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Abstract: Scheduling is one of the key technologies used in unmanned aerial vehicle (UAV) swarms.
Scheduling determines whether a task can be completed and when the task is complete. The
distributed method is a fast way to realize swarm scheduling. It has no central node and UAVs can
freely join or leave it, thus making it more robust and flexible. However, the two most representative
methods, the Consensus-Based Bundle Algorithm (CBBA) and the Performance Impact (PI) algorithm,
pursue the minimum cost impact of tasks, which have optimization limitations and are easily cause
task conflicts. In this paper, a new concept called “task consideration” is proposed to quantify
the impact of tasks on scheduling and the regression of the task itself, balancing the exploration
of the UAV for the minimum-impact task and the regression of neighboring tasks to improve the
optimization and convergence of scheduling. In addition, the conflict resolution rules are modified
to fit the proposed method, and the exploration of tasks is increased by a new removal method to
further improve the optimization. Finally, through extensive Monte Carlo experiments, compared
with CBBA and PI, the proposed method is shown to perform better in terms of task allocation and
total travel time, and with the increase in the number of average UAV tasks, the number of iterations
is less and the convergence is faster.

Keywords: UAV planning; swarm scheduling; distributed method; market-based algorithm;
task consideration

1. Introduction

At present, unmanned aerial vehicle (UAV) swarms have attracted increasing research
attention because of their excellent reliability, rapidity, and self-organization. Compared
with a single-UAV system, a UAV swarm can complete more tasks that cannot be completed
by a single UAV, such as multi-UAV cooperative detection or transportation, which can be
used in search and rescue, logistics distribution, environmental monitoring, and so on [1–3].
UAV scheduling is one of the key technologies of a swarm system, which determines
whether the task can be completed and when the task is complete [4,5].

The most traditional way to complete UAV scheduling is the centralized method,
which centralizes the information of all UAVs and tasks in one node, solves the optimal
scheduling in this node, and then distributes the scheduling results to all UAVs. This
method can achieve good optimization performance, but the solution time increases expo-
nentially with the increase in the number of UAVs and tasks. Although there are heuristic
methods such as the genetic algorithm [6,7], the ant colony algorithm [8,9], and particle
swarm optimization [10,11] which search for feasible sub-optimal solutions or do not pur-
sue optimal solutions using heuristic information, the computation time is still long if the
swarm scale is large. The reason for this is that the essence of swarm scheduling is an
NP-hard combinatorial optimization problem, similar to the multiple traveling salesman
problem (MTSP) [12,13] but more complex, with constraints such as task deadlines. In
addition, the centralized method also has a central node. If the central node is damaged,
the UAV swarm will collapse, and there is a vulnerability problem. There are also studies
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that turn a single center into multiple centers where, as long as the input information is
consistent, the same scheduling output can be obtained through the same algorithm. This
redundancy improves the robustness, but the calculation explosion problem still cannot be
avoided [14,15].

A more advanced approach is the distributed method, which has no central node
and allows UAVs to freely join or leave, thus being more robust and flexible. The market-
based method is the most popular distributed method, which ensures no conflict between
tasks in UAV scheduling in the swarm by means of independent selection and distributed
negotiation. Each UAV independently selects its own suitable task and then communicates
with the swarm to resolve the existing task conflicts. This does not require a consistent
environment or other situational information obtained by each UAV, but only requires the
consistency of the scheduling after negotiation, which greatly reduces the communication
traffic and improves the robustness of the system [16,17]. In addition, since each UAV
performs calculations independently, the amount of calculation is greatly reduced, and each
UAV could further reduce the amount of calculation required by using heuristic methods,
such as the greedy algorithm, so that the timeliness of the swarm scheduling is satisfied.
Through several iterations of the ‘scheduling calculation and conflict resolution’ stages,
swarm scheduling without task conflicts is obtained.

Research on market-based methods can be divided into two categories: one is basic
scheduling and the other is scheduling extension, which is shown in Table 1. The most
representative base scheduling algorithms are the Consensus-Based Bundle Algorithm
(CBBA) [18] and the Performance Impact (PI) algorithm [19], where CBBA introduces a
basic mechanism of two-stage iteration and PI introduces a novel concept to evaluate tasks.
Scheduling extension is used to extend the basic scheduling, such as by rescheduling [20,21]
to adapt to dynamic environments, probability-tuned scheduling [22,23] to improve ro-
bustness, and others [24,25] to enhance optimization. The method proposed in this paper
belongs to basic scheduling, which proposes a new concept, task consideration, to further
improve the performance of scheduling. At present, all these methods are still greatly
affected by communication [26,27], and how to reduce the impact of the network on
scheduling is also one of our future research directions, which is not involved in this paper.

Table 1. Table on classification and comparison of market-based methods.

Categories Methods Contributions Limitations

basic scheduling
CBBA [18] basic mechanism network

PI [19] novel concept network
the proposed method novel concept network

scheduling extension
rescheduling [20,21] dynamic regulation network

probability-tuned [22,23] robust performance network
others [24,25] optimization network

Among these market-based methods to base scheduling, the PI algorithm [19,21,24]
is the state-of-the-art method. It reduces the total travel time of global scheduling by
minimizing the impact of tasks on UAV scheduling in real time. However, it blindly
pursues the minimum cost impact and ignores the exploration of the adjacent tasks of the
UAV, which can lead continuous outward exploration, resulting in the failure to complete
the adjacent tasks of the UAV before the arrival of the deadline. In addition, outward
exploration easily causes task conflicts with other UAVs, and task contention can only
be solved by conflict resolution, resulting in more iterations. In order to enable the UAV
swarm to complete more time-sensitive tasks and avoid task conflicts with other UAVs to
reduce the number of iterations, this paper not only pays attention to the impact of tasks
on scheduling but also pays attention to the regression of UAV scheduling, that is, UAVs
also focus on the selection of adjacent tasks.

In this paper, a new concept is proposed, task consideration, which firstly defines
and quantifies the impact of tasks on scheduling and the regression of the task itself,
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balancing the exploration of the UAV for the minimum impact task and the regression of
neighboring tasks to improve the optimization and convergence of scheduling. In addition,
the conflict resolution rules are modified to adapt to the method proposed in this paper,
and the exploration of tasks is increased by a new removal method to further improve the
optimization of the method. Finally, through a large number of Monte Carlo experiments,
compared with the two most representative algorithms, CBBA and PI, the number of tasks
allocated by the proposed method is increased by 6% at most. Under the same number of
allocated tasks, the number of samples that reduces the total travel time of UAV swarm
scheduling accounts for 65–96% and 31–48% of the total, respectively, and the travel time is
reduced by 2–6% and 1–4%, respectively. When the average number of tasks per UAV is
high, the improved convergence speed of the proposed method is more obvious, which is
much lower than the other two methods.

The rest of the paper is organized as follows. Section 2 introduces the basic symbols
used in this paper and formulates the UAV swarm scheduling problem. Section 3 introduces
the proposed method, where the concept of task consideration, the basic idea, and specific
process are described. In Section 4, a large number of experiments are conducted to verify
the validity of the proposed method. Finally, Section 5 concludes this paper.

2. Preliminaries
2.1. Symbol Definition

In order to make it easier to read and understand the proposed method, the basic
symbol definitions and descriptions used in this paper are shown in Table 2.

Table 2. The basic symbol definitions and descriptions used in this paper.

Symbol Description

n number of UAVs
m number of tasks
i, k UAV ID
j task ID

pi, pk the schedule of UAV i and UAV k
I the set of all UAV IDs
J the set of all task IDs
cij the cost of UAV i to perform task j
ai the maximum number of tasks that UAV i is able to perform
tij the time of UAV i to perform task j
dj the deadline of task j
ηij the task consideration of UAV i to perform task j
ci the total cost of UAV i

co
i ({j}) the regression value of the task j for UAV i

η∗ij the task consideration of UAV i to add task j
yij the winning bid of task j considered by UAV i
zij the winner of task j considered by UAV i

pi 	 {j} the schedule of UAV i after removing task j
pi ⊕ {j} the schedule of UAV i after adding task j

2.2. Problem Formulation

UAV swarm scheduling is a planning process in which n UAVs complete m tasks
sequentially. Each UAV i’s schedule pi is the execution sequence and time of allocated
tasks, satisfying task constraints such as starting time and deadlines. Generally, it could be
formulated as a constrained optimization problem with objectives formulated as follows:
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min
n

∑
i=1

(
m

∑
j=1

cij(pi)

)
(1)

subject to
|pi| ≤ ai ∀i ∈ I (2)

n
∪

i=1
pi = J , pi ∩ pk = ∅ ∀i, k ∈ I (3)

tij(pi) ≤ dj ∀i ∈ I , ∀j ∈ J (4)

where cij(pi) is the cost for UAV i to perform task j according to its schedule pi. The
first constraint indicates that the number of tasks in UAV schedule pi cannot exceed its
capability ai; the second indicates that the swarm should complete all tasks, and the tasks
in UAV i’s schedule pi and UAV k’s schedule pk should not coincide; the third is that the
time tij of any task j performed by any UAV i according to its schedule pi cannot exceed
task j’s deadline dj.

3. Method
3.1. Basic Idea

Here, a new concept, task consideration, is proposed to express the cost of tasks for
UAV scheduling, where the impact of the task on scheduling and the regressivity of the
task itself is quantified and first defined as follows:

ηij(pi 	 {j}) = ci(∆pi) + co
i ({j}) ∀j ∈ J , ∀i ∈ I (5)

where ηij(pi 	 {j}) is the removal consideration of task j for UAV i provided that task j is
removed from the scheduling pi. The term before the plus sign is the influence value of
the task on the scheduling, which is obtained by the difference in scheduling cost with and
without removing the task j, ci(∆pi) = ci(pi)− ci(pi 	 {j}). The term after the plus sign is
the regression value of the task to the UAV, which is calculated by the UAV i’s location lio

and task j’s location l{j}, co
i ({j}) =

∥∥∥lio − l{j}

∥∥∥
2
.

The task consideration balances the exploration and regression of UAVs on tasks
well, so that the UAV does not constantly explore outward in the greedy pursuit of the
minimum impact on scheduling, and it strengthens the UAV’s exploration of adjacent
tasks to moderately escape from the local optimum the greedy strategy becomes trapped
in. This is not only helpful for the number of completed tasks, because the proximity
exploration avoids the problem of ignoring the adjacent tasks in the continuous outward
exploration, but it also avoids the possibility of task conflicts with other UAVs due to
continuous outward exploration, thus reducing the number of iterations required for the
method to resolve conflicts.

Figure 1 intuitively shows the difference between the proposed method and the
traditional method, where the traditional method selects tasks only based on the impact
of those tasks on the schedule, and the proposed method also considers the regression of
tasks. For example, in the traditional method, when UAV-1 makes a decision to choose
task T2 or task T3, it respectively calculates the total cost increase c12 after task T2 is added
to its schedule, and the total cost increase c13 after task T3 is added to the schedule. IT
then chooses the task T3 with the minimum total cost increase, which will cause a task
conflict with UAV-2. However, in the proposed method, UAV-1 not only considers the
total cost increases (the term before the plus sign ci(∆pi) in Equation (5), where the specific
calculation is the term before the plus sign in Equation (8)) brought by task T2 and task T3,
but it also considers the cost of returning to the position of the UAV (the term after the plus
sign co

i ({j}) in Equation (5) and the specific calculation is the term after the plus sign in
Equation (8)). These two factors together constitute the consideration η∗12 of UAV-1 for task
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T2 and η∗13 for task T3, leading UAV-1 to select task T2 with the minimum task consideration,
which has no conflict with UAV-2. It can be found that the traditional method constantly
adds outward tasks because the UAV blindly pursues the minimum cost increment and
then competes with the distant UAV for tasks, while its nearby task T2 cannot be completed
due to the time limit. However, the proposed method not only completes all tasks but
also reduces the task conflicts between UAVs, which is attributed to the proposed task
consideration’s ability to balance the task influence and task regression.

Figure 1. Comparison of two different methods to select tasks, where (a) is the traditional solution
and (b) is the proposed solution.

The calculation method described above is that the task is already in the schedule, but
when the task is not scheduled, the calculation results vary with the inserted locations of
the task in the schedule. From the perspective of scheduling optimization, tasks should be
inserted where they will have the least impact on the current schedule, that is, where the
increase in path cost or time cost will be the smallest. Therefore, the task consideration of
task j to be added to UAV i’s schedule pi is calculated as follows:

η∗ij(pi⊕{j}) = min
l≤|pi |+1

{ci(pi⊕l{j})− ci(pi)}+ co
i ({j}) ∀j ∈ J , ∀i ∈ I (6)

where η∗ij(pi⊕{j}) is the inclusion consideration of task j for UAV i. Provided that task j is
added to the schedule pi, UAV i will insert the task j in the l-th location of schedule pi that
minimizes the difference value of the total scheduling cost.

Note that when task j is not in the scheduling of UAV i, the task consideration of task j
is calculated as Equation (6), and when task j is in the scheduling of UAV i, the calculation
used is Equation (5). In fact, the results of these equations are the same and both the
inclusion consideration and removal consideration are included in the task consideration.

The task consideration is compared among UAVs, and the task attribution is deter-
mined by the lowest task consideration so that the UAV swarm scheduling has better
optimization. For example, the same task j, which is initially added to the schedule of UAV
i, has a consideration of ηij. Then, UAV k wants to join task j, and its added consideration is
η∗kj. When ηij is greater than η∗kj, that is to say, when the consideration of UAV i to complete
task j is higher than that of UAV k, UAV i will give up task j, and UAV k will complete task
j, which reduces the completion cost of task j and optimizes the global scheduling. In other
words, a task j is executed by UAV k when the following conditions are satisfied:

ηij(pi 	 {j}) > η∗kj(pk⊕{j}) ∀j ∈ J , ∀i, k ∈ I (7)

It can be found that when i = k, the removal and inclusion consideration are equal,
and the attribution of task j is also determined. When the attribution of all tasks is no longer
transferred, the algorithm converges. In the process of practical application, each UAV i
in the swarm maintains a list of its own information about the global tasks, which mainly
contains the winner zij of task j that local UAV i believes and its winning bid yij. When
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the task consideration η∗ij of local UAV i for task j is greater than the winning bid yij of the
current winner, UAV i will not add task j to its schedule, because the winner of current task
j is better. When the task consideration η∗ij of local UAV i for task j is less than the current
winning bid yij, UAV i will modify the winner of task j to itself, zij = i, and the winning bid
of task j is set to its bid, yij = η∗ij, and then inform the other UAVs through communication.
If no other UAVs have different opinions, the attribution of task j is determined.

3.2. Task Selection

After obtaining the information about all tasks, the swarm of UAVs first selects tasks
independently, and the selection criteria will also affect the performance of swarm schedul-
ing. As mentioned in the above section, the task consideration proposed in this paper has
good exploratory and regressive properties, which can better optimize the scheduling. The
specific calculation formula is as follows:

η∗ij(pi⊕{j}) = min
l≤|pi |+1

{
ci,l(pi⊕l{j}) +

|pi |+1
∑

q=l+1
ci,q(pi⊕l{j})−

|pi |
∑

q=l
ci,q(pi)

}
+
∥∥∥lio − l{j}

∥∥∥
2

(8)

where pi⊕l{j} is the schedule after inserting task j at the l-th location of schedule pi,
ci,q(pi⊕l{j}) is the cost of a task that is the q-th element in UAV i’s schedule pi⊕l{j}, and
others are similar.

Since the UAV scheduling changes as tasks are added, the previously included tasks’
considerations are calculated based on the previous scheduling. To ensure the optimization
of the scheduling, the task consideration of the UAV needs to be updated after adding a
new task. The calculation of the consideration of the newly added task is not based on the
included tasks’ consideration; it depends on the existing schedule and time, so it needs to
be updated every time a task is added. The task consideration does not need to be updated
in real time, and the consideration of all tasks in the current UAV schedule can be updated
at one time after all tasks are added. In this case, the update of removal consideration
(formula (5)) is used. Specifically, the consideration value of each task j is calculated as
follows:

ηij(pi 	 {j}) = ci,l(pi) +
|pi |
∑

q=l+1
ci,q(pi)−

|pi |−1
∑

q=l
ci,q(pi 	 {j}) +

∥∥∥lio − l{j}

∥∥∥
2

(9)

where pi	{j} is the schedule after removing task j from UAV i’s schedule pi, ci,q(pi	{j})
is the cost of a task that is the q-th element in UAV i’s schedule pi	{j}, and others are
similar.

The process for each UAV to independently select the tasks can be briefly described
in Algorithm 1. When the current schedule pi of UAV i has not reached its capacity ai,
UAV i tries to select tasks to add to its schedule (lines 1–10). The general process is to
calculate the inclusion consideration of the tasks that are not included (line 2) and then
compare them with the current winning bid of tasks. If the maximal difference of winning
bid yi,j and inclusion consideration η∗i,j is greater than 0 (line 3), select the task j∗ from
which the difference between the winning bid and the task consideration is the largest
(line 4), and obtain the best insertion location l{j∗} of task j∗ with maximum inclusion
consideration η∗i,j∗(pi ⊕ {j∗}) (line 5). Then, task j∗ is inserted into schedule pi at the best
insertion location l{j∗} (line 6), the winner of task j∗ in the winner list zij∗ is updated as
UAV i and the winning bid is η∗i,j (line 7), and the expected execution time after task j∗ in
schedule pi is updated (line 8). Finally, the consideration of all tasks in UAV i’s schedule is
updated at one time and correspondingly updated to the winning bid yi (line 11).
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Algorithm 1 Task selection

1: while |pi| ≤ ai do
2: compute the list ∗i ←

[
η∗i1, η∗i2, . . . , η∗im

]
by formula (8).

3: if maxm
j=1

{
yi,j − η∗i,j

}
> 0 then

4: j∗ ← arg maxm
j=1

{
yi,j − η∗i,j

}
5: l{j∗} ← arg η∗i,j∗(pi ⊕ {j∗})
6: add task j∗ to scheduling pi at location l{j∗}
7: update UAV i’s winner zij∗ = i and winnerbids yij∗ = η∗i,j∗ .
8: update the time ci,j(pi) of tasks after the task j∗ in scheduling pi
9: end if

10: end while
11: update the consideration i of tasks in UAV i’s scheduling using Equation (9) and

winnerbids yi ← i.

3.3. Swarm Consensus

After the UAV selects the tasks to execute, it needs to communicate with the other
UAVs to resolve the task conflict among UAVs. In order to reduce the amount of communi-
cation, this paper uses three vectors: task winners zi, task winning bids yi and timestamps
ti. By defining the conflict resolution rules that the UAVs abide by together, conflict-free
swarm scheduling is obtained.

The conflict resolution rules mainly describe the process of how receiver i handles
the information received from sender k, which mainly includes the behaviors of updating,
leaving, and resetting. The rules defined in this paper are similar to Reference [18], except
for the following:

(1) In this paper, the task consideration, similar to the cost, is used as the bid, where the
lower the better. In other words, the lower the bid, the better.

(2) Different from the traditional bid reset to 0, this paper resets to a maximum value.
(3) In order to improve the convergence speed, the receiver will update its information if

the timestamp of the third party is equal.

Then, the UAV can obtain consistent global task attribution information, and then it
needs to adjust the original schedule based on this consistent information, mainly for task
removal. At present, the two most representative algorithms, CBBA and PI, adopt different
removal methods. CBBA removes all tasks after the outbid task, which is exploratory
but also results in more task conflict. The PI removes the outbid task with the maximum
difference, updates the bid of remaining tasks, and re-compares it with the task winner. The
updated conflict task with a lower bid than the winner’s task is retained, which reduces
exploration but also brings the disadvantage of insufficient optimization. Different from the
traditional removal methods, this paper removes the outbid conflict tasks from the original
schedule, which not only makes the task selection more exploratory but also ensures that
the task attribution information is consistent with the conflict resolution.

Algorithm 2 outlines the process of swarm consensus. First, UAV i communicates with
all the UAVs k in its neighborhood to resolve task conflicts and obtain consistent global
task attribution information (line 1). Then, UAV i removes all the conflicting tasks that are
outbid by other UAVs and updates the time of the current schedule (lines 2–7). Finally,
UAV i updates the consideration of its current scheduled tasks and updates to the winning
bid (line 8).
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Algorithm 2 Swarm consensus

1: UAV i communicates with other UAV k and gets the consensus of task winner list zi
and winning bid list yi

2: for each task j in UAV i’s schedule pi do
3: if confict: zij 6= i then
4: remove task j from schedule pi
5: update the time of current schedule
6: end if
7: end for
8: update the consideration i of tasks in UAV i’s scheduling and winnerbids yi ← i.

3.4. Overall Process

The overall flow of the proposed method is shown in Algorithm 3. Firstly, the UAV
initializes the timer T and the convergence flag ω (line 1). Then, when the convergence
flag is false, the task selection of the UAV in Algorithm 1 and the swarm consensus in
Algorithm 2 are performed in turn, where one cycle is one iteration. The convergence
is checked at the end of each iteration. If there is no change in swarm scheduling, it
is considered to have reached convergence. If it still does not converge, the timer is
incremented by 1 and the loop proceeds to the next iteration until convergence occurs (lines
2–7).

Algorithm 3 Overall Process

1: swarm of UAVs initializes timer T ← 1 and convergence flag ω ← 0
2: while ω = 0 do
3: task selection as shown in Algorithm 1.
4: swarm consensus as shown in Algorithm 2.
5: ω ← checkConvergence.
6: T ← T + 1.
7: end while

In short, the UAV swarm scheduling can be derived through multiple iterations of the
‘task selection and swarm consensus’ phases. In the task selection phase, the proposed task
consideration can reflect the impact of the task on the schedule and the regression of the
task itself, so as to select the optimized task. The proposed new task removal method is
used in the swarm consensus phase so that the UAV can have more task choices in the task
selection phase and to increase the exploration of the schedule. The task consideration and
the new removal method jointly improve the optimization of the algorithm.

4. Experiment

To verify the effectiveness of the proposed method, this paper is compared with
the current two most representative algorithms, CBBA [18] and PI [19]. For convenience
of comparison, the experiments in this paper are unified in the experimental scene of
PI [19,21,24], in which there are two types of UAVs and tasks. The speed of the UAVs
providing food is 50 m/s, and the task of aiding in serving the food lasts for 300 s. The
speed of the medicine delivery UAV is 30 m/s an the medicine aid mission is completed in
a duration of 350 s. All UAVs and tasks were randomly distributed in the 10 km × 10 km ×
1 km area, and the deadline of tasks are randomly distributed within [0, 2000 s]. The Monte
Carlo method was adopted to test 1000 situations with randomly distributed UAVs and
tasks under the same p and n to ensure the objectivity of the experiment, where p = m/n
is the ratio of m tasks and n UAVs.

Figure 2 compares the task allocation number of the three methods, where it can be
found that the method proposed in this paper allocates more tasks than the other two
algorithms, enabling the UAV swarm to complete more tasks. When p = 3 and n = 6, the
median number of allocated tasks for the proposed method is 17, with an increment of 6%
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compared with CBBA and PI (both are 16). When p = 5 and n = 16, the median number
of allocated tasks with CBBA is 63, with PI is 65, and the with proposed method is 66,
representing 5% and 2% increments over CBBA and PI, respectively. The reason why the
proposed task consideration (TC) method can increase the number of allocated tasks is that
the task consideration considers the regression of the task so that the UAV can complete
as many of the tasks in its vicinity as possible. Furthermore, the proposed new removal
method in the swarm consensus phase enables the UAV to explore more tasks in the task
selection phase. The two jointly improve the optimization of the proposed algorithm.

Figure 2. The comparison of three methods in terms of the number of allocated tasks.

Figure 2 shows that the proposed method can complete more tasks than the other
two methods, and naturally, its completion time will be longer. In order to objectively
compare the optimization of methods in terms of the total travel time, the comparison of
the total travel time of different methods should be carried out under the same number of
task allocations. Figures 3 and 4 respectively show the proportion and degree of reduction
in the total travel time of swarm scheduling by the proposed method compared with the
other two methods under the same number of task allocations, in which the color part is
the comparison between the proposed method and CBBA method and the gray part is the
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comparison with the PI method. It can be seen that the proposed method has a certain
degree of improvement compared with the other two algorithms under all different p and
n. Compared with CBBA, the proposed method has the most improvement with 65–96%
ameliorative solutions and a 2–6% average decrease in travel time. Compared with PI,
the corresponding data are 31–48% and 1–4%, respectively. This effectively validates the
optimization of the task consideration and task removal methods proposed in this paper,
which balances the exploration and regression of tasks well.

Figure 3. The percentage of improvement in solutions obtained with the proposed method over
solutions obtained with the other two methods in the total travel time of swarm scheduling.

Figure 4. The average percentage increase and standard deviation in the total travel time of swarm
scheduling over the other two methods.

Figure 5 shows the comparison of the three methods in terms of the number of itera-
tions for various p and n. It can be found that the advantages of the proposed method are
more obvious when p is larger. This is due to the regressive nature of the task consideration
proposed in this paper, focusing on the exploration of tasks near the UAV and avoiding
task conflicts with other UAVs caused by blind exploration, thereby reducing the number
of iterations required for conflict resolution, which is especially obvious in the case of a
large number of tasks per UAV. When p is small, the proposed method has a small increase
compared to CBBA because it needs to update the consideration to improve the optimality,
but it is still far less than the number of iterations required by PI.
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Figure 5. The iterations of the three methods to achieve convergence.

All in all, the proposed TC method has a certain improvement in optimization com-
pared with the current two most representative algorithms, CBBA and PI, which is em-
bodied in the number of task allocations and total travel time. Moreover, the number of
iterations required by the TC method to achieve convergence is lower than the other two
methods, which has a greater advantage when the number of tasks per UAV is large.

5. Conclusions

In this paper, a new concept called “task consideration” is introduced to improve
the optimization and convergence of swarm scheduling. Task consideration balances the
exploration of the UAV for the minimum impact task and the regression of neighboring
tasks well. In addition, the modified conflict resolution rules are designed to achieve
scheduling consensus, and a new removal method is proposed to further improve the
optimization. Finally, through extensive Monte Carlo experiments, compared with CBBA
and PI, the proposed method has greater task allocation and shorter travel times. With the
increase in the average number of UAV tasks, the number of iterations is lower and the
convergence is faster. In the future, we plan to research how to reduce the impact of the
network on scheduling.
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