Ts ]

α3(t), α4(Ts) = max
t∈[0, Ts ]

α4(t),
(25)

Finally, let

γ0(Ts) = [2α1(Ts) + 2α2(Ts) + 1]ζ(Ts) + α3(Ts)∆1 + α4(Ts)∆2. (26)

4.2. Closed-Loop Reference System

Consider a closed-loop reference system:

ẋre f (t) = Amxre f (t) + Bm[u(t) + f1(t, xre f (t), z(t))] + Bum f2(t, xre f (t), z(t)),

ure f (t) = −C(s)[η1re f (s) + H−1
m (s)Hum(s)]η2re f (s)− Kg(s)r(s)],

yre f (t) = Cxre f (t),

(27)

where ηire f (s) is the Laplace transform of ηire f (t) = fi(t, xre f (t), z(t)), for i = 1, 2.

Lemma 1. For a closed-loop reference system that satisfies Equation (16), if ‖x0‖∞ ≤ ρ0 and
‖zt‖L∞ ≤ Lz(‖xre f t‖L∞ + γ1) + Bz, then the following conclusion can be drawn:

‖xre f t‖L∞ ≤ ρr, (28)

‖ure f t‖L∞ ≤ ρur, (29)

Proof. For the closed-loop reference system at ∀t ∈ [0, τ], we have:

xre f = Gm(s)η1re f (s) + Gum(s)η2re f (s) + Hxm(s)C(s)Kg(s)r(s) + xin(s). (30)

Using the definition and properties of a vector norm and matrix norm, the following
conclusions can be obtained:

‖xre f ‖L∞ = ‖Gm(s)‖L1‖η1re f (s)‖L∞ + ‖Gum(s)‖L1‖η2re f (s)‖L∞

+ ‖Hxm(s)C(s)Kg(s)‖L1‖r(s)‖L∞ + ρin.
(31)

If ‖xre f (t)‖∞ ≤ ρr is not true, since ‖xre f (0)‖∞ = ‖x0‖∞ ≤ ρr and xre f (t) are continu-
ous, there must exist a time τ1 ∈ (0, τ], such that:

‖xre f (t)‖∞ < ρr, ∀t ∈ [0, τ1),

‖xre f (τ1)‖∞ = ρr.
(32)

In another words,

‖xre f τ1‖L∞ = ρr. (33)

According to Equation (28),

‖zτ1‖L∞ ≤ Lz(ρr + γ1) + Bz, (34)
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and hence, we have:

‖Xre f τ1‖L∞ =
[

xT
re f zT

]
≤ ρr(ρr) = max{ρr + γ1, Lz(ρr + γ1) + Bz}. (35)

Then, it follows from Assumptions 1 and 2 that:

‖ηire f τ1‖L∞ ≤ Kiρr(ρr)
‖Xre f τ1‖L∞ + Bi0 ≤ Kiρr

(ρr)ρr + Bi0,

‖ηire f τ1‖L∞ ≤ Liρr ρr + Bi0,
(36)

for i = 1, 2.
Thus, at moment τ1, Equation (31) can be rewritten as:

‖xre f τ1‖L∞ ≤ ‖Gm(s)‖L1(L1ρr ρr + B10) + ‖Gum(s)‖L1(L2ρr ρr + B20)

+ ‖Hxm(s)C(s)Kg(s)‖L1‖r(s)‖L∞ + ρin,
(37)

and with Equation (16), we have:

‖xre f τ1‖L∞ ≤ ρr. (38)

Consequently, Equation (38) contradicts Equation (33). Therefore, ‖xre f t‖L∞ ≤ ρr is
proved, and for all t ∈ (0, τ], we have

‖ηire f τ‖L∞ ≤ Liρr ρr + Bi0, i = 1, 2. (39)

Finally, using Equations (27) and (38), we have:

‖ure f τ‖L∞ ≤ ρur. (40)

That proves Equation (29).

Remark 1. The boundedness of the reference system ensures that the target of the object of control
is stable, and this forms a solid foundation for good control performance.

4.3. Transient and Steady-State Performance

From the object of control and the reference system, the error dynamics can be derived
as:

˙̃x(t) = Am x̃(t) + Bmη̃1(t) + Bumη̃2, (41)

where

η̃1(t) = θ̂T
1 (t)x(t) + σ̂1(t)− η1(t),

η̃2(t) = θ̂T
2 (t)x(t) + σ̂2(t)− η2(t).

(42)

Lemma 2. If the controller is subject to the L1-norm condition (Equation (16)), ‖xτ‖L∞ ≤ ρ and
‖uτ‖L∞ ≤ ρu, we have

‖x̃τ‖L∞ ≤ γ0, (43)

where γ0 ≤ γ0.

Proof. According to Assumption 3, we then have:

‖Xτ‖L∞ ≤ ρ(ρ) = max{ρ, Lzρ + Bz}. (44)
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From Assumptions 1 and 2, we obtain:

‖ηiτ‖L∞ ≤ Liρρ + Bi0, i = 1, 2. (45)

Then, according to the definitions of ‖ · ‖L∞ and ‖ · ‖2, we have:

‖η1(t)‖2 ≤ (L1ρρ + B10)
√

m, ∀t ∈ [0, τ],

‖η2(t)‖2 ≤ (L2ρρ + B20)
√

n−m, ∀t ∈ [0, τ].
(46)

With the error dynamics in Equation (41), we have:

x̃(iTs + t) = eAmt x̃(iTx) +
∫ t

0
eAm(t−ξ B

[
θ̂T

1 (iTs)
θ̂T

2 (iTs)

]
x(iTs)dξ

+
∫ t

0
eAm(t−ξ)B

[
σ̂1(iTs)
σ̂2(iTs)

]
dξ −

∫ t

0
eAm(t−ξ)Bmη1(iTs + ξ)dξ

−
∫ t

0
eAm(t−ξ)Bumη2(iTs + ξ)dξ

= eAmt x̃(iTs) +
∫ t

0
eAm(t−ξ)B

[
θ̂T

1 (iTs) σ̂1(iTs)
θ̂T

2 (iTs) σ̂2(iTs)

]
Ψ(iTs)dξ

−
∫ t

0
eAm(t−ξ)Bmη1(iTs + ξ)dξ −

∫ t

0
eAm(t−ξ)Bumη2(iTs + ξ)dξ.

(47)

Let

ζ1(iTs + t) = eAmt x̃(iTs) +
∫ t

0
eAm(t−ξ)B

[
θ̂T

1 (iTs) σ̂1(iTs)
θ̂T

2 (iTs) σ̂2(iTs)

]
Ψ(iTs)dξ,

ζ2(iTs + t) =
∫ t

0
eAm(t−ξ)Bmη1(iTs + ξ)dξ +

∫ t

0
eAm(t−ξ)Bumη2(iTs + ξ)dξ.

(48)

Proving the global boundedness of x̃τ directly presents a challenging task. We can
first establish that ˜x(jTs) (j is the index of the moment) is bounded at all discrete points,
and then by examining ˜x(iTs + t) in Equation (47) for t ∈ [0, Ts), as i is an arbitrary integer
((i + 1)Ts < τ holds) we can determine whether x̃τ is globally bounded.

We now establish that ˜x(jTs), where j = 1, 2 . . ., is bounded at all discrete points,
implying that the following equation holds.

‖x̃(jTs)‖2 ≤ 2ζ(Ts), ∀jTs ≤ τ. (49)

Clearly, ‖x̃(0)‖2 ≤ ζ(Ts). Furthermore, considering two arbitrarily chosen adjacent
discrete points at times jTs and (j + 1)Ts, where (j + 1)Ts < τ, we have:

x̃[(j + 1)Ts] = ζ1[(j + 1)Ts]− ζ2[(j + 1)Ts], (50)

with

ζ1[(j + 1)Ts] = eAmTs x̃(jTs) +
∫ Ts

0
eAm(Ts−ξ)B

[
θ̂T

1 (jTs) σ̂1(jTs)
θ̂T

2 (jTs) σ̂2(jTs)

]
Ψ(jTs)dξ,

ζ2[(j + 1)Ts] =
∫ Ts

0
eAm(Ts−ξ)Bmη1(jTs + ξ)dξ +

∫ Ts

0
eAm(Ts−ξ)Bumη2(jTs + ξ)dξ.

(51)

By considering the laws of adaptation (Equation (9)), we obtain:

x̃[(j + 1)Ts] = h(jTs)− h[(j + 1)Ts]. (52)

Let h(jTs) =
∫ Ts

0 eAm(Ts−ξ)Bmη1[(j− 1)Ts + ξ]dξ +
∫ Ts

0 eAm(Ts−ξ)Bumη2[(j− 1)Ts + ξ]dξ.
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Using Equations (20)–(22), we have:

‖h(jTs)‖2 ≤ κ1(Ts)∆1 + κ2(Ts)∆2 = ζ(Ts), (53)

which means that:

‖x̃[(j + 1)Ts]‖2 ≤ 2ζ(Ts), ∀(j + 1)Ts < τ. (54)

We have now completed the proof that ˜x(jTs) is bounded at all discrete points. Next,
we consider t ∈ [0, Ts) for all discrete points and prove that ˜x(iTs + t) is bounded at all
times. Then, we can conclude that x̃τ is bounded.

Using the definition of the pseudo-inverse matrix [33], we have [Ψ(t)]+ ·Ψ · [Ψ(t)]+ =
[Ψ(t)]+. Since Ψ(t) is a (n + 1)× 1 vector, [Ψ(t)]+ ·Ψ(t) is a constant number. So:

[Ψ(t)]+ ·Ψ(t) = 1. (55)

Substituting the laws of adaptation (Equation (9)) and Equation (55) into Equation (47)
gives:

‖x̃(iTs + t)‖2 ≤ ‖eAmt x̃(iTs)‖2 +
∫ t

0
eAm(t−ζ)B[−Φ−1(Ts)eAmTs x̃(iTs)

+ Φ−1(Ts)h(iTs)][Ψ(iTs)]
+Ψ(iTs)dξ‖2 + ‖

∫ t

0
eAm(t−ξ)Bm

η1(iTs + ξ)dξ‖2 + ‖
∫ t

0
eAm(t−ξ)Bumη2(iTs + ξ)dξ‖2

≤ ‖eAmt‖2‖x̃(iTs)‖2 + ‖
∫ t

0
eAm(t−ξ)BΦ−1(Ts)eAmTs dξ‖2·

‖x̃(iTs)‖2 + ‖Φ(t)Φ−1(Ts)h(iTs)‖2 + ‖
∫ t

0
eAm(t−ξ)Bmdξ‖2·

‖η1(iTs + ξ)‖2 + ‖
∫ t

0
eAm(t−ξ)Bumdξ‖2‖η2(iTs + ξ)‖2

≤ α1(Ts)2ζ(Ts) + α2(Ts)2ζ(Ts) + ζ(Ts) + α3(Ts)∆1

+ α4(Ts)∆2

= γ0(Ts).

(56)

So, for all t ∈ [0, Ts), we have ‖x̃(iTs + t)‖2 ≤ γ0.
Finally, with the definition of the vector norm, we have:

‖x̃(iTs + t)‖L∞ ≤ ‖x̃(iTs + t)‖2 ≤ γ0(Ts), (57)

which proves Lemma 2.

Remark 2. The boundedness of the error dynamics indicates that the deviation of the state vector
between the reference system and the object of control can be limited to within a certain range.
Therefore, if the sampling time Ts is properly implemented and the reference system is stable, the
object of control remains stable for all times.

Lemma 3. As the sampling time Ts tends to zero, γ0(Ts) tends to zero, i.e., limTs→0 γ0(Ts) = 0.

Proof. From the definitions of κ1(Ts) and κ2(Ts), we have:

lim
Ts→0

κ1(Ts) = 0, lim
Ts→0

κ2(Ts) = 0. (58)
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Since ∆1, ∆2, and ρ are bounded, we have:

lim
Ts→0

ζ(Ts) = 0. (59)

Since α1(Ts), α2(Ts), α3(Ts), α4(Ts) are continuous, we have:

lim
Ts→0

α1(Ts)(Ts) = 0, lim
Ts→0

α2(Ts) = 0,

lim
Ts→0

α3(Ts)(Ts) = 0, lim
Ts→0

α4(Ts) = 0.
(60)

Finally, using the definition of γ0(Ts), we have:

lim
Ts→0

γ0(Ts) = 0. (61)

This completes the proof.

Theorem 1. If the sampling time Ts satisfies the condition γ0(Ts) < γ0 and the L1-PcEx controller
satisfies Equation (16), the initial state is ‖x0‖∞ ≤ ρ0, and we have:

‖x‖L∞ ≤ ρ, (62)

‖u‖L∞ ≤ ρu, (63)

‖x‖L∞ ≤ γ0, (64)

‖xre f − x‖L∞ ≤ γ1, (65)

‖ure f − u‖L∞ ≤ γ2, (66)

‖yre f − y‖L∞ ≤ ‖C‖∞γ1. (67)

Proof. In this part, we make a proof by contradiction.

We assume that the bounds of Equations (65) and (66) do not hold. Since ‖xre f (0)−
x(0)‖∞ = 0 < γ1, ‖ure f (0)− u(0)‖∞ = 0 < γ2 and x(t), xre f (t), u(t), ure f (t) are continu-
ous, there must exist τ such that:{

‖xre f (τ)− x(τ)‖∞ = γ1 or ‖ure f (τ)− u(τ)‖∞ = γ2

‖xre f (t)− x(t)‖∞ < γ1, ‖ure f (t)− u(t)‖∞ < γ2, ∀t ∈ [0, τ).
(68)

This implies that at least one of the following equalities holds:

‖(xre f − x)τ‖L∞ = γ1,

‖(ure f − u)τ‖L∞ = γ2.
(69)

Similarly, according to Assumption 3, we have:

‖zτ‖L∞ ≤ Lz(‖xre f τ‖L∞ + γ1) + Bz. (70)

Lemma 1 implies that:

‖xre f τ‖L∞ ≤ ρr, ‖ure f τ‖L∞ ≤ ρur, (71)

Using the definitions of Equation (18), we have the following bounds:

‖xτ‖L∞ ≤ ρr + γ1 ≤ ρ,

‖uτ‖L∞ ≤ ρur + γ2 ≤ ρu.
(72)
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According to Lemma 2, if the sampling time for adaptation Ts is chosen, we have:

‖x̃τ‖L∞ ≤ γ0. (73)

Let η̃(t) = η̃1(t) + η̃2m(t), where η̃1(t) = θ̂T
1 (t)x(t) + σ̂1(t) − η1(t), and η̃2m(s) =

H−1
m (s) Hum(s)[θ̂T

2 (s)x(s) + σ̂2(s)− η2(s)].
Using the laws of adaptation and the model of the controlled object, we have:

u(s) = −C(s)[η1(s) + η2m(s)− Kg(s)r(s)− η̃(s)],

x(s) = Gm(s)η1(s) + Gum(s)η2(s)− Hxm(s)C(s)η̃(s) + Hxm(s)C(s)Kg(s)r(s) + xin.
(74)

Similarly, by using the laws of adaptation and the model of the reference system,
we have:

ure f (s) = −C(s)[η1re f (s) + H−1
m (s)Hum(s)η2re f (s)− Kg(s)r(s)],

xre f (s) = Gm(s)η1re f (s) + Gum(s)η2re f (s) + Hxm(s)C(s)Kg(s)r(s) + xre f in.
(75)

So,

xre f (s)− x(s) = Gm(s)[η1re f (s)− η1(s)] + Gum(s)[η1re f (s)− η1(s)] + Hxm(s)C(s)η̃(s). (76)

From the error dynamics (Equation (41)), we have H−1
m (s)Cx̃(s) = η̃(s), and then

we obtain:

xre f (s)− x(s) = Gm(s)[η1re f (s)− η1(s)] + Gum(s)[η2re f (s)− η2(s)]

+ Hxm(s)C(s)H−1
m (s)Cx̃(s).

(77)

Therefore, we have:

‖(xre f − x)τ‖L∞ ≤ ‖Gm(s)‖L1‖[η1re f (s)− η1(s)]τ‖L∞ + ‖Gum(s)‖L1 ·
‖[η2re f (s)− η2(s)]τ‖L∞ + ‖Hxm(s)C(s)H−1

m (s)C‖L1‖x̃τ‖L∞ .
(78)

According to Assumption 3, we have:

‖zτ‖L∞ ≤ Lz(ρr + γ1) + Bz, (79)

and hence, we have:

‖Xτ‖L∞ ≤ max{ρr + γ1, Lz(ρr + γ1) + Bz} ≤ ρr(ρr),

‖Xre f τ‖L∞ ≤ max{ρr, Lzρr + Bz} ≤ ρr(ρr).
(80)

Because Kiρr(ρr) < Liρr , we have:

‖(ηire f − ηi)τ‖L∞ ≤ Kiρr(ρr)‖(Xre f − X)τ‖L∞

= Kiρr(ρr)‖(xre f − x)τ‖L∞

< Liρr‖(xre f − x)τ‖L∞

(81)

for i = 1, 2.
Therefore, we obtain:

‖(xre f − x)τ‖L∞ ≤ ‖Gm(s)‖L1 L1ρr‖(xre f − x)τ‖L∞ + ‖Gum(s)‖L1 L2ρr ·
‖(xre f − x)τ‖L∞‖Hxm(s)C(s)H−1

m (s)C‖L1‖x̃τ‖L∞ ,
(82)
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which, along with the L1-norm condition (Equation (16)) and the definition of γ1 (Equa-
tion (14)), leads to:

‖(xre f − x)τ‖L∞ ≤ γ1 − β < γ1. (83)

Similarly, we have

ure f (s)− u(s) ≤ −C(s)[η1re f (s)− η1(s)]− C(s)H−1
m (s)Hum(s)·

[η2re f (s)− η2(s)] + C(s)H−1
m (s)Cx̃(s),

(84)

Therefore, we have the following bound:

‖[ure f (s)− u(s)]τ‖L∞ ≤ ‖C(s)‖L1 L1ρr (γ1 − β) + ‖C(s)H−1
m (s)Hum(s)‖L1 ·

L2ρr (γ1 − β) + ‖C(s)H−1
m (s)C‖L1 γ0

< γ2.

(85)

We note that the upper bounds in Equations (83) and (85) contradict the equalities in
Equation (69), which proves the bounds in Equations (72), (83), and (85). So, Equations (62),
(63), (65), and (66) hold. Moreover, according to Lemma 2, we know that Equation (64)
holds.

From the error dynamics in Equation (41), we have:

‖yre f − y‖L∞ ≤ ‖C‖∞γ1, (86)

which proves Equation (67).
So, Equations (62)–(67) all hold, which proves Theorem 1.

Remark 3. Theorem 1 states that the tracking error between y(t) and yre f (t), as well as u(t) and
ure f (t), is uniformly bounded by an arbitrarily small constant. Thus, an appropriate choice of Ts
can realize effective transient and steady-state performance and meet engineering requirements for
good tracking, demonstrating the firm stability of L1-PcEx.

The ability of the L1 adaptive controller to estimate the uncertainties in the adaptation
laws and compensate for them in the control signal contributes to its excellent performance
and also indicates its great robustness. In an ideal scenario, all uncertainties can be accu-
rately estimated by the adaptation law. However, in reality, estimation errors and delays
exist. L1-ExPc demonstrates superior performance in estimating uncertainties compared
to L1-Pc due to the smaller upper bounds γ1 and γ2, indicating the stronger robustness
of L1-PcEx. Under different system dynamics, the L1-PcEx controller consistently exhibits
the ability to estimate and compensate for uncertainties under different system dynamics,
demonstrating its strong adaptability.

5. Simulation

As stated in Section 2, we regarded the longitudinal motion of a high-subsonic UAV
as the object of control. We used numerous simulations to verify L1-PcEx: simulations of
flight feasibility and of algorithmic comparisons as well as of Monte Carlo.

A block diagram of the base controller of the internal loop of the UAV is shown in
Figure 2, where this is a proportion differentiation (PD) controller. ϑcmd s is the command
of the pitch angle, and KP, KD, and kg are constant gains.
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Figure 2. Structure of the basic controller.

5.1. Flight Feasibility Simulation

This subsection considers the feasibility of L1-PcEx. In the simulations, the command
of the pitch angle uses the feedback data from the on-board guidance data of an actual
flight. External perturbations were considered.

Figure 3a shows the tracking of the pitch angle using the L1-PcEx controller. The upper
half of the figure shows a contrast chart of the actual pitch angle (solid black line) and the
command of the pitch angle (dashed orange line). The lower half shows a contrast chart
of the estimated pitch angle (dotted red line) and the actual pitch angle (solid black line).
Figure 3b shows the effect of tracking the pitch rate (solid black line: pitch rate, dotted red
line: the estimated pitch rate).

It is clear that the actual pitch angle accurately tracked its command well and that the
estimated state vector accurately tracked its actual value. The 2-norm of pitch error in the
simulation satisfied ‖ϑcmd − ϑ‖2 ≤ 65.04, which decreased by 30.7% compared with that of
the actual flight. The mean squared error (MSE) of the pitch was 11.66, and the MSE of the
pitch rate was 66.73.

The results verify that L1-PcEx is a feasible flight control system for high-speed UAVs.
However, more simulations are needed to be conducted to verify the performance of the
L1-PcEx controller; the associated results are in Section 5.2.
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(a) The tracking curve of pitch angle

0 100 200 300 400 500 600 700 800

-5

0

5

(b) The tracking curve of pitch rate

Figure 3. Result of flight feasibility simulation.

5.2. Comparison in the Presence of Uncertainties

This subsection verifies the performance of the L1-PcEx controller compared with
the L1-Pc controller in the presence of uncertainties. Using Ref. [21], we considered the
following uncertainties in this part, where A∆ represents matched uncertainties, z(t) and
xz(t) represent unmodeled dynamics, and f∆(t, x(t), z(t)) represents disturbances (the last
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term) and unmatched uncertainties (the other terms). It is easy to prove that, when x is
bounded, both z(t) and f∆(t, x(t), z(t)) are bounded.

f∆(t, x(t), z(t)) =
[

3/100x1tanh(x1/2)−
√
|x1|/3− x2

2/30− 0.5z
−x2sechx2/2 + (1− e−0.3t)/10 + 0.5z

]
,

g(t, xz(t), x(t)) = [xz2(t);−xz1(t) + 0.8(1− x2
z1(t)xz2(t))], xz(0) = [0.5; 0.2],

g0(t, xz(t)) = 0.1(xz1(t)− xz2(t)) + zu(t),

zu(s) =
−s + 1

100s2 + 8s + 1
[1,−2]x(s),

A∆ = [0.2 − 0.2; 0.1 − 0.4].

(87)

In this subsection, two types of pitch angle commands were used, including square
(shown in Figure 4) and sinusoidal signals (shown in Figure 5), to demonstrate that L1-PcEx
outperforms L1-Pc under different conditions.

Figure 4a,c show the pitch angle tracking by using the L1-Pc controller and the L1-PcEx
controller in the presence of the above uncertainties. The upper halves show a contrast
chart of the pitch angle (solid gray line) and the command of the pitch angle (dashed blue
line), and the lower halves show a contrast chart of the estimated pitch angle (dotted red
line) and the actual pitch angle (solid gray line).

(a) The tracking curve of pitch angle with L1-Pc (b) The tracking curve of elevator with L1-Pc

(c) The tracking curve of pitch angle with L1-PcEx (d) The tracking curve of elevator with L1-PcEx

Figure 4. Performance of L1-PcEx and L1-Pc with square commands.

The convergence time of the pitch angle was less than 2 s for L1-PcEx, and no oscillation
occurred. However, it was found that, under the same square wave command, the L1-Pc
controller strongly diverges from 6 s onwards. After meticulous comparisons, we found
that the controlled deviation of the L1-PcEx controller tends to be smaller than 0.1 degrees,
which implies that L1-PcEx meets the accuracy requirements for engineering applications.
Meanwhile, the peak time of the L1-PcEx controller was almost the same as that of the
L1-Pc controller.
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Figure 4b,d show control signals in the presence of uncertainties. The solid black line
represents the elevator deflection of the UAV.

As demonstrated in Figure 4b, the elevator signal produced by the L1-Pc controller
started to diverge when the pitch angle command changed from 7.6 degrees to 5.6 degrees
at 5 s. In contrast, Figure 4d shows that the control signal generated by the L1-PcEx
controller consistently converged. This clearly demonstrates that the L1-PcEx controller has
a higher adaptive capability than the L1-Pc controller, indicating its potential for superior
performance in flight state transitions. Numerically, the MSE of the pitch was 2.33 in
L1-PcEx, while it was 516.21 in L1-Pc, which further supports the conclusion mentioned
above.

(a) The tracking curve of pitch angle with L1-Pc (b) The tracking curve of pitch angle with L1-PcEx

(c) The tracking curve of pitch angle with L1-PcEx (d) The tracking curve of elevator with L1-PcEx

Figure 5. Performance of L1-PcEx and L1-Pc with sinusoidal commands.

Figure 5 shows simulations performed that are similar to those in Figure 4, but with
the pitch angle command replaced by a sine wave signal instead of a square wave signal.
The purpose was to evaluate the controller’s adaptability and stability, as mentioned earlier.
Therefore, the line styles and legends in Figure 5 are consistent with those described earlier
and will not be repeated here. The conclusion is also similar: the L1-PcEx controller can
adapt to the sinusoidal command within 2–3 s and maintain good tracking, while the L1-Pc
controller exceeds the stability margin under the effect of uncertainty and begins to diverge
significantly around 13 s. Numerically, the MSE of the pitch was 0.29 in L1-PcEx, while it
was 53.62 in L1-Pc.

5.3. Monte Carlo Synthesis Verification

Sections 5.2 verified the superior performance of the L1-PcEx controller over the L1-Pc
controller. However, to apply the L1-PcEx controller to real flights, further verification is
required. We used Monte Carlo simulations to this end.

The scope of deviation for the parameters of the Monte Carlo simulation is shown
in Table 1. The lift coefficient, drag coefficient, coefficients of pitching moment, center of
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gravity, wind, setting angle, thrust line, inertia, mass, and steerage were related to the model
biases. The coefficients of steerage and perturbation were related to the perturbations. All
the parameters followed a normal distribution.

Table 1. Deviation in Monte Carlo simulation parameters.

Parameter Scope

Lift coefficient CL ±10%
Drag coefficient CD ±20%

Pitching moment coefficient CM ±20%
Pitching moment coefficient Cδe

M ±30%
Pitching moment coefficient CQ

M ±50%
Center of gravity xCG (m) ±0.01

Windx (m/s) −10∼5
Setting angle (◦) −1∼1
Thrust line (m) ±0.05

Inertia Ix ±20%
Mass (kg) ±30
Steerage ±10%

Uncertainties coefficient k1 ∼ k7
a ±2%

Uncertainties coefficient λ a ±2%
a The coefficient of f∆(t,x(t),z(t)).

During the Monte Carlo simulations, we could assess the performance of L1-PcEx
during UAV flight state transitions, such as from level flight to descent. However, altitude
and speed significantly impact flight characteristics, so it is necessary to introduce outer
loop control to maintain them. Thus, we followed the work of Refs. [37,38], and applied the
total energy control system (TECS) to the flight control system. The UAV was expected to
climb at 5 s, level at 40 s, slide at 75 s, and level again at 110 s. The results of the simulations
are shown in Table 2 and Figure 6. It is worth noting that the initial parameters for each
Monte Carlo simulation were different, so the given pitch angle command varied.

Table 2. Statistical values of Monte Carlo simulation results.

Parameter
Pitch Angle Error

Mean Value Sample Variance

Before sliding −5.22× 10−4 2.48× 10−7

Sliding for 0.5 s 3.01× 10−1 9.48× 10−5

Sliding for 5 s −1.52× 10−1 7.12× 10−4

Sliding for 10 s 8.92× 10−4 1.13× 10−5

Table 2 shows several statistical values for the Monte Carlo simulations, including
the mean and sample standard deviation of the slide of the UAV. It is clear that the large
error in the pitch angle due to the slide decreased over time and was always less than 0.5
degrees.

Figure 6a–d display the pitch error curve, pitch angle rate curve, adaptive value curve,
and elevator curve over time. The solid blue line represents the mean value, and the light
blue area represents the sample variance. Figure 6a shows that, although the variance of
the error in pitch angle increased to 0.4 degrees when the UAV changed the flight phase
and then decreased to less than 0.05 degrees in no more than 10 s, the variance of pitch
reached its local minimum value at 43.4 s and decreased by 92.88% within 10 s. As shown
in Figure 6b, we also observed an 89.96% reduction in the variance of the pitch rate within
10s. Because TECS gave a different command of pitch angle for each simulation, the
adaptive value and the elevator readily stabilized at different values to ensure that the error
in the pitch angle tended to zero. Therefore, as seen in Figure 6c,d, the means converged at
different states over time while the sample variances remained large.
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(a) The mean and error bars of pitch error (b) The mean and error bars of pitch angle rate

(c) The mean and error bars of adaptive value (d) The mean and error bars of elevator

Figure 6. Results of Monte Carlo simulations.

6. Conclusions

This paper proposed an extended adaptive flight control system for autopilots, highly
improving the performance and practicability of the control system. The main motivation
for this study was to improve the nonlinear characteristics of the original control system
and the extent limitations of this system. We introduced a nonlinear function matrix of state
variables to the L1 controller in the adaptation laws, which closely met our expectations.
We also employed the actual state vector and its estimate to construct an integrator-like
structure and applied it to an L1 controller so that the unexpected transient response
produced by the controller can be eliminated. The L1-PcEx controller allowed for a faster
adaptation to nonlinear uncertainties compared with the L1-Pc controller. The L1-PcEx
controller also delivered a wider margin of stability and higher control accuracy than the
L1-Pc. These enhancements were rigorously proven. The results of the simulations verified
the superior performance of the L1-PcEx controller to that of the L1-Pc controller.

However, the system we proposed involves the calculation of pseudo-inverse matri-
ces, which places higher demands on CPU performance (approximately an extra 35%).
Moreover, the work here is limited by a lack of information on the verification of flights
in practice.

In future studies, it would be beneficial to conduct additional verifications to inves-
tigate the impact of state vector estimates on the L1 controller. Hardware-in-the-loop
simulation (HILS) is an excellent method for validating the effectiveness of algorithms,
and we should implement the evaluation of the L1-PcEx controller on HILS using [39] in
the future. Additionally, further research can be conducted to enhance the nonlinearity
of the system by referring to the Taylor series expansion and investigate the increase in
adaptability. Finally, the system proposed in this paper could be further extended and
implemented in various other fields, such as self-driving cars, missiles, and spacecraft, to
name a few.
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