
Citation: Li, X.; Fang, Y.; Pan, C.;

Cai, Y.; Zhou, M. Resource

Scheduling for UAV-Assisted

Failure-Prone MEC in Industrial

Internet. Drones 2023, 7, 259. https://

doi.org/10.3390/drones7040259

Academic Editor: Arturo

Sanchez-Azofeifa

Received: 6 March 2023

Revised: 6 April 2023

Accepted: 9 April 2023

Published: 11 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Resource Scheduling for UAV-Assisted Failure-Prone MEC in
Industrial Internet
Xuehua Li 1, Yu Fang 1, Chunyu Pan 1,*, Yuanxin Cai 1 and Mingyu Zhou 2

1 Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information
Science and Technology University, Beijing 100101, China

2 Baicells Technologies Co., Ltd., Beijing 100094, China
* Correspondence: chunyupan@bistu.edu.cn

Abstract: This paper focuses on reducing execution delays of dynamic computing tasks in UAV-
assisted fault-prone mobile edge computing (FP-MEC) systems, which combine mobile edge com-
puting (MEC) and network function virtualization (NFV) technologies. FP-MEC is suited to meet
Industrial Internet (IIN) requirements such as data privacy, low latency, and low-cost industrial scala-
bility in specific scenarios. However, the reliability of virtual network functions (VNFs) deployed on
UAVs could impact system performance. Thus, this paper proposes the dynamic task scheduling
optimization algorithm (DTSOA) based on deep reinforcement learning (DRL) for resource allocation
design. The formulated execution delay optimization problem is described as an integer linear
programming problem and it is an NP-hard problem. To overcome the intractable problem, this paper
discretizes it into a series of single-time slot optimization problems. Furthermore, the experimental
rigor is improved by constructing a real-time server state update system to calculate the real-time
server load situation and crash probability. Theoretical analysis and experiments show that the
DTSOA has better application prospects than Q-learning and the recent search method (RSM), and it
is closer to the traversal search method (TSM).

Keywords: mobile edge computing; Industrial Internet; resource allocation; virtual network function;
multi-UAVs; deep reinforcement learning

1. Introduction

IIN refers to the network that unites industrial production equipment with digital
information technology, and it is a digital, informational and intelligent transformation
carried out by industries. Taking industry as an example, it realizes real-time monitor-
ing of the production processes through the use of Internet technology. It includes the
overall improvement of the labor production safety and efficiency, breaking information
barriers, optimizing energy consumption, reducing production costs, and improving the
competitiveness of enterprises, etc. Unlike the consumer Internet, the IIN is more con-
cerned with real-time data transmission, processing and data protection, rather than just
the transmission of information. This means that the network and equipment of the IIN
needs higher reliability and security to ensure the fast processing of the computing tasks
while safeguarding data privacy. Computing tasks generated within the IIN system are
mainly non-independent and identically distributed tasks with high variability in data
size, type, and demand, which require execution equipment with the functions required
to perform the tasks. The MEC technology makes up for the lack of computing resources
in the terminal. At the edge of the network, the MEC technology allows the terminal to
perform tasks with the help of computing resources. Furthermore, it reduces the risk of data
leakage by keeping the data in the system. However, the computing resources provided
by MEC are still limited. Thus, efficient algorithms need to be designed to optimize the
computing resources allocation to overcome the rapidly growing number of terminals and
data tasks.

Drones 2023, 7, 259. https://doi.org/10.3390/drones7040259 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7040259
https://doi.org/10.3390/drones7040259
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://doi.org/10.3390/drones7040259
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7040259?type=check_update&version=1

Drones 2023, 7, 259 2 of 19

Adopting computationally capable UAVs as MEC servers has the following two
benefits. First and foremost, UAVs fully satisfy the data privacy requirements of IIN, and
the UAV-assisted MEC combined with IIN (UAVs-MEC-IIN) system. It is more efficient
than mobile edge computing combined with the Industrial Internet (MEC-IIN), which is
directly connected to the Internet. UAVs-MEC-IIN systems build edge computing power
and terminals in a local area network (LAN). The data could be isolated within the local area
network, preventing data leakage from the root, and guaranteeing the special needs of some
scenarios of IIN. Additionally, UAVs exist in the IIN system as auxiliary communication
nodes for emergency scenarios. If there is an unexpected scenario of a sudden increase in
data volume or a communication network failure, UAVs are quickly adopted to provide
arithmetic power and build emergency communication networks based on its dynamic
characteristics. In the case of difficult deployment of ground communication equipment
such as earthquake relief, UAVs play the advantage of building communication networks
in the air to ensure the smooth implementation of rescue and other operations.

NFV separates network functions from proprietary hardware and allows network ser-
vice providers to implement network functions as software running on physical nodes [1],
which has the advantage that service providers could provide a dynamic and adaptive
service function chain (SFC) embedding solutions to handle the large amount of data in
IIN networks [2,3], and then with the help of machine learning tools, the data can be used
rationally, which effectively improves the carrying capacity of the system and optimizes
the network performance.

In recent years, Pei et al. [4] studied the VNF placement problem in software de-
fined networking (SDN) /NFV networks using DRL to schedule dynamic network loads.
Suzuki et al. [5] used an efficient coordination algorithm based on reinforcement learning
(RL) to assign VNFs to the physical network. Sun et al. [6] presented a study on the VNF
placement problem, taking into account randomized data traffic. The goal is to identify
optimal VNF deployment locations while minimizing overall end-to-end delay. Two meta-
heuristic approaches, greedy and simulated annealing, are proposed to find near-optimal
placement solutions. As the field of NFV has been intensively studied, the problem of
VNF/SFC configuration with reliability has attracted the attention of many scholars. Pham
et al. [7] propose novel models and algorithms for fault tolerance in NFV. Their optimization
models and algorithm efficiently protect an NFV service demand from network failures
without controller intervention, and enable the recovery of affected bandwidth under mul-
tiple network failures. Deploying redundant backup VNFs near VNFs is a way to enhance
the reliability of task execution [8–10]. Fan et al. [11] assumed that servers with static failure
probability operate in an alternating normal and failure environment, and adopted an
approximation algorithm to reduce the deployment cost of backup VNFs. Li et al. [12]
aimed to maximize the number of requests received with reliability requirements over a
period of time. Yang et al. [13] guaranteed the reliability of VNFs by converting static failure
probability to k-1 backup VNFs deployed in the underlying network. Yu et al. [14] trans-
formed the static failure probability into a dynamic crash probability that simultaneously
changes with the number of tasks executing.

The above studies are all about the VNF tasks problem. The computing power of
IIN terminals is significantly insufficient in processing various types of VNF computing
tasks, which increases the probability of crashes of VNFs with a higher likelihood of
failure and has an adverse impact on the system operation and task execution [15]. Fortu-
nately, MEC technology could transfer computing tasks from terminals to edge computing
servers with stronger computing capabilities. As mentioned earlier, UAV-assisted MEC
has particular advantages in IIN. Therefore, the following mainly introduces the research
work related to UAV-assisted MEC. Hu et al. [16] addressed the processing delay problem
among terminals in UAV-assisted MEC systems, proposing an algorithm based on a penalty
pairwise decomposition optimization framework to optimize computational offloading.
Diao et al. [17] studied the problem of fair-aware task data allocation and trajectory opti-
mization in UAV-assisted MEC systems. Pourghasemian et al. [18] investigated dynamic

Drones 2023, 7, 259 3 of 19

resource allocation, UAV trajectory design, VNF placement and scheduling framework for
UAV-assisted networks to support heterogeneous services with different QoS requirements.

Current work related to UAV-assisted MEC systems focuses on studying the offload
scheduling of computational tasks, and a few works introduce the study of the deployment
location of VNFs, but do not consider the problem of dynamic crash probability of edge
servers deployed with VNFs. UAVs are affected by factors such as size, and the service
reliability is limited by deploying VNFs to UAVs. In order to achieve the goal of reducing
the crash probability of each server and ultimately meet the low-latency and high-reliability
service requirements of the IIN, it is necessary to optimize the offloading computation
locations of the scheduled tasks. However, there is currently no relevant research in this
field. Therefore, the work in this paper introduces failure-prone MEC systems to weigh the
crash probability of MEC servers to optimize resource allocation and increase the reliability
of deployed with VNFs UAV-assisted MEC servers.

The dynamic and unpredictable nature of task arrivals leads to dynamic changes in
the reliability of the edge servers where VNFs are deployed [19,20]. A series of studies
have shown that the problem of deploying VNF tasks is an NP-hard problem [21–23],
and furthermore, the deployment of VNF tasks should be dynamically adjusted with
device load and time [24]. Sun et al. [25] thoroughly examine the VNF placement problem,
providing a comprehensive analysis of the latest research results and identifying open
challenges in the field. They propose a general definition and fine-grained classification of
VNF placement works, covering emerging scenarios such as backbone networks, mobile
networks, and the Internet of Things. In summary, these problems within resource-limited
FP-MEC systems pose three challenges for the reliable execution of SFCs under dynamic
conditions: (1) how to dynamically select the execution locations of VNFs in each SFC
to meet the task requirements; (2) how to deploy redundant backup VNF locations in
each latency-sensitive SFC; and (3) how to obtain the maximum benefit in the face of
computational resources that cannot meet all computational task requirements.

Most of the mentioned solutions to the VNF layout problem require complex mathe-
matical models to solve the abstract problem. These complex mathematical models can
only be used when the network size is small, and heuristic algorithms are preferred in
large-scale networks. However, due to the lack of rigorous theoretical proofs, heuristic
algorithms are not guaranteed to obtain near-optimal results. Unlike the above methods,
the DTSOA algorithm proposed in this paper is based on the DRL technique, which has the
advantages of being more robust to network size and scalability and is a feasible technique
to solve NP-hard problems [5,25–31].

In this paper, we first describe the system time delay optimization problem as an
integer linear programming problem, which is discretized into a series of single time slot
optimization problems. In addition, in order to make the time delay model more accurate,
this paper constructs a real-time server state update system to enhance the experimental
rigor, which accurately feed and update the real-time state of each server at each time slot.
Finally, this paper proposes an online scheme to solve this latency optimization problem.
The limited intra-system resources are adopted to solve the computational tasks generated
in the system, which achieve the purpose of reducing the total latency. The proposed
scheme selects execution layer UAVs capable of performing the corresponding task type
for each VNF computation task in each SFC, and also provides redundant backup VNFs
for each VNF task in latency-sensitive SFCs to increase the reliability. Therefore, we use
DRL in this paper, based on the characteristics of dynamicity, continuity and real-time
data processing for task generation in the FP-MEC-IIN scenario. The intelligent processing
of DRL is used to propose a DTSOA algorithm for dynamic task scheduling location
optimization based on DRL, which schedules the offloading location of computational tasks
and computational resource allocation in the system to optimize the total computational
delay. The simulation experiments based on python were conducted to consider the impact
of different parameters on the cost and give the algorithm performance simulation results.
The main contributions of this paper are as follows:

Drones 2023, 7, 259 4 of 19

(1) In this paper, we study the problem of MEC-IIN scenario from a new perspective.
According to the characteristics of the IIN scenario, dynamic UAVs are introduced
as edge arithmetic to assist resource-limited IIN end devices to perform computa-
tional tasks.

(2) For latency-sensitive tasks, the dynamic crash probability of MEC server is introduced,
and the backup synchronous execution is used to increase the reliability. By jointly
optimizing task execution device selection and computing resource allocation, an
effective strategy to reduce system latency under this model is investigated.

(3) In this paper, a real-time equipment status update system is constructed to make the
equipment working status data in the system real-time and accurate. The introduction
of this system makes the dynamic update of crash probability coefficients more
accurate and provides more real-time valid information to assist decision making for
the dynamic deployment of VNFs by algorithms.

(4) To capture and handle the time-varying failure probabilities of VNFs, the long-term
resource provisioning problem is discretized into a series of single-slot optimization
problems, which are shown to be NP-hard.

The rest of this paper is organized as follows. The materials and methods are presented
in Section 2. Then, the simulation results are shown in Section 3 to validate the effectiveness
of the proposed scheme. General conclusions of this paper are summarized in Section 4.

2. Materials and Methods
2.1. System Model
2.1.1. Network Model

As shown in Figure 1, this paper studies the task scheduling and resource allocation
problems in the cluster of UAVs, with the executing UAVs as edge servers to assist in
computing. The UAVs keep the task data in the system and compensate for the lack of
computing power and the need for long endurance of the IIN terminals. In this paper,
we assume that UAVs have continuous input energy and meet the energy demand for
any activity. Thus, the energy consumption of UAVs is ignored in this paper [14]. The
system model uses a three-layer UAV cluster structure, and each of the three layers of
UAVs has different functions. Each UAV’s position is represented by a three-dimensional
coordinate (x, y, z).

Drones 2023, 7, x FOR PEER REVIEW 5 of 19

offloaded by the collection layer UAVs within its receiving range. Let Γ be an SFC task
request sent by a transport layer UAV, it can then be defined as a 𝑓 , 𝑡 , 𝑅 , 𝑑 , 𝑝 . Where 𝑓 represents the set of demanded VNF categories, 𝑡 represents the SFC task sending
time, 𝑅 represents the task reliability demand probability of request 𝑟 , which ranges
from 0 𝑅 ≤ 1, 𝑑 is the set of computed data sizes, and 𝑝 is the delay-sensitive case
marker.

……

……

……

Task collection layer UAV
collets and generates

computing tasks through its
own equipment.

The collection layer UAV
cluster offloads computing

tasks to the transit layer
UAV.

The execution drones,
which have different

computing resources and
capabilities, perform the
assigned computing tasks

through unified scheduling
of artificial intelligence. AI

computing

Dispatch assignment

Figure 1. Three-tier UAV non-independently and homogeneously distributed computational task
execution system with the introduction of crash probability.

2.1.2. Crash Probability Model
In this paper, we introduce system crash probability and dynamic crash probability

for the execution layer UAVs. The crash probability values are positively correlated with
the number of tasks executed simultaneously by the devices. In order to accurately dis-
cover the state of each device at each moment, this paper innovatively builds a real-time
server state update system in the UAV-assisted MEC server. The technical principle is
shown in Figure 2.

Figure 2. The working principle of server status real-time update system.

Figure 1. Three-tier UAV non-independently and homogeneously distributed computational task
execution system with the introduction of crash probability.

Drones 2023, 7, 259 5 of 19

The lowermost UAVs serve as task collectors and are not responsible for computing
tasks. They only generate computing tasks with specific task requirements through their
own collection devices and transfer the task data to the transmission layer UAVs. The
task data generated by different collection UAVs are independent of each other, and the
transmission layer UAVs arrange the tasks transmitted by the collection UAVs within their
reception range into one line according to the reception time SFC computation tasks. We
assume that there are |Y| different kinds of VNFs deployed in the execution layer UAVs, by
Y =

{
f1, f2, . . . , f|Y|

}}
indicates a collection of virtual network features. Each execution

layer UAV deploys one of these VNFs. The information transmitted to the transport layer
UAV: VNF i = [ti, fi, di, pi]. Where ti denotes the task generation time, fi denotes the VNF
type required for the task, di denotes the computational data size of the task, and pi is the
delay-sensitive case marker.

The transport layer UAVs are located in the middle layer of the three-layer UAV system.
This layer receives the computational tasks offloaded by the collection layer UAVs and
synthesizes the computational task SFCs to send to the execution layer UAVs according to
the rules, where each transport layer UAV receives only the computational tasks offloaded
by the collection layer UAVs within its receiving range. Let Γ be an SFC task request sent
by a transport layer UAV, it can then be defined as a

(
f j, tj, Rj, dj, pj

)
. Where f j represents

the set of demanded VNF categories, tj represents the SFC task sending time, Rj represents
the task reliability demand probability of request rj, which ranges from 0 < Rj ≤ 1, dj is
the set of computed data sizes, and pj is the delay-sensitive case marker.

2.1.2. Crash Probability Model

In this paper, we introduce system crash probability and dynamic crash probability for
the execution layer UAVs. The crash probability values are positively correlated with the
number of tasks executed simultaneously by the devices. In order to accurately discover
the state of each device at each moment, this paper innovatively builds a real-time server
state update system in the UAV-assisted MEC server. The technical principle is shown in
Figure 2.

Drones 2023, 7, x FOR PEER REVIEW 5 of 19

offloaded by the collection layer UAVs within its receiving range. Let Γ be an SFC task
request sent by a transport layer UAV, it can then be defined as a 𝑓 , 𝑡 , 𝑅 , 𝑑 , 𝑝 . Where 𝑓 represents the set of demanded VNF categories, 𝑡 represents the SFC task sending
time, 𝑅 represents the task reliability demand probability of request 𝑟 , which ranges
from 0 𝑅 ≤ 1, 𝑑 is the set of computed data sizes, and 𝑝 is the delay-sensitive case
marker.

……

……

……

Task collection layer UAV
collets and generates

computing tasks through its
own equipment.

The collection layer UAV
cluster offloads computing

tasks to the transit layer
UAV.

The execution drones,
which have different

computing resources and
capabilities, perform the
assigned computing tasks

through unified scheduling
of artificial intelligence. AI

computing

Dispatch assignment

Figure 1. Three-tier UAV non-independently and homogeneously distributed computational task
execution system with the introduction of crash probability.

2.1.2. Crash Probability Model
In this paper, we introduce system crash probability and dynamic crash probability

for the execution layer UAVs. The crash probability values are positively correlated with
the number of tasks executed simultaneously by the devices. In order to accurately dis-
cover the state of each device at each moment, this paper innovatively builds a real-time
server state update system in the UAV-assisted MEC server. The technical principle is
shown in Figure 2.

Figure 2. The working principle of server status real-time update system. Figure 2. The working principle of server status real-time update system.

When building a real-time server status update system, to begin with, two separate
lists are created for each execution layer UAV: (1) a list of calculated resource states; (2) a
list of the number of simultaneous resource invocation tasks. Second, the construction of
the functionality is completed by writing functions that could read and update the above
two lists in real time. On the one hand, the system introduced in this paper provides more
information for the algorithm to dynamically deploy task execution location decision. On
the other hand, the proposed system makes the dynamic crash probability of each device

Drones 2023, 7, 259 6 of 19

accurately updated in real time, so that the simulation experiment results are scientific
and rigorous.

The crash probability of each executing UAV is dynamically updated with its own
load; let UAV k have a base crash probability ρ′k, and since the crash probability increases
proportionally with the number of tasks executed simultaneously, let the crash probability
increase by ∆(ρk) for each additional task. Thus, the final crash probability is expressed
as follows:

ρk = ρ′k + n× ∆(ρk), (1)

where n denotes the number of simultaneous tasks performed by that UAV. It is assumed
that the crash of any one UAV does not affect other UAVs, so the reliability of an SFC Rγ is
the product of the reliability of the UAVs it uses:

Rγ = 1−∏ ρk, (2)

where ρk denotes the reliability rate of UAV k in the execution layer UAVs that SFC needs
to use. The reliability rate rk of UAV k is denoted as follows:

rk = 1− ρk. (3)

2.1.3. Backup Parallel Execution Model

As shown in Figure 3: The SFCs in the system are divided into latency-sensitive and
non-latency-sensitive, which are marked by location-specific values in the code. Latency-
sensitive SFCs are assigned more computational resources and backup VNFs to ensure
the speed and stability of task execution, and to guarantee the time efficiency of latency-
sensitive SFCs to complete tasks. Take a backup SFC as an example, when executing a
task, the latency-sensitive SFC first selects the best execution layer UAVs to execute the task
according to the algorithm policy, while the backup SFC selects the second best execution
layer UAVs to execute the task at the same time according to the algorithm policy. The
benefit of the same SFC being executed by multiple different device chains in parallel has
the following advantages: the crash of a single link device does not affect the execution
stability of other links and improves the task execution reliability.

Drones 2023, 7, x FOR PEER REVIEW 7 of 19

Time-delay sensitive SFC

Time-delay sensitive SFC
Backup Chain

Non-time-delay sensitive

VNF 1 VNF 2 VNF 3 VNF 4

VNF 1 VNF 2 VNF 3 VNF 4

VNF 1 VNF 2 VNF 3 VNF 4

Assign each task in the SFC to the appropriate execution drone
of the optimal task execution type in the current state.

Assign each task in the SFC to the appropriate execution drone
of the next best task execution type in the current state.

No backup SFC is required, only the corresponding virtual
network function needs to be assigned to the execution drone
selected in the current state that can perform that task type.

Figure 3. Schematic diagram of the way delay-sensitive SFCs and non-delay-sensitive SFCs per-
form their tasks.

2.1.4. Communication Model
The execution layer UAVs are located at the uppermost layer of the three-tier UAV

system. The task execution position of SFCs transmitted by the transport layer UAVs is
planned and scheduled by the artificial intelligence system. The execution layer UAVs of
the received tasks need to perform two parts of the operations: firstly, the task data be-
longing to that part are executed for calculation operations; secondly, the task calculation
results and the original data of other tasks are forwarded to the execution UAVs of the
subsequent received tasks, as shown in Figure 4.

SFC [2000, 3000, 4000]SFC

VNF 1 VNF 0 VNF 2

AI computing

 [2000, 3000, 4000]SFC

 result + [3000, 4000]SFC results + [4000]SFC

1

2
VNF 1VNF 2 VNF 0

3

The transit layer UAV sorts out the SFC which contains VNF tasks.
The service function chain contains the virtual network function
type: VNF1, VNF0, VNF2, and the packet size is: 2000, million,

3000, and 4000, respectively.

Figure 4. The relationship between the packet transfer between UAVs and the execution of the SFC
with 3 virtual network functions as an example.

According to the literature [32] the channel gain of the line-of-sight link between
UAVs can be expressed as follows:

Figure 3. Schematic diagram of the way delay-sensitive SFCs and non-delay-sensitive SFCs perform
their tasks.

2.1.4. Communication Model

The execution layer UAVs are located at the uppermost layer of the three-tier UAV
system. The task execution position of SFCs transmitted by the transport layer UAVs is
planned and scheduled by the artificial intelligence system. The execution layer UAVs

Drones 2023, 7, 259 7 of 19

of the received tasks need to perform two parts of the operations: firstly, the task data
belonging to that part are executed for calculation operations; secondly, the task calculation
results and the original data of other tasks are forwarded to the execution UAVs of the
subsequent received tasks, as shown in Figure 4.

Drones 2023, 7, x FOR PEER REVIEW 7 of 19

Time-delay sensitive SFC

Time-delay sensitive SFC
Backup Chain

Non-time-delay sensitive

VNF 1 VNF 2 VNF 3 VNF 4

VNF 1 VNF 2 VNF 3 VNF 4

VNF 1 VNF 2 VNF 3 VNF 4

Assign each task in the SFC to the appropriate execution drone
of the optimal task execution type in the current state.

Assign each task in the SFC to the appropriate execution drone
of the next best task execution type in the current state.

No backup SFC is required, only the corresponding virtual
network function needs to be assigned to the execution drone
selected in the current state that can perform that task type.

Figure 3. Schematic diagram of the way delay-sensitive SFCs and non-delay-sensitive SFCs per-
form their tasks.

2.1.4. Communication Model
The execution layer UAVs are located at the uppermost layer of the three-tier UAV

system. The task execution position of SFCs transmitted by the transport layer UAVs is
planned and scheduled by the artificial intelligence system. The execution layer UAVs of
the received tasks need to perform two parts of the operations: firstly, the task data be-
longing to that part are executed for calculation operations; secondly, the task calculation
results and the original data of other tasks are forwarded to the execution UAVs of the
subsequent received tasks, as shown in Figure 4.

SFC [2000, 3000, 4000]SFC

VNF 1 VNF 0 VNF 2

AI computing

 [2000, 3000, 4000]SFC

 result + [3000, 4000]SFC results + [4000]SFC

1

2
VNF 1VNF 2 VNF 0

3

The transit layer UAV sorts out the SFC which contains VNF tasks.
The service function chain contains the virtual network function
type: VNF1, VNF0, VNF2, and the packet size is: 2000, million,

3000, and 4000, respectively.

Figure 4. The relationship between the packet transfer between UAVs and the execution of the SFC
with 3 virtual network functions as an example.

According to the literature [32] the channel gain of the line-of-sight link between
UAVs can be expressed as follows:

Figure 4. The relationship between the packet transfer between UAVs and the execution of the SFC
with 3 virtual network functions as an example.

According to the literature [32] the channel gain of the line-of-sight link between UAVs
can be expressed as follows:

gk,l(i) = α0d−2
k,l (i) =

α0

(xk − xl)
2 + (yk − yl)

2 + (zk − zl)
2 , (4)

where α0 is the channel gain at the reference distance d = 1 m, and dk,l(i) is the Euclidean
distance between the receiving UAV k and the transmitting UAV l, where k and l are the
two UAVs involved in carrying out the transmission and reception of task i. Due to obstacle
occlusion, the wireless transmission rate can be expressed as:

rk,l(i) = B log2

(
1 +

pupgk,l(i)
σ2

)
, (5)

where B denotes the communication bandwidth, pup denotes the transmission power
of the UAVs sending computational task data over the upload link, and σ2 denotes the
noise power.

2.1.5. Computational Model

In the proposed system, the total system latency consists of the following three com-
ponents: (1) the transmission latency for the collection layer UAVs to transmit the computa-
tional tasks to the transmission layer UAVs; (2) the transmission latency for the transmission
layer UAVs to transmit all the data to the execution layer UAVs that perform the first sub-
task in the SFC, and the transmission latency for the execution layer UAVs to transmit the
remaining computational data sequentially backward; (3) the time spent by the execution
layer UAVs to process the computational tasks.

Drones 2023, 7, 259 8 of 19

The computation task SFCj can be expressed as
(

f j, tj, Rj, dj, pj
)
, where f j, dj are arrays

of the length of the number of subtasks contained in SFCj, and according to the indices
represent the computation task type and computation data size of the corresponding
subtasks, respectively. Then, the transmission delay of receiving UAV k and sending UAV
l for subtask i of SFCj can be expressed as:

tT,k,l(i) =
Dk,l(i)
rk,l(i)

, (6)

where Dk,l(i) is the size of the data transmitted by the receiving UAV k and the sending
UAV l for this round of communication.

The time delay resulting from the execution of the UAV m execution calculation can
be expressed as follows:

tU,m(i) =
Dm(i)
cm(i)

, (7)

where Dm(i) is the size of computational task data that UAV m needs to execute, cm(i) is the
computational resource allocated by UAV m according to the task demand of computational
task SFCj

(
f j, tj, Rj, dj, pj

)
.

2.2. Problem Description

Based on the above models and analysis, the optimization problem of the UAV-assisted
FP-MEC-IIN system is presented. This study aims to minimize the overall task execution
latency within the system by jointly optimizing the allocation of execution UAVs (k, v) and
backup execution UAVs (b, l) for the execution of various tasks, as well as the computational
resource allocation. This approach ensures efficient resource scheduling and enhanced
reliability while making the best use of the limited resources within the system. Specifically,
the optimization problem can be expressed as follows:

min
k,v,b,h,cm(i)

N3
∑

i=1

(
N1
∑

k=1

N2
∑

l=1
tT,k,l(i) ∗ xk,l(i) +

N1
∑

k=1

N1
∑

v=1,v 6=k
(tT,k,v(i) ∗ yk,v(i) + tU,k(i) ∗ zk,v(i))

+
N1
∑

b=1

N2
∑

l=1
tT,b,l(i) ∗ xb,l(i) +

N1
∑

b=1

N1
∑

h=1,h 6=b
(tT,b,h(i) ∗ yb,h(i) + tU,b(i) ∗ zb,h(i))

) (8)

Subject to:
xk,l(i) ∈ {0, 1}, ∀k, ∀l , (9)

yk,v(i) ∈ {0, 1}, ∀k, ∀v, (10)

zk,v(i) ∈ {0, 1}, ∀k, ∀v, (11)

xb,l(i) ∈ {0, 1}, ∀b, ∀l, (12)

yb,h(i) ∈ {0, 1}, ∀b, ∀h, (13)

zb,h(i) ∈ {0, 1}, ∀b, ∀h, (14)

cm(i) ∈ N, ∀m, ∀i, (15)

Drones 2023, 7, 259 9 of 19

N3

∑
i=1

cm(i) ≤ CM,, ∀τ, ∀m, (16)

N1 ∈ N+ (17)

N2 ∈ N+, (18)

N3 ∈ N+, (19)

Rj ≤ 1−∏ ρq, q ∈ {v, b}, ∀j, ∀v, ∀b, (20)

where N1 represents the number of execution layer UAVs, N2 represents the number of
transport layer UAVs, and N3 represents the task number. In (9), xk,l(i) = 1 indicates that
task i is on the transmission layer UAV l and is offloaded to the execution layer UAV k. If
not, xk,l(i) = 0. In (10), yk,v(i) = 1 indicates that task i is on the execution layer UAV k
and is offloaded to the execution layer UAV v. Conversely yk,v(i) = 0. In (11), zk,v(i) = 1
indicates that task i is on the execution layer UAV k and is not offloaded to any execution
layer UAV v, in other words, the task is executed by the execution layer UAV k itself. In
contrast, zk,v(i) = 0. In (12), xb,l(i) = 1 indicates that task i is located on the transmission
layer UAV l, and is offloaded to the execution layer UAV b, with the condition that UAV b
and UAV k are not the same UAV. Otherwise stated, xb,l(i) = 0. In (13), yb,h(i) = 1 indicates
that task i is on the execution layer UAV b and is offloaded to the execution layer UAV h,
with the condition that UAV h and UAV v are not the same UAV. Alternatively, yb,h(i) = 0.
In (14), zb,h(i) = 1 indicates that task i is on the execution layer UAV b and is not offloaded
to any execution layer UAV h, in other words, the task is executed by the execution layer
UAV b itself. If not, zb,h(i) = 0. In (15), represents that for any given execution UAV m
and any VNF task i, the computing resources allocated to task i are integers. In (16), for
any execution UAV m, the total computing resources allocated to all the received tasks
at any given time slot τ cannot exceed the UAV m’s total available computing resources
CM. Equations (17)–(19) indicate that the number of UAVs in each layer is a non-negative
integer. Equation (20) implies that the reliability of any individual sub-task should meet
the reliability requirements of SFC j when executing SFC j. In this case, v and b represent
the executing UAV and the backup executing UAV for each VNF task, respectively.

2.3. Dynamic Task Scheduling Location Optimization Algorithm

This section first demonstrates that the problem studied in this paper is NP-hard by a
well-known NP-hard problem, the lowest cost generalized assignment problem (LGAP) [33].
The LGAP problem is defined as follows: there is a set of elements, items = (i1, i2, . . . , in),
where element in consists of cost and size: in = (costn, sizen), and there are some boxes,
bins = (b1, b2, . . . , bn), where the capacity of each box is capbn . The objective of the LGAP
problem is to put as many elements into the boxes as possible at the lowest cost, where
the sum of all the elements’ sizes put into each box cannot exceed the capacity of that
box. The dynamic task scheduling location optimization problem studied in this paper
can be transformed into an LGAP problem when the dynamic crash probability is reduced
to zero. Specifically, the execution UAV i has total computational resources of Ci, and
each computational task SFCj needs to occupy part of the computational resources of
the execution UAVs. Ultimately, the objective of the dynamic task scheduling location
optimization problem is to complete all computational tasks with the lowest possible
latency using the limited computational resources in the system.

Since the special case of the problem studied in this paper can be reduced to the LGAP
problem, and the LGAP problem is NP-hard, it is obvious that the problem studied in this
paper is also NP-hard. The difficulty and value of this class for the problem lies in the fact

Drones 2023, 7, 259 10 of 19

that their solutions are widely applicable and practical for solving practical problems and
provide strong support for practical application scenarios. DRL is considered as an efficient
method for solving NP-hard problems [3,5,25,27,28,34,35]. In this section, the paper firstly
gives a brief introduction to the Markov decision process and defines in detail the setting of
Markov decision process parameters in this paper, followed by the effect of empirical replay
on the learning effect, then the Q-learning algorithm, and finally the DTSOA algorithm
based on the dueling deep Q-network (DQN) proposed in this paper.

2.3.1. Markov Decision Process

A standard Markov decision process can be defined as {S, A, P, R} [36,37], where S is
the set of states generated by the environment; A is the action space, P is the state transfer
probability, and R is the reward function. At each time slot t, tasks belonging to different
service types are generated, i.e., a state st ∈ S is generated at time slot t. Then, an action
at ∈ A is selected according to the current state. After executing a, the system enters the
next state st+1 and receives a scalar reward r ∈ R according to the reward function. The
parameters of the Markov decision process in this paper are defined in detail below.

(1) State Space: The state of the system contains three layers of the UAVs state and task
execution, namely: the location of each collection layer UAV and information about
the computational tasks it generates; the location of each transmission layer UAV and
information about SFC tasks after collating data; the location of each execution layer
UAV, the contained VNF and resource usage information; and the current execution
state of all tasks generated within the system. Among them, the locations of the
UAVs are represented by a three-dimensional Cartesian coordinate system, and each
generated task contains task generation time, task type, task data size, and task
delay-sensitive composition.

(2) Action Space: The action a of the system contains both the execution layer UAVs
assigned for each task and the allocated computational resources. The task execution
positions of the n tasks generated by the n collection layer UAVs can be denoted as
λ = {α1, α2, . . . , αN}, and the allocation of computational resources is denoted by
f = [f 1, f 2, . . . , fN]. Thus, the action a is the combination of the elements in λ and f.

(3) Reward Functions: For each step, after executing each action a, the intelligence will
calculate the reward obtained according to the reward and punishment function R.
The goal of the optimization problem in this paper is to obtain the minimum total
system execution delay, while DRL pursues the actions that obtain the maximum
reward sum. Therefore, in this paper, the delay Ti derived from the i-th step operation
is taken as its opposite, −Ti, as the reward Ri for the i-th step action, i.e., Ri = −Ti,
so that the DRL algorithm tends to the direction of the reduction of the total system
execution delay.

2.3.2. Experience Storage

During the training process, each interaction between the intelligence and the envi-
ronment generates a set of data: the current state si, the action ai selected according to
the current state, the reward ri obtained, the next state si+1 after performing the selected
action, and whether the state is terminated di. The set of data (si, ai, ri, di, si+1) generated
during each training step is put into the memory bank M. When a certain amount of data is
available in the memory bank M, a small batch_size set of data is randomly selected from the
memory bank. After a certain amount of data is stored in the memory M, a small batch_size
set of data is randomly selected from the memory and put into the neural network for
training. In the actual training, it is necessary to adjust the value of the hyperparameter
batch_size in the algorithm, although too large batch_size reduces the number of iterations
required for convergence, it also leads to an increase in the time of each iteration, and the
total time spent is more than that of small batch_size training. Therefore, when the value of
batch_size is within a certain range, it achieves the purpose of making the network converge

Drones 2023, 7, 259 11 of 19

faster. If the value of batch_size is too small, the iteration convergence time increases and
the gradient oscillation is severe, which is not conducive to convergence.

In general, taking a small batch_size for training can achieve the benefits of reusing data,
avoiding overfitting problems due to local experience, and reducing memory pressure.

2.3.3. Q-Learning Algorithm

In Q-learning, it is necessary to use Q-table to record the Q-value of each action in
each state. The role of Q-table is to return the action A that obtains the maximum Q-value
by looking up the table when the state S is input, execute A, reach s(t + 1), input s(t + 1)
into Q-table, find the action a with the maximum Q-value at s(t + 1) Q-value, multiply it
by the discount rate plus the sum of the obtained rewards R as the update target of Q(s, a),
calculate the loss function, and update the Q-network by the loss function.

Q(S, A)← Q(S, A) + α
[

R + γmax
a

Q
(
S′, a

)
−Q(S, A)

]
. (21)

The flow chart of Algorithm 1 is as follows:

Algorithm 1: Q-learning algorithm

1: Initialize Q form
2: for episode 1→E do:
3: Initialize the state of UAVs at each execution level
4: Get the initial state of the environment s
5: for episode 1→T do:
6: Use the epsilon-greedy strategy to select the action a in the current state s based on

Q-value
7: Execute action a; get environment feedback of r, s′

8: Q(s, a)←Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]
9: s← s′

10: end for
11: end for

2.3.4. DTSOA Algorithm

Dueling DQN is another improvement algorithm of the DQN. Dueling DQN makes
only minor changes to the traditional DQN, but it improves the performance of the DQN
significantly. In reinforcement learning, the result of subtracting the state action value
function from the state value function is usually defined as the dominance function, i.e.,
A(s, a) = Q(s, a)−V(s). The sum of the dominance values of all actions in the same state
is 0, because the expectation of the action value of all actions is the state value of this state.
Therefore, in Dueling DQN, the Q-network is modeled as:

Qη,α,β(s, a) = Vη,α(s) + Aη,β(s, a), (22)

where Vη,α(s), is the state value function, representing how much reward can be obtained
from state s, and Aη,β(s, a) is the dominance function for taking different actions in that state,
indicating the superiority of taking action a in state s compared with other actions; η is the
network parameter shared by the state value function and the dominance function, which
is generally used in neural networks to extract the first few layers of features; and α and β
are the parameters of the state value function and the dominance function, respectively.
The Dueling DQN model divides the last layer of the neural network into two parts, the
state value function and the dominance function, and no longer lets the neural network
output the Q-value directly, the state value function and the dominance function sum up to
obtain the Q-value. The network structure of Dueling DQN is shown in Figure 5.

The advantage of modeling the state value function and the dominance function
separately is that in some contexts the intelligence will only be concerned with the value
of the state and not with the differences caused by the different actions, and modeling

Drones 2023, 7, 259 12 of 19

them separately will enable the intelligence to better handle states that are less associated
with actions.

In Q(s, a) = A(s, a) + V(s), the uncertainty of the dominance function and the state
value function leads to a solution that is not unique and affects the training of the neural
network. To solve this problem, Dueling DQN forces the Q-value of the optimal action to be
equal to the V-value, so that the optimal action value in the dominance function is zero and
all other values are negative, and since determining the V-value ensures the uniqueness of
the value modeling, the neural network is trained as follows:

Qη,α,β(s, a) = Vη,α(s) + Aη,β(s, a)−max
a′

Aη,β
(
s, a′

)
. (23)

In the implementation, the literature [38] suggests that the maximum value can be
replaced by the average value, i.e.:

Qη,α,β(s, a) = Vη,α(s) + Aη,β(s, a)− 1
|A|∑a′ Aη,β

(
s, a′

)
. (24)

Part of the reason for better Dueling DQN than DQN is that Dueling DQN learns
the state value function more efficiently. Each time Dueling DQN updates the state value
function, including Q-values of all the actions in the current state, unlike traditional DQN
which updates only the Q-values of the action selected in the current state. Therefore,
Dueling DQN learns the state value function more frequently and accurately (Algorithm 2).

Algorithm 2: DTSOA algorithm

1: Initialize neural network Q(s, a) parameters with random parameters
2: Initialize experience replay pool M
3: for episode 1→E do:
4: Initialize the state of UAVs at each execution level
5: Get the initial state of the environment s1
6: Initialization done = False
7: while not done:
8: Select action a1 according to the current network Q(s, a) with epsilon-greedy. strategy
9: Execute action a1; get return r1; determine whether to enter the stop state, if yes,

d1 = True, else d1 = False; and enter the new state s2
10: Store (s1, a1, r1, d1, s2) into the experience replay pool M
11: if the data in M is enough then sampling n data from the {(si, ai, ri, di, si+1)}i=1, , n
12: Put the data batch into the output dominance function and state value function through

the neural network, and calculate the Q-value.
13: Minimize target loss as a way to update the current network
14: Update the target network
15: end for
16: end for

Drones 2023, 7, 259 13 of 19

Drones 2023, 7, x FOR PEER REVIEW 12 of 19

is 0, because the expectation of the action value of all actions is the state value of this state.
Therefore, in Dueling DQN, the Q-network is modeled as: 𝑄 , , (𝑠, 𝑎) = 𝑉 , (𝑠) + 𝐴 , (𝑠, 𝑎), (22)

where 𝑉 , (𝑠) is the state value function, representing how much reward can be obtained
from state s, and 𝐴 , (𝑠, 𝑎) is the dominance function for taking different actions in that
state, indicating the superiority of taking action a in state s compared with other actions;
η is the network parameter shared by the state value function and the dominance function,
which is generally used in neural networks to extract the first few layers of features; and
α and β are the parameters of the state value function and the dominance function, respec-
tively. The Dueling DQN model divides the last layer of the neural network into two parts,
the state value function and the dominance function, and no longer lets the neural net-
work output the Q-value directly, the state value function and the dominance function
sum up to obtain the Q-value. The network structure of Dueling DQN is shown in Figure
5.

The advantage of modeling the state value function and the dominance function sep-
arately is that in some contexts the intelligence will only be concerned with the value of
the state and not with the differences caused by the different actions, and modeling them
separately will enable the intelligence to better handle states that are less associated with
actions.

Neural network layer

State

State value
function

Advantage
Functions

Q value

Figure 5. Network structure of Dueling DQN.

In 𝑄(𝑠, 𝑎) = 𝐴(𝑠, 𝑎) + 𝑉(𝑠), the uncertainty of the dominance function and the state
value function leads to a solution that is not unique and affects the training of the neural
network. To solve this problem, Dueling DQN forces the Q-value of the optimal action to
be equal to the V-value, so that the optimal action value in the dominance function is zero
and all other values are negative, and since determining the V-value ensures the unique-
ness of the value modeling, the neural network is trained as follows: 𝑄 , , (𝑠, 𝑎) = 𝑉 , (𝑠) + 𝐴 , (𝑠, 𝑎) − max 𝐴 , (𝑠, 𝑎). (23)

In the implementation, the literature [38] suggests that the maximum value can be
replaced by the average value, i.e.: 𝑄 , , (𝑠, 𝑎) = 𝑉 , (𝑠) + 𝐴 , (𝑠, 𝑎) − | | ∑ 𝐴 , (𝑠, 𝑎). (24)

Part of the reason for better Dueling DQN than DQN is that Dueling DQN learns the
state value function more efficiently. Each time Dueling DQN updates the state value

Figure 5. Network structure of Dueling DQN.

2.3.5. Algorithm Complexity Analysis

The reinforcement learning algorithms have been trained to the convergence state,
their computational complexity is usually taken as the number of nonlinear transformations
propagated once in the forward direction. Therefore, the computational complexity of
the algorithm can be expressed as O

(
∑L−1

l=1 qlql+1

)
, where L is the number of layers of the

algorithm’s strategic neural network, and ql is the number of neurons in the lth hidden layer.

3. Results and Discussion

In this section, this paper evaluates the performance of the proposed algorithm based
on the experimental results by forming an FP-MEC-IIN system at three layers of UAVs and
conducting simulation experiments with the main parameters shown in Table 1.

Table 1. Simulation parameters.

Parameters Parameters Meaning Parameters Value Units

Nuuav Number of collection layer UAVs 6, 9, 12, 15, 18 Rack
Ntuav Number of transport layer UAVs 3, 6 Rack
Nmk Number of delay-sensitive SFCs bars 1, 2, 3, 4, 5 Article
ρi Device crash probability 10%, 15%, 20%, 25%, 30%

Ddata Calculate task data size 10,000, 20,000, 30,000, 40,000, 50,000 standard task blocks
F Execution layer UAVs computing power 1000, 2000, 3000, 4000, 5000 standard task blocks/slot

In this paper, the proposed algorithm is compared with three other baseline algorithms
in the following simulation scenarios: “RSM” means that the edge server device performing
the SFCs task always selects the execution layer UAVs that contain the corresponding VNFs
type and have the shortest communication link; “Q-learning” (Algorithm 1) uses the Q-
values recorded by the Q-network to assign the execution layer UAVs to the SFCs task; and
“TSM” means that all possible solutions under the model are traversed and the best value
is selected. The DTSOA algorithm proposed in this paper is presented as Algorithm 2.

Figure 6 shows the reward convergence trend of the randomized experiment, which
verifies that the DTSOA algorithm proposed in this paper has good convergence.

Drones 2023, 7, 259 14 of 19

Drones 2023, 7, x FOR PEER REVIEW 14 of 19

values recorded by the Q-network to assign the execution layer UAVs to the SFCs task; and
“TSM” means that all possible solutions under the model are traversed and the best value
is selected. The DTSOA algorithm proposed in this paper is presented as Algorithm 2.

Figure 6 shows the reward convergence trend of the randomized experiment, which
verifies that the DTSOA algorithm proposed in this paper has good convergence.

Figure 6. Trend of DTSOA algorithm reward convergence based on Dueling DQN.

Figure 7 shows the performance simulation of the impact of the number of collection
layer UAVs on the total system delay. As can be seen from the figure, compared with Q-
leaning and RSM, the DTSOA proposed in this paper has optimal performance as the link
length of the SFCs changes (i.e., during the change in the number of VNF subtasks con-
tained in each SFC) and the achieved results are closer to the TSM curve. Furthermore,
fewer computational tasks are generated in the corresponding system when the number
of collection layer UAVs is smaller, where the gap between these four algorithms is the
smallest since more computational resources are left for each execution layer UAVs at this
time. The DTSOA algorithm analyzes the generated computational tasks and the server
resource usage to efficiently schedule the system resources and obtain better results. Q-
learning also uses computational tasks and server state as input of the algorithm. How-
ever, the Q-value of one state action pair can only be updated in each training iteration,
and there is a problem of overestimation of the Q-value due to the internal design defect
of the algorithm, which affects the algorithm results. Therefore, compared with Q-learn-
ing, DTSOA learns the state value function more frequently and accurately to select better
actions and reduce the system latency.

Figure 6. Trend of DTSOA algorithm reward convergence based on Dueling DQN.

Figure 7 shows the performance simulation of the impact of the number of collection
layer UAVs on the total system delay. As can be seen from the figure, compared with
Q-leaning and RSM, the DTSOA proposed in this paper has optimal performance as the
link length of the SFCs changes (i.e., during the change in the number of VNF subtasks
contained in each SFC) and the achieved results are closer to the TSM curve. Furthermore,
fewer computational tasks are generated in the corresponding system when the number
of collection layer UAVs is smaller, where the gap between these four algorithms is the
smallest since more computational resources are left for each execution layer UAVs at this
time. The DTSOA algorithm analyzes the generated computational tasks and the server
resource usage to efficiently schedule the system resources and obtain better results. Q-
learning also uses computational tasks and server state as input of the algorithm. However,
the Q-value of one state action pair can only be updated in each training iteration, and
there is a problem of overestimation of the Q-value due to the internal design defect of
the algorithm, which affects the algorithm results. Therefore, compared with Q-learning,
DTSOA learns the state value function more frequently and accurately to select better
actions and reduce the system latency.

Drones 2023, 7, x FOR PEER REVIEW 15 of 19

Figure 7. Relationship between the number of collection layer UAVs and time delay.

Figure 8 shows the effect of increasing the crash probability factor on the total system
delay. The simulation parameters are set as: 𝑁 = 12, 𝑁 = 3, 𝐷 = 30,000, 𝐹 =1000, 𝑁 = 1. From the figure, it can be seen that RSM has the highest system latency
affected by the crash probability coefficient, because only the nearest execution layer
UAVs are selected for task offloading execution. Q-learning, DTSOA and TSM schedule
the computation of task execution positions based on the working status of all execution
layer UAVs in the system, which reduces the impact of the crash probability coefficient
on the total system latency. DTSOA has better performance through the advantage of the
algorithm design; the growth curve is closer to TSM compared to other baseline algo-
rithms.

Figure 8. Crash probability coefficient and time delay relationship graph.

Figure 9 investigates the relationship between the amount of task data and the time
delay. The simulation parameters are set as: 𝑁 = 12, 𝑁 = 6, 𝐹 = 1000, 𝜌 =10%, 𝑁 = 1. The simulation results show that, compared with the results in Figure 8, all
these four algorithms more fully utilize the system resources, and reduce the total latency
in the system to a certain extent by increasing the number of SFC tasks with the same total

Figure 7. Relationship between the number of collection layer UAVs and time delay.

Figure 8 shows the effect of increasing the crash probability factor on the total system
delay. The simulation parameters are set as: Nuuav = 12, Ntuav = 3, Ddata = 30, 000,
F = 1000, Nmk = 1. From the figure, it can be seen that RSM has the highest system latency
affected by the crash probability coefficient, because only the nearest execution layer UAVs
are selected for task offloading execution. Q-learning, DTSOA and TSM schedule the

Drones 2023, 7, 259 15 of 19

computation of task execution positions based on the working status of all execution
layer UAVs in the system, which reduces the impact of the crash probability coefficient
on the total system latency. DTSOA has better performance through the advantage of the
algorithm design; the growth curve is closer to TSM compared to other baseline algorithms.

Drones 2023, 7, x FOR PEER REVIEW 15 of 19

Figure 7. Relationship between the number of collection layer UAVs and time delay.

Figure 8 shows the effect of increasing the crash probability factor on the total system
delay. The simulation parameters are set as: 𝑁 = 12, 𝑁 = 3, 𝐷 = 30,000, 𝐹 =1000, 𝑁 = 1. From the figure, it can be seen that RSM has the highest system latency
affected by the crash probability coefficient, because only the nearest execution layer
UAVs are selected for task offloading execution. Q-learning, DTSOA and TSM schedule
the computation of task execution positions based on the working status of all execution
layer UAVs in the system, which reduces the impact of the crash probability coefficient
on the total system latency. DTSOA has better performance through the advantage of the
algorithm design; the growth curve is closer to TSM compared to other baseline algo-
rithms.

Figure 8. Crash probability coefficient and time delay relationship graph.

Figure 9 investigates the relationship between the amount of task data and the time
delay. The simulation parameters are set as: 𝑁 = 12, 𝑁 = 6, 𝐹 = 1000, 𝜌 =10%, 𝑁 = 1. The simulation results show that, compared with the results in Figure 8, all
these four algorithms more fully utilize the system resources, and reduce the total latency
in the system to a certain extent by increasing the number of SFC tasks with the same total

Figure 8. Crash probability coefficient and time delay relationship graph.

Figure 9 investigates the relationship between the amount of task data and the
time delay. The simulation parameters are set as: Nuuav = 12, Ntuav = 6, F = 1000,
ρi = 10%, Nmk = 1. The simulation results show that, compared with the results in
Figure 8, all these four algorithms more fully utilize the system resources, and reduce the
total latency in the system to a certain extent by increasing the number of SFC tasks with
the same total task data volume. RSM is less efficient in utilizing the overall resources in
the system than the other algorithms in the case of multiple tasks and large data volume.
The DTSOA proposed in this paper, however, is still closer to the results of TSM than
Q-learning and RSM in the face of multiple tasks counts and large data volumes, and is
able to obtain a lower total system latency. Therefore, in the complex work scenario facing
multiple SFC tasks, the performance of the DTSOA algorithm proposed in this paper is
more advantageous in providing resource scheduling services to users.

Drones 2023, 7, x FOR PEER REVIEW 16 of 19

task data volume. RSM is less efficient in utilizing the overall resources in the system than
the other algorithms in the case of multiple tasks and large data volume. The DTSOA
proposed in this paper, however, is still closer to the results of TSM than Q-learning and
RSM in the face of multiple tasks counts and large data volumes, and is able to obtain a
lower total system latency. Therefore, in the complex work scenario facing multiple SFC
tasks, the performance of the DTSOA algorithm proposed in this paper is more advanta-
geous in providing resource scheduling services to users.

Figure 9. Task data volume and latency relationship graph.

Figure 10 shows the relationship between the computational power and the latency
of the executed UAVs. The simulation parameters are set as: 𝑁 = 12, 𝑁 =6, 𝐷 = 30000, 𝜌 = 10%, 𝑁 = 1. The simulation results show that the system latency
under all four algorithms decreases as the computational power of the device increases.
The reason for the gradual slowdown of the reduction is that too many computational
resources are wasted in the face of a fixed computational task. In addition, compared with
Q-learning and RSM, the proposed DTSOA algorithm is closer to TSM in terms of reduc-
tion magnitude and has lower latency. The advantages of the algorithm proposed in this
paper are more obvious, especially when the resources in the system are insufficient. This
reflects the algorithm’s ability to make good use of resources.

Figure 9. Task data volume and latency relationship graph.

Figure 10 shows the relationship between the computational power and the latency
of the executed UAVs. The simulation parameters are set as: Nuuav = 12, Ntuav = 6,
Ddata = 30, 000, ρi = 10%, Nmk = 1. The simulation results show that the system latency
under all four algorithms decreases as the computational power of the device increases.
The reason for the gradual slowdown of the reduction is that too many computational

Drones 2023, 7, 259 16 of 19

resources are wasted in the face of a fixed computational task. In addition, compared with
Q-learning and RSM, the proposed DTSOA algorithm is closer to TSM in terms of reduction
magnitude and has lower latency. The advantages of the algorithm proposed in this paper
are more obvious, especially when the resources in the system are insufficient. This reflects
the algorithm’s ability to make good use of resources.

Drones 2023, 7, x FOR PEER REVIEW 16 of 19

task data volume. RSM is less efficient in utilizing the overall resources in the system than
the other algorithms in the case of multiple tasks and large data volume. The DTSOA
proposed in this paper, however, is still closer to the results of TSM than Q-learning and
RSM in the face of multiple tasks counts and large data volumes, and is able to obtain a
lower total system latency. Therefore, in the complex work scenario facing multiple SFC
tasks, the performance of the DTSOA algorithm proposed in this paper is more advanta-
geous in providing resource scheduling services to users.

Figure 9. Task data volume and latency relationship graph.

Figure 10 shows the relationship between the computational power and the latency
of the executed UAVs. The simulation parameters are set as: 𝑁 = 12, 𝑁 =6, 𝐷 = 30000, 𝜌 = 10%, 𝑁 = 1. The simulation results show that the system latency
under all four algorithms decreases as the computational power of the device increases.
The reason for the gradual slowdown of the reduction is that too many computational
resources are wasted in the face of a fixed computational task. In addition, compared with
Q-learning and RSM, the proposed DTSOA algorithm is closer to TSM in terms of reduc-
tion magnitude and has lower latency. The advantages of the algorithm proposed in this
paper are more obvious, especially when the resources in the system are insufficient. This
reflects the algorithm’s ability to make good use of resources.

Figure 10. Execution of UAVs computational power and latency relationship.

Figure 11 investigates the relationship between the number of delay-sensitive SFCs
and the time delay. The simulation parameters are set as: Nuuav = 12, Ntuav = 6,
Ddata = 30, 000, ρi = 10%, Nmk = 12. In this simulation, the reject task mechanism is
introduced, if the selected execution device integrated reliability rate meets the task’s
demand for the reliability rate. Then the task is accepted, and vice versa the task is rejected.
The formula for calculating the latency in the simulation diagram is as follows: latency of
the execution task + (number of rejected tasks × 200). Setting reject tasks leads to higher
latency compared to the normal execution of the task. Let the algorithm meet the reliability
rate demand of the computational tasks by coordinating the scheduling of the computing
power in the system, reducing the number of reject tasks, and reducing the number of
backup executions that do not meet the task requirements. Moreover, Figure 11 shows that
the system latency under all four algorithms increases as the proportion of latency-sensitive
tasks increases, and RSM increases the number of rejected tasks with the intensity of compu-
tational tasks due to the underutilization of computational resources in the system, leading
to an increase in the integrated latency. In contrast, the DTSOA proposed in this paper
utilizes system resources more efficiently than Q-learning and obtains lower latency, and
the DTSOA algorithm is closer to TSM with lower latency, which verifies the superior
performance of the algorithm.

Drones 2023, 7, 259 17 of 19

Drones 2023, 7, x FOR PEER REVIEW 17 of 19

Figure 10. Execution of UAVs computational power and latency relationship.

Figure 11 investigates the relationship between the number of delay-sensitive SFCs
and the time delay. The simulation parameters are set as: 𝑁 = 12, 𝑁 = 6, 𝐷 =30000, 𝜌 = 10%, 𝑁 = 12. In this simulation, the reject task mechanism is introduced, if
the selected execution device integrated reliability rate meets the task’s demand for the
reliability rate. Then the task is accepted, and vice versa the task is rejected. The formula
for calculating the latency in the simulation diagram is as follows: latency of the execution
task + (number of rejected tasks × 200). Setting reject tasks leads to higher latency com-
pared to the normal execution of the task. Let the algorithm meet the reliability rate de-
mand of the computational tasks by coordinating the scheduling of the computing power
in the system, reducing the number of reject tasks, and reducing the number of backup
executions that do not meet the task requirements. Moreover, Figure 11 shows that the
system latency under all four algorithms increases as the proportion of latency-sensitive
tasks increases, and RSM increases the number of rejected tasks with the intensity of com-
putational tasks due to the underutilization of computational resources in the system,
leading to an increase in the integrated latency. In contrast, the DTSOA proposed in this
paper utilizes system resources more efficiently than Q-learning and obtains lower la-
tency, and the DTSOA algorithm is closer to TSM with lower latency, which verifies the
superior performance of the algorithm.

Figure 11. Relationship between number of delay-sensitive SFCs and delay.

4. Conclusions
This paper presents the development of the FP-MEC-IIN framework to address the

demand for low latency in intra-system communication networks, which involves diverse
task types. The framework utilizes flexibly deployable (UAVs) as computational re-
sources. A simulation study is conducted to investigate task offloading decisions and
(MEC) computational resource allocation problems. This study compares the performance
of the proposed DTSOA algorithm, which is based on Dueling DQN, with existing of-
floading schemes, including the RSM, Q-learning algorithm, and TSM. The simulation re-
sults demonstrate that the proposed algorithm is more effective in reducing system la-
tency than the other algorithms. Compared with the complexity of state-action pairs lim-
ited Q-learning, the DTSOA algorithm improves the learning efficiency by separately
modeling the state value function and the dominance function. The Dueling DQN algo-
rithm updates the state value function more frequently and accurately than Q-learning,
resulting in the improvement of the convergence speed and accuracy. The DTSOA algo-
rithm has the potential to reduce the system delay and to facilitate the rapid construction

Figure 11. Relationship between number of delay-sensitive SFCs and delay.

4. Conclusions

This paper presents the development of the FP-MEC-IIN framework to address the de-
mand for low latency in intra-system communication networks, which involves diverse task
types. The framework utilizes flexibly deployable (UAVs) as computational resources. A
simulation study is conducted to investigate task offloading decisions and (MEC) computa-
tional resource allocation problems. This study compares the performance of the proposed
DTSOA algorithm, which is based on Dueling DQN, with existing offloading schemes,
including the RSM, Q-learning algorithm, and TSM. The simulation results demonstrate
that the proposed algorithm is more effective in reducing system latency than the other
algorithms. Compared with the complexity of state-action pairs limited Q-learning, the
DTSOA algorithm improves the learning efficiency by separately modeling the state value
function and the dominance function. The Dueling DQN algorithm updates the state value
function more frequently and accurately than Q-learning, resulting in the improvement of
the convergence speed and accuracy. The DTSOA algorithm has the potential to reduce
the system delay and to facilitate the rapid construction of MEC networks in emergency
scenarios, as well as to reduce industrial production costs and promote the development
of green energy economies. In this study, the mobility of terminals and UAVs configured
with the VNF during the transmission process has not been considered. In the IIN scenario,
some terminals send computational tasks while moving, and IIN terminals also have re-
quirements for extended endurance. In future work, we will build upon the foundation laid
by this paper by introducing the characteristics of terminal mobility and long endurance.

Author Contributions: All authors contributed equally to the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was partially supported by Beijing Natural Science Foundation L222004; Beijing
Natural Science Foundation Haidian Original Innovation Joint Fund (No. L212026); R&D Program of
Beijing Municipal Education Commission (KM202211232011).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhou, Y.; Yu, F.R.; Chen, J.; Kuo, Y. Resource Allocation for Information-Centric Virtualized Heterogeneous Networks with

In-Network Caching and Mobile Edge Computing. IEEE Trans. Veh. Technol. 2017, 66, 11339–11351. [CrossRef]

https://doi.org/10.1109/TVT.2017.2737028

Drones 2023, 7, 259 18 of 19

2. Pham, C.; Tran, N.H.; Ren, S.; Saad, W.; Hong, C.S. Traffic-Aware and Energy-Efficient VNF Placement for Service Chaining: Joint
Sampling and Matching Approach. IEEE Trans. Serv. Comput. 2020, 13, 172–185. [CrossRef]

3. Fu, X.; Yu, F.R.; Wang, J.; Qi, Q.; Liao, J. Service Function Chain Embedding for NFV-Enabled IoT Based on Deep Reinforcement
Learning. IEEE Commun. Mag. 2019, 57, 102–108. [CrossRef]

4. Pei, J.; Hong, P.; Pan, M.; Liu, J.; Zhou, J. Optimal VNF Placement via Deep Reinforcement Learning in SDN/NFV-Enabled
Networks. IEEE J. Sel. Areas Commun. 2020, 38, 263–278. [CrossRef]

5. Suzuki, A.; Kobayashi, M.; Takahashi, Y.; Harada, S.; Ishibashi, K.; Kawahara, R. Extendable NFV-Integrated Control Method
Using Reinforcement Learning. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City,
MO, USA, 20–24 May 2018; pp. 1–7.

6. Sun, J.; Liu, F.; Wang, H.; Ahmed, M.; Li, Y.; Zhang, L.; Zeng, H. Network Function Placement Under Randomly Arrived
Networking Traffic. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 1382–1398. [CrossRef]

7. Pham, T.-M.; Fdida, S.; Nguyen, T.-T.-L.; Chu, H.-N. Modeling and Analysis of Robust Service Composition for Network Functions
Virtualization. Comput. Netw. 2020, 166, 106989. [CrossRef]

8. Wang, M.; Cheng, B.; Chen, J. Joint Availability Guarantee and Resource Optimization of Virtual Network Function Placement in
Data Center Networks. IEEE Trans. Netw. Serv. Manag. 2020, 17, 821–834. [CrossRef]

9. Chen, Y.; Wu, J. Latency-Efficient VNF Deployment and Path Routing for Reliable Service Chain. IEEE Trans. Netw. Sci. Eng. 2021,
8, 651–661. [CrossRef]

10. Kang, R.; He, F.; Oki, E. Virtual Network Function Allocation in Service Function Chains Using Backups with Availability
Schedule. IEEE Trans. Netw. Serv. Manag. 2021, 18, 4294–4310. [CrossRef]

11. Fan, J.; Jiang, M.; Rottenstreich, O.; Zhao, Y.; Guan, T.; Ramesh, R.; Das, S.; Qiao, C. A Framework for Provisioning Availability of
NFV in Data Center Networks. IEEE J. Sel. Areas Commun. 2018, 36, 2246–2259. [CrossRef]

12. Li, J.; Liang, W.; Huang, M.; Jia, X. Reliability-Aware Network Service Provisioning in Mobile Edge-Cloud Networks. IEEE Trans.
Parallel Distrib. Syst. 2020, 31, 1545–1558. [CrossRef]

13. Yang, S.; Li, F.; Yahyapour, R.; Fu, X. Delay-Sensitive and Availability-Aware Virtual Network Function Scheduling for NFV. IEEE
Trans. Serv. Comput. 2022, 15, 188–201. [CrossRef]

14. Qiu, Y.; Liang, J.; Leung, V.C.M.; Wu, X.; Deng, X. Online Reliability-Enhanced Virtual Network Services Provisioning in
Fault-Prone Mobile Edge Cloud. IEEE Trans. Wirel. Commun. 2022, 21, 7299–7313. [CrossRef]

15. Guo, H.; Liu, J.; Zhang, J.; Sun, W.; Kato, N. Mobile-Edge Computation Offloading for Ultradense IoT Networks. IEEE Internet
Things J. 2018, 5, 4977–4988. [CrossRef]

16. Hu, Q.; Cai, Y.; Yu, G.; Qin, Z.; Zhao, M.; Li, G.Y. Joint Offloading and Trajectory Design for UAV-Enabled Mobile Edge Computing
Systems. IEEE Internet Things J. 2019, 6, 1879–1892. [CrossRef]

17. Diao, X.; Zheng, J.; Cai, Y.; Wu, Y.; Anpalagan, A. Fair Data Allocation and Trajectory Optimization for UAV-Assisted Mobile
Edge Computing. IEEE Commun. Lett. 2019, 23, 2357–2361. [CrossRef]

18. Pourghasemian, M.; Abedi, M.R.; Hosseini, S.S.; Mokari, N.; Javan, M.R.; Jorswieck, E.A. AI-Based Mobility-Aware Energy
Efficient Resource Allocation and Trajectory Design for NFV Enabled Aerial Networks. IEEE Trans. Green Commun. Netw. 2023, 7,
281–297. [CrossRef]

19. Baumgartner, A.; Bauschert, T.; D’Andreagiovanni, F.; Reddy, V.S. Towards Robust Network Slice Design under Correlated
Demand Uncertainties. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO,
USA, 20–24 May 2018; pp. 1–7.

20. Lin, T.; Zhou, Z. Robust Virtual Network Function Provisioning Under Random Failures on Network Function Enabled Nodes.
In Proceedings of the 2018 10th International Workshop on Resilient Networks Design and Modeling (RNDM), Longyearbyen,
Norway, 27–29 August 2018; pp. 1–7.

21. Kuo, T.-W.; Liou, B.-H.; Lin, K.C.-J.; Tsai, M.-J. Deploying Chains of Virtual Network Functions: On the Relation Between Link
and Server Usage. IEEEACM Trans. Netw. 2018, 26, 1562–1576. [CrossRef]

22. Liu, J.; Li, Y.; Zhang, Y.; Su, L.; Jin, D. Improve Service Chaining Performance with Optimized Middlebox Placement. IEEE Trans.
Serv. Comput. 2017, 10, 560–573. [CrossRef]

23. Bari, F.; Chowdhury, S.R.; Ahmed, R.; Boutaba, R.; Duarte, O.C.M.B. Orchestrating Virtualized Network Functions. IEEE Trans.
Netw. Serv. Manag. 2016, 13, 725–739. [CrossRef]

24. Pei, J.; Hong, P.; Xue, K.; Li, D. Efficiently Embedding Service Function Chains with Dynamic Virtual Network Function Placement
in Geo-Distributed Cloud System. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 2179–2192. [CrossRef]

25. Sun, J.; Zhang, Y.; Liu, F.; Wang, H.; Xu, X.; Li, Y. A Survey on the Placement of Virtual Network Functions. J. Netw. Comput. Appl.
2022, 202, 103361. [CrossRef]

26. Akbari, M.; Abedi, M.R.; Joda, R.; Pourghasemian, M.; Mokari, N.; Erol-Kantarci, M. Age of Information Aware VNF Scheduling
in Industrial IoT Using Deep Reinforcement Learning. IEEE J. Sel. Areas Commun. 2021, 39, 2487–2500. [CrossRef]

27. Wang, Y.; Fang, W.; Ding, Y.; Xiong, N. Computation Offloading Optimization for UAV-Assisted Mobile Edge Computing: A
Deep Deterministic Policy Gradient Approach. Wirel. Netw. 2021, 27, 2991–3006. [CrossRef]

28. Du, J.; Joseph, Y.-T. Leung Minimizing Total Tardiness on One Machine Is NP-Hard. Math. Oper. Res. 1990, 15, 483–495. [CrossRef]
29. Murty, K.G.; Kabadi, S.N. Some NP-Complete Problems in Quadratic and Nonlinear Programming. Math. Program. 1987, 39,

117–129. [CrossRef]

https://doi.org/10.1109/TSC.2017.2671867
https://doi.org/10.1109/MCOM.001.1900097
https://doi.org/10.1109/JSAC.2019.2959181
https://doi.org/10.1109/TCCN.2021.3091711
https://doi.org/10.1016/j.comnet.2019.106989
https://doi.org/10.1109/TNSM.2020.2978910
https://doi.org/10.1109/TNSE.2020.3048033
https://doi.org/10.1109/TNSM.2021.3096254
https://doi.org/10.1109/JSAC.2018.2869960
https://doi.org/10.1109/TPDS.2020.2970048
https://doi.org/10.1109/TSC.2019.2927339
https://doi.org/10.1109/TWC.2022.3157606
https://doi.org/10.1109/JIOT.2018.2838584
https://doi.org/10.1109/JIOT.2018.2878876
https://doi.org/10.1109/LCOMM.2019.2943461
https://doi.org/10.1109/TGCN.2022.3186911
https://doi.org/10.1109/TNET.2018.2842798
https://doi.org/10.1109/TSC.2015.2502252
https://doi.org/10.1109/TNSM.2016.2569020
https://doi.org/10.1109/TPDS.2018.2880992
https://doi.org/10.1016/j.jnca.2022.103361
https://doi.org/10.1109/JSAC.2021.3087264
https://doi.org/10.1007/s11276-021-02632-z
https://doi.org/10.1287/moor.15.3.483
https://doi.org/10.1007/BF02592948

Drones 2023, 7, 259 19 of 19

30. Ye, H.; Li, G.Y.; Juang, B.-H.F. Deep Reinforcement Learning Based Resource Allocation for V2V Communications. IEEE Trans.
Veh. Technol. 2019, 68, 3163–3173. [CrossRef]

31. Fu, X.; Yu, F.R.; Wang, J.; Qi, Q.; Liao, J. Dynamic Service Function Chain Embedding for NFV-Enabled IoT: A Deep Reinforcement
Learning Approach. IEEE Trans. Wirel. Commun. 2020, 19, 507–519. [CrossRef]

32. Xiong, J.; Guo, H.; Liu, J. Task Offloading in UAV-Aided Edge Computing: Bit Allocation and Trajectory Optimization. IEEE
Commun. Lett. 2019, 23, 538–541. [CrossRef]

33. Nauss, R.M. Solving the Generalized Assignment Problem: An Optimizing and Heuristic Approach. Inf. J. Comput. 2003, 15,
249–266. [CrossRef]

34. Sun, Y.; Ochiai, H.; Esaki, H. Decentralized Deep Learning for Multi-Access Edge Computing: A Survey on Communication
Efficiency and Trustworthiness. IEEE Trans. Artif. Intell. 2022, 3, 963–972. [CrossRef]

35. Solozabal, R.; Ceberio, J.; Sanchoyerto, A.; Zabala, L.; Blanco, B.; Liberal, F. Virtual Network Function Placement Optimization
with Deep Reinforcement Learning. IEEE J. Sel. Areas Commun. 2020, 38, 292–303. [CrossRef]

36. Wang, Z.; Schaul, T.; Hessel, M.; van Hasselt, H.; Lanctot, M.; de Freitas, N. Dueling Network Architectures for Deep Reinforce-
ment Learning. arXiv 2016, arXiv:1511.06581v3.

37. Hui, H.; Chen, W.; Wang, L. Caching with Finite Buffer and Request Delay Information: A Markov Decision Process Approach.
IEEE Trans. Wirel. Commun. 2020, 19, 5148–5161. [CrossRef]

38. Choi, M.; No, A.; Ji, M.; Kim, J. Markov Decision Policies for Dynamic Video Delivery in Wireless Caching Networks. IEEE Trans.
Wirel. Commun. 2019, 18, 5705–5718. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TVT.2019.2897134
https://doi.org/10.1109/TWC.2019.2946797
https://doi.org/10.1109/LCOMM.2019.2891662
https://doi.org/10.1287/ijoc.15.3.249.16075
https://doi.org/10.1109/TAI.2021.3133819
https://doi.org/10.1109/JSAC.2019.2959183
https://doi.org/10.1109/TWC.2020.2989513
https://doi.org/10.1109/TWC.2019.2938755

	Introduction
	Materials and Methods
	System Model
	Network Model
	Crash Probability Model
	Backup Parallel Execution Model
	Communication Model
	Computational Model

	Problem Description
	Dynamic Task Scheduling Location Optimization Algorithm
	Markov Decision Process
	Experience Storage
	Q-Learning Algorithm
	DTSOA Algorithm
	Algorithm Complexity Analysis

	Results and Discussion
	Conclusions
	References

