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Abstract: Due to the limitations of sensor devices, including short transmission distance and con-
strained energy, unmanned aerial vehicles (UAVs) have been recently deployed to assist these nodes
in transmitting their data. The sensor nodes (SNs) in wireless sensor networks (WSNs) or Internet
of Things (IoT) networks periodically transmit their sensed data to UAVs to be relayed to the base
station (BS). UAVs have been widely deployed in time-sensitive or real-time applications, such as
in disaster areas, due to their ability to transmit data to the destination within a very short time.
However, timely delivery of information by UAVs in WSN/IoT networks can be very complex due
to various technical challenges, such as flight and trajectory control, as well as considerations of the
scheduling of UAVs and SNs. Recently, the Age of Information (AoI), a metric used to measure the
degree of freshness of information collected in data-gathering applications, has gained much attention.
Numerous studies have proposed solutions to overcome the above-mentioned challenges, including
adopting several optimization and machine learning (ML) algorithms for diverse architectural setups
to minimize the AoI. In this paper, we conduct a systematic literature review (SLR) to study past
literature on age minimization in UAV-assisted data-gathering architecture to determine the most
important design components. Three crucial design aspects in AoI minimization were discovered
from analyzing the 26 selected articles, which focused on energy management, flight trajectory, and
UAV/SN scheduling. We also investigate important issues related to these identified design aspects,
for example, factors influencing energy management, including the number of visited sensors, energy
levels, UAV cooperation, flight time, velocity control, and charging optimization. Issues related to
flight trajectory and sensor node scheduling are also discussed. In addition, future considerations on
problems such as traffic prioritization, packet delivery errors, system optimization, UAV-to-sensor
node association, and physical impairments are also identified.

Keywords: Age of Information (AoI); drone; energy efficiency; information freshness; Internet of
Things (IoT); scheduling; trajectory; unmanned aerial vehicle (UAV); wireless sensor networks (WSNs)
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1. Introduction

Wireless sensor networks (WSNs), the Internet of Things (IoT), and unmanned aerial
vehicle (UAV) technologies have many benefits and thus have been utilized in a huge variety
of applications, including healthcare, disaster management, agriculture, and transportation.
In WSNs, sensors are deployed for data collection and aggregation. They are also useful
within the more advanced IoT networks (which help to connect different smart entities)
for sensing, actuation, and computations through the Internet [1,2]. Data generated by
these sensors and smart devices can be used in the aforementioned application domains [3],
including smart grids [1]. Sensor nodes in WSNs and IoT are mainly characterized by
limited transmission range and energy constraints; therefore, they cannot transmit sensed
data over large distances efficiently. This motivates the deployment of UAVs for relaying
sensed data in WSNs and IoT (i.e., UAV-assisted WSN/IoT) to their required destination.
In other words, UAVs fly to collect data sensed by WSNs/IoT devices and transmit that
data to the data center or base station (BS). However, one of the main challenges of UAVs’
deployment in WSN/IoT networks is to effectively send the required data in real-time. Due
to the numerous limitations of WSNs and IoT themselves, there have been many studies
investigating the many aspects that could be enhanced to ensure the data’s freshness using
the Age of the Information (AoI) metric. The AoI is the amount of time that elapses after
the generation of the most recent update before it is received at the destination. This
study investigates a few key components of AoI optimization, including the planning and
designing of the UAV’s trajectory.

1.1. Applications of UAV-Aided Data Collection for WSNs/IoT

UAV-assisted WSN/IoT applications are abundant in the literature, and some are time-
critical. Such applications can be categorized into monitoring, industrial, environmental,
smart city, data gathering, security, health, agriculture, and disaster management. Figure 1
((a) https://www.flickr.com/photos/mikecogh/22339765443/ accessed on 18 January 2023;
(b) Picture by DFID—UK Department for International Development (see https://www.
flickr.com/photos/dfid/17313224411/ accessed on 18 January 2023); (c) https://www.
rawpixel.com/image/5912255 accessed on 18 January 2023; (d) Picture by Frankhöffner,
https://commons.wikimedia.org/wiki/File:Md4-1000_microdrones_frank.jpg accessed on
18 January 2023; (e) https://commons.wikimedia.org/wiki/File:4X-UHJ_Agridrones_d.jpg
accessed on 18 January 2023) depicts deployments of UAVs in real-world scenarios. UAV-
based monitoring applications have huge prospects. For instance, ref. [1] studied the use of
IoT for monitoring physical phenomena (e.g., temperature, humidity, etc.) in a geographic
area. Similarly, refs. [2,3] considered an environmental monitoring application, while [4]
is applicable in agriculture, health, safety, and industrial data monitoring. The work
in [5] is targeted at a post-disaster early warning scenario, while environmental sensing is
considered in [6,7], and the monitoring of time-stamped status updates is studied in [8,9].
The identification, exposition, and understanding of the technical design aspects and
considerations for UAV-assisted IoT architecture targeted at these applications would help
researchers and network designers to make informed decisions with respect to alternative
architectures, trade-offs, and techniques to achieve target design objectives, thus enhancing
the efficiency of data gathering in these applications.

https://www.flickr.com/photos/mikecogh/22339765443/
https://www.flickr.com/photos/dfid/17313224411/
https://www.flickr.com/photos/dfid/17313224411/
https://www.rawpixel.com/image/5912255
https://www.rawpixel.com/image/5912255
https://commons.wikimedia.org/wiki/File:Md4-1000_microdrones_frank.jpg
https://commons.wikimedia.org/wiki/File:4X-UHJ_Agridrones_d.jpg
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Figure 1. Illustration of UAVs deployed in different applications.

1.2. Objectives and Contributions of This Paper

This paper primarily aims to identify the fundamental design considerations in UAV-
assisted WSN/IoT networks for ensuring the information reaches its destination within
the least tolerable time. The following research questions are formulated to address the
research aim and objectives of this study:

• What are the pertinent architectural design considerations identified from the previous
works on AoI minimization in UAV-assisted data collection for WSNs/IoT?

• What are the concerning issues related to the identified fundamental design aspects of
AoI minimization in the literature on UAV-assisted WSNs/IoT?

• What are some potential study areas of AoI-aware UAV-assisted WSN/IoT
network architectures?

Given the above, this paper presents three main contributions:

• A comprehensive study of previous work on age-aware UAV-assisted WSNs/IoT for
data gathering applications, focusing on the technical design aspects. This includes
the classification of the studied works into three major categories and 17 subcate-
gories, presenting illustrations on some of the common architectures, and identifying
limitations and significant results in these works.

• A discussion on pertinent issues related to the identified design aspects, namely energy
management, flight trajectory, and UAV/SN scheduling.

• A discussion of potential research directions in this field towards motivating further
research and problem-solving in this area.

1.3. Related Surveys

The study provided in this paper is unique in many aspects and thus differs from the
existing review articles on UAV-based wireless communication applications. For instance,
a conference paper [10] focused on distributed processing applications for UAVs, while [11]
reviewed 3D wireless ad hoc and sensor networks. The authors in [12] surveyed the use
of multiple UAVs for persistent surveillance and [13] studied the use of UAVs for civil
applications. On a similar note, UAV applications for civil infrastructure are surveyed
in [14]. The authors of [15–17] focused on UAV-assisted disaster management and [18]
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reviewed UAV-based intelligent transport for smart cities, while [19] studied UAV swarm
and nanosat applications and architectures. The collaborative deployment of UAVs and
WSNs for monitoring is reviewed in [20], while autonomous inspection via multi-UAV is
studied in [21] and UAV applications in WSNs are reviewed in [22]. The authors in [23]
surveyed green UAVs for public safety applications, while Okada et al. [24] reviewed the
deployment of aerial wireless relays for emergencies. Generally, FANET technologies and
applications have been studied in [25]. Key issues related to UAV data collection in the IoT
were reviewed by Yang et al. [26], while UAV applications for precision agriculture were
surveyed in [27]. The authors in [28] focused on viticulture, while UAV-based air quality
monitoring was discussed in [29]. In [30], the authors reviewed mobile edge computing in
UAV networks, while [31] studied air–ground integrated edge systems. For future wireless
technologies, ref. [32] studied UAV softwarization applications and trends, while the use
of UAVs for 5G and beyond was surveyed in [33]. Finally, the Internet of Flying Things
(IoFT) was reviewed in [34]. Apart from the aforementioned, several other surveys have
been published on UAVs (see Table 1). None of these studies thoroughly investigated the
fundamental technical considerations in the subject of AoI minimization in UAV-assisted
data gathering in WSN and IoT applications.

In relation to AoI-related studies, surveys on AoI have recently appeared in the lit-
erature with diverse focus areas. For instance, the concept of AoI and its optimization
in wireless communication networks, in general, are discussed in [35] with some discus-
sion on definitions, variants, sampling policies, packet management strategies, resource-
constrained source nodes involving EH, and UAV-assisted sampling. The authors of [36]
mainly focus on AoI in Ambient Intelligence (AmI) IoT networks, methods, metrics, and
their queuing and scheduling policies. The authors in [37] focused on methods, metrics,
and AoI optimization in low-latency cyber-physical systems and applications requiring
timely status updates. In contrast to all the aforementioned surveys, this paper studies
the literature on UAV-assisted data gathering in WSN/IoT applications with the goal of
identifying the most fundamental design considerations/aspects, classifying them based
on how they have been jointly considered, identifying critiques of some of these works
based on the literature, and highlighting some of the challenges and future considerations
in this area. Table 2 summarizes surveys related to AoI minimization in UAV-assisted
data gathering.

On the contrary, the main focus of this paper is not on methods, algorithms, and
assumptions related to this research field. Rather, this paper is meant to be an introductory
survey for those planning to construct a similar network architecture or hypothesize the
network performance, keeping in view different design considerations. It is worth noting,
however, that we have also conducted a comprehensive study focusing on metrics, methods,
assumptions, and other influencing factors on AoI minimization for UAV-assisted data
gathering in WSN/IoT networks (refer to [38]).

Minimizing the AoI to facilitate the timely delivery and freshness of information
involves complex design considerations of many elements, including flight (trajectory
and altitude) control, scheduling of sensor nodes and UAVs, the association of sensor
nodes with the UAV or with their cluster heads and selection points, UAV data collection
mode selection, as well as energy-efficiency. Furthermore, issues such as network size,
number of UAVs, channel conditions, and physical impairments also affect the AoI. Various
architecture-specific assumptions and techniques that have been studied by researchers
will also be highlighted in this paper.
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Table 1. Summary of UAV-related surveys.

Ref Year Focus

[10] 2015 Distributed processing applications for UAVs

[11] 2014 3D wireless ad hoc and sensor networks

[12] 2014 The use of multiple UAVs for persistent surveillance

[13] 2016 UAV communication networks for civil applications

[14] 2016 UAVs for civil applications

[15] 2016 UAV-based disaster management applications and issues

[16] 2017 WSN- and multi-UAV-assisted disaster management

[17] 2017 UAV-based disaster prediction and management

[18] 2017 UAV-based intelligent transport for smart cities

[19] 2017 UAV-assisted disaster management

[20] 2019 Collaborative UAV-WSN for monitoring

[21] 2019 Autonomous inspection via multi-UAV

[22] 2020 UAV applications in WSNs

[23] 2019 Green UAV for public safety applications

[24] 2020 Aerial wireless relay for emergencies

[25] 2020 FANET technologies and applications

[26] 2020 UAV data collection in the IoT

[27] 2020 UAV applications for precision agriculture

[28] 2021 Viticulture

[30] 2020 Mobile edge computing in UAV networks

[31] 2020 Air–ground integrated edge systems

[32] 2020 UAV softwarization applications

[34] 2020 Internet of Flying Things

[33] 2021 UAV for 5G and beyond

[39] 2022 Micro UAV charging techniques

[40] 2022 Applications in disaster management

[41] 2022 Drone scheduling problems

[42] 2022 Drone-based logistics systems

[43] 2022 Farm monitoring and pesticide spraying

[44] 2022 Green UAV for 6G

[45] 2022 UAV path planning using optimization

[46] 2022 UAV for precision agriculture

[47] 2022 Computing for UAV-assisted 6G and Industry 4.0/5.0

[48] 2022 UAV-based forest health monitoring

[49] 2022 AI-enabled routing protocols for UAVs

[50] 2022 AI applied to path planning in UAV swarms

[51] 2022 Cyber security threats and solutions for UAVs

[52] 2022 Environmental monitoring

[53] 2022 UAV-assisted data collection for IoT

[54] 2022 AI-powered 3D deployment of drone BS

[55] 2022 Forest insect pests and disease monitoring
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Table 1. Cont.

Ref Year Focus

[56] 2022 SDN solutions for drone detection and defense

[57] 2022 Resource optimization

[58] 2022 UAV placement optimization for 5G and beyond

[59] 2022 UAV-aided maritime communications

[60] 2022 Drone-assisted monitoring of atmospheric pollution

[61] 2022 UAV digital technologies for Construction 4.0

[62] 2022 UAV placement and trajectory optimization

[63] 2022 UAV deployment and trajectory

[64] 2022 Security threats to UAV-aided IoT applications

[65] 2022 AI meets UAVs for precision agriculture

[66] 2022 UAV placement and trajectory design optimization

[67] 2022 Physical layer security for UAVs

[68] 2023 UAV formation trajectory planning algorithms

[69] 2023 Drone routing for delivery systems

Table 2. Summary of AoI optimization surveys.

Ref Year Focus Summary

[37] 2021
Low-latency

cyber-physical
systems

Provides an overview of the current state of the art in the design
and optimization of low-latency cyber-physical systems and

applications requiring timely status updates. It also describes the
various methods and metrics used to evaluate the Age of

Information (AoI) in a wide range of systems and explores the
use of AoI optimization in cyber-physical applications.

[36] 2022
Ambient Intelligence

(AmI) Internet of
Things (IoT) networks

Provides a review on notations of AoI, parameters affecting AoI
in IoT systems, and techniques for modeling AoI. No special

attention was given to UAV-assisted IoT.

[35] 2023
Wireless

communication
networks in general

The paper provides a comprehensive survey of the Age of
Information (AoI) in wireless networks and reviews current

progress from an optimization perspective. This includes AoI
definitions, optimal sampling policies, packet management
strategies, scheduling policies, and potential future research

directions for AoI research.

This paper 2023 Design considerations
in age-aware UAV-IoT

The paper provides a comprehensive survey of the design aspects
of Age of Information (AoI)-aware UAV-assisted IoT and

its architectures.

1.4. Paper Organization

The rest of the paper is organized as follows: Section 2 outlines the methodology
used in this study and provides a summary of the fundamental design aspects identified
from the literature. Section 3 provides a brief background discussion on the concept of
AoI and the typical UAV-aided WSN/IoT architectures. Section 4 thoroughly examines
the fundamental design aspects of AoI minimization in UAV-assisted WSNs/IoT in the
literature. Subsequently, Section 5 focuses on pertinent issues related to UAV-assisted
WSNs/IoT design aspects for data-gathering applications. Particularly, Section 5.1 discusses
energy efficiency and the affecting factors, Section 5.2 analyses the factors to optimize
UAV trajectory, and Section 5.3 discusses the scheduling issues of IoT devices and UAVs.
Section 6 discusses other challenges related to AoI minimization in UAV-assisted WSNs/IoT
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as well as proposes some future research directions. Finally, Section 7 concludes this paper.
The complete meanings of the abbreviations and acronyms are provided in Abbreviations.

2. Methodology

A systematic literature review (SLR) method was adopted in this work. The SLR ap-
proach is typically utilized by researchers to perform an organized and thorough literature
review. Such an approach has been widely used in the computer network and wireless
communication domains as well as in [70–74]. Other forms of literature review approaches
are usually devoid of rigor and tend to follow a freestyle rather than a predetermined
process [75]. On the contrary, the SLR is distinct from other review methods as it adheres to
certain scientific standards, and the process can be replicated [70,76]. Therefore, this study
applies the SLR technique to study the past literature on AoI minimization in UAV-assisted
WSN/IoT-based data-gathering applications as depicted in Figure 2. We applied a similar
process to those observed in some of the previous SLR studies [70,71,77,78] to systemat-
ically report the findings on recent AoI-aware UAV-aided data collection for WSN/IoT
application studies focusing on the architectural design aspects. Moreover, the approach
of this study is congruent with our previous work in [38], although with different aims
and objectives.

Figure 2. Literature search methodology.

In this paper, prior works on UAV-assisted data gathering [1,2,4,8,9,79–93] were stud-
ied following similar search procedure used in [38]. On the 5th of December 2022, we
further investigated more recent references using the following search keywords in the
Scopus database: ((UAV OR Drone OR “unmanned aerial vehicle”) AND (IoT OR “internet
of things” OR “wireless sensor network”) AND (“Age of information” OR AoI OR “in-
formation freshness” OR “information age”) AND (“data gathering” OR “data collection”
OR “monitoring”)) which yielded 25 results. After excluding these papers from certain
criteria, another 6 articles were studied and included in this work (refer to Figure 2 for the
summary of the SLR process). The exclusion criteria were as follows:

• Articles included in the initial results [1,85,93].
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• Articles on UAV-IoT mobile edge computing (MEC) systems or those where UAVs
have been used for computation [94–97].

• Article involving the use of UAVs for sensing [98].
• Articles in which the UAV is assumed to function as an aerial BS [99,100].
• Article in which the UAV is assumed to perform task assignment [101].
• Articles that do not assume the presence of BS [102,103].
• Article on covert communication [104].

The additional six articles of interest [3,5–7,105,106] were then also studied along with
the selected 20 articles to identify the fundamental design considerations to minimize the
time taken by the UAVs to collect sensed data from the sensor devices and transmit them to
the data center or BS. Two fundamental design aspects have been identified: (1) UAV flight
and trajectory (including altitude) [1,2,4,8,9,79–86,88–93] and (2) UAV scheduling [87]. In
addition, energy management (including energy efficiency and energy consumption) is
another major design consideration in AoI optimization. We refer to these three as primary
design aspects. Figure 3 depicts these primary design aspects. Other important consider-
ations have been identified in the study, albeit they are not as significant as the primary
aspects. We refer to these as the secondary considerations, which include SN scheduling,
mode selection, association, and sampling policies. For instance, [1,2,4,8,9,79–86,88–93]
fall into the flight trajectory category (green color), while [87] falls into the scheduling
category (brown color). Note that these studies are strictly based on network planning and
design perspectives only. Figure 4 shows the combination of these primary and secondary
design areas that have been considered in the respective models. In other words, we
have classified the various works into similar research themes for further discussion. For
instance, [4,81] mainly studies trajectory optimization and incorporate scheduling in the
studied models, while [7,80,82,92] focus on trajectory optimization in addition to energy
management and scheduling. On a similar note, trajectory optimization was only studied
in [79,83], while [5,6] investigated trajectory optimization and energy efficiency. In sum-
mary, based on the conducted SLR, we have identified three primary design aspects that
will be further examined in detail in the subsequent sections.

Design aspects

Flight and
Trajectory

SN
association
CP/UAV

Mode
selection

Scheduling

Energy
manage-

ment

Node
sampling

Data
collection

time

Scheduling

Trajectory

Energy
manage-

ment

Energy
management

Figure 3. Primary design aspects from the literature.
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Design aspects

Flight and Trajectory

Altitude

Scheduling [8]

Trajectory [79,83]

Energy management [5,6]

Sampling policy [105]

Scheduling [7,80,82,92]

Mode selection [86]

Bandwidth allocation [1]

Data collection time [106]

SN-CP association [91]

SN association [84,89]

Scheduling [4,81]

UAV-IoTD association [2]

Node sampling policy [3]

Scheduling

Energy management [87]

Altitude Optimization [9]

Figure 4. Categorization of design aspects of AoI minimization in UAV-assisted WSN/IoT networks
based on [1–8,79–84,86,89,91,92,105,106].

3. AoI Minimization in UAV-Assisted WSN/IoT Application Architectures
3.1. AoI Minimization

The critical applications of UAV-assisted IoT emphasize the importance of timely data
delivery by the UAV, especially in disaster and time-sensitive monitoring applications.
This is particularly because timely sensed information can make an accurate and informed
decision. Untimely updates may not correctly capture the current state of the data being
sensed, which may lead to wrong decisions being made. It becomes even more concerning
considering IoT devices have constraints, such as relatively short transmission range and
low onboard energy, despite the need for reliable communication to the final destination.
This motivates the consideration of techniques for timely information delivery [9], such as
the use of UAVs for relaying data sensed by sensors and IoTDs, which led to the study of
the AoI metric on the UAV-assisted WSN/IoT architecture. The first research study that
introduced the concept of AoI can be traced back to the year 2012 in [107], which focused
on real-time status updates.

AoI is defined as the amount of time that elapses after the generation of the most recent
update before it is received at the destination. AoI characterizes the inter-delivery time
arrivals and latency [8]. It differs from the delay metric, i.e., the time that was spent on data
transmission from the source to the destination [2]. Applications where status information
needs to be delivered to the destination quickly for online data analysis and decision-
making, such as environmental monitoring, health monitoring, and safety protection, can
be characterized using AoI [85]. UAVs are favorable in terms of their speed, flexibility, and
dynamism, thus they attract researchers’ attention, particularly in AoI-aware WSN and IoT
architecture design. For UAV-based data gathering, the AoI of an arbitrary physical process
is defined as the time elapsed since the most recently received update packet at the UAV
was generated at the ground node [4].
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Numerous researchers have studied the objective of AoI minimization using different
target metrics. For example, normalized weighted sum AoI (NWAoI) was considered in [4],
AoI cost in [87], maximum AoI (max. AoI) in [1,79,84,89,91], and meanwhile, average AoI
was investigated in [79,85,89,92,106]. In [85], the authors specifically studied minimum
average AoI. The sum of AoI was used in the work of [9,81], and this metric has been
further extended to the weighted sum of AoI in [3,8,80]. The authors in [1] formulated
weighted sum expected AoI. Expected sum AoI (ESA) was studied in [9], the authors of [90]
evaluated peak AoI, while ave peak AoI was considered in [82]. Finally, the general AoI
performance metric was investigated in [2,5–7,83,86,93,98,99,101–103,105].

3.2. Typical Architecture of UAV-Assisted WSN/IoT Applications

Figure 5 shows a generic UAV-assisted WSN/IoT network where the UAVs fly to
collect data from multiple sensor nodes that sense various environmental phenomena.
The sensors could be deployed based on different distributions and orderings (random or
deterministic). For instance, nodes can be deployed randomly within the sensed region.
These nodes could form a clustered architecture, where a cluster head collects data from
other sensor nodes and the UAV flies close to these nodes from the cluster head. In other
cases, there could be stopping points that the UAV hovers above to collect data from neigh-
boring sensors. The collected data can be sent to the BS or data center for further actions.

Figure 5. A typical UAV-assisted sensor architecture where UAVs follow a trajectory to deliver fresh
information to the data center.

In Figure 5, a UAV can hover above the sensors one after the other or hover above
collection/stopping points to collect data before it finally offloads them to the BS or data
center. Assuming the UAV hovers above each sensor, the AoI of the base station or data
center initially starts at A0 and increases at a unit rate until it receives updates from the
UAV. Data are sampled by sensors at time τ1 and received at τ2 when the previous data
at the BS are received. Thus, the AoI is τ2 − τ1 and the process continues [1]. In Figure 6,
the AoI of each sensor is the elapsed time from when the information is sensed to when
it is delivered to the data center [79]. Whenever the destination successfully collects the
newest updated data, the AoI decreases. On the other hand, the AoI increases when the
sensor nodes are outside the UAV’s coverage area [92], which might be due to the UAV’s
limited coverage radius; wider radius results in a lower AoI because the UAV could collect
data quickly from more sensor nodes [80]. Similarly, whenever the UAV has a greater
communication range, it may communicate directly with more sensor nodes, collecting
data faster while using less energy and thus reducing AoI. Consequently, it is crucial to
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maximize the UAV’s communication range [92]. The UAV’s altitude also affects the AoI’s
performance because the propagation characteristics between IoT devices and the UAV, as
well as the UAV and BS [8], affect the quality of communication.

Figure 6. Illustration of AoI evolution for a typical UAV-assisted WSN architecture.

4. Classification of Multiple Design Aspects of AoI Minimization in UAV-Assisted
WSN/IoT Applications in the Literature

This section provides a detailed discussion of the identified primary and secondary
design aspects shown in Figure 3. Note that the flight and trajectory as well as UAV and SN
scheduling are identified as the most critical aspects for an efficient design of AoI-minimal
UAV-assisted data-gathering WSN/IoT applications. In fact, all the reviewed papers
considered UAV trajectory as the primary design objective, except the authors in [87].
In addition, it is also established from the existing literature that energy management and
UAV altitude are fundamentally important in design considerations. Hence, the following
subsections examine these fundamental design aspects with a summary provided in Table 3.

Table 3. Summary of design aspects’ classification for AoI minimization.

Ref Aspect Summary

[8] Altitude scheduling
Joint study of dynamic UAV altitude

control and scheduling policy in a
UAV-assisted wireless IoT network.

[9] Altitude optimization
Optimization of RIS configuration for AoI

minimization in a network with UAV
altitude constraints.

[5] Trajectory and energy
management

AoI minimization in a scenario where
UAVs return to the ground control station

to be recharged.
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Table 3. Cont.

Ref Aspect Summary

[6] Trajectory and energy
management

AoI optimization with UAVs possessing
varying energy capacities which introduces

some degree of heterogeneity.

[84,89] SN association
Design of sensor node association and
trajectory planning for UAV-assisted

data collection.

[4,81] Trajectory and
scheduling

Optimize the flight path of a UAV and
schedule updates of the

ground nodes’status.

[2] UAV-IoTD association The UAV trajectory planning for
maintaining information freshness in IoT.

[3,105] Node sampling policy The UAV trajectory planning for
maintaining information freshness in IoT.

[87] Scheduling and energy
management

Age-optimal UAV scheduling with
battery recharging.

[105] Sampling policy Trajectory design of UAV was created
before the UAV’s flight and not in real-time.

[7,80,82,92] Scheduling Ground node transmissions of status
update packets are scheduled

[86] Mode selection Framework where a battery-limited UAV
flies in multiple turns.

[1] Bandwidth allocation UAV-assisted energy-aware data collection
for a group of IoT devices.

[106] Data collection time

Joint optimization of UAV trajectory,
transmit power, and data collection time

from each sensor on the backscatter
IoT architecture

[91] SN-CP association
Cooperative framework for

energy-constrained multi-UAV data
collection for time-sensitive WSNs.

4.1. UAV Trajectory

The optimization of UAV trajectory is important to utilize the UAV effectively in view
of the limited resources [62] and constrained battery capacity of the UAV. This section
discusses papers that have mainly studied trajectory in system design and optimization.
Four papers best fit this category: the first [79] can be categorized as trajectory only as
it presents the simplest case, while the other [83] mainly involves trajectory design and
minimization of packet expiry. In the third [3], trajectory and sampling policies of IoT
devices are considered, which adds some complexity to the system. Finally, UAV trajectory
is considered with UAV-IoTD association in [2] due to the dynamic nature of the network
where a different number of IoT nodes may be associated with the same UAV over time.

The authors in [79] investigate the impact of AoI on UAV-assisted data collection.
In the proposed work, the age-optimal trajectory planning problem is studied in UAV-
assisted WSN where the UAV visits all sensor nodes in a sequential manner and delivers
the data to the data center for information processing. The authors investigate the impact of
UAV trajectory on the AoI of each sensor node where the AoI of each node corresponds to
the time taken for information to get from the sensing point to the data center. However, this
work did not examine the joint optimization of the data acquisition method and visiting
node order [93]. Similarly, ref. [95] did not investigate the use of full-duplex devices,
instead, half-duplex UAV transmissions were studied, and only uplink transmissions were
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investigated. Additionally, before returning to the base station, the UAV visits all the
sensor nodes, which might not be optimal with respect to AoI [87]. The unreliable channel
conditions and the absence of knowledge of channel state information (CSI) were also not
considered [8]. Furthermore, the studied architecture assumed a fixed energy supply for
sensor nodes, making it difficult to deploy in dangerous (or hard-to-reach) areas where it
cannot be recharged [85]. The concept of UAV recharging was not explored [90], and only
one UAV was considered, which makes it unsuitable for large-scale sensor networks [91].
Finally, only a near-optimal (as opposed to an optimal) solution was derived [106], and the
optimal scheduling of update packet transmissions was not considered [81].

It is important to carefully study UAV trajectory since packet transmission rate is
highly dependent on the UAV’s flight time between sensor nodes and its flight order
over all the sensor nodes. Considering the importance of time effectiveness, the authors
in [83] investigated the importance of AoI metrics in UAV-aided information sensing for
environmental monitoring applications. The main objective was to study the UAV trajectory
design and reduce packet expiry or dropped messages when a UAV is dispatched to collect
data from a cluster of sensors. Data stored on sensor nodes are continuously generated
and characterized by a finite lifetime. A reinforcement learning (RL) method was deployed
to help the UAV learn how to adapt to the dynamic environmental conditions within the
proposed framework to improve the time effectiveness and performance of path design.
However, the waiting time of update packets [105], the scheduling policy of update packets,
and queuing was not considered despite the fact that, in real applications, continuous
sampling would require some packets to be queued. Although more complex, the potential
of full-duplex radios was not explored despite their potential to facilitate high-bandwidth
applications. Similarly, the authors assume the UAV must visit all sensor nodes before
returning to the base station, which might not be optimal in large-sized networks [87]. A
discrete trajectory was considered, which is prone to approximation errors as compared
with real-world implementations [4].

The authors of [3] study the age-optimal data collection problem in UAV-assisted IoT
(Figure 7a) by jointly considering the data sampling, queuing, and UAV-assisted relaying
processes. Using a sample and replace policy, the authors considered a model involving
the replacement of update packets in the sensor node buffer with those of a newly sampled
packet. The UAV collects the sensor node update packets when it flies over the sensor
nodes. In order to obtain the age-optimal policy, they formulate the UAV-assisted data
collection problem as a finite horizon MDP intending to minimize the weighted sum
AoI, packet drop rate, and energy consumption of the UAV. To overcome the curse of
dimensionality, the authors propose using a deep RL algorithm for designing the UAV
age-optimal trajectory while also minimizing the packet drop rate. Via simulations, they
show that the proposed learning algorithm has the potential to reduce both the packet drop
rate and AoI significantly using the learned topology and sensor node sampling status.
However, the paper only considers a single-UAV scenario, and that of multiple UAVs has
not been studied. A number of such UAVs can be investigated in the future to embark on
data collection and further optimize the AoI collaboratively.

Trajectory optimization and UAV-IoTD association are important design consider-
ations in planning UAV-assisted WSN and IoT applications for data gathering. This is
especially important when the set of IoT devices within the UAV coverage area varies
with time. The authors of [2] investigate the UAV trajectory planning for maintaining
information freshness in the IoT with unknown traffic generation patterns (such as the AoI
evolution of a fire alarm triggered when the temperature is above a specific threshold) as
shown in Figure 8a. They identify and formulate the associated AoI-minimized trajectory
planning problems and propose a novel online AoI-based trajectory planning algorithm
using deep RL considering the time-varying and unknown traffic generation patterns of
IoT devices. To prevent being trapped in a local optimum and speed up the proposed
algorithm’s convergence, the authors adopt a randomized policy for pre-training deep
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neural networks. Via extensive simulations, the results show that the proposed algorithm
can reduce the AoI of collected data.

Figure 7. Illustrative architecture for single- (a) and multi- (b) UAV-assisted data collection from IoT
with queuing policy based on [3,105] respectively.

Figure 8. Illustrative architecture for UAV-assisted IoT without cellular coverage (a) and EH-UAV-
assisted IoT (b) based on [2,92] respectively.

4.1.1. Trajectory and Sensor Node Association

The consideration of AoI in network design could lead to advancements in the pro-
posal of novel transmission and scheduling policies which are essential in UAV-enabled
applications. In large-sized networks with several CPs, the sensor nodes have to be asso-
ciated with CPs based on a policy. Thus, new ML-based techniques have recently been
deployed for network optimization. For instance, the authors in [89] focus on the design
of sensor node association and trajectory planning for UAV-assisted data collection to
minimize sensor node maximal AoI. In [84], the focus was on designing an AoI-aware
UAV-assisted data collection strategy in a scenario where the UAV hovers above each CP to
collect data from a set of sensor nodes (Figure 9a). To minimize the maximum AoI of all
sensor nodes, a joint optimization of CP association and UAV flight trajectory was carried
out via a joint sensor nodes association and trajectory planning policy. The location of
CPs was first determined via an AP-based algorithm, which was also used to determine
the association between sensor nodes and CPs. Dynamic programming was then used to
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obtain an age-optimal trajectory along CPs by iterating these two steps alternatively. Via
simulations, the authors show the effectiveness of the proposed method above.

Figure 9. Illustrative architecture for UAV-assisted WSN with pre-scheduled trajectory (a) and
UAV-assisted data dissemination (b) based on [84,86] respectively.

The age-optimal UAV-assisted data collection problem is extended and generalized
in [89]. In this case, the rotary wing UAV is dispatched from the data center to collect data
from ground sensor nodes, which are grouped into (non-overlapping) clusters. A data
collection point is associated with each cluster. The UAV flies from one CP to the next to
collect data from the associated sensor nodes following a trajectory. In this framework,
the focus was to jointly optimize the locations of the CPs, sensor node–CP association, sen-
sor nodes’ uploading sequence, and the trajectory of the UAV along the CPs for minimizing
the sensor node maximum and average AoI values. Using two iterative steps involving
an affinity-propagation-based association algorithm with clustering weight, the authors
found the locations of CPs and the association between the sensor node and CP. The au-
thors show the effectiveness of the proposed strategy via simulations, particularly the
proposed algorithm, which can balance sensor nodes’ uploading time and UAV flight time
to minimize the sensor node maximum or average AoI in various scenarios. However,
the online decision-making paradigm where the UAV learns its next move on the fly was
not considered. In other words, UAV flight is designed before the UAV leaves to collect
data, which does not facilitate the real-time decision-making of the UAV [105]. Similarly,
the impact of the energy limitation of low-power IoT devices and the dynamic nature
of the time-varying channel was not studied even though channel attenuation impacts
transmission efficiency [102].

4.1.2. Trajectory and Mode Selection

UAV data collection can occur while the UAV is hovering over the sensor nodes or
CPs. Similarly, data can be transmitted to the UAV while it is flying as long as it is within
the transmission range of the sensor nodes. Considering the significance of optimizing
data collection time for reducing the age of collected information by the UAV, authors
in [93] aimed to find the optimal flight path via a joint consideration of the node’s visiting
order and the data acquisition mode at each node. The authors consider three different
data acquisition modes while assuming LOS links: (1) hovering mode, where the UAV
hovers above the node to collect packets; (2) flying mode, where the UAV begins to collect
packets, then flies to the next node at maximum speed; and (3) hybrid mode, where the UAV
begins to collect data by hovering above the node and keeps collecting data while flying.
They show that the age-optimal adaptive strategy outperforms that of the flight-time-
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optimal strategy with respect to the average age of delivered information. The flight-time
age-optimal strategy offers a competitive solution compared with the flight-time-optimal
strategy. Additionally, the age-optimal strategy’s performance can be further improved
by adapting a data acquisition strategy for each node. However, the impact of unreliable
channel conditions, an absence of knowledge of CSI [8], and obstacles were not considered.
Moreover, it was assumed that sensor nodes are of equal importance and heterogeneity
with respect to the function or importance was not considered [87].

4.1.3. Trajectory and Scheduling

This category mainly consists of two papers. In the first paper, the authors consider
joint trajectory and scheduling policy design in UAV-assisted sensor-based networks for
age minimization. In the second, the authors investigate the UAV trajectory planning for
maintaining information freshness in the IoT with unknown traffic generation patterns
(such as the AoI evolution of a fire alarm triggered when the temperature is above a
threshold), which differs from a regular periodic pattern. Further details on these works
are provided below.

The authors of [4] present a novel technique combining convex optimization and ML
tools for optimizing the UAV flight trajectory and scheduling ground nodes’ status updates.
The aim was to minimize the UAV’s normalized weighted sum AoI values. A UAV moves
to ground nodes to collect status update packets about the processes observed by the sensor
nodes. The problem for this setting is formulated as an NWAoI minimization problem,
in which the UAV flight trajectory and packet update scheduling are jointly optimized.
The authors draw many key insights from their analysis and analytically obtain a lower
bound on the NWAoI, which is useful for determining nodes’ weights. They show that the
lower bound on NWAoI is independent of the number of nodes, but is rather a function of
node weights and status updates. The authors show from the derived analytical expression
that to make each node have a similar effect on NWAoI, the nodes’ weights should be
proportional to the total number of updates transmitted by the nodes. However, the authors
only considered opportunistic transmission, thus, the scenario, where some packets might
have to be buffered, was not considered. Consequently, the waiting time of update packets
was not captured [105]. Moreover, the potential of backscatter communications was not
studied [106]. However, the paper only accounts for one trip for the UAV, and a non-linear
AoI function cannot be accommodated [87].

The authors of [81] consider a wireless network where several ground nodes are
deployed for observing different physical processes for a geographic region. The UAV
comes to collect status update packets while it seeks to maintain the freshness of its
information status about the processes observed during its time of operation. They propose
a novel RL framework to optimize the UAV trajectory and schedule status update packets to
minimize the weighted sum AoI. A weighted sum AoI minimization problem is formulated
where the joint optimization of UAV flight trajectory and scheduling of update packet
transmission is considered. The problem is modeled as a finite-horizon MDP having finite
state and action spaces, and the age-optimal policy was derived. However, the extreme
curse of dimensionality in the state space makes it impractical to use a finite-horizon
dynamic programming algorithm and rather a deep RL algorithm is proposed to tackle this
problem. The authors prove the convergence of the proposed algorithm and numerically
show its superiority over distance-based and random walk policies with respect to the
achievable sum AoI per process. The authors were the first to apply deep RL tools to
characterize the age-optimal policy. To avoid local optimum and speed up the convergence
of the proposed algorithm, the authors adopted the randomized policy for pre-training
deep neural networks. They show that the proposed algorithm can reduce the AoI of
collected data via extensive simulations. However, the waiting time for update packets
was not considered, since the authors studied a generate-at-will policy [105]. The paper
also considered UAV trajectory with a single trip and not multiple trips [87]. Furthermore,
discrete trajectory and time instants were studied, which might not fully capture the
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implementation in field environments due to approximation errors [4]. The UAV energy
consumption was also not captured as discussed in [80], and the proposed solution was
only near-optimal [106].

This category consists mainly of four works with different notions of energy manage-
ment, as opposed to several other works that have considered both (but not strictly) energy
management and trajectory optimization as will be observed later. The first of the four [5]
requires the UAV to return to the ground control station to be recharged if at any time it has
insufficient energy to complete its mission. In the latter [6], UAVs are considered to have
different energy capabilities resulting in some heterogeneity. Similar to the first case, UAVs
may either choose to perform the data acquisition task or return to the data center. They
should ensure sufficient energy is available to return to the data center; however, they are
not recharged. In [90], the authors were motivated by the necessity to charge UAVs while
aiming at minimal information age. In [85], the authors consider a wireless-powered IoT
network with radio frequency energy harvesting (RF-EH) where the UAVs transfer energy
to sensor nodes and also collect data from them. These works are discussed in much more
detail below.

UAV trajectory optimization is crucial for data collection in energy-constrained IoT
devices. Prior works to [5] have not considered the potential of UAV recharging despite the
limited energy of the UAV. Thus, the authors incorporate UAV recharging in a post-disaster
early warning UAV-assisted data collection scenario. In the studied model (Figure 10a),
the authors assume that UAVs perform data collection in teams in a scenario with chang-
ing AoI requirements and UAV power levels. As opposed to prior works using MDP,
the authors did not divide the environment into discrete areas with separate action spaces.
The UAV moves toward ground nodes for collecting data and is also recharged. To ensure
the charge of the UAV is sufficient and the data remain fresh, the authors formulate the
path planning as a semi-MDP and use a proposed hierarchical DQN to handle this problem.
This way, the agent can select options at a high level, which dictates its actions.

Optimizing the AoI with heterogeneous UAVs using deep RL is studied in [6]. Particu-
larly, this is motivated by the fact that the UAV has limitations in the service it can provide
due to its small-sized antenna, low transmit power, and initial battery capacity. Prior
works (see refs. in [6]) study single UAV scenarios and do not study the heterogeneous
UAV swarm setting needed to meet the target requirements in delay-sensitive applications
and for better service of timely data collection. In such cases, planning their trajectory
becomes a great challenge. Thus, the authors study AoI optimization in the scenario with
a heterogeneous UAV swarm where path planning is the main objective. Additionally,
they propose using an encoder–decoder model using an attention-based RL algorithm
designed for UAV swarm path planning. Simulation results show that the proposed algo-
rithm converges quickly and is characterized by a high reliability and efficient optimization
capability to solve the AoI-based heterogeneous UAV cooperative swarm optimization
problem effectively. Although the authors consider free space path fading and additional
losses due to obstruction, it would be interesting to study this proposal with data obtained
from real measurements in future works.

In [90], the authors consider a UAV constrained in mobility (modeled by a graph G)
which gathers information from several ground terminals having lower power transmitters.
The UAV moves close to the nodes when it collects information. Due to the short transmit–
receive distance and static nature of the network, the authors assume that interference and
path loss in such a system can be ignored. They also consider constraints involving charging
rate and battery capacity (i.e., energy constraints). They first formulate the lower bound of
peak age for the graph under energy constraints and the results prove that the low bound
is highly influenced by the charging rate, while the battery capacity’s influence on the
low bound is limited (much lower). In this regard, the authors design a semi-randomized
peak age-optimal trajectory based on the Metropolis–Hastings algorithm and the proposed
charging strategy. The agent moves randomly around ground terminals and the power
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state largely determines when it visits and leaves the charging station. A heuristic trajectory
is further proposed to determine the visit of each ground terminal.

Figure 10. Illustrative architecture for UAV recharging in post-disaster IoT- (a) and UAV-assisted IoT
backscatter communications (b) based on [5,106] respectively.

To fill the gap in the study of AoI-based UAV-aided wireless networks with RF-EH,
ref. [85] investigated the joint optimization of UAV trajectory and task assignment in AoI-
aware UAV-aided wireless-powered IoT (Figure 11a). In this case, the UAV leaves the data
center and flies to each sensor node one after the other to transfer energy to them. It then
collects data from the sensor nodes and returns to the data center. The objective, in this case,
is to minimize the systems’ average AoI. The UAV functions as a mobile energy source that
charges low-power ground IoT nodes and performs data collection. The authors consider a
nonlinear EH model based on real data measurements. In the aforementioned architecture,
they formulate an optimization problem to minimize the average AoI of data collected
from the ground sensor nodes by optimizing UAV trajectory, the time required for EH,
and the time needed for data collection at each sensor node. The authors show that as
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UAV altitude increases, the AoI increases, and the gap between the nonlinear model and
linear EH with respect to AoI is increased. However, the trajectory design of the UAV was
created before the UAV’s flight and not in real-time [105]. Furthermore, only data collection
was studied while data transmission has recently been incorporated with data collection
(see [98]). Similarly, the unreliable nature of channel conditions was not captured, unlike
in [8]. Moreover, the proposed scheme does not yield optimal solutions but near-optimal
results [106].

Figure 11. Illustrative architecture for UAV-assisted data collection for EH-IoT (a) and multi-UAV-
aided data collection (b) based on [85,91] respectively.

4.2. Trajectory and Energy Management (TE)
4.2.1. TE with Node Sampling Policy

In practice, sensor nodes can sample data using different policies. For instance, it is
not in all cases that sensor nodes generate packets at will. In many situations, autonomous
sensing is applicable where the data sensed and generated may follow a unique pattern.
For example, environmental sensors can monitor humidity, wind, and temperature after
regular time intervals. In other words, sensor node transmissions might follow a regular
pattern rather than transmit whenever they find the opportunity. This motivates the
authors in [105] to study AoI-aware data collection using a learning-based approach. In the
considered multi-UAV model (see Figure 7b), sensor nodes sample the environment at
fixed or random intervals based on their sampling mode. The update packet containing
the latest sampled information is stored in a buffer. The SNs’ update packets are delivered
via multiple energy-constrained UAVs. In the first scenario, the base station gathers real-
time information (globally) about the network and decides on the UAV flight direction
and data collection schedule using its collected information. In the second case, each
UAV acts as an agent that (autonomously) make decisions based on what they locally
observe. Additionally, flight directions are chosen based on the system state in each time
slot in accordance with the optimal strategy. Using Sarsa and a multi-agent VDN-based
learning algorithm with partial and full observation, the AoI-optimal trajectory of the UAV
was found.
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4.2.2. TE with Node Selection

The paper in this category is unique because it considers the use of UAVs to dissem-
inate data for IoT devices apart from the data acquisition task. In many cases, it is also
essential to select a few devices from a larger set within a flight round to save energy.
Selecting these devices from the AoI perspective constitutes another challenge. Since mul-
tiple devices would have to be selected in each flight turn and there is a large number
of visiting sequences for selected devices, trajectory planning algorithms are required.
Thus, ref. [86] considered a framework where a battery-limited UAV flies in multiple turns
towards selected IoT devices to collect and disseminate data provided by the data center to
the base station (Figure 9b). The authors focus on the optimal selection of the tasks carried
out by the UAV. Particularly, the UAV may not be able to visit several nodes in a flight turn
due to its energy limitations, which motivates the consideration of efficient node selection
and visiting order (one way of maximizing energy).

4.2.3. TE with Data Collection Time

Backscatter communication systems have been rarely studied in the prior literature
on AoI-aware UAV-assisted IoT applications despite their prospect for the efficient uti-
lization of energy in such scenarios. Moreover, notions of AoI that differ based on the
initial calculation time have appeared in the literature. Motivated by these, ref. [106]
considered a backscatter IoT communication architecture and calculated AoI from the latest
data updating time. The studied scenario is more appropriate when sensors periodically
update data. Particularly, the sensor nodes transmit data to the UAV via passive backscatter
communications (Figure 10b). In the considered architecture, the UAV leaves the data
center, collects data from sensor equipment one after the other, and returns to the data
center for data processing. The authors aimed to find the optimal average AoI by jointly
considering UAV trajectory, UAV transmit power and data collection time from each piece
of sensor equipment to increase the sensor equipment’s lifetime. To achieve this, they
formulated a new AoI minimization problem including discrete (collection sequence of sen-
sors) and continuous (transmission power and data collection time) variables. The problem
is difficult to solve directly, so it was divided into two subproblems. The problems required
the optimization of continuous (using KKT conditions) and discrete variables, while the
backtracking method for trajectory design was proposed.

4.2.4. TE with SN-CP Association

In many of the proposed works, researchers consider a single UAV for data gathering,
which might be very challenging in large-scale WSNs, especially considering the limited
energy storage of the UAV. In such large-scale networks, it is expedient to have nodes
clustered to facilitate easier network coordination, thus emphasizing the need for sensor
nodes to be associated with the most appropriate CPs. As opposed to these works using
a single UAV, the authors in [91] consider a multi-UAV-assisted WSN with a data center
and multiple sensor nodes as shown in Figure 11b. The UAV flies at a fixed velocity and
altitude. Particularly, the authors propose a cooperative framework for energy-constrained
multi-UAV data collection for time-sensitive WSNs. Because of the UAV’s limited energy
supply, its flight trajectory is designed to reduce the max AoI of the ground sensor nodes.
Each UAV is expected to collect data from the sensor nodes inside of its coverage area.
As a result, the UAV’s flight path is reduced to a series of ordered CPs, where it hovers
to collect the data. The authors decomposed the formulated problems into three different
parts. For the first, a graph-theory-based approximation was used to determine a set of CPs
and to establish the SN-CP association. Afterwards, the kernel K-means clustering method
was used to establish CP-UAV association. Finally, the planning of AoI-optimal trajectory
for each UAV was performed subject to the UAV’s energy constraint. The simulation
results show that the proposed scheme outperforms the traditional ones with respect to
AoI performance. Future work can explore other more efficient clustering algorithms for
CP-UAV association.
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4.2.5. TE and Scheduling

This section will discuss several works that have considered UAV trajectory design,
energy management, and scheduling. Depending on the architectural setup and underlying
assumptions, scheduling can take several forms. In [1], the authors consider bandwidth
allocation and scheduling of IoT devices for transmission in an unequal time-slotted system
where the UAV hovers above them. In the second work, the service time is allocated for IoT
devices in the uplink and UAV in the downlink, respectively. In [80], the authors assume
that UAVs fly toward the sensors to collect data within a particular duration and optimize
the scheduling of sensor nodes to minimize the weighted average AoI of all sensor nodes.
In [7], the authors emphasize the importance of hovering points and the visiting order of
sensor nodes on AoI as they greatly influence the UAV flight time. The authors in [92] focus
on handling the sensor node transmission opportunities in a time-slotted system where
sensor nodes sample data packets using a sampling strategy and the sampled data are
stored in a buffer. The joint optimization of power consumption and age performance is
important to improve UAV-assisted data collection efficiency and quality in such scenarios.
Optimizing the transmission energy of IoT devices and proper bandwidth allocation saves
more energy which can significantly prolong the sensor lifetime.

The authors in [1] investigated UAV-assisted energy-aware data collection for a group
of IoT devices deployed in a geographical area to minimize the weighted sum of expected
AoI, propulsion energy consumption, and transmission energy consumption of IoT devices.
In the considered architecture (illustrated in Figure 12), IoT devices are assumed to upload
data continually and a UAV helps to transfer the data to the base station. Scheduled IoT
devices upload the sensed data to the UAV while it is hovering and the UAV relays these
data to the base station before it flies to the next hovering location. The proposed scheme
can decrease the expected AoI and energy consumption, thus motivating the need to jointly
optimize the UAV trajectory, IoT device scheduling, and channel allocation for enhancing
UAV-assisted data collection performance.

Figure 12. Illustrative architecture for UAV-based data gathering in heterogeneous IoT based on [1].

The authors of [82] consider an IoT-based setup with a source–destination pair where
the UAV acts as a relay. In this setup, the source node sends its measurements (status
updates) to the destination node. The source node could be an IoT gateway close to
IoT devices that transmits measurements to the destination (e.g., base station) via the
UAV. They formulated the average peak AoI minimization problem to jointly optimize
the UAV flight trajectory, energy allocation, and service time duration for the transmission
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of update packets at the source node and UAV. The formulated problem is non-convex,
thus an efficient iterative algorithm is proposed to solve the problem, and the algorithm’s
convergence is analytically established. In order to achieve this for a given UAV flight
trajectory, the authors characterized the optimal energy and the service time allocation for
packet transmission. This subproblem is particularly interesting when the UAV’s trajectory
cannot be altered considering its energy and other mission-critical constraints. These results
derived show several insights and closed-form characterization of some of the subproblems
captured. For instance, the results emphasize the importance of optimizing the UAV’s flight
trajectory to ensure the freshness of collected status updates at the destination, particularly
when the source node’s available energy is limited, or update packets are large in size.
However, the UAV cannot make real-time decisions when its trajectory is designed before
its flight [105]. Additionally, the joint optimization of the visiting order of the node and
the mode of data acquisition (as studied in [93]) was not considered. The authors did not
explore the potential of full duplex communication [95], and the limited onboard energy
of UAVs, which affects AoI, was not considered as a constraint during optimization [98].
Similarly, the unreliable channel conditions and the absence of knowledge of CSI were not
considered [8]. Sensor nodes were also assumed to have equal importance, which might not
reflect the reality of sensor heterogeneity in applications with sensor-specific AoI costs [87].
Similarly battery recharging for sensor nodes [85] and UAVs were not captured within
the studied framework and one source–destination pair was investigated [2]. The energy
consumption of UAVs was not considered in the age-optimal trajectory design [91]. Finally,
the analysis did not consider the optimal scheduling of update packet transmission from
different nodes while optimizing the UAV trajectory [81].

Prior to [80], many studies did not consider the energy consumption of the UAV in
age-optimal trajectory optimization. This motivates the authors to consider UAV energy
constraints by studying age-optimal data collection in UAV-assisted IoT using deep RL.
A UAV leaves a depot, flies towards the sensor nodes to collect status update packets,
and reaches the destination within a given time frame. While the weighted sum of the
AoI of sensors is minimized during UAV flight, the UAV must maintain non-negative
residual energy. The problem is formulated into a finite-horizon MDP to obtain optimal
flight trajectory and sensor node transmission scheduling. Solving the MDP using dynamic
programming is computationally prohibitive due to the high-dimensional state space. Thus,
the authors propose a deep-RL-based UAV-assisted data collection algorithm where the
UAV decides on which direction to fly and which sensor node it should connect to at
each step. Extensive simulations show that the algorithm can reduce the weighted sum
AoI compared to other policies. However, the authors did not consider the potential of
backscatter communications for improving the energy management in the network [106].
They did not also consider the recharging of the UAVs [90].

In [7], a UAV collects data from a group of clusters by interacting with the cluster heads
alone. In this scenario, the authors jointly optimize UAV hovering points and trajectory
for minimal AoI data collection. The optimization problem is formulated as a traveling
salesman problem with neighborhoods, which is quite challenging due to the continuous
(optimization of hovering points) and combinatorial (optimization of visiting order) aspects.
To reduce the computational complexity involved in the joint optimization of UAV hovering
points and trajectory for minimal AoI data collection, the authors transform the continuous
optimization traveling salesman problem with neighborhoods into the Generalized Trav-
eling Salesman Problem (GTSP) using a sampling-based concept. The transformed GTSP
is combinatorial in nature and can be solved using exact algorithms, approximate algo-
rithms, or heuristics. However, they cannot balance optimality and complexity effectively.
Thus, the authors use ML-based algorithms to solve the GTSP (i.e., UAV trajectory design
problem) to achieve this balance. However, this work does not study the use of multiple
UAVs for data gathering; it is considered for future work. Although using multiple UAVs
adds some complexity to the model, it can potentially reduce the AoI further. Note that a
generate-at-will policy was used and thus other policies can be considered in the future.
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Zhang et al. [92] deployed deep RL for trajectory optimization in an energy-harvesting
UAV-aided data collection in WSN setup as illustrated in Figure 8b. The main motivation
was to extend the operation time of the UAV. The problem is formulated using MDP,
and deep-RL-based methods were deployed to optimize the UAV flight trajectory and
sensor node transmission opportunities to minimize AoI and energy consumption. EH was
adopted to acquire renewable energy from the environment to ensure the UAV enjoys a
longer operation time. Additionally, to avoid the crashing of the UAV due to a fall (because
of insufficient energy), the UAV was permitted to descend to the ground and resume its
data collection after harvesting sufficient energy. Finally, the Asynchronous Advantage
Actor Critic (A3C)-based algorithm was chosen to collect real-time data, and decisions
were taken. Results show that an increase in the harvesting rate of the UAV results in a
significant decrease in AoI at the expense of an increase in energy consumption. However,
as the harvesting rate increases, the total cost decreases in a monotonic fashion with more
weight on AoI. This is because the UAV remains in working mode for a longer period since
it has more energy for data collection.

4.3. UAV Altitude and Scheduling

Two papers by Samir et al. [8,9] fit into this category. For the first paper, its motivation
lies in the fact that environmental conditions (e.g., height and density of buildings), which
affect UAV-based communication quality, vary at different locations. The second considers
an environment with obstacles, which motivates the optimization of UAV altitude and the
deployment of re-configurable intelligent surfaces.

In [8], the authors explored a joint study of dynamic UAV altitude control and
scheduling policy in a UAV-assisted wireless IoT network. IoTs with limited transmission
capabilities are visited by UAVs that relay their data to the base station (in a clustered
scenario with blockages shown in Figure 13a). The main objective of the stochastic schedul-
ing and altitude control in the paper was to minimize the expected weighted sum AoI
of sampled data, which largely depends on the wireless channel conditions and UAV
altitude, to facilitate effective communication. The sampled data of stochastic processes
by IoT devices are uploaded to UAVs via unreliable channels. The data are relayed to
the base station that processes the packets. UAVs are assumed to have virtual queues to
re-transmit undelivered data, thereby improving the efficiency of transmission. The prop-
agation characteristics of the channel between IoT devices and UAVs are affected by the
UAV altitude. Particularly, the received signal power is lower due to the long-distance path
loss at higher altitudes.

In a similar architecture characterized by blockages (Figure 13b), the authors in [9]
focused on the optimization of RIS configuration for AoI minimization. A wireless network
with IoT devices with limited transmission capabilities was used to sample stochastic
processes to be processed by the base station. A single UAV enriched with RIS was used
as a passive relay for forwarding data to the base station considering different IoT device
activation patterns. A successful transfer of sampled data occurs when the signal-to-noise
ratio exceeds a predefined threshold, at which the AoI decreases. An optimization problem
was used to capture this framework with the objective of minimizing the expected sum AoI
considering the signal-to-noise ratio constraints, UAV altitude constraints, and IoT device
scheduling constraints.
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Figure 13. Illustrative architecture for multiple-UAV-assisted clustered IoT (a) and UAV-RIS-assisted
IoT (b) based on [8,9], respectively.

4.4. Scheduling and Energy Consumption

Only one paper fits this category, where the UAV trajectory is fixed since the UAV
repeatedly leaves the base station and visits a subset of sensor nodes (with different priori-
ties) to collect data from them. Particularly, ref. [87] considers age-optimal UAV scheduling
with battery recharging. In addition to the consideration of capacity, the advantage here
is that it is possible for the UAV to embark on multiple trips. In the considered system
model involving a base station, a limited-battery-capacity UAV, and a set of sensor nodes,
the authors studied optimal scheduling with a sensor-node-specific AoI cost function. They
provided a system complexity analysis and proved that the problem is NP-hard in its
general form. However, the uniform scenario problem was proven to be tractable. To solve
the problem, the authors deployed the graph labeling concept to develop a polynomial-time
algorithm that can be used to tune the trade-off between computational effort and solution
optimality using a simple control parameter. Via simulations, the authors evaluate the
performance of the algorithm by comparing it with greedy-scheduling-based solutions. The
results show that the proposed algorithm outperforms the greedy scheduling approach.

5. Issues Relating to the Fundamental Design Aspects

A thorough investigation into the literature of AoI-aware UAV-assisted data gathering
applications [1,2,4,8,9,79–92] provides insights into three significant issues that affect the
timely dissemination of data in these applications. These include the energy consumption
of the UAV and sensor nodes, the UAV trajectory, and the scheduling of both the sensor
or IoT devices and the UAV. These issues are discussed in this section with a summary
provided in Figure 14. Similarly, associated issues related to UAV energy efficiency, tra-
jectory, and scheduling, as well as some of their influencing factors are summarized in
Table 4. Features related to design considerations and constraints of associated optimization
problems as well as trade-offs and their relevant references are provided in Figure 15. In
addition, the existing optimization frameworks in the literature have been summarized in
Figure 16.
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Figure 14. Taxonomy of identified issues.
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Figure 15. Summary of major considerations as well as trade-offs based on the aspects discussed and the associated literature [1,2,4,8,9,79–85,88,90,92].
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Figure 16. Optimization design framework based on the literature [1–8,8,9,79–87,89–93,98,99,101–106] on some of the aspects discussed.
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Table 4. UAV issues and their influencing factors.

Aspect Considered Factors
References

[1] [91] [92] [90] [87] [85] [81] [2] [80] [83] [84] [86] [89] [9] [4]

En
er

gy
co

ns
um

pt
io

n

Number of SNs visited X X • • • • • • • • • • • • •
Nature of application X • • • • • • • • • • • • • •

UAV cooperation • X • • • • • • • • • • • • •
Energy level X • • • • • • • • • • • • • •
Flight time • X • • • • • • • • • • • • •

Velocity control • • X • • • • • • • • • • • •
Charging optimization • • X X X X • • • • • • • • •

Choice and order of
visited nodes X • • • • • • • • • • • • • •

Scheduling policy of UAV X • • • • • • • • • • • • • •

U
A

V
tr

aj
ec

to
ry

UAV flight trajectory • X • • • • • • • • • • • • X

UAV flight time X • • • • • • • • X X • • • •
Scheduling of ground nodes • • • • • • X • • • X • • • •

Flight trajectory types X • • X • • • • • X • • • • •
QoS metrics X • • • • • • X X • • • • • •

Flight trajectory model • • • • • • • • • • X X • • •
Service time allocation • • • • • X • • • • • X • • •

UAV connection methods X X • • • • • X • • X • • • •

Sc
he

du
lin

g

Scheduling policies
(random, greedy,
distance-based)

X X • • • • • • • • • X • • X

Scheduling of IoTDs X • • • • • • • • • X • • X •
Scheduling using
machine learning X • • • • • • • • • • • • X •

Scheduling packets X • • • • • • • • • • X • • •
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5.1. Energy Management

Constraints in the energy supply of IoT devices pose technical challenges, making
it important to design reliable power supply and data communication mechanisms to
achieve efficient IoT device communication. UAVs have been promising in addressing this
challenge [104]. Additionally, UAVs have energy constraints that affect scheduling and
flight time. From Section 4, it was observed that energy consumption plays a significant
role in the planning, deployment, and operation of UAV-assisted data gathering [1], since
proper network energy management helps to prolong the operation of both UAVs and
sensor nodes. As observed in Section 4, not all papers consider UAV energy consumption
in the design of UAV age-optimal trajectories, despite power and energy have a significant
impact on AoI [86]. Considering that the energy consumed by both UAVs and sensor nodes
is vital, this section is dedicated to discussing this subject.

5.1.1. Importance of Energy Consumption in UAV-Assisted Data Gathering

More energy is dissipated when UAVs accelerate or move at speed to collect new data
in the least possible time, which helps to reduce AoI; however, higher energy consumption
reduces the lifetime of the UAV. The nature of energy consumed is also architecture- and
application-dependent. For instance, applications requiring continuous data collection by
the UAV increase the amount of energy consumed by the UAV; thus, energy optimization
in these scenarios is very important (see [1]). Another factor that significantly affects the
amount of energy consumed by the UAV is the scheduling policy of the UAV, the choice of
a node to visit, and the order of visits. In such situations, the UAV service time duration
should be optimized. Scenarios where energy consumption is more sensitive are cases
when the UAV embarks on special missions or an urgent need for update packets, such as
military applications. Information freshness should be achieved in such scenarios while
optimizing UAV energy consumption. The proper allocation of energy for each sensor node
or CP visited is also important as it can help to optimize the overall energy consumed by
the UAV.

The energy consumed by the UAV can be a result of several factors, such as its propul-
sion, movement, hovering, as well as transmission. Usually, the energy for hovering and
flying can be very significant and much higher than the energy required for communication
with the sensor nodes or the ambient RF-EH delivered by the UAV. Sensor nodes have
limited onboard energy, which makes it challenging to maintain highly reliable commu-
nication [92]. A solution for providing a reasonably stable energy supply is via energy
harvesting. In this case, sensor nodes can harvest energy from the environment and also be
charged via wireless energy transfer from UAVs. In other words, UAVs can transfer energy
to sensor nodes, which can be used to upload data to the UAV.

5.1.2. Factors That Affect Energy Consumption in AoI-Aware UAV-Assisted
Data Gathering

Proper consideration of the factors that affect energy consumption in UAV-assisted
data gathering would significantly help to optimize energy efficiency, thereby reducing
AoI. These factors are discussed below.

Number of Sensor Nodes Visited

The number of IoT devices a UAV visits in a time round affects the AoI and should
thus be planned appropriately and well-optimized. In large-scale networks, using CPs
has proven to be an efficient alternative to optimize the UAV trajectory since the UAVs
would not need to visit all the sensor nodes individually, but rather the CPs. Another
energy-saving technique could involve timing the data collection task for each sensor or CP.
For instance, in [1], IoT devices monitor UAV signals to determine the presence of UAVs
for data collection. If the signals are received, and the UAV switches to a hovering status,
the sensors then upload data to the UAV.
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Energy Levels

In specific applications where data are collected continually, energy consumption
might have to be traded off for minimal AoI. In such cases, optimizing energy use as
much as possible is still very important. For instance, a UAV continually collects data from
sensor nodes in [1], and thus an optimization problem is formulated to minimize energy
consumption and the weighted sum expected AoI while incorporating UAV distance, flight
speed, direction, and IoT device scheduling. The most important issue here is ensuring
that UAVs have sufficient energy levels to sustain their missions effectively within the least
possible time.

UAV Cooperation

A cooperative deployment of UAVs is advantageous when UAVs are assigned the task
of collaboratively collecting data. In large-scale IoT networks, a single battery-constrained
UAV will usually be unable to efficiently cater to the entire network, especially given
the strict time and performance constraints of AoI-sensitive applications. In this respect,
ref. [91] considers a multi-UAV cooperative data collection framework for time-sensitive
dense WSNs. The aim is to find the AoI-optimal trajectory for each energy-constrained UAV.

Flight Time

An optimal design of UAV flight time and visiting sequence can also help reduce the
energy consumed in AoI-sensitive applications. The trajectory of a UAV can be optimized
when several parameters relating to the UAV’s flight and sensor node deployment are
well planned. Particularly, the flight time of UAVs plays a significant role in determining
which sensor nodes or IoT devices are visited. If the flight time is not optimized, some
IoT devices would have to wait longer, which might conflict with the purpose of AoI
minimization in UAV-based data gathering. The trade-off between UAV flight time and
speed is a prime design consideration in optimizing energy consumption. Similarly, UAV
acceleration, altitude, and coverage radius should all be factored in. The choice of hovering
spots and the impact of physical characteristics, such as interference and path loss, must
also be considered.

Velocity Control

The UAV’s velocity can be dynamically controlled when needed to meet the target
deadlines of data-gathering applications. At the same time, altitude control is fundamental,
especially since the UAV should be able to effectively avoid obstacles while establishing
reliable LOS communication with ground sensor nodes and IoT devices. The aim should
be to effectively reduce the energy expended due to mobility, transmission, and reception.
To minimize energy waste, the UAV can be made to remain in a waiting mode when no
horizontal flight takes place [92]. Similarly, in an EH setup, an energy threshold can be
set such that when the UAV’s energy is lower than the set threshold, the UAV takes no
action and rather harvests energy. Only after harvesting sufficient energy does it switch to
working mode to continue collecting data.

Charging Optimization

Determining the most efficient methods for charging UAVs is important, given the
criticality of many data-gathering applications. Energy waste can occur due to the UAV’s
movement to the charging station [90]; therefore, the UAV’s visit to the charging station
should be properly planned. This was explored in [90], where the UAV gets charged via
a charging station. The authors aimed to reduce the visit times to the charging station to
minimize the energy waste incurred.

The UAV’s energy can be constrained, and ground sensors or IoT nodes are usually
energy-constrained. To address the energy problem in ground nodes, some researchers
consider a different dimension to energy harvesting, particularly where ground nodes can
harvest RF energy from UAVs for transmission [85]. For instance, in [85], the UAV performs
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wireless energy transfer for powering sensor nodes while collecting data from the devices.
The UAV takes off from the data center and then flies to sensor nodes to transfer energy.
The harvested energy is used to upload data to the UAV.

5.1.3. Issues Pertaining to Energy Efficiency

UAV energy is mainly dissipated during flight and transmission. Hence, including
an energy supplement is a promising idea for achieving a stable and sustainable data
collection procedure. As discussed earlier, energy can be obtained from charging stations
or by designing energy-efficient schemes to improve or extend UAV service time [92]. This
is particularly important in applications involving large-sized update packets as more
energy is required to send each data packet from the source to the destination. The uplink
transmit power of IoT devices is impacted by the location of hovering spots [1], especially
since those locations determine the transmit distance of sensor nodes. Thus, UAVs can be
made to hover above nodes [88] (or carefully optimized spots) to collect sensed data (via
air-to-ground communication links of low altitude) in order to reduce the sensor nodes’
energy consumption and improve the network lifetime.

One major challenge is maintaining highly reliable and stable communication among
sensor nodes due to their onboard energy constraints [92]. As such, UAV-assisted WSN
data gathering needs to factor in energy efficiency on the part of the UAV, which traverses
the sensor nodes and finally relays the data to the destination, and the sensor nodes
that observe the environment. It is interesting to note that the sensor network lifetime
highly depends on implementing energy-efficient routing and MAC protocols. A popular
technique used in this regard is scheduling sensor nodes to remain in sleep mode when
no major activity is performed. Thus, techniques such as wakeup radio can be used in
WSN or IoT applications to wake sleeping nodes when it is time to transmit to the UAV to
save their energy. Additionally, sensor nodes can form clusters and send sensed data to the
cluster heads that upload data to the UAV. Such cluster heads’ roles can be rotated and even
some nodes with higher initial energy can either be randomly deployed or strategically
positioned to function as advanced nodes to reduce the energy burden on the other regular
nodes in the network.

5.2. UAV Flight and Trajectory

In this section, issues pertaining to UAV flight and trajectory are discussed. To guaran-
tee data freshness, it is very important to ensure efficient UAV trajectory optimization [2],
especially for UAVs that can cover a larger area (having higher coverage radius) as they
would generally require a shorter time for data collection [80]. Particularly, the packet
expiration rate in such applications is connected to the flight time between the sensor nodes,
and the flight order of the UAV. In this case, the UAV flight time constitutes the upper
bound of the AoI for expired packets [83].

Guaranteeing data freshness in UAV-assisted IoT can be quite challenging because
UAVs have to fly from one location to another while meeting the requirements of an overall
network-wide objective. Applications such as environmental and health monitoring, as well
as safety protection, thus require thorough trajectory planning and AoI characterization
as outdated information may lead to erroneous decisions or catastrophic disasters. This
makes it very important to properly design the trajectory of UAVs for time-sensitive
applications [2]. Practically, traveling latency is greater than offloading latency, hence,
UAVs should be made to fly close to IoT devices to achieve a higher data transmission rate.
However, this implies that only a few can be served simultaneously, thus motivating the
need to select hovering spots for UAVs. Similarly, in this case, the energy required for IoT
devices to transmit in the uplink increases, and the same for the uploading latency.

Several approaches can be used to reduce flight time while also saving energy. UAVs
can stop at specific points within the network where sensor nodes can upload data before
the UAV flies to another location. These locations (stopping points) provide performance
gains with respect to UAV flight time reduction. Similar to this is the use of CPs, whose
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positions constitute the UAV’s stopping or hovering points that largely determine the
flight time and trajectory. Sensor nodes can transfer sensed information to another sensor
node functioning as cluster heads (or CP). The information is then transmitted to the UAV
(when the UAV hovers above it) based on a schedule. Using CPs has other advantages,
for instance, whenever there is an overlap in the coverage area of ground nodes, the UAVs
can collect data from those nodes when they fly or hover above or across the area.

The rationale for using CPs is to save energy and reduce flight time. In network
architectures with many CPs, optimizing the total number of CPs or reducing them is
important to achieve an age-optimal UAV trajectory (see [91]). Architectures involving CPs
are sometimes challenging to optimize, especially when the number of CPs could change
in every round (see [84]). As mentioned earlier, using CPs can significantly help improve
the age-optimal trajectory, thereby reducing flight time. Sensor nodes functioning as CPs
or heads of clusters would contribute to evident performance trade-offs. In many cases,
the distance between the sensor nodes and the CP is large, significantly increasing the
uploading time. Sensor nodes functioning as CPs or heads of clusters would contribute to
evident performance trade-offs. In many cases, the distance between the sensor nodes and
the CP is large, which significantly increases the uploading time (see [84]), thus affecting
the information age. Flight trajectory can be viewed as a permutation of the number of CPs
to be visited and the data center. It is also possible that multiple devices can be selected in
each flight turn, which necessitates proper trajectory planning [86].

Many papers have considered a clustered or CP-based architecture. For instance, a
UAV takes off from the data center and flies above each CP until data gathering is over.
It returns to the data center for data analysis to be carried out [84]. Whenever there is a
large set of potential devices or CPs to be visited, the devices to be visited are selected first
before determining the order of visits. An example of such can be found in [86]. In some
cases, trajectory optimization is performed after finishing the first subtask. For instance,
an affinity-propagation-based algorithm and UAV-CP association were deployed to find
CP locations [84]. The authors deployed a dynamic programming technique to find the
age-optimal trajectory along the CPs. Ref. [88] also optimized three major network aspects:
CP selection, trajectory optimization, and power control.

The authors in [89] studied an age-optimal data collection problem for a UAV-based
WSN in which the AoI of sensors were derived as the weighted sum of sensor uploading
time and UAV flight time. An iterative SN association and trajectory planning policy was
proposed to minimize both sensor node maximal and average AoI in a unified manner.
Whenever the number of CPs, flight trajectory, and uploading sequence of sensor nodes are
optimized iteratively, all sensors’ maximum and average AoI reduce gradually.

5.3. UAV and Sensor Node Scheduling

When a UAV visits nodes in an area, it requires a schedule to determine which nodes
to receive data from and in what order. In other cases, UAVs might need to schedule their
arrival at stopping points so that sensor nodes within that range can upload their data to the
UAV. Similarly, flight, hovering, transmission times, and sensor node uplink transmissions
to the UAV should be properly scheduled. In networks with CPs, sensor nodes may also
need to schedule their transmissions to CPs, while CPs schedule theirs to UAVs. These
scheduling processes could affect the age of information of the data sensed and sampled
by sensors or IoT nodes. Many UAV and sensor node scheduling methods have been
proposed in the literature and scheduling could be performed concerning association with
CPs or even UAVs. ML has recently gained popularity for scheduling in UAV-assisted data
collection for WSN/IoT applications. Schedule policies could vary significantly, for instance,
in random, greedy, and distance-based policies or exploring heuristics to ensure IoT nodes
have a higher AoI chosen to transmit status updates [9].

Packet allocation is another form of scheduling considered in UAV-aided data-gathering
architectures. Optimal packet allocation and scheduling should be prioritized in such
applications. In many cases, nodes should have a relatively uniform packet size allocated
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to them, while in other cases application requirements might necessitate that some nodes
have special functions and thus larger packet size allocation. This is especially important if
the number of visits of the UAV for a particular node depends on the packet allocation, as
nodes with large packet sizes may be rarely visited, which can significantly impact the AoI.
An example is investigated in [86].

In a broader sense, besides packet allocation, scheduling can take several other
forms, for instance, ref. [1] considered bandwidth allocation in their problem formulation.
The UAV can also deploy scheduling-based medium access protocols, such as TDMA, to
effectively control the number of IoT devices scheduled to transmit status updates. UAVs
can schedule IoT devices at the beginning of each time slot or remain idle [8]. ML can also
be used to determine the sensor node transmit schedule (see [80]) in addition to trajectory
optimization (see [81]). The UAV could autonomously manage the scheduling process,
while in other cases, it does not have control over the scheduling process [4]. AoI evolution
differs on a per-policy basis [8]. Thus, to preserve UAV information freshness, in addition
to flight trajectory, the scheduling of ground nodes is required [81]. The number of nodes
deployed for sensing also influences both scheduling and the evolution of AoI as it affects
the interval between the UAV’s visit to each sensor and invariably the scheduling frequency.

Scheduling IoT Devices

Scheduling in this case has to be performed in good time, bearing in mind that if
an IoT node is not scheduled in a particular time round, it has to wait longer to transmit
its data, leading to higher accumulated AoI. Modeling network architectures involving
sensor node-CP association can be constructed in various ways, for instance, using a binary
indicator to specify whether a sensor node is uploading to a UAV or not [84]. Each SN
could be scheduled to connect to a single CP. The sensor node-CP association influences
the AoI. Similarly, uploading the sequence of sensor nodes to UAVs could significantly
impact the AoI. Thus, it is highly important to strike an optimal balance between sensor
node uploading time and UAV flight time. To achieve this, the optimal set of CPs has to be
found as well as the best-choice trajectory through the CPs.

The scheduling of UAVs and sensor nodes involves many considerations, making
it quite challenging due to other associated factors: architecture, application, number of
UAVs, UAV height, optimization algorithm, and many more. The UAV altitude could either
decrease or increase the AoI because it impacts the propagation characteristics between IoT
devices and UAVs, as well as UAVs and the base station [8].

6. Discussion and Future Considerations

In this section, some of the other challenges associated with UAV-assisted data gather-
ing for WSNs and IoT are explored with a number of future considerations. In addition
to AoI minimization, other metrics can also be studied, such as coverage enhancement
and throughput, thus the joint optimization of these objectives would be required.

6.1. Network Architecture and Size

Minimizing AoI in large-sized networks with a large set of nodes to visit in each
round can be pretty challenging. At some point, when the number of sensors increases
significantly, it becomes difficult for some heuristic algorithms to deliver high-quality
results. In this case, computation-intensive algorithms may also not be the best option as
high computation time negatively impacts the quality of obtained solutions [87]. In such
cases, the best option might be to resort to algorithms that could produce near-optimal
solutions. Artificial-intelligence-enabled IoT can improve system performance and optimize
energy consumption using different training models [108]; however, this architecture is yet
to be studied for AoI minimization in UAV-assisted IoT.
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6.2. Traffic Prioritization

Proposed trajectory optimization and scheduling algorithms should consider node
prioritization, especially in applications with node heterogeneity, where some nodes hold
more critical or larger-sized packets. For instance, mechanisms must be put in place to factor
in the priority of sensor node traffic for dynamic trajectory scheduling. In other words, the
UAV might need to determine its trajectory to serve higher priority nodes dynamically.
Related work in this area includes [84], whereby sensor nodes can be divided into frames
and assigned different priorities for transmission to manage or reduce the packet loss rate.
Such prioritization can be considered in other different architectural setups.

6.3. Association

Architectures involving a CP [84,89] involve the association of sensor nodes to the
CP, which can be modeled via an association parameter. However, the changes in the AoI
optimal trajectory depend on the changes in the number of CPs, which makes it challenging
to determine the AoI-optimal solution. In other words, there exists a very large number of
CP candidates (see [84]). Other parameters could also affect the system’s dynamics, making
it more complex, e.g., node mobility, dynamic evolution of special nodes and CPs, and
association parameters. Optimizing AoI in a multi-UAV setting is also very challenging
due to the varying dimensions regarding UAVs’ 3D position. Similarly, the AoI of the entire
network depends on the trajectory of the swarm of UAVs, the number of UAVs, network
topology, sensor node communication range, and UAV energy capacity. Generally, (see [89]
for instance), it is imperative to consider both AoI-aware sensor node-CP association and
UAV trajectory planning to obtain minimal AoI.

6.4. Optimization

Obtaining an optimal AoI solution can sometimes be very complex, especially when
dynamically changing parameters are involved [84]. Particularly, many works only arrive
at near-optimal solutions without absolute optimal. Optimal solutions should be sought
during trajectory optimization even if that is at the cost of reasonable complexity. Dif-
ferent parameters are involved in UAV trajectory optimization. For this reason, several
optimization and ML techniques are being used to optimize UAV trajectories. One of the
main concerns with respect to the performance of optimization algorithms is convergence,
especially for neural networks, which are difficult to study analytically. In this case, the
choice of algorithm for optimization highly determines the convergence speed. The proper
selection of hyper-parameters is required for ML-based solutions, as emphasized in [8].
Another challenge is characterizing a globally optimal solution for non-convex objective
functions [82]. This can be tackled by breaking down the problem or developing efficient al-
gorithms for solving such problems. However, it is important to consider that the proposed
algorithms should be able to solve the problem within the shortest possible time. Similarly,
the issue of high dimensional state variables is commonly reported in the literature and
should be solved by choosing efficient algorithms. Another important consideration is 3D
trajectory optimization using 3D obstacle data as it would improve the applicability of the
studied models for real-life use cases. Additionally, if UAVs can obtain data by observing
the ground in real-time, a priori knowledge of obstacle information is not required [62].

6.5. Packet Delivery Errors

It is common to assume that update packets are always delivered to the destination
successfully; however, in reality, packet delivery errors may occur [82]. Numerous factors
related to the physical surroundings and the communication route may cause this. In this
case, it would be beneficial to study the impact of different communication impairments
on transmission and AoI. For instance, pathloss, obstacles, fading, etc., are some factors
that can impair communication among the sensor nodes themselves and the A2G channel
between the UAV and ground sensor nodes. It is also important to note that there are other
reasons that could impair the quality and AoI due to transmission failures. For example,
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if the actions of the mobile agent (UAV) in a time slot are not properly learned using efficient
ML techniques, this could lead to erroneous decisions with respect to UAV movement [8].
Hence, effective learning techniques are required to ensure that the UAV can accurately
adjust its altitude and speed to reduce transmission failures.

6.6. Physical Impairments

With regards to the physical layer, in some cases, it is assumed that the IoT device
should have a LOS view towards a UAV. This probability is assumed to depend on several
factors, such as device location, environment, UAV location, and elevation angle. Both
NLOS and LOS should be considered in practice since the presence of obstacles cannot be
entirely avoided [62]. An arbitrary A2G link can be determined to be LOS or NLOS based
on a 3D map containing environmental information. Since these maps are sophisticated,
they can be used to obtain accurate information [62]. ML approaches with low complexity
can be used to provide an efficient prediction of LOS probability for a pair of UAVs and
ground user locations [95]. Additionally, it is assumed that the UAV does not necessarily
have additional information about the exact location, height, and the number of obstacles
as well as the channel conditions. For this reason, the randomness associated with LOS
and NLOS should be considered in designing the system [1].

Deploying a UAV with a free space channel model is inaccurate in practice and
may lead to a degradation in performance due to blockage [8]. Many studies have not
considered the impact of blockages on AoI performance. In urban environments with high-
rise buildings and dense settings, the signal propagation between the UAV and IoT nodes
could be severely affected by blockages. This makes it difficult for UAVs to collect data in a
timely fashion, thus resulting in high AoI due to the low transmission rate. Mitigating the
effect of blockage is, therefore essential to improve wireless channel quality between the
UAV and ground IoT nodes [103].

A Re-configurable Intelligent Surface (RIS) can potentially improve the transmission
quality between transmitter and receiver devices. It consists of a controller and several
low-cost passive elements. Each element has the potential to reflect incident signal by
controlling the phase shift, thus changing the reflected signal propagation collaboratively.
UAV and RIS (based on the amount of published research in this area) play a significant
role in improving IoT data transmission to the cloud or base station [108]. Several factors
affect the channel link between UAVs and sensor nodes. These include the number of
elements in the RIS, the position of the RIS, and meta-surface material. These impact the
channel link performance in UAV-assisted RIS channel modeling [108], and hence all these
could be considered in future works. Optimization of UAV trajectory placement, RIS phase
shift, mobility, and base station power allocation contribute to improving the system’s
performance [108]. Similarly, robust models should be proposed so that the UAV does not
need to be re-trained once it is deployed in a different environment (building distribution,
RIS location, IoT device location). Therefore, generalized approaches with more generalized
policies are desired [103].

6.7. Multi-UAVs

Most of the works studied in this article assume only a single operating UAV, which is
not practical or efficient for large-scale WSNs. The network becomes unstable if a single
UAV experiences link failure [63]. On the contrary, multiple UAVs can reconstruct the
network and find routes to deliver information to the destination should any link failure
occur. Multiple UAVs could have a better completion time and can be used to cover large
spaces than single UAVs [109]. Although multi-UAVs are more power-constrained [109],
using multiple UAVs has the potential to improve the network performance and reduce AoI
compared to a single-UAV implementation. Considering all the key features involved, opti-
mizing UAV performance is more challenging for deploying multiple UAVs [63]. Mission
planning for multiple cooperating UAVs visiting clusters of sensor nodes with a variable
number of visits per cluster [104] can also be considered in the future. Multi-UAVs are
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capable of flying safely via collision avoidance [109]. Ensuring UAVs follow a particular
formation while traversing a trajectory (not necessarily linear and avoiding collision) [109]
is another potential research direction for future studies. However, if the trajectory is fixed,
more attention should be given to sensor node scheduling.

6.8. Channel Models

Modeling an A2G wireless channel is important in trajectory optimization since per-
formance degradation may be observed with inappropriate channel models compared to
actual environments [62]. Obtaining realistic and reliable results for AoI minimization in
UAV-assisted WSNs/IoT requires using accurate channel models. In this case, a thorough
evaluation of existing channel models is important for identifying and understanding
the effect of channel parameters in several use cases [108], especially those targeted at
time-sensitive applications. Additionally, a map-based LOS channel model can be used to
capture the actual environmental characteristics [62]. The aforementioned recommenda-
tions have the potential to reduce power consumption and properly evaluate the network
performance. Therefore, realistic channel models are essential.

6.9. Flight Control

Estimation of the UAV traveling distance to accomplish a task [109] is an important as-
pect of measuring the efficiency of the UAV’s trajectory, which impacts energy consumption;
however, this has not been considered in existing works in the context of AoI minimization.
Similarly, there is a need to improve existing algorithms for efficient autonomous flight
control for different environmental conditions and accomplishing different missions. This
makes learning-based methods for UAV control popular. They can learn from real-world ex-
perience to provide adaptive control. For instance, deep learning allows UAVs to effectively
learn a pattern from navigation [109].

6.10. Energy Minimization

Optimal path planning helps to minimize the aerial mechanical energy needed for
navigation, which is dissipated while the UAV flies through obstacle-free zones. Designing
accurate models for estimating the aggregate energy consumption due to actions such
as flying up or down or horizontal flight [109] is of prime importance in predicting UAV
performance and AoI reduction. For instance, mechanical movement takes about 90–95%
of drone energy. Particularly, during data gathering, the estimation and modeling of the
energy required to collect data should be based on experimental results [109]. In addition to
AoI, accurate energy models must be considered for estimating drone energy for throughput
maximization and coverage extension. The incorporation of wireless power transfer is a
promising form of energy source. However, the aggregate time needed for wireless power
transfer and AoI minimization has trade-offs. This should be studied since WPT requires a
notable amount of time for energy harvesting. Moreover, timeliness is important, especially
in some real-time applications [104].

7. Conclusions

This paper examined critical components and important issues for an efficient design
of AoI-minimal UAV-assisted data-gathering WSN/IoT applications. Our SLR study
identified three critical components or primary design aspects from the selected articles,
which include energy consumption, UAV flight, and trajectory control, and UAV and sensor
node scheduling.

One of the interesting findings from this study is that UAV trajectory has been con-
sidered the most important element in AoI optimization by the majority of researchers. In
addition, minimizing the overall UAV flight distance by proper trajectory planning and
scheduling could significantly reduce the energy consumption of the UAV. The speed of
the UAV also needs to be controlled to ensure a balance between energy dissipation due to
acceleration and the Age of Information.
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This paper also examines important issues related to each of the aforementioned compo-
nents. For example, concerning UAV trajectory, the issues include UAV flight time, scheduling
of ground nodes, QoS metrics, and service time allocation. In scheduling, the discussed issues
include scheduling policies which involves scheduling packets, and scheduling IoTDs. In ad-
dition, UAV cooperation, energy level, flight time, velocity control, and charging optimization
are some of the issues addressed in regard to energy consumption.

Similarly, major contributions made by researchers include, the study of UAV tra-
jectory while incorporating the waiting time of (update) packets, node visiting order,
backscatter communication, UAV battery recharge, energy harvesting, full duplex commu-
nication, various channel conditions, UAV heterogeneity, IoTD device selection and joint
data transmission, and packet allocation.

In summary, planning for efficient UAV- aided data collection for WSN/IoT networks
with minimal AoI must consider various factors, including adopting suitable optimization
algorithms. This study also addressed the numerous challenges in AoI minimization and
recommended a few future research directions. Finally, other topics, such as security, covert
communication problems, and routing protocols, were considered out of this work’s scope
and thus shall be considered in future work.
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AC Ant colony
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BS Base station
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DC Data center
DDPG Deep Deterministic Policy Gradient
DP Dynamic programming
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DRL Deep reinforcement learning
EH Energy harvesting
ESA Expected sum AoI
FANETs Flying Ad hoc Networks
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IoFT Internet of Flying Things
IoT Internet of Things
IoTD Internet of Things Devices
KKT Karush–Kuhn–Tucker
LoRA Long Range
LOS Line-of-sight
MAC Medium Access Control
MDP Markov Decision Process
ML Machine learning
NWAoI Normalized Weighted sum of Age of Information
QoS Quality of Service
RF Radio frequency
RIS Re-configurable Intelligent Surface
RL Reinforcement learning
SMDP Semi-Markov Decision Process
SNR Signal-to-noise ratio
UAV Unmanned aerial vehicle
VDN Value Decomposition Networks
WPT Wireless power transfer
WSN Wireless sensor networks
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