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Abstract: The advancement of the Internet of Things (IoT) and the availability of wide cloud services
have led to the horizon of edge computing paradigm which demands for processing the data at
the edge of the network. The development of 5G technology has led to the increased usage of
IoT-based devices and the generation of a large volume of data followed by increased data traffic,
which is difficult to process by the mobile edge computing (MEC) platform. The latest inventions
related to unmanned aerial vehicles (UAVs) helps to assist and replace the edge servers used for
MEC. In the present work, the objective is to develop self-adaptive trajectory optimization algorithm
(STO) which is a multi-objective optimization algorithm used to solve the vital objectives associated
with the above scenario of a UAV-assisted MEC system. The objectives identified are minimizing
the energy consumed by the MEC and minimizing the process emergency indicator, where the
process emergency indicator implies the urgency level of a particular process. Finding the optimal
values for these conflicting objectives will help to further efficiently apply UAV for MEC systems. A
self-adaptive multi-objective differential evolution-based trajectory optimization algorithm (STO)
is proposed, where a pool of trial vector generation strategies is extended. The strategies and the
crossover rate associated with a differential evolution (DE) algorithm are self-adapted using fuzzy
systems to improve the population diversity. The experimentation is planned to be conducted on
hundreds of IoT device instances considered to be fixed on the ground level and to evaluate the
performance of the proposed algorithm for a single unmanned aerial vehicle-assisted mobile edge
computing system.

Keywords: multi-objective optimization; mobile edge computing; unmanned aerial vehicle; differen-
tial evolution algorithm

1. Introduction

The recent trend in computing is edge computing, where the computations are per-
formed closer to the source than computing in the cloud [1]. Edge computing thus leverages
the cloud computing services to the various devices at the proximity of the network. The
advent of 5G communication results in much more utilization of IoT devices leading to
the generation of huge volumes of data to be processed leading to data traffic. The edge
servers at the mobile edge computing systems are grounded at specific locations, making
it infeasible to handle such increasing loads [2]. Moreover, in remote areas where the
coverage of wireless network is poor, IoT devices with energy limitation in general fail to
transfer data to computation environment [3].

Unmanned aerial vehicles (UAVs) are widely applied in various domains and more
advancements are made in this field over the last decade. Recent advances in components,
modern sensors, and 5G communication has further contributed to the seamless application
of UAV. Two major classifications of UAVs are rotary-wing and fixed-wing UAVs [4]. UAVs
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are applied in agriculture, smart transportation, rescue system, path planning, etc. Thus,
they are used to replace the conventional fixed edge server system which serves the mobile
edge computing system. The UAV-assisted mobile edge computing system can overcome
the difficulties related to the mobile edge computing system [5]. UAVs thus can be an
alternative data collection environment for the Internet of Things devices. Deploying UAVs
for MEC system requires several factors to be improved and optimized.

Optimization techniques attempt to find solutions that are feasible for the optimization
problem considered. Several application domains do require the associated parameters
to be optimized and they are defined as objective function. There can be one or more
objectives in an application that needs to be optimized. Several classes of search and
optimization techniques are available in the literature and numerous research reports in
the field are carried and various algorithms are proposed. Evolutionary algorithms (EAs)
are one such widely used search and optimization technique. Genetic algorithm (GA) [6],
differential evolution (DE), [7] and particle swarm optimization (PSO) [8] are popular
EA-based optimization algorithms.

Recently, the UAV-based MEC system is subject to several research studies to improve
the applicability of UAV for MEC systems. The previous vital research contributions in this
field are presented here categorizing based on the number of objectives, whether single
or multi-objective problems considered. Next, we present related work based on whether
the stop position (SP) count of UAV considered as fixed or not. SP is the locations where
UAV is hovered at a point for processing the data generated by IoT devices at the location.
Finally, we present earlier research contributions related to process emergency indicator.

The common research conducted is related to minimize the energy consumed by the
mobile edge computing systems, maximizing the coverage area and few are highlighted.
The differential evolution algorithm is extended to minimize the energy factor using a
varying population size [9]. In [10], the authors have extended a two-layer optimization
method to reduce the energy consumption of the system. In [11], optimization techniques
are applied to improve the coverage factor by reducing the transmission power. The
techniques to improve the energy efficiency in UAV-based MEC systems are discussed
in [12,13]. In these research works, the authors have attempted to solve a single-objective
optimization problem associated with MEC systems such as the energy consumption or
coverage. The real world optimization problems in MEC systems assisted by UAVs have
several conflicting objectives that need to be optimized. A deep Q-network-based strategy
is used to solve the multi-objective optimization problem with the objectives: to decrease
the latency and energy consumption [14]. A heuristic algorithm is extended by the authors
to optimize the objectives, minimizing energy consumption and reducing the task execution
delay [15].

Most of the existing research studies attempted to prefix the number of stop positions
(SPs) associated along the optimization problem in MEC systems assisted by UAVs, few
are listed here. UAV-based data collection systems through deployment optimization [16].
In [17], the authors deployed UAV-based systems for a downlink-based communication
application to improve the coverage factor. The above way of attempting UAV deployment
for MEC by presetting the stop position with respect to the application may not beneficial.
Especially if the number of SPs is not optimal, then the efficiency of UAV-based systems will
be reduced. In the present work, the SP is considered as unknown and we try to optimize
the stop positions and locations in the proposed algorithm. The applications where UAV-
based MEC systems used also includes mission critical tasks, where the time taken by the
system to service or process the task is vital. Thus, the important and emergency tasks
needed to be prioritized and served as soon as possible [18].

The above research contributions related to the mobile edge computing system assisted
by UAVs has motivated to further leverage the efficient applicability of the UAV-based
system. The major research contributions are listed below:
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• Multi-objective optimization problem for the MEC system assisted with single UAV is
represented. The multiple conflicting objectives to be optimized are minimizing the
energy consumed by the MEC and minimizing the process emergency indicator.

• To develop a self-adaptive multi-objective differential evolution-based trajectory opti-
mization algorithm (STO) to optimize the multi-objective problem identified in the
MEC system assisted by UAVs. STO algorithm is developed based on DE algorithm.
The trial vector generation strategies and control parameters associated in DE algo-
rithm are self-adapted using the success index in self-adaptive differential evolution
(SaDE) algorithm [19]. Fuzzy Inference system is used to further improve the adap-
tation characteristics of control parameters in the FAMDE-DC algorithm [20]. The
proposed STO algorithm is developed using the above adaptation techniques, along
with appropriate encoding strategies [21] suitable to handle the implementation issues
associated in the trajectory optimization problem.

• The experimentation is performed by simulating environment with up to hundreds of
IoT devices. Results are compared with related research findings and the inferences
are discussed.

The paper is structured as follows: The multi-objective optimization problem formu-
lation is detailed in Section 2. The proposed STO algorithm is given in Section 3. The
experimental setup and the performance metrics used in the present research study are
discussed in Section 4. The results and its analysis, comparison of the results with other
related work are given in Section 5. The conclusion of the present work is discussed in
Section 6.

2. Multi-Objective Optimization Problem Formulation

Problem formulation is a primary requirement to successfully apply optimization
technique to solve any domain specific problem to derive the feasible solution. In the
present work, the problem is a multi-objective optimization problem and the objectives are
to minimize the energy consumed by the MEC and to minimize the process emergency
indicator. The objective functions [11] are presented in this section.

The MEC system considered is assisted with a single UAV and a number of IoT
devices given as T = {1, 2, .., t}. The MEC system is used to complete the process or work
associated with the IoT devices. A process i in an IoT device is characterized by three
factors (Ai, Bi, Ci) where Ai is the number of input information of process i, Bi indicates
the computational resources needed to complete one bit involved in process i. Ci is the
process emergency indicator and it is prioritized as:

Ci ∈ {1, 2, 3, 4, 5} (1)

It is prioritized such that lesser the Ci value, the most emergency process and is to be
computed first.

As mentioned earlier, in the present work the number of stop position is considered
to be unknown and we try to optimize it. Thus, the stop position (SP) is given as S =
[1, 2, .., s]. Next vital parameter is the location of the IoT device and the SP. The coordinates
representing IoT device’s location is set at (li, mi, 0). Since the device is considered to
be at ground, the value of third component representing height is set at 0. The location
coordinates of a random stop position j is set as

(
Lj, Mj, H

)
, the third component H is the

height of the UAV device. The following equation gives the distance between an IoT device
and the stop position.

dij =
√(

Lj − li
)2 −

(
Mj −mj

)2
+ (H − 0)2 (2)

The variable Eij is used to represent an edge computing link established between an
IoT device and UAV’s stop position. The device usually establishes link with the nearest
UAV’s stop position. Eij is subject to the two constraints as given in Equation (3). Eij = 1
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illustrates a valid link establishment and Eij = 0 gives that no such link is established.
Further, each device transmits data only at one stop position as given in constraint 2.

Constraint 1 : Eij =

{
1, i f j = argminj∈S dij,
0, otherwise,

(3)

and
Constraint 2 : ∑s

j=1 Eij = 1, i ∈ T. (4)

The MEC system assisted by UAVs do have bandwidth limitations, thus an UAV at
any stop position can serve only up to MI IoT devices and is given in below constraint.

Constraint 3 : ∑t
i=1 Eij ≤ MI, j ∈ S. (5)

The below constraint is used to confirm that the MEC system assisted by UAVs
provides computing services to all the IoT devices.

Constraint 4 : ∑t
i=1 ∑s

j=1 Eij = t (6)

The data rate to send data of a process from the IoT device to the UAV at a stop
position is given below.

qij = W log2

(
1 +

ut
i vij

σ2

)
= W log2

(
1 +

ut
i v0

σ2d2
ij

)
(7)

where the variable W denotes the system bandwidth. The transmission power is repre-
sented through ut

i . The channel power gain is given by vij and the channel power gain at
one unit reference distance is represented as v0; the white gaussian noise is given by σ2.

The time taken by an IoT device to transmit Ai number of input information to the
UAV at jth stop position is given below.

Ta
ij =

Ai
qij

(8)

Energy consumption of a single ith IoT device for data transmission is given by

Nt
ij = ut

i T
t
ij =

ut
i Ai

qij
(9)

The total energy consumption of all the IoT devices is represented in below equation.

NIoT =: ∑t
i=1 ∑s

j=1 EijNt
ij (10)

The time taken by UAV for completing the process of a ith IoT device is given in
below equation.

Tc
i =

AiBi
CP

(11)

where the variable CP in above equation is the UAV’s CPU processing speed.
The UAV will hover at a stop position (SP) j until all the process of the IoT devices at

the SP is completed, thus hovering time is represented as Th
j .

Th
j = maxi∈T

{
EijTa

ij + EijTc
j

}
(12)
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Next, the energy consumption of UAV while the entire hover time is given in (13).
Where ph denotes hovering power.

Nh =
s

∑
j=1

phTh
j (13)

The next crucial factor is the time taken by the UAV to fly from one stop position j to
the other stop position (j + 1) after process completion at j. This flight time is given in the
below Equation (14) considering that UAV is flying at a constant speed r and at prefixed
constant height.

T f
j =

√(
Lj+1 − Lj

)2
+
(

Mj+1 −Mj
)2

r
(14)

Thus, the energy consumption during the above flight time is calculated using
Equation (15). Where the UAV’s flight power is given by p f .

N f =
s−1

∑
j=1

p f T f
j (15)

The UAV’s overall energy consumption is calculated by,

NUAV = Nh + N f (16)

and the energy consumption factor of the MEC system assisted by UAVs is

NMEC = NUAV + λNIoT (17)

where the weight parameter λ is used to ensure that the energy consumption related to IoT
devices NIoT is smaller than the UAV’s energy consumption metric NUAV and is λ ≥ 0.

As discussed earlier, the two objectives taken for optimization are minimizing the
energy consumed by the MEC system NMEC and to minimize the process emergency
indicator PETask. Considering the various process emergency indicator associated with each
process and the order of the stop position, the final process emergency indicator PETask is
estimated as below.

PETask =
t

∑
i=1

jCi, j = argminj∈S dij (18)

In the above equation we estimate sum of products of the process emergency indicator
and j. Where j indicates the sequence value of the UAV’s stop position; the sequence value
is derived using j = argminj∈S dij, representing the nearest distance to an ith device. Lesser
the value of PETask, faster the emergency process is handled.

To summarize, the multi-objective optimization problem in the MEC system assisted
with single UAV is given below.

min(Lj ,Mj ,H),s{NMEC, PETask}

Subject to : Constraint 1 : Eij ∈ {0, 1},

Constraint 2 : ∑s
j=1 Eij = 1, i ∈ T,

Constraint 3 : ∑t
i=1 Eij ≤ MI, j ∈ S, (19)

Constraint 4 : ∑t
i=1 ∑s

j=1 Eij = t,
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Constraint 5 : lmin ≤ Lj ≤ lmax,

Constraint 6 : mmin ≤ Mj ≤ mmax,

where the UAV’s stop position’s location coordinate set
{(

Lj, Mj
)∣∣ j = 1, 2, .., s

}
and the

number of stop positions s, are to be optimized.

3. Proposed STO Algorithm

The multi-objective optimization problem as given in Equation (19) for the MEC sys-
tem assisted by UAVs is a challenging environment, since the number of SP and their
locations are considered to be unknown. The traditional gradient descent and other related
optimization methods are not suitable in handling such problems. Evolution-based opti-
mization algorithms are derivative-free methods and do not require gradient information.
Thus, one such evolution-based multi-objective optimization algorithm is extended to
solve the discussed problem. The proposed algorithm is named as, self-adaptive trajectory
optimization (STO) algorithm. STO is a DE [7]-based algorithm improved by including
techniques such as, using a pool of trial vector generation strategies [9] and its adaptation,
fuzzy-based control parameter adaptation [10] and an improved encoding scheme [11]
to maintain uniformity in length of population individuals. The above inclusions make
the proposed STO algorithm robust and suitable to solve the complex multi-objective
optimization problem in the MEC system assisted by UAVs.

3.1. Work Flow Model of STO

The process involved in optimization using STO algorithm is illustrated using a
flowchart as given in Figure 1. The subsequent section details the steps involved in the
process, and the proposed STO algorithm is given in Algorithm 1.

Algorithm 1: STO Algorithm.

1: Initialization of the dimension of the problem, here it is the stop position count (s), the
control parameters NP, CR, F associated with DE algorithm and the other metrics associated in
the system. Generation count G is set at 1.
2: Population initialization of NP individuals represented as P− POP and its fitness evaluation.
3: While the termination criteria is not met,
Do
4: Perform non-dominated sorting on P− POP and select a random non-dominated solution
from the first front denoted as P− Best.
5: Apply cutting/padding encoding scheme on P− POP and obtain N − POP (To ensure all
individuals in the population are of same length).
6: Find the population diversity and input the diversity error value to the fuzzy system.
7: Trial vector generation through mutation, crossover techniques and the resultant population is
called as Q− POP.
8: Selection strategy using a population updating technique to optimize the number of SP and to
identify the fittest NP solutions.
9: Increase the generation count.
10: End while.
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3.2. Population Initialization

A population of NP individuals are initialized randomly subject to variable bounds
covering the complete search space. EA-based techniques start its search using this random
population set and tries to optimize the same within a prespecified limit. Each individual
in the population actually represents the number of stop positions (SPs). Since in the
present work we consider that the number of SP is unknown, the IoT device count (t) is
taken as SP count (s) and each individual in initial population will be of size 2s, which
holds the location coordinates (L, M) of the SP. The height at which UAV hovers while
communication with IoT device is fixed and it is used while fitness evaluation.

3.3. Trial Vector Generation Using Strategy Adaptation and Cutting/Padding Encoding Scheme

In DE-based algorithm, there are numerous strategies available in literature for trial
vector generation. Each strategy is effective in solving one or more optimization problem
belonging to different domain effectively. A suitable strategy is identified to solve a
particular problem using a trial and error method and, it may even be unsuitable in solving
related problem. Thus, in the present work a pool of strategies are included for trial
vector generation.

3.3.1. Encoding Scheme Using Cutting/Padding

In the MEC system assisted by UAVs, we have attempted to solve multi-objective opti-
mization problem where the number of stop positions (SPs) is considered to be unknown.
The length of each individual in the population represents the location coordinates of SP
which is the number of decision variables. Since the number of SP, its location coordinates
and the order of SP is unknown, the length of each population individual will differ and
thus performing mutation and crossover is difficult as they require uniformity in length
of all individuals. Thus, the cutting/padding encoding scheme [11] is used to maintain
the uniformity.

Figure 2a represents individuals in the population with varying lengths using the
regular encoding scheme and Figure 2b exhibits the working of cutting/padding encoding
scheme. Where S1, S2, ..ST represents the number of SP of the population individuals,
respectively. To perform cutting/padding, non-dominated sorting [22] is performed over
the P− POP population, and the population best solution PBest is selected randomly from
the first front. In the example shown in Figure 2b assume the first solution is PBest and
the number of SP in it is S1. With this S1 as the reference, the other remaining solutions
are subject to either cutting or padding. If the length of solution exceeds the length of
PBest, then the excess part is removed and if the length is less than length of PBest, then to
maintain uniformity in length, the last SP in the solution is repeated and added until the
length is equal to length of PBest and this is the padding scheme. The result population set
N − POP has NP solutions all are of equal length.
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3.3.2. Trial Vector Generation and Its Adaptation

The trial vector/offspring generation in DE-based algorithms are performed using
mutation, crossover operations and there are several trial vector generation strategies
available in literature. Each of them performs well in optimizing a one or more domain
specific problems. Their performance may vary even during various evolution stages.
Thus, trying to identify and chose a particular trial vector generation strategy is purely
a trial and error mechanism which is time consuming. The chosen strategy and values
set for associated control parameters of DE algorithm like the size of population (NP),
the crossover rate (CR), and the scaling factor (F) may perform well for that particular
problem and may be inefficient in solving other problems.

Thus, strategy pool [9] with various trial vector generation strategies each with varied
characteristics are included and are self-adapted based on success index. In present work
four different strategies ‘DE/rand/1/bin’, ‘DE/rand/2/bin’, ‘DE/current-to-rand/1’, and
‘DE/rand-to-best/2/bin’ are all included in the strategy pool, where the solution PBest is
the best solution used in strategy ‘DE/rand-to-best/2/bin’.

After the initial learning phase (LPE) generations the performance of each of the
strategy is assessed and most promising strategies in efficiently solving a particular problem
are chosen with higher probability for trial vector generation in upcoming generations.
Here, the success index of a strategy is estimated such as, a solution generated by using a
strategy entering the next generation after the update technique is a promising solution
and the strategy is successful. If a strategy generates much of such promising solutions,
its success index will be high and the probability of using such strategy will be more. The
probability of choosing a strategy st in generation ge shown below.

Pst,ge =
Sust,ge

∑ST
st=1 Sust,ge

(20)

where

Sust,ge =
∑

ge−1
ge=ge−LPE nsust,ge

∑
ge−1
ge=ge−LPE nsust,ge + ∑

ge−1
ge=ge−LPE n f ast,ge

+ ∈; (21)

where st = 1, 2, ..ST; ge > LPE.
The number of promising solutions produced by strategy st chosen for next generation

after the updating method is given by nsust,ge and the count n f ast,ge is the number of
solutions generated by strategy st that are not selected in the population selected for
subsequent generation; and a constant ∈ is set at value 0.01 to make sure that none of the
strategy has zero success rate. Thus, through the above method, trial vectors are generated.
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3.3.3. Fuzzy System-Based Control Parameter Adaptation

The three vital control parameters in DE algorithm are size of population (NP),
the crossover rate (CR), and the scaling factor (F). NP depends on the problem. CR
value decides in each solution the component count that are to be mutated relies on the
complexity of the problem and the convergence is based on the values of F. F value in the
present work is generated using a normal distribution N(0.5, 0.3) representing the mean
and standard deviation, respectively, and it is ensured that F value is between range [0.4, 1].
The crossover rate CR is adapted based on the population diversity using a Fuzzy Inference
System (FIS) [10].

DE algorithm can perform well only if the population are diverse enough, else the
evolution will end up in stagnation of the population or premature convergence. In
the present work, the population diversity is found using the ‘distance-to-average point’
metric [23] as:

popdivge(POP) =
1

|SLD| ∗ NP
∗∑NP

n=1

√
∑PDn

g=1

(
zng − zg

)2 (22)

where |SLD| is the search space length measured diagonally using
√

∑(zmax − zmin)
2 and

each search variable z are bound to zmin < z < zmax. POP is the current population of NP
solutions. PDn is the dimensionality of the problem. zng is the gth value of the nth solution
and zg is the gth value of the variable’s value z.

Fuzzy system is used to adapt the cross over rate mean CRmn. CR values are generated
using the normal distribution N(CRmnst, std), the standard deviation is set at value 0.1,
CRmnst is the crossover rate mean for strategy st and is set at value 0.5 for all the strategies
during the initial learning phase (LPE). After LPE, the value for CRmnst is calculated as,

CRmnst = CRmns,st + CRmnd,st (23)

The variable CRmns,st is the median of the CR values of strategy st that gener-
ated promising solution during the previous (LPE) generations. The second compo-
nent CRmnd,st is the mean value obtained using fuzzy system considering POP diversity.
Through the above adaptations the crossover rate mean values are adapted and crossover
rate value CR are generated within the range [0, 1].

The input to the fuzzy system is the diversity difference (∆errge) calculated as,

∆errge = re f div− popdivge (24)

where popdivge is the population diversity of the current generation population and re f div
is the referral diversity value which is the actual expected diversity value set by the user.

This diversity difference is passed as fuzzy input and the FS maps and gives the
changes to be made in the crossover rate mean (∆CRmnge

st ) to improve the population
diversity to match with the referral value. Thus, using the fuzzy output the crossover rate
mean for generation ge is found as,

CRmnge
d,st = CRmnge−1

st + ∆CRmnge
st (25)

The above CRmnge
d,st value is the second variable used in Equation (23). The crossover

rate values adapted using the fuzzy system as above helps to improve the population
diversity to enhance the exploration. The fuzzy variables used to define the input and
output metrics are zero deviation (ZD), negative deviation (ND), large negative deviation
(LND), positive deviation (PD), and the large positive deviation (LPD). The variables are
defined as triangular function to establish membership. Centroid technique is utilized for
defuzzification. The ruleset is given in Table 1 and the fuzzy input and output variables are
given in Figure 3.
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Table 1. Ruleset for fuzzy system.

Input—Diversity Difference ZD ND LND PD LPD

Output—Changes in crossover rate mean ZD ND LND PD LPD
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The fuzzy rules are framed such as, if the diversity difference value is within range of
zero deviation, it implies that the current population diversity is in the range of reference
diversity. Thus, the output value for the variable changes to be performed to crossover rate
mean is also set at zero deviation, no change will be conducted. If the diversity difference
value is positive or negative then the crossover rate mean value will also be improved
accordingly to meet the required reference diversity level. The trial vector Q − POP is
generated through the above strategy adaptation, fuzzy-based crossover rate adaptation
and cutting/padding encoding scheme.

3.4. Selection Strategy

After generating the trial vector, the population for the next iteration is selected by
further optimizing the count of stop positions (SPs), which directly influences the energy
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consumption value of the system. An updating technique [11] is used to optimize the count
of SP. The target vector P − POP and the trial vector Q − POP both are considered for
updating and optimizing SP count. For every Q− POPi individual in Q− POP, three tasks
are performed such as:

• Random deletion of a SP and this individual is referred as Q− POP1
i .

• The second task is formed by taking the individual Q− POPi as such and referred as
Q− POP2

i .
• The third task is, for the respective ith position in Q− POP, the individual P− POPi

is taken and a SP is randomly added to that individual solution and is referred as
Q− POP3

i .
• Thus, for every Q− POPi we have obtained three variants of the individuals Q− POP1

i ,
Q− POP2

i , Q− POP3
i . Next, the feasibility of the variants are evaluated.

• If more than one variant is feasible, then the individual variant which is non-dominated
and having less SP is taken as QSuccess.

• If only one variant is feasible, it is taken as QSuccess.
• If none of the three variants are feasible then P− POPi is not changed.

Next, if the QSuccess is not being dominated by P− POPi then we replace P− POPi
by QSuccess. Else, P− POPi is not changed. Through above updating scheme, we select
population of NP solutions P− POP.

4. Experiments

In this section, the experimental setup, the test problems and the performance metrics
used are detailed. The experimentation is conducted in MATLAB. Each algorithm is
executed up to 20 runs for all the test problems conducted independently. An example of
MEC system assisted by UAVs is given in Figure 4.
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4.1. Experimental Setup

The initialization of parameter values involved in the MEC system assisted by UAVs
and the parameters related to DE algorithm are all listed in Table 2. The above parameter
setting is based on the existing literature listed in Introduction section [11,12,16]. For the
other optimization algorithms taken for performance evaluation, the associated parameters
are initialized with default values as recommended in related literature.
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Table 2. Initial Parameter setup.

Device/MEC System/Algorithm Parameter Variable Initial Value

STO Algorithm
(Parameters related to DE)

Crossover rate mean, standard deviation (CRmn, std) (0.5, 0.1)
Scaling Factor mean, standard deviation (Fmn, std) (0.5, 0.3)
Learning Period LPE 50 Generations

Maximum Number of Function Evaluations NFE 1000 × t
(t = number of IoT devices)

IoT Device

IoT device location coordinates
(Devices distributed over a square with
1000 m side length)

(li, mi)
li ∈ [0, 1000] m

mi ∈ [0, 1000] m

Number of input information Ai [1, 1000] MB
Computational resources needed to process
one bit Bi 100 cycles per bit

Data transmission power ut
i 0.1 Watts

Process emergency indicator Ci Ci ∈ [1, 2, 3, 4, 5]

MEC System

System bandwidth W 1 MHZ
Unit channel power gain vo −30 dB
White Gaussian noise σ2 −100 dBm
Weight parameter λ 10,000

UAV

The maximum count of IoT devices handled
simultaneously MI 5

Height-UAV’s flying altitude H 200 m

UAV’s location coordinates Lj, Mj
Lj ∈ [0, 1000] m
Mj ∈ [0, 1000] m

Constant flying speed of UAV r 20 m/s
UAV’s CPU processing speed CP 10 GHZ
UAV’s Battery capacity B_CAP 28,000 mAh
UAV’s Battery voltage B_VO 51.8 volts
UAV’s hovering power ph 1400 watts
UAV’s flight power p f 1600 watts

The UAV’S battery energy B_EN is computed as:

B_EN =
B_CAP

1000
× 3600× B_VO (26)

where B_CAP is UAV’S battery capacity, B_VO is UAV’S battery voltage and B_EN value
through the above equation is computed as 5,221,440 J.

4.2. Test Problem

The multi-objective optimization problem for the MEC system assisted by UAVs is
detailed in Section 2, based on which ten test problems are generated by varying the number
IoT devices t, considered in the MEC system. The number of IoT devices in each problem
are initialized at [60, 80, 100, 120, 140, 160, 180, 200, 300, 400].

4.3. Performance Measure I—Quality Indicator (Hypervolume)

The efficiency of the proposed STO algorithm in solving the optimization problem
related to MEC system is tested using the hypervolume (HV) metric [24,25]. Since it is a
real world problem and the true front for the problem is not known, HV is used as quality
indicator. HV metric can assess both the convergence and diversity metrics of the attained
solutions. Moreover, the problem is a minimization problem where both the objective
values are to be minimized. An algorithm is claimed to perform well in solving a particular
problem if the value of HV is high. The hypervolume metric is calculated as:

HV = Le
(
∪X∈QN [ f1(X), re1] ∗ . . . [ fm(X), rem]

)
(27)
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where QN is the nondominated solution set, Le is the Lebesgue measure. Re = (re1, re2, .., rem)
are reference points and m is the number of objectives in the problem.

4.4. Performance Measure II—Statistical Test

To further prove the potential of the proposed STO algorithm, the results are analyzed
statistically. Friedman test [26] is a non-parametric statistical test which jointly analyzes
the results obtained through different algorithms taken for comparison. SPSS—statistical
software package is used to perform the Friedman test and the significance level α is
set at value 0.05. If the obtained p − value through above test is less than α then the
null hypothesis can be rejected and its shows significance of STO algorithm than other
algorithms. Else, if p > α then there is no stronger evidence to prove that the proposed
algorithm is better than remaining algorithms taken for comparative study.

5. Results and Analysis

In this section, the performance of the proposed STO algorithm is compared with other
competitive algorithms and the results are discussed using the hypervolume performance
metric and through statistical tests. The algorithms taken for comparison are NSGA-II [22],
MTO-CPE [11], and NSGA-II-CPE. Where, NSGA-II is a classic and representative multi-
objective evolutionary algorithm. MTO-CPE is a DE-based algorithm developed using the
cutting-padding encoding scheme and the updating mechanism to solve the optimization
problem in the MEC system assisted by UAVs. NSGA-II-CPE is a variant of NSGA-II by
including the cutting-padding encoding scheme and the updating mechanism to optimize
the number of stop positions. All the algorithms are executed 20 independent runs and the
mean standard deviation of HV values are given in Table 3. Higher the HV value, better
the performance of the algorithm.

Table 3. Results of HV performance metric (mean and standard deviation) attained by STO, NSGA-II,
NSGA-II-CPE, and MTO-CPE. The best HV results are in bold.

Test Problem with t Value STO NSGA-II NSGA-II-CPE MTO-CPE

60 0.5118 ± 0.00542 0.165 ± 0.00441 0.473 ± 0.00880 0.510 ± 0.00515
80 0.478 ± 0.00785 0.122 ± 0.00386 0.399 ± 0.0109 0.433 ± 0.00845

100 0.465 ± 0.00410 0.0876 ± 0.00569 0.372 ± 0.0118 0.412 ± 0.00348
120 0.412 ± 0.00784 0.0840 ± 0.00919 0.331 ± 0.0183 0.378 ± 0.00850
140 0.0345 ± 0.0210 0.0557 ± 0.00428 0.269 ± 0.00702 0.0300 ± 0.0101
160 0.328 ± 0.0211 0.0486 ± 0.00732 0.256 ± 0.0114 0.293 ± 0.0100
180 0.487 ± 0.00914 0.0657 ± 0.00172 0.264 ± 0.00509 0.327 ± 0.00825
200 0.289 ± 0.00841 0.0431 ± 0.00454 0.245 ± 0.00852 0.283 ± 0.00970
300 0.278 ± 0.0246 0.0337 ± 0.00315 0.176 ± 0.00547 0.243 ± 0.0148
400 0.187 ± 0.00467 0.0239 ± 0.00318 0.149 ± 0.00191 0.166 ± 0.00501

From the HV results it is evident that the STO algorithm is efficient in solving all the
test problems than the other algorithms taken for comparison. Another observation from
the above results, as the count of IoT device increases the HV value decreases for all the
algorithms. The fuzzy system-based self-adaptation of control parameters by considering
the population diversity makes the STO algorithm robust in handling such complex real
world optimization problem. The strategy pool of trial vector generation strategies and
its adaptation, crossover rate adaptation using fuzzy system makes the DE algorithm
suitable to solve the real world complex optimization problem without extensive fine
tuning. Moreover, the other related problems can also be solved using the algorithm with
less modifications related to the problem.

Figure 5 illustrates the Pareto fronts obtained using the STO and the other algorithms
using the cutting/padding encoding scheme. It is evident that the solutions obtained using
the STO dominate the solutions attained using other algorithms.



Drones 2023, 7, 266 15 of 19

Drones 2023, 7, x FOR PEER REVIEW 15 of 19 
 

to solve the real world complex optimization problem without extensive fine tuning. 
Moreover, the other related problems can also be solved using the algorithm with less 
modifications related to the problem. 

Figure 5 illustrates the Pareto fronts obtained using the STO and the other algorithms 
using the cutting/padding encoding scheme. It is evident that the solutions obtained using 
the STO dominate the solutions attained using other algorithms. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. Cont.



Drones 2023, 7, 266 16 of 19Drones 2023, 7, x FOR PEER REVIEW 16 of 19 
 

  
(g) (h) 

  
(i) (j) 

Figure 5. Pareto Fronts obtained using STO and other algorithms for varying IoT device count (a) t 
= 60; (b) t = 80; (c) t = 100; (d) t = 120; (e) t = 140; (f) t = 160; (g) t = 180; (h) t = 200; (i) t = 300; (j) t = 400. 

Figure 6 gives the trial vector generation strategy adaptation for the test problem with 
number of IoT device 𝑡 value as 300, over the various stages of evolution, where the strat-
egies are self-adapted according to the success index. The strategies that are successful in 
generating promising solutions entering the next generation are chosen with higher prob-
ability in upcoming generation for trial vector generation. All the strategies except DE/cur-
rent-to-rand/1 are chosen with higher probability. The reason is DE/current-to-rand/1 
strategy doesn’t involve any crossover operator. This shows the effectiveness of the pro-
posed algorithm where the strategies and the crossover rate are self-adapted according to 
the population diversity through fuzzy system and attain promising solutions. Thus, the 
success index of the other strategies are higher. 

Figure 5. Pareto Fronts obtained using STO and other algorithms for varying IoT device count
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Figure 6 gives the trial vector generation strategy adaptation for the test problem
with number of IoT device t value as 300, over the various stages of evolution, where the
strategies are self-adapted according to the success index. The strategies that are successful
in generating promising solutions entering the next generation are chosen with higher
probability in upcoming generation for trial vector generation. All the strategies except
DE/current-to-rand/1 are chosen with higher probability. The reason is DE/current-to-
rand/1 strategy doesn’t involve any crossover operator. This shows the effectiveness of the
proposed algorithm where the strategies and the crossover rate are self-adapted according
to the population diversity through fuzzy system and attain promising solutions. Thus, the
success index of the other strategies are higher.
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Figure 7 represents the adaptation of the CR values over the generations for the test
problem with number of IoT device t value as 300. The crossover rate values for the
strategies are gradually adapted according to the environment which helps to escape
from the population stagnation and premature convergence. This self-adaptation of CR
values by improving the population diversity is one among the vital reasons for better
optimization results.
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To further strengthen the discussion on the present algorithm, the Friedman statistical
test is conducted. The significance level α value is set at 0.050. The test results are shown in
Figure 8. STO algorithm is ranked first among other algorithms in the test. The obtained
ρ value is 0.001, which is less than 0.05. Thus, the null hypothesis can be rejected which
statistically proves the significance of the present work.



Drones 2023, 7, 266 18 of 19Drones 2023, 7, x FOR PEER REVIEW 18 of 19 
 

 
Figure 8. Friedman test results. 

6. Conclusions 
In the present research work, the optimization problem related to mobile edge com-

puting system assisted with a single unmanned aerial vehicle is considered. The multi-
objective optimization problem is detailed where the objectives are minimizing the energy 
consumed by the MEC and minimizing the process emergency indicator. To solve the 
above complex real world problem, a novel algorithm based on DE algorithm is proposed 
and is named as the self-adaptive trajectory optimization (STO) algorithm. The number of 
stop positions is considered as unknown, which makes the problem environment chal-
lenging. STO algorithm is developed by including a pool of trial vector generation strate-
gies and their self-adaptation using success index. Further, fuzzy system is used to self-
adapt the crossover rate associated in DE algorithm by improving the population diver-
sity. STO also uses the cutting/padding encoding scheme to ensure all the individuals in 
the population are of uniform length. The updating method further aids in optimizing the 
stop position count. STO algorithm developed using above techniques make it robust in 
handling the complex optimization problem presented. 

The test problems are taken by varying the number of IoT devices. The efficiency of 
the proposed STO algorithm is proved by comparing the results with other representative 
evolutionary algorithms. The hypervolume metric value computed through 20 independ-
ent runs is presented and the STO algorithm outperforms the results attained by the other 
algorithms considered. To further strengthen the proposed research work, a statistical test 
was conducted and the STO algorithm is ranked first in the test. The above results are 
promising to further leverage the research in this domain by considering multiple UAVs 
and a larger number of IoT devices resembling the challenging MEC environment. 

Author Contributions: Conceptualization, B.S.; methodology, B.S., U.M.J., and V.A.; software, B.S. 
and M.J.A.S.A.; validation, B.S. and U.M.J.; formal analysis, B.S. and V.A.; writing—original draft 
preparation, B.S.; writing—review and editing, B.S.; supervision, B.S. and M.J.A.S.A.. All authors 
have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: No publicly available data were used or generated. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Figure 8. Friedman test results.

6. Conclusions

In the present research work, the optimization problem related to mobile edge comput-
ing system assisted with a single unmanned aerial vehicle is considered. The multi-objective
optimization problem is detailed where the objectives are minimizing the energy consumed
by the MEC and minimizing the process emergency indicator. To solve the above com-
plex real world problem, a novel algorithm based on DE algorithm is proposed and is
named as the self-adaptive trajectory optimization (STO) algorithm. The number of stop
positions is considered as unknown, which makes the problem environment challenging.
STO algorithm is developed by including a pool of trial vector generation strategies and
their self-adaptation using success index. Further, fuzzy system is used to self-adapt the
crossover rate associated in DE algorithm by improving the population diversity. STO also
uses the cutting/padding encoding scheme to ensure all the individuals in the population
are of uniform length. The updating method further aids in optimizing the stop position
count. STO algorithm developed using above techniques make it robust in handling the
complex optimization problem presented.

The test problems are taken by varying the number of IoT devices. The efficiency of
the proposed STO algorithm is proved by comparing the results with other representative
evolutionary algorithms. The hypervolume metric value computed through 20 independent
runs is presented and the STO algorithm outperforms the results attained by the other
algorithms considered. To further strengthen the proposed research work, a statistical test
was conducted and the STO algorithm is ranked first in the test. The above results are
promising to further leverage the research in this domain by considering multiple UAVs
and a larger number of IoT devices resembling the challenging MEC environment.
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