
Citation: Li, Y.; Cheng, L.; Yuan, J.;

Ai, J.; Don, Y. Neural Network and

Dynamic Inversion Based Adaptive

Control for a HALE-UAV against

Icing Effects. Drones 2023, 7, 273.

https://doi.org/10.3390/

drones7040273

Academic Editors: Zeashan H. Khan,

Imran Mir and Syed Tauqeer Ul

Islam Rizvi

Received: 6 March 2023

Revised: 11 April 2023

Accepted: 14 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Neural Network and Dynamic Inversion Based Adaptive
Control for a HALE-UAV against Icing Effects
Yiyang Li, Lingquan Cheng, Jiayi Yuan, Jianliang Ai and Yiqun Dong *

Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
* Correspondence: yiqundong@fudan.edu.cn

Abstract: In the past few decades, in-flight icing has become a common problem for many missions,
potentially leading to a reduction in control effectiveness and flight stability, which would threaten
flight safety. One of the most popular methods to address this problem is adaptive control. This
paper establishes a dynamic model of an iced high-altitude long-endurance unmanned aerial vehicle
(HALE-UAV) with disturbance and measurement noise. Then, by combining multilayer perceptrons
(MLP) with a nonlinear dynamic inversion (NDI) controller, we propose an MLP-NDI controller to
compensate for online inversion errors and provide a brief proof of control stability. Two experiments
were conducted: on one hand, we compared the MLP-NDI controller with other typical controllers;
on the other hand, we evaluated its robustness and adaptiveness under different icing conditions.
Results indicate that the MLP-NDI controller outperforms other typical controllers with higher
tracking accuracy and exhibits strong robustness in the presence of icing errors and measurement
noise, which has huge potential to ensure flight safety.

Keywords: nonlinear and adaptive flight controllers; modeling of icing UAVs; multilayer perceptrons;
comparison simulation

1. Introduction

In-flight icing poses a significant threat to flight safety and can result in fatal accidents.
The effects of ice accretion on wings and control surfaces can greatly reduce lift and increase
drag forces, and may even cause structural imbalances [1]. This will lead to a decrease in
flight stability and controllability [2]. Statistic data from American Safety Advisor showed
that 12% of all weather-resulted accidents were caused by icing and 92% of the ice-induced
accidents were in-flight icing [3].

To mitigate the risks of in-flight icing, two main approaches are currently used in
practice. The first approach provides pilots with detailed weather information before the
flight mission to avoid potential icing conditions. The second approach relies on classical
icing protection systems (IPSs) which employ deicing and anti-icing methods to remove or
inhibit ice accretion, respectively [4]. Various deicing methods have been incorporated into
IPSs, including bleeding hot engine exhaust to counteract frigid icing conditions and using
inflatable boots to break off the accumulated ice. Chemical reagents have been considered
as an effective anti-icing method in recent years [5]. Despite the implementation of various
engineering measures , accidents resulting from in-flight icing continue to occur. In October
1994, an accident involving American Eagle ATR-72 near Roselawn, Indiana, resulted in the
death of 68 individuals [6]. Similarly, China Eastern Airlines Flight 5210 (CRJ-200) crashed
after takeoff in Baotou City in November 2004 and left 55 dead. In 2009, Air France Flight
447 (A330) crashed over the Atlantic Ocean; all the passengers on board were lost [7,8].
These accidents highlight the inadequacy of relying solely on IPS for ensuring flight safety.
A four-year tailplane icing program (TIP) was then cosponsored by NASA and FAA after
the ATR-72 accident [9], which led to the proposal of the icing management system (IMS)
by Bragg et al. [10]. An IMS firstly takes into account the deterioration of aerodynamic
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derivatives and can automatically activate the traditional IPS devices. It also introduces a
configuration into the flight control laws to restrict the maneuver within a proper margin
of safety.

For HALE-UAVs, ice accretion occurs during the climb stage of flight, particularly
below 25,000 feet altitude. These aircraft often fly through areas with high humidity or
sufficient water content in the clouds, which are naturally icing high-risk regions or strong
icing conditions [11]. For these aircraft, the IPS cannot be activated by a human pilot,
it only relies on the IMS. Inspired by Bragg, recent research on HALE-UAV icing has
primarily focused on two key areas. The first area involves online estimation of the effects
of icing accretion [12], while the second area involves developing an ice-tolerant control
law. Since the icing effects can be considered as a part of the modeling error in many
ways, the use of fault-tolerant control (FTC) can bring better results [13]. Jiang and Yu
divided FTC into passive and active types and gave their comparison results [14]. Passive
approaches such as robust control are relatively easy to implement, but can only handle
limited faults. On the other hand, active approaches perform better when dealing with
various faults, and a lot of research was therefore conducted on it [15–24]. Ru proposed
a multiple model control method that utilizes a finite set of linear models to express the
system in different conditions [16]. Additionally, an online processor that determines which
model to use based on Kalman filters was also employed. Furthermore, Verhaegen et
al. discussed three typical multiple model controllers [17], but the oscillation problem in
model switching still needs further improvements. Shtessel constructed a two-loop cascade
structure of sliding mode control (SMC) by using standard sliding mode functions [18]. It
is theoretically able to handle all structural errors less than the prior-assumed uncertainty,
although limitations still exist. For instance, there must be one, and only one, control surface
for every controlled variable, and we can never afford to lose it [17]. With the enhancement
of hardware computing power in recent years, model-predictive control (MPC) has become
more popular. It can effectively control a multi-input multi-output (MIMO) system with
constraints as long as a reference model exists [19]. However, obtaining an accurate system
without modeling errors remains a critical challenge for MPC.

In recent years, neural networks have also been widely used due to their good global
approximation properties for nonlinear functions [20], and are therefore suitable for adap-
tive compensation. Calise et al. firstly applied this approach to control a rigid robot arm and
successfully incorporated it into a feedback linearization framework [21–23], as shown in
Figure 1. Shin et al. also proposed a neural-network-based adaptive backstepping controller
and achieved good performance [24]. Though feedback linearization is an effective control
technology, the linearized model for a six-DOF icing aircraft can be highly time-varying,
and compensation for this approximate linear system can vary significantly in continuous
time steps. To address this issue, this paper combines the nonlinear inversion method with
neural networks and divides the entire system into three-layer subsystems. This decoupling
stabilizes the ideal compensation and enhances the neural network’s learning effect.

To be specific, the highlights of our work are

1. We established a comprehensive fixed-wing icing model of HALE-UAV considering
wind disturbance and sensor noise.

2. We proposed an ice-tolerant control structure by combining multilayer perceptrons
with the nonlinear dynamic inverse method (MLP-NDI controller) to provide robust
compensation for the nonlinear and time-varying icing effects.

3. We conducted extensive comparisons between the MLP-NDI controller and three typ-
ical controllers, demonstrating its superior performance in terms of stability, accuracy,
and robustness.

4. We explored the robustness and verified the effectiveness of an MLP-NDI controller
under various icing scenarios.
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Figure 1. Nonlinear adaptive output feedback controller.

The remaining parts of this paper are organized as follows. Section 2 analyses the icing
effect on flight dynamics based on the DHC-6 nonlinear model. Section 3 gives the overall
control architecture of the NDI with MLP compensator and applies the MLP-NDI controller
to icing flight control, including the icing effect model. Section 4 provides the simulation
results and analysis, which demonstrate the feasibility of the MLP-NDI with a preliminary
assessment of its control performance. Finally, a conclusion is presented in Section 5.

2. Flight Dynamic Model
2.1. Icing Effects on Flight Dynamic

Bragg et al. proposed a classical model of icing effects on a fixed-wing aircraft [25]:

Ciced
∗ = Cclean

∗ · (1 + ηicekC∗) (1)

where Cclean
∗ , Ciced

∗ are the same aerodynamic derivative before and after icing. ηice is
an icing severity factor, and kC∗ is the associated slope determined from the parameter
being modified.

Considering the lack of available data on icing-related research for fixed-wing UAVs
and the similarity in the aerodynamic design to fixed-wing aircrafts, this paper established
the icing model utilizing open access data of the Twin Otter icing research plane DHC-6
(Figure 2), which has been extensively tested by NASA [26]. Table 1 provides detailed
clean and iced parameters for DHC-6, which were captured at ηice = 0 and ηice = 0.2 [5].
kC∗ could then be calculated as the associated slope from this particular data point under
different icing locations (wing, tail, and wing–tail both icing).

Figure 2. NASA Glenn Research Center icing research aircraft (DHC-6) https://www1.grc.nasa.gov/
facilities/hangar/ (accessed on 1 March 2023).

https://www1.grc.nasa.gov/facilities/hangar/
https://www1.grc.nasa.gov/facilities/hangar/
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Table 1. Dynamic parameters of Twin Otter in clean and iced configurations.

(a)

CZ0 CZα CZq CZδe Cx0 K Cm0 Cmα Cmq Cmδe

Clean −0.380 −5.660 −19.970 −0.608 −0.041 0.052 0.008 −1.310 −34.200 −1.740
Wing −0.380 −5.342 −19.700 −0.594 −0.050 0.053 0.008 −1.285 −33.000 −1.709
Tail −0.380 −5.520 −19.700 −0.565 −0.046 0.053 0.008 −1.263 −33.000 −1.593
Both −0.380 −5.094 −19.700 −0.550 −0.062 0.057 0.008 −1.180 −33.000 −1.566

(b)

CYβ CYp CYr CYδr Clβ Clp Clr Clδa Clδr Cnβ Cnp Cnr Cnδa Cnδr

Clean −0.60 −0.20 0.40 0.150 −0.080 −0.50 0.06 −0.150 0.0150 0.10 −0.06 −0.180 −0.12 −0.001
Both −0.48 −0.20 0.40 0.135 −0.072 −0.45 0.06 −0.135 0.0138 0.08 −0.06 −0.169 −0.11 −0.001

To accurately simulate the in-flight icing process, we utilized a time-varying model
that takes into account the accumulation of in-flight icing with time [27,28].

d
dt

ηice = N1(1 + N2ηice)Cη (2)

where Cη denotes the conduciveness of the atmosphere to icing. The coefficients N1, N2
are determined from an assumed icing severity profile characterized by the icing duration
time, Tcld, and the final and middle values of the icing severity, ηice(Tcld) and ηice(Tcld/2),
respectively. For all cases in this paper, the conduciveness of the atmosphere to icing is
assumed to be a raised cosine as follows:

Cη(t) =
1
2
[1− cos(

2πt
Tcld

)] + dη (3)

Note that there exists an uncertainty dη in the conduciveness model; here, we consider
a zero-bias situation with dη = 0. We then have

N2 =
ηice(Tcld)− 2ηice(Tcld/2)

[ηice(Tcld/2)]2

N1 =
2

N2Tcld
ln[1 + N2ηice(Tcld)]

(4)

Besides the clean case (no ice), two typical scenarios are investigated in this pa-
per. Figure 3 shows the change of ηice in different cases. For the moderate icing case,
Tcld = 360, ηice(Tcld) = 0.2, ηice(Tcld/2) = 0.12. For the severe/rapid icing case, Tcld = 120,
ηice(Tcld) = 0.9, ηice(Tcld/2) = 0.5. Both cases have the same start of ice accretion at t = 30
with wing–tail both icing and the whole experiment lasts for 542 s, which would be suffi-
cient to fully evaluate different controllers’ performance.

2.2. Nonlinear Dynamics

In this paper, the six-DOF motion equations of an HALE-UAV were established in
the body axis [29]. To ensure consistency across all testing cases, the simulations were
initialized from a trimmed point of steady, level flight at an altitude of 3000 m and a velocity
of 60 m/s. At the start of the simulation, the icing severity of the HALE-UAV was 0, and
all icing effects began at t = 30. Throughout the simulation period, the icing severity was
modeled using Equations (2)–(4) with different trends shown in Figure 3.
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Figure 3. Icing severity for the clean and two icing cases.

2.3. Disturbances and Measurement Noise

The effects of disturbance and measurement noise on an icing fixed-wing aircraft
were first considered by Bragg et al. [25], after which a lot of further research has been
conducted [4,5,27,28,30]. In this paper, we modeled disturbance as a zero-mean, band-
limited white Gaussian noise with 50 Hz bandwidth. Since the linearized motion transform
between the UAV’s wind and body axis is V ≈ u, α ≈ w/V, β ≈ v/V, the intensity of
disturbance is modeled as a perturbation to the velocities in body axes with a severe case
of dp = u̇w = v̇w = ẇw = 0.40 g.

V̇w ≈ u̇w

α̇w ≈ ẇw/V

β̇w ≈ v̇w/V

(5)

Similarly, the measurement noise is also constructed as a zero-mean, band-limited
Gaussian noise. The noise intensities, which depend largely on the UAV’s sensor resolution,
were picked from the detailed information of in-flight instruments [26]. Some of these are
listed in Table 2.

Table 2. Part of the sensor resolution of Twin Otter.

p/q r θ φ α/β V H δa δe δr

0.0167 0.0138 0.0293 0.0439 0.003 0.0391 2.4994 0.0091 0.0128 0.008

3. MLP-NDI Adaptive Control
3.1. Feedback Inversion

Consider a nonlinear dynamic system

ẋ = f (x, u) (6)

where x ∈ Rm represents the state vector and u ∈ Rn represents the control vector. Define a
pseudo-control vector v, which satisfies

ẋ = v

v = f (x, u)
(7)
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The inverse system can then be written as

û = f̂−1(x, v) (8)

where f̂−1 represents the approximation of inverse model. Since it is always hard to obtain
the explicit model, the inversion error ∆ is defined as follows:

∆(x, u) = f (x, û)− f̂ (x, û) (9)

The closed-loop dynamic system then becomes

ẋ = v + ∆(x, u) (10)

Mathematically speaking, the inversion error is a function that is nonlinear, time-
varying, and dependent on the command signal, states, and inputs, making it difficult to
model precisely under a severe icing scenario. Furthermore, the aerodynamic derivatives
of icing conditions in Table 1 can only be used for modeling purposes. Consequently,
the control law should be based solely on the parameters of the clean aircraft. It is there-
fore theoretically challenging to eliminate the inversion error within a dynamic inverse
framework alone.

Noticing the good approximation property of neural networks for continuous non-
linear functions, an MLP can be employed here as an error compensator. By adding an
additional term vnn on the pseudo-control signal v at each moment, the inversion error can
be sufficiently mitigated. The resulting control structure is depicted in Figure 4.

𝑥𝑥𝑐𝑐 Reference
Signal Filter

�̇�𝑥𝑟𝑟

𝑥𝑥𝑟𝑟 Nonlinear 
Icing

Model

𝑣𝑣𝑝𝑝 𝑥𝑥

−

MLP Adaptive
Compensator

𝑣𝑣𝑛𝑛𝑛𝑛

−

𝑣𝑣

𝑣𝑣𝑓𝑓

𝑢𝑢NDI
Controller

K
�𝑥𝑥

Figure 4. Structure of MLP-NDI controller.

The pseudo-control signal v is then composed of three parts: a derivative term of the
reference signal v f , a proportional term of the error vp, and an adaptive compensation
term vnn

v = v f + vp − vnn (11)

where

v f = ẋr

vp = K(xr − x) = Kx̃
(12)

Substituting (11) and (12) into (10), the error system can be obtained as follows:

˙̃x = −Kx̃ + vnn − ∆ (13)

Hence, if the adaptive compensator can fully offset the inversion error, the error system
would then be asymptotically stable.
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3.2. MLP-Based Adaptive Compensator

In this paper, a multilayer perceptron was applied to reconstruct the inversion er-
ror [31]. As shown in Figure 5, an input–output map of the MLP structure can be written as

vnn,k = θWk +
n2

∑
j=1

wjkσ(zj) (14)

where k = 1, 2, ..., n3, and

σ(zj) = σ(θVj +
n1

∑
i=1

vijxi) (15)

where n1, n2, n3, respectively, represent the input size, the hidden layer size, and the output
size of the neural network. wjk, vij are the layer weights and θ is the bias. σ(z) is an
activation function, and, here, we chose the sigmoid function defined as

σ(z) =
1

1 + e−z (16)

…

…

𝜎𝜎

𝜎𝜎

𝜎𝜎

1

𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑛𝑛1

…

𝜎𝜎

𝑛𝑛1
𝑛𝑛2

𝑊𝑊
𝑉𝑉 𝑣𝑣1

𝑣𝑣2

𝑣𝑣𝑛𝑛𝑛

1

𝑛𝑛𝑛

Figure 5. MLP compensator.

In addition, we define two weight matrices V ∈ R(1+n1)×n2 , W ∈ R(1+n2)×n3

V =


θV1 · · · θVn2

v11 · · · v1n2
...

. . .
...

vn11 · · · vn1n2



W =


θW1 · · · θWn3

v11 · · · v1n3
...

. . .
...

vn21 · · · vn2n3


(17)

and two augmented vectors x ∈ R(1+n1), σ ∈ R(1+n2)

x =
[
1 x1 · · · xn1

]T

σ =
[
1 σ1 · · · σn2

]T
(18)

Equations (14) and (15) can then be expressed as

vnn = WT · σ(VT · x) (19)
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The universal approximation property of neural networks ensures that for any ε0 > 0
and x ∈ D, whereD is a bounded domain, there always exists a set of V∗, W∗ which satisfies

v∗nn = W∗Tσ(V∗Tx) = ∆ + ε (20)

where ‖ε‖ < ε0. This set of V∗, W∗ is often considered as the ideal weights of MLP.
Therefore, it is always theoretically possible to obtain an ideal estimate of the inversion

error v∗nn = ∆, so as to make the tracking error tend to 0.

3.3. Application to Icing Flight Control

According to the multiscale singular perturbation theory, the flight state variables can
be divided into three groups: the fastest variables of angular velocity p, q, r, the slower
variables of attitude angle α, β, µ, and the slowest variables of speed and track angle
V, γ, χ. Thus, we adopted the control framework shown in Figure 6, where dT, da, de, anddr
denote the control inputs of propulsion and deflection angles. All systems in Figure 6 are
first-ordered.

Maneuver
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Slow
Attitude
System𝜇𝜇𝑑𝑑

𝛼𝛼𝑑𝑑
𝛽𝛽𝑑𝑑
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𝑉𝑉𝑑𝑑
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𝜒𝜒𝑑𝑑
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Rotational

System𝑑𝑑𝑑𝑑

𝑝𝑝𝑑𝑑
𝑞𝑞𝑑𝑑

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

−

𝑥𝑥

− −
𝑉𝑉
γ
𝜒𝜒

𝛼𝛼
𝛽𝛽
𝜇𝜇

𝑝𝑝
𝑞𝑞
𝑑𝑑

Figure 6. The overall control architecture DHC-6.

In this structure with time-scale separation , the maneuver generator only calculates the
inversion solution from translational displacement to rotational attitude. This subsystem
only involves kinematic equations which are less affected by the in-flight icing. Therefore,
adopting adaptive controllers in the inner systems would be sufficient.

As shown in Figure 7, we added the MLP compensators in the channels of α, β, andµ,
respectively, in the slow attitude system. Taking channel α as an example, we have the
network input and output:

x =
[
1 α̃ αd α̇d vα ‖Ẑ‖

]T

y = [v̂nn_α]
(21)

where Ẑ =

[
V̂α 0
0 Ŵα

]
, and ‖ · ‖ denotes the Frobenius norm. The extra term v̂nn_α will then

be added into the original NDI controller before generating the instructed signal pd, qd, rd
for the inner loop [32].

However, we can hardly obtain the value of inversion error ∆ due to the effects of
in-flight icing and the uncertainty of process and measurement. Thus, it is necessary to
update the weight matrices V̂, Ŵ with time to estimate the ideal weights V∗, W∗

vnn = v̂nn + vr = ŴTσ(V̂Tx) + vr (22)

where v̂nn represents the estimation of ∆ by MLP at this time step, and vr represents a term
that provides robustness for the higher-order terms in the Taylor series detailed later. For
convenience, letting σ̂ = σ(V̂Tx), we then have

vnn = ŴT σ̂ + vr (23)
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Figure 7. Structure of MLP-NDI in slow attitude system.

Substituting Equation (23) into (13), the error system then becomes

˙̃x = −Kx̃ + ŴT σ̂ + vr − ∆ (24)

In addition, considering the approximation of ∆ in Equation (20), we have

˙̃x = −Kx̃ + ŴT σ̂−W∗Tσ∗ + ε + vr (25)

Using a Taylor-series expansion of σ∗(z) at z = ẑ, we have

σ∗ = σ̂ + σ̂′[V∗T − V̂T ]x + O([V∗T − V̂T ]x)2 (26)

where O([V∗T − V̂T ]x)2 denotes the higher-order terms of the Taylor-series and σ̂′ is the
Jacobian matrix of σ̂:

σ̂′(z) =


0 · · · 0

dσ(z1)
dz1

· · · 0
...

. . .
...

0 · · · dσ(zn2 )

dzn2

 (27)

Letting Ṽ = V̂−V∗, W̃ = Ŵ−W∗, σ̃ = σ(V̂Tx)−σ(V∗Tx), Equation (26) then becomes

σ∗ = σ̂− σ̂′ṼTx−O(ṼTx)2 (28)

Substituting (28) into (25), we have

˙̃x = −Kx̃ + W̃T σ̂ + W∗T σ̂′ṼTx + W∗TO(ṼTx)2 + ε + vr (29)

Organizing the formula, we have

˙̃x = −Kx̃ + W̃T σ̂ + W∗T σ̂′V̂Tx− ŴT σ̂′V∗Tx + W̃T σ̂′V∗Tx + W∗TO(ṼTx)2 + ε + vr

= −Kx̃ + W̃T σ̂− W̃T σ̂′V̂Tx + ŴT σ̂′ṼTx + W̃T σ̂′V∗Tx + W∗TO(ṼTx)2 + ε + vr

= −Kx̃ + W̃T [σ̂− σ̂′V̂Tx] + ŴT σ̂′ṼTx + ω + ε + vr

(30)
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where
ω = W̃T σ̂′V∗Tx + W∗TO(ṼTx)2 (31)

Lewis et al. gives the general bounding expression for ω where γ = x̃TK−1 denotes
the generalized error [31]:

‖ω(t)‖ ≤ c0 + c1‖Ẑ‖+ c2‖Ẑ‖‖γ‖+ c3‖Ẑ‖2 (32)

Supposing the command signal and the norm of network weights are bounded as follows:

‖Z‖F ≤ ZM

‖
[
x̃ xd ẋd

]
‖ ≤ xM

(33)

we then have the form of coefficients in Equation (32):

c0 = 2(1 + n2)ZM

c1 = (1 + n2)[1 + xM + (2 + n2)ZM](2 + n2)

c2 = (1 + n2)(2 + n2)

c3 = (1 + n2)(2 + n2)
2

(34)

Consider a candidate Lyapunov function

L(x̃, V, W) =
1
2

x̃T Px̃ +
1
2

tr{ṼΓ−1
v ṼT}+ 1

2
tr{W̃Γ−1

W w̃T} (35)

with the weights adaptation law

˙̂W = −[(σ̂− σ̂′V̂Tx)γ + λ‖γ‖Ŵ]Γw

˙̂V = −[xγŴT σ̂′ + λ‖γ‖V̂]Γv
(36)

where Γw, Γv represent the learning rates of weight matrices, and λ is the weight between
the gradient update and error update. In order to speed up the convergence of neural
networks, we adjusted the learning rates online with respect to the latest error:

Γ(t) =


(1− η)Γ(t− 1), x̃(t) < x̃(t− 1)

(1 + η)Γ(t− 1), x̃(t) > x̃(t− 1)

Γ(t− 1), x̃(t) = x̃(t− 1)

(37)

where η > 0 represents the adjustment factor of the learning rate.
Designing the robust term described in (23) as follows,

vr = −Kr0γT − Kr1(‖Ẑ‖+ Z)γT (38)

we then have the derivative of Lyapunov function with (32), (34)–(36), and (38):

L̇(x̃, V, W) = −‖x̃‖2 + γ(ε + ω + vr) + λ‖γ‖tr{Z̃T Ẑ}
≤ −‖x̃‖2 − a0‖γ‖2 + a1‖γ‖

(39)

where

a0 = Kr0 + 2Kr1Z + (Kr1 − c2)‖Z‖
a1 = (c3 − λ)‖Z̃‖2 + (λZ + c1)‖Z̃‖+ ε + c0

(40)

Thus, a0 > 0 implies that Kr1 > c2, which is sufficient to show that L̇ is negative
semidefinite when ‖γ‖ ≥ |a1/a0|. Recall that γ = x̃TK−1; thus, L̇ = 0 is satisfied only
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when x̃ = 0. According to LaSalle’s invariance theorem, the tracking error x̃(t) is asymptot-
ically stable.

Similarly, we also adopted the MLP compensators in the fast rotational system and
obtained the mapping relationship from the reference signal of pd, qd, rd to the controller
outputs da, de, dr. The overall structure is shown in Figure 8.
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Figure 8. Structure of MLP-NDI in fast rotational system.

4. Experiment Evaluation and Comparison

In this section, the effectiveness of the proposed algorithm was demonstrated through
experiments consisting of two scenarios. The UAV model with measurement noises pro-
posed in Section 2 was utilized here for simulation under the effects of ice and disturbance.
Since ice accretion is a continuous process, a long pentagonal route that includes both
longitudinal and lateral maneuvers was chosen as the experiment trajectory. The command
signals of V, γ, χ with respect to time are presented in Table 3. All experiments were
implemented in MATLAB and executed on a server with a 2.60 GHz CPU and 16.0 GB
of RAM.

Table 3. Command signals in simulation.

Time (s) V (m/s) γ (deg) χ (deg)

0∼60 60 5 0
60∼90 60 3 0∼90

90∼150 60 3 90
150∼330 70 0 90
330∼390 60 -3 90
390∼420 60 -3 90∼180
420∼542 50 -3 180

4.1. Scenario 1: Controllers Comparison

In this comparison scenario, all experiments were conducted under the moderate
icing case described in Figure 3, where the severity factor ηice increased from 0 to 0.2 over
a simulation time of 30∼390 s. To obtain an overall assessment of control performance,
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another three typical methods were adopted to make a comparison with MLP-NDI, which
are MPC, SMC, and L1 adaptive control.

• MPC is widely recognized as a highly effective time domain controller due to its ability
to predict the system’s future response and handle various process constraints in a
systematic manner. Inspired by Wang [33], we utilized orthogonal basis functions
such as Laguerre and Kautz function to establish the trajectory model of the control
input signal u(t). By doing so, we were able to obtain a concise cost function J, which
could be optimized using quadratic programming (QP) to provide the optimal input
series within each time horizon.

• The SMC method is a popular nonlinear control approach known for its robustness
and ability to handle modeling error within a certain range [34,35]. In this paper, first-
and second-order dynamic sliding mode technologies were employed to construct
a sliding surface for the attitude control system [36], which was then used to derive
the control law. In addition, a proportional control method with a low-pass filter was
introduced outside the attitude loop to enable the tracking of velocity and track angles.

• L1 adaptive control is an adaptive method that can handle system uncertainty and
parameter variation with sufficient robustness [37,38]. By designing a PI controller
with a state observer using the linear quadratic regulator (LQR) technique, the L1
adaptive control is then applied to the traditional NDI framework to improve the
system tracking performance under icing scenarios [39].

• The MLP-NDI controller described in Section 3.3 was tested here and initialed with
random weights. The hidden layer consisted of 15 neurons and the adjustment factor
of the learning rate was η = 0.01. The weight matrices were updated online according
to Equation (36).

Figure 9 shows the complete tracking trajectories of command signals and Figure 10
provides the tracking error. Since the wind disturbance and icing effects cannot be modeled
in advance, the MPC controller can only make future predictions based on a clean DHC-6
model, resulting in considerable oscillations beyond the 5% error band. Therefore, the
response performance of the remaining three controllers was mainly compared in Table 4.
The metrics used in the comparison, namely, settling time tp, rise time tr, maximum
overshoot σ%, and steady-state error ess, are listed in the first column. Three step signals
were generated, respectively, for the V, γ channels, and two ramp signals for the χ channel,
with the arrival time of each command signal displayed in the second row. Especially, for
ramp signals, the settling time was defined as the time required to achieve a stable slope,
while metrics of rise time and maximum overshoot were deprecated here.

Table 4. Comparison of 3 controllers.

PERF

CASE V γ χ

150 330 420 60 150 330 60 390

tp

SMC 0.56 0.42 0.30 − − − 23.33 26.09
L1 5.89 20.80 16.21 6.69 5.68 5.46 3.19 6.84

MLP-NDI 13.72 21.30 17.19 14.07 12.24 14.94 13.26 18.92

tr

SMC 0.31 0.13 0.06 0.05 0.06 0.08
− −L1 4.25 6.38 5.13 0.96 0.91 1.02

MLP-NDI 3.02 7.37 5.69 2.37 2.75 2.73

σ%
SMC 2.6 1.98 2.22 137.82 164.99 115.67

− −L1 0 19.45 12.23 8.74 11.14 7.23
MLP-NDI 20.83 49.55 42.13 20.03 27.60 23.66

ess

SMC 0.0085 0.0040 0.0294 0.1462 0.0964 0.0974 3.6277 3.6773
L1 0.0095 0.0029 0.0006 0.0002 0.00005 0.0003 2.9881 3.0091

MLP-NDI 0.0041 0.0061 0.0119 0.0121 0.0117 0.0002 0.0294 0.0240
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Figure 9. Signal tracking of V, γ, and χ.

Figure 10. Tracking error of V, γ, and χ.
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Results indicate that the SMC controller has a faster settling time and rise time than L1
and MLP-NDI in channel V, while it has a steady-state error in channel γ, and is unable
to stabilize within the 5% error band, leading to an invalid rise time metric. In addition,
each time SMC receives a new command, there is a buffeting effect that results in a large
overshoot. Both L1 and SMC show degeneration on lateral tracking in channel χ with a
steady-state error always present. This suggests the existence of a delay in tracking the
ramp signal. In contrast, the MLP-NDI controller is able to adjust weight matrices to catch
up with the reference ramp signal and minimize the steady-state error. Further analysis
can be conducted on the specific reasons behind the different performance characteristics
of each controller.

• In the case of the MPC controller, the disturbance and measurement noise were unable
to be modeled, which led to oscillations during the optimization of Laguerre func-
tions [33]. However, since the uncertainty was modeled with a zero-mean Gaussian
function, the output of the MPC controller still remained close to the ideal output.

• In the SMC controller, the nonlinear system constructed is different on either side of
the sliding mode region, leading to different paths towards the termination point [40].
This can result in buffeting due to the sensitivity of the system. The trajectory of SMC
shows that the HALE-UAV experiences a long oscillation above the command signal,
while on the other side of the sliding surface, the system performs more sensitively
and is much quicker. As a result, the time accumulation of climbing is always larger
than the time of descending, leading to a steady-state error in channel γ.

• Due to the effect of the low-pass filter in L1 adaptive law [41] and also in SMC [36], the
tracking of command ramp signal in channel χ experiences a short delay compared
with MLP-NDI, and this results in larger offsets in terms of displacement.

• Since the neural network of MLP-NDI was initialed with all random weights, it
requires some time to update weights matrices before converging to a local optimum.
Similarly, the adaptability of L1 also comes from its construction of the error system at
each time moment; thus, both perform much slower than SMC, which mainly relies
on the robustness of its default sliding surface.

Figure 11 depicts the complete tracking trajectories of the command signals, while
Table 5 shows the tracking errors of displacement. We divided the case into three phases:
before icing (clean), during icing (icing), and after icing (iced). All three phases, respectively,
represent three different system types: a time-invariant system with known parameters, a
time-variant system with unknown parameters, and a time-invariant system with unknown
parameters. Results indicate that all controllers show sufficient control accuracy of a clean
aircraft, but show significant performance degradation in the presence of icing. Consistent
with previous results, MPC achieves the largest tracking error due to the inability to model
icing. On the other hand, MLP-NDI has the minimum tracking error and standard deviation
in the icing scenario, indicating the best control performance and stability. Particularly,
the L1 adaptive controller exhibits the minimum average error in the iced case, despite its
suboptimal standard deviation.

In addition, the inner-loop states are shown in Figure 12. Since different controllers
have different control strategies every time a command signal comes, SMC exhibits more
aggressive behavior compared to L1 and MLP-NDI. Overall, the MLP-NDI controller
shows the strongest robustness and best adaptability for in-flight icing scenarios, while
maintaining an acceptable rate of convergence.
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Table 5. Tracking error in displacement.

CASE
ERROR (m)

max min mean std

Clean

MPC 0.13 0 0.08 0.04
SMC 1.58 0 0.83 0.44

L1 0.02 0 0.01 0.01
MLP-NDI 0.50 0 0.12 0.11

Icing

MPC 137.79 0.04 86.97 34.58
SMC 86.09 1.57 73.39 24.60

L1 111.96 0.04 90.28 32.94
MLP-NDI 73.69 0.02 52.51 18.15

Iced

MPC 167.99 109.03 136.42 13.30
SMC 88.56 75.81 77.81 3.55

L1 94.48 53.80 64.81 11.64
MLP-NDI 78.85 48.23 68.30 8.81

Figure 11. Overall trajectories of 4 controllers.

4.2. Scenario 2: Ice-Tolerant Robustness

The second experiment aimed to assess the robustness of the MLP-NDI controller
under different levels of icing severity, as described in Figure 3. For the moderate icing
scenario, ηice increased from 0 to 0.2 within a simulation time of 30∼390 s, while for the
severe/rapid scenario, ηice rose from 0 to 0.9 within a simulation time of 30∼150 s. The
tracking trajectories of command signals are shown in Figure 13 and the tracking error is
given in Figure 14. For all cases, the MLP-NDI controller can always follow the command
while maintaining stability. However, as the severity of icing increased from the clean
scenario to the moderate and severe/rapid scenarios, the tracking performance of the
MLP-NDI controller gradually deteriorated, with the longitudinal tracking being more
affected than the lateral tracking. Figure 15 shows that the compensation term of MLP in
each channel increased significantly as the icing severity and rate increased.
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Figure 12. Inner-loop states of different controllers.
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Additionally, the response of the inner-loop states to the 50 Hz perturbation and mea-
surement noise is depicted in Figure 16, revealing high-frequency changes. The rotational
states show similar trends in three scenarios with different amplitudes. Figure 17 gives the
overall trajectories and Table 6 shows the tracking error of clean scenario, moderate icing
scenario, and severe/rapid scenario in terms of displacement. These results confirm the
MLP-NDI controller’s sufficient robustness to different icing conditions.
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Figure 13. Signal tracking of V, γ, and χ.

Table 6. Tracking error in 3 icing cases.

CASE
ERROR (m)

max min mean std

Clean − 42.04 0 23.25 13.20

Moderate
clean 0.50 0 0.12 0.11
icing 73.69 0.02 52.51 18.15
iced 78.85 48.23 68.30 8.81

Severe/rapid
clean 0.50 0 0.12 0.11
icing 77.52 0.04 49.03 31.79
iced 106.28 59.99 85.08 11.80
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Figure 14. Tracking error of V, γ, and χ.
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Figure 16. Inner-loop states under three icing scenarios.
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Figure 17. Overall flight trajectories under three icing scenarios.

5. Conclusions

In this paper, a novel MLP-NDI controller was proposed and its performance in
ice-tolerant control was demonstrated. To implement and test the controller, a DHC-6
model was constructed that includes icing effect, wind disturbance, and measurement
noise. In addition to the MLP-NDI controller, three other controllers were also tested on
this icing model, and the performance of all controllers was evaluated during various
combined maneuvers.

In the aforementioned modeling scenario, the traditional NDI method was found
to have a huge inversion error brought by model uncertainty. To solve this problem, a
compensator based on neural networks was designed for each of the three control channels.
Two simulations were conducted with the following purposes: the first compared the
MLP-NDI controller’s performance with other typical controllers, and the second tested
its robustness under three icing scenarios. The results demonstrate that the MLP-NDI
controller is capable of adapting to different icing conditions and exhibits strong robustness
against in-flight icing.

Future work will involve the application of deep neural networks to the controller,
and the consideration of more complex models, such as those involving center of gravity
offset and shape asymmetry. In addition, the current controller will be tested and improved
in more extreme conditions, including addressing actuator limitations or failures.
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HALE-UAV high-altitude long-endurance unmanned aerial vehicle
MLP Multilayer perceptron
NDI Nonlinear dynamic inversion
IPS Icing protection system
TIP Tailplane icing program
IMS Icing management system
FTC Fault tolerant control
SMC Sliding mode control
MPC Model-predictive control
MIMO Multi-input multi-output
DOF Dimension of freedom
QP Quadratic programming
LQR Linear quadratic regulator
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27. Melody, J.W.; Hillbrand, T.; Başar, T.; Perkins, W.R. H∞ parameter identification for inflight detection of aircraft icing: The
time-varying case. Control Eng. Pract. 2001, 9, 1327–1335. [CrossRef]

28. Dong, Y.; Ai, J. Research on inflight parameter identification and icing location detection of the aircraft. Aerosp. Sci. Technol. 2013,
29, 305–312. [CrossRef]

29. Fang, Z.; Chen, W.; Zhang, S. Aerospace Vehicle Dynamics, 1st ed.; Beihang University Press: Beijing, China, 2005.
30. Pokhariyal, D.; Bragg, M.; Hutchison, T.; Merret, J. Aircraft flight dynamics with simulated ice accretion. In Proceedings of the

39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2001; p. 541.
31. Lewis, F.L.; Yesildirek, A.; Liu, K. Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans.

Neural Netw. 1996, 7, 388–399. [CrossRef]
32. Snell, S.A.; Enns, D.F.; Garrard, W.L., Jr. Nonlinear inversion flight control for a supermaneuverable aircraft. J. Guid. Control. Dyn.

1992, 15, 976–984. [CrossRef]
33. Wang, L. Model Predictive Control System Design and Implementation Using MATLAB®; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2009.
34. Jafarov, E.M.; Tasaltin, R. Robust sliding-mode control for the uncertain MIMO aircraft model F-18. IEEE Trans. Aerosp.

Electron. Syst. 2000, 36, 1127–1141.
35. Wang, T.; Xie, W.; Zhang, Y. Adaptive sliding mode fault tolerant control of civil aircraft with separated uncertainties. In

Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,
Orlando, FL, USA, 4–7 January 2010; p. 945.

36. Pu, M.; Wu, Q.; Jiang, C.; Dian, S.; Wang, Y. Recursive terminal sliding mode control for higher-order nonlinear system with
mismatched uncertainties. Acta Autom. Sin. 2012, 38, 1777–1793. [CrossRef]

37. Hovakimyan, N.; Cao, C. L1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation; SIAM: Urbana, IL, USA, 2010.
38. Banerjee, S.; Boyce, R.; Wang, Z.; Baur, B.; Holzapfel, F. L1 augmented controller for a lateral/directional maneuver of a hypersonic

glider. J. Aircr. 2017, 54, 1257–1267. [CrossRef]
39. Chen, Q.; Wan, J.; Ai, J. L 1 adaptive control of a generic hypersonic vehicle model with a blended pneumatic and thrust vectoring

control strategy. Sci. China Inf. Sci. 2017, 60, 32203. [CrossRef]
40. Levant, A. Sliding order and sliding accuracy in sliding mode control. Int. J. Control 1993, 58, 1247–1263. [CrossRef]
41. Hellmundt, F.; Wildschek, A.; Maier, R.; Osterhuber, R.; Holzapfel, F. Comparison of L1 adaptive augmentation strategies for a

differential PI baseline controller on a longitudinal F16 aircraft model. In Advances in Aerospace Guidance, Navigation and Control;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 99–118.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/0893-6080(89)90003-8
http://dx.doi.org/10.1109/TNN.2002.804289
http://www.ncbi.nlm.nih.gov/pubmed/18244538
http://dx.doi.org/10.1109/TCST.2003.821957
http://dx.doi.org/10.1016/S0967-0661(01)00081-8
http://dx.doi.org/10.1016/j.ast.2013.03.012
http://dx.doi.org/10.1109/72.485674
http://dx.doi.org/10.2514/3.20932
http://dx.doi.org/10.3724/SP.J.1004.2012.01777
http://dx.doi.org/10.2514/1.C033313
http://dx.doi.org/10.1007/s11432-016-0169-8
http://dx.doi.org/10.1080/00207179308923053

	Introduction
	Flight Dynamic Model
	Icing Effects on Flight Dynamic
	Nonlinear Dynamics
	Disturbances and Measurement Noise

	MLP-NDI Adaptive Control
	Feedback Inversion
	MLP-Based Adaptive Compensator
	Application to Icing Flight Control

	Experiment Evaluation and Comparison
	Scenario 1: Controllers Comparison
	Scenario 2: Ice-Tolerant Robustness

	Conclusions
	References

