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Abstract: Maize is among the most important grain crops. Aboveground biomass (AGB) is a key
agroecological indicator for crop yield prediction and growth status monitoring, etc. In this study,
we propose two new methods, improved crop biomass algorithm (iCBA) and iCBA with piecewise
function (iCBA-PF), to estimate maize AGB. Multispectral (MS) images, visible-band (RGB) images,
and light detection and ranging (LiDAR) data were collected using unmanned aerial vehicles (UAVs).
Vegetation indices (VIs) and the VI-weighted canopy volume model (CVMVI) were calculated and
used as input variables for AGB estimation. The two proposed methods and three benchmark
methods were compared. Results demonstrated that: (1) The performance of MS and RGB data in
AGB estimation was similar. (2) AGB was estimated with higher accuracy using CVMVI than using VI,
probably because the temporal trends of CVMVI and AGB were similar in the maize growing season.
(3) The best estimation method was the iCBA-PF (R2 = 0.90 ± 0.02, RMSE = 190.01 ± 21.55 g/m2),
indicating that AGB before and after maize heading should be estimated with different methods. Our
method and findings are possibly applicable to other crops with a heading stage.

Keywords: aboveground biomass (AGB); unmanned aerial vehicle (UAV); vegetation-index-weighted
canopy volume model (CVMVI); heading; growth stage

1. Introduction

Maize is one of the most important grain crops in the world, provide at least 30% of
food calories to billions of people in many developing countries [1,2]. A key agroecological
indicator of maize is aboveground biomass (AGB) [3], which can be used to monitor crop
growth, carbon storage, and physiological conditions [4]. To accurately measure the AGB
of maize is critical for monitoring its growth, predicting yield [5], and guiding precision
agriculture practices [6].

Traditionally, AGB is measured through destructive sampling, which is the most
accurate method but is also time-consuming, labor intensive, destructive [7,8]. Remote
sensing, as a means of obtaining target information from a distance, provides a non-
destructive alternative for AGB estimation at a variety of spatial scales. At the global
or regional scale, satellite remote sensing is often used to estimate the AGB of grassland
or forests [9,10]. However, the main concern in crop AGB is at the field scale, requiring
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finer-spatial-resolution observations [7,11,12], which calls for the use of unmanned aerial
vehicle (UAV) remote sensing.

UAV estimation of crop AGB has its unique advantages. It can carry a variety of
sensors to obtain different data such as visible (red–green–blue, RGB) images, multispectral
(MS) images, and light detection and ranging (LiDAR). Multiple sensors can be mounted
simultaneously, which makes the data collection highly efficient. The flight height, flight
time, spatial extent, and spatiotemporal resolution can be controlled for data collection.
High-spatial-resolution UAV data have been used to estimate the AGB of different crops,
such as rice [13], winter wheat [14], maize [7], and soybean [15]. Different accuracies have
been reported (R2: 0.75–0.94, RMSE: 122–374 g/m2) depending on the data type, indicators,
and estimation methods.

Indicators that have proved useful for AGB estimation include vegetation spectral
indices (VIs), textural indices (TIs), and structural indicators (SIs). While each type of
indicator can be used for AGB estimation with moderate accuracy [3,4,7,16], more and
more studies have shown that combining multiple sources of information like spectral
information and structural information led to higher accuracy. Xu et al. [17] combined
spectral, structural, and textural features to estimate rice AGB, and obtained more accurate
results than when excluding any features. Liu et al. [18] combined VIs and TIs extracted
from MS data in partial least squares regression (PLSR) and random forest regression (RFR)
to estimate the AGB of winter oilseed. They found that the estimation result obtained
by combining VIs and TIs was more accurate than using VIs or TIs alone, regardless of
the method. Maimaitijiang et al. [15] combined VI with an SI, the canopy volume model
(CVM), and proposed the VI-weighted CVM (CVMVI) for soybean AGB estimation. The
accuracy was significantly improved compared to using VI or CVM alone.

Compared with the modeling of AGB in the whole growing season, AGB is better
estimated at pre-heading and post-heading stages separately [13,19]. Zheng et al. [19] used
VIs and TIs from MS images to estimate rice AGB. They found that the estimation results
at the pre-heading stage were significantly better than at the post-heading stage, which
suggested that AGB estimation at the post-heading stage needed further improvement. Li
et al. [13] came to a similar conclusion with SIs from LiDAR data. They found that the linear
mixed-effects (LME) model considering the growth stage greatly improved the estimation
of AGB at the post-heading stage. Li et al. [20] proposed the crop biomass algorithm (CBA)
method, which improved the AGB estimation results of wheat by integrating phenological
characteristics (Zadoks scale) and growing degree day (GDD) in the model.

Previous research results show that the ways to improve the accuracy of crop remote-
sensing AGB estimation results mainly include (1) the improvement of indicators, such as
the CVMVI proposed by Maimaitijiang et al. [15], (2) the improvement of methods, such
as the CBA method proposed by Li et al. [20], and (3) the division of pre-heading and
post-heading stages. However, these three means have rarely been combined.

The aim of this study is to develop a method of crop AGB estimation combining
the advantages of indicator improvement, method improvement, and division of growth
periods. More specifically, our study aims to (1) compare the MS and RGB data sources
in AGB estimation, (2) explore the improvement of AGB estimation by CVMVI compared
with VI, and (3) investigate the differences between our proposed method and the state-of-
the-art methods.

2. Materials and Methods
2.1. The Framework of the Article

The workflow of this study is shown in Figure 1. Firstly, four types of indicators were
acquired from UAV data, including VIs from RGB images (RGB_VI), CVMVI using VIs
from RGB images (RGB_CVMVI), CVMVI using VIs from MS images (MS_CVMVI), and VIs
from MS images (MS_VI). These four types of indicators were then correlated with AGB
to provide input variables for the five methods: multiple linear regression (MLR), RFR,
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CBA, improved CBA (iCBA), and piecewise iCBA (iCBA-PF). Finally, we compared the
performance of data sources, indicators, and methods.
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Figure 1. The workflow of this study.

2.2. Study Sites and Experimental Design

Our study site is located at the Xinxiang experimental base of the Chinese Academy
of Agricultural Sciences, Xinxiang City, Henan Province, China (35◦8′ N, 113◦45′ E)
(Figure 2a,b). Xinxiang City is in the hinterland of the Central Plains and the north of
Henan Province, in the Yellow River and Haihe River basins. There are 6.17 million perma-
nent residents in Xinxiang City. The plain accounts for 78% of the total land area of the city.
Xinxiang has a warm temperate continental monsoon climate with four distinct seasons:
cold in winter, hot in summer, cool in autumn, and warm in spring. The average annual
precipitation in Xinxiang City is 573.4 mm. The seasonal distribution of precipitation is
extremely uneven, which is roughly consistent with the advance and retreat of winter and
summer monsoons [21].
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Figure 2. The geographical location of Henan Province in China (a), experiment site location (b), and
specific experimental design (c).

There were 56 plots in total, including four levels of density and 14 maize vari-
eties (Figure 2c). The size of every plot was about 31.5 m2 (7.5 m × 4.2 m). Maize was
planted on 16 June 2021 with 0.6 m row spacing. As shown in Figure 2c, the plant spac-
ing was 0.370 m, 0.278 m, 0.222 m, and 0.185 m corresponding to the planting density
of 3K, 4K, 5K, and 6K, respectively. The 3K–6K represents 3000–6000 plants per mu
(1 mu = 666.67 m2), respectively, and M1—M14 represents the 14 maize varieties, including
Nongda 108, Zhengdan 958, Dika 517, Xinyu 108, SC 704, KWS 2030, Chidan 109, Jiuyu
W03, MC 703, Heyu 187, MC 670, Kehe 699, MC 121, and Jingke 999. The amount of
nitrogen application and irrigation in our experimental area were both consistent with
different plots.

2.3. Data Acquisition and Pre-Processing

We conducted field measurements six times in 2021, as illustrated in Figure 3. In the
vegetative growth stage of maize, we collected ground-truth biomass data on 9 July and
14 July 2021, respectively. In the reproductive growth stage, we collected ground-truth
biomass data on 27 July, 5 August, 13 August, and 21 August, respectively. The maize
plants in plot 6K-M12 (red rectangle in Figure 2c) were destroyed due to a storm in the
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middle of July 2021. Therefore, the samples of this plot after July 9 were abandoned. Thus,
the total number of samples was 331, resulting from 56 samples in each growth stage
multiplied by six sampling times and subtracting the five storm-destroyed samples in the
6K-M12 plot.
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Figure 3. Schematic diagram of field sampling. (a) Sampling time. The red boxes mark the maize
growth stage at each sampling time. (b) Example of a plot before and after sampling. The orange box
is the boundary of the plot.

For the acquisition of each ground-truth sample, three representative maize plants
(consecutive) were cut in each plot in each period, as shown in Figure 3b. Each plant
was cut from two centimeters above the ground. The three plants were taken back to the
laboratory for weighing. They were cut into small pieces and put into the oven to first
de-enzyme under 105 ◦C for two hours and then dried at 80 ◦C until the weight did not
change. The dry AGB was weighed using electronic balances with 0.1 g precision and
scaled up to the unit of g/m2.

In this study, a hexacopter UAV, the DJI M600 pro (DJI Technology Co., Shenzhen,
China), and a professional-grade quadrotor UAV, the DJI M300 RTK (DJI Technology Co.,
Shenzhen, China), were adopted to collect remote sensing data. A SONY A7R2 digital
camera (Sony, Tokyo, Japan) and a Micasense rededge MX MS camera (Leptron Unmanned
Aircraft Systems, Inc., Denver, CO, USA) were equipped on the DJI M600 Pro UAV to
obtain RGB and MS images of the experimental area, respectively. The lateral and forward
overlaps were 75% and 86%, respectively. The photo of a calibrated reflectance panel was
taken before each flight to facilitate the radiometric calibration of the MS images. A LiDAR
sensor DJI Zenmuse L1 (DJI Technology Co., Shenzhen, China) was equipped on the DJI
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M300 RTK to obtain LiDAR point cloud data. Four marks were placed and kept between
the plots as ground control points (GCPs) (Figure 2) for geo-registration purposes.

The orthoimages of RGB and MS data were generated using the Agisoft PhotoScan
software (version 1.4.5, Agisoft LLC, St. Petersburg, Russia). The LiDAR point cloud
data was generated using the DJI Terra software (DJI Technology Co., Shenzhen, China).
Georegistration of the orthoimages obtained at different times was conducted so that the
positional displacements were removed and the images were geographically well aligned.
This step was done in the ArcGIS software (version 10.6, ESRI, Inc., Redlands, CA, USA)
according to the GCPs.

The data acquisition date, flight altitude (FA) and spatial resolution (SR) of the data
are shown in Table 1. The SR of LiDAR is the average point spacing. The RGB and MS
images were collected at 20 m FA on the first four dates (9 July to 31 July 2021). Due to
unsolved practical issues, however, the RGB and MS data collected at 20 m FA on August
8 and August 18 could not be properly mosaicked. Therefore, we used images collected
at higher FAs (30 m, 70 m, and 100 m) on these dates. The RGB image on 18 August 2021
were obtained with the DJI Zenmuse L1 sensor, which had lower SR than the SONY A7R2
images, despite the lower FA. The SR has been found to have little influence on the AGB
estimation [15], and was ignored in this study.

Table 1. Specific information of the UAV data.

Date of Data Acquisition
RGB MS LiDAR

FA (m) SR (m) FA (m) SR (m) FA (m) SR (m)

9 July 2021 20 0.00279 20 0.018 30 0.016
12 July 2021 20 0.00219 20 0.018 30 0.014
26 July 2021 20 0.00218 20 0.018 30 0.017
31 July 2021 20 0.00346 20 0.018 30 0.025

8 August 2021 70 0.00792 70 0.050 30 0.019
18 August 2021 30 0.01140 100 0.078 30 0.019

2.4. UAV Data Processing
2.4.1. Sample Plant Mask Extraction

Each ground-truth AGB sample was represented by the weight of three plants, while
the UAV data were spatially continuous. We have MS and RGB images both before and
after sampling. Because the spatial resolution of the MS and RGB images are much higher
than the plants (spatial resolution < 0.1 m, plant canopy width > 0.5 m), we can easily
identify the three sampled plants by comparing the before and after images. To ensure
the correspondence between the UAV data and the field measurements, we generated
masks in the UAV data for the sampled plants. Firstly, the sampled plants were marked
by digitization in the images collected immediately before the sampling. Then, soil pixels
were removed by applying VI thresholds. Pixels in the RGB images with color index of
vegetation (CIVE) larger than 18.10 were recognized as soil, while pixels in the MS images
with normalized difference vegetation index (NDVI) smaller than 0.3 were soil. Finally, the
salt and pepper noises due to reflection on the sample leaves (mistaken for non-vegetation)
and weeds were removed by open and close operations. The above process was performed
in ENVI software (version 5.3; ESRI, Inc., Redlands, CA, USA) and ArcGIS software
(version 10.6, ESRI, Inc., Redlands, CA, USA).

2.4.2. Spectral Indices

We extracted 22 VIs from the MS images (referred to as MS_VI hereafter) and 18 VIs
from the RGB images (referred to as RGB_VI hereafter), respectively. They were widely
used VIs in crop AGB studies. The definitions and references of these VIs were listed in
Table 2 (R, G, B, RE, and NIR represent the reflectance in the red, green, blue, red-edge, and
near-infrared bands, respectively).
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Table 2. Definitions of the VIs extracted from orthorectified MS and RGB mosaics.

Sensor Spectral Indices Definition Reference

MS Normalized difference vegetation index (NDVI) NDVI = (NIR − R)/(NIR + R) [22]
Green-normalized difference vegetation index

(GNDVI) GNDVI = (NIR − G)/(NIR + G) [23]

Triangular vegetation index (TVI) TVI = 60 × (NIR − G) − 100 × (R − G) [24]
Optimized soil adjusted vegetation index

(OSAVI) OSAVI = 1.16 × (NIR − R)/(NIR + R + 0.16) [25]

Soil-adjusted vegetation index (SAVI) SAVI = 1.5 × (NIR − R)/(NIR + R + 0.5) [26]
Ratio vegetation index (RVI) RVI = NIR/R [27]

Ratio vegetation index 2 (RVI2) RVI2 = NIR/G [28]

Enhanced vegetation index (EVI) EVI = 2.5 × (NIR − R)/(NIR + 6 × R − 7.5 × B +
1) [29]

Green chlorophyll index (GCI) GCI = (NIR/G) − 1 [30]
Red-edge chlorophyll index (RECI) RECI = (NIR/RE) − 1 [30]
Green–red vegetation index (GRVI) GRVI = (G − R)/(G + R) [31]

Normalized difference vegetation index 2
(NDVIgb) NDVIgb = (G − B)/(G + B) [32]

Normalized difference red-edge (NDRE) NDRE = (NIR − RE)/(NIR + RE) [33]
Normalized difference red-edge index (NDREI) NDREI = (RE − G)/(RE + G) [34]

Simplified canopy chlorophyll content index
(SCCCI) SCCCI = NDRE/NDVI [35]

Optimized soil adjusted vegetation index 2
(OSAVI2) OSAVI2 = (NIR − R)/(NIR − R + 0.16) [25]

Modified chlorophyll absorption in reflectance
index (MCARI) MCARI = [(RE − R) − 0.2 × (RE − G)] × (RE/R) [36]

Transformed chlorophyll absorption in
reflectance index (TCARI)

TCARI = 3 × [(RE − R) − 0.2 × (RE − G) ×
(RE/R)] [36]

MCARI/OSAVI2 (M/O2) MCARI/OSAVI2 [37]
TCARI/OSAVI2 (T/O2) TCARI/OSAVI2

Wide dynamic range vegetation index (WDRVI) WDRVI = (0.12 × NIR − R)/(0.12 × NIR + R) [36]
Green red ratio index (GRRI) GRRI = G/R [38]

RGB Nomalized Red (rn), Green (gn), Blue (bn)
rn = R/(R + G + B)
gn = G/(R + G + B)
bn = B/(R + G + B)

[39]

Green red ratio index (GRRI) GRRI = G/R [38]
Green blue ratio index (GBRI) GBRI = G/B [15]

Red blue ratio index (RBRI) RBRI = R/B [15]
Color intensity index (INT) INT = (R + G + B)/3 [40]

Green–red vegetation index (GRVI) GRVI = (G − R)/(G + R) [31]
Normalized difference index (NDI) NDI = (rn − gn)/(rn + gn + 0.01) [41]

Woebbecke index (WI) WI = (G − B)/(R − G) [42]
Kawashima index (IKAW) IKAW = (R − B)/(R + B) [39]

Green leaf index (GLI) GLI = (2 × G − R − B)/(2 × G + R + B) [43]
Visible atmospherically resistance index (VARI) VARI = (G − R)/(G + R − B) [44]

Excess red vegetation index (ExR) ExR = 1.4 × rn − gn [45]
Excess green vegetation index (ExG) ExG = 2 × gn − rn − bn [45]
Excess blue vegetation index (ExB) ExB = 1.4 × bn − gn [45]

Excess green minus excess red index (ExGR) ExGR = ExG − ExR [45]

Color index of vegetation (CIVE) CIVE = 0.441 × R − 0.881 × G + 0.385 × B +
18.787 [46]

2.4.3. VI-Weighted CVM (CVMVI)

While VIs describe the growth status of the plant, they do not fully represent the
three-dimensional (3D) structure or volume which is critical for AGB. Therefore, we em-
ployed the VI-weighted CVM model (CVMVI) [15] to integrate VI and the crop height for
AGB estimation:
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CVMVI = A×∑n
i=1 Hi ×VIi (1)

where i is the ith maize pixel, A represents the area of a pixel, Hi represents the crop height
in the ith pixel, VIi represents the ith value of VI, and n represents the number of pixels.

We obtained the crop height H by generating a canopy height model (CHM) from
the LiDAR data. The LiDAR point cloud was first filtered to identify ground points. The
ground point cloud and the entire point cloud were used to generate a digital elevation
model (DEM) and digital surface model (DSM), respectively. The CHM, in which the
value of each pixel represents the crop height H, was calculated by subtracting DEM from
DSM [47–49]:

CHM = DSM−DEM (2)

Depending on which VIs were used to calculate the CVMVI, we obtained another two
groups of variables, i.e., CVMVI using VIs from the MS images (referred to as MS_CVMVI
hereafter) and CVMVI using VIs from the RGB images (referred to as RGB_CVMVI hereafter).

2.4.4. Indicator Selection

We adopted the absolute value of Pearson correlation coefficient (|r|) to reveal the
linear relationship between the variables and AGB. In this study, the correlation between
the four groups of indicators (MS_VI, RGB_VI, MS_CVMVI, and RGB_CVMVI) and AGB
was calculated using the corr function in MATLAB (MathWorks Inc., Natick, MA, USA). The
index with the highest correlation in each group was taken as the input of the single-factor
methods (CBA, iCBA, and iCBA-PF), while the input of the multi-factor methods (MLR
and RFR) included all the indices in each group.

2.5. Maize AGB Estimation

We have proposed two new methods for estimating maize AGB which are improved
based on CBA. To verify the performance of the new methods, three benchmark methods
were selected to compare with the new methods, which were presented as follows.

2.5.1. Benchmark Method 1: MLR

MLR is a frequently used method for AGB estimation in remote sensing. In remote
sensing based AGB estimation studies, approximately 30% have used the MLR method [50].
In this study, we used the regress function in MATLAB R2019a (MathWorks, Inc., Natick,
MA, USA) to realize MLR. We used four types of independent variables, namely, MS_VI,
RGB_VI, MS_CVMVI, and RGB_CVMVI. Hence, four different AGB estimation results were
achieved using the MLR method. For each result, all indicators in the corresponding type
were used.

2.5.2. Benchmark Method 2: RFR

RFR is a nonparametric machine learning regression technique, which has performed
well in remote sensing based AGB estimation [7,51]. RFR uses the idea of ensemble learning,
which inputs random samples of data into many weak learners (decision trees), votes on
them, and finally obtains output results. The RFR methods were implemented in Python
version 3.7 (Google Inc., Mountain View, CA, USA). The number of trees in the forest was
set to 100, and the other parameters were the default settings of the Python sklearn package.
Similar to MLR, four different AGB estimation results were achieved using the RFR method,
corresponding to the four types of independent variables (MS_VI, RGB_VI, MS_CVMVI,
and RGB_CVMVI). For each result, all indicators in the corresponding type were used.

2.5.3. Benchmark Method 3: CBA

CBA is a method proposed by Li et al. [20] to improve winter-wheat AGB estimation.
CBA is a hierarchical method which fits the slope (k) and intercept (b) in the linear relation-
ship between VI and AGB according to their regular changes with phenology indicators
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(such as the Zadoks scale). In this study, we used the growing degree-days (GDD) as the
phenology indicator. The calculation was as follows:

AGB = kVI + b (3)

k, b = f(GDD) (4)

GDD = ∑DAS
DAS=1 Tavg − Tbase (5)

where DAS means days after sowing, Tavg represents daily average temperature (obtained
from the ground weather station), and Tbase represents the base temperature of crop. We
set Tbase = 10 ◦C for maize in this study according to [52].

2.5.4. Development of New AGB Estimation Methods

By combining the advantages of improved indicators and improved methods, we
proposed the first new AGB estimation method, iCBA. It is a version of CBA improved by
replacing VI with CVMVI (Figure 4a). In the original CBA, the slope k was estimated from
GDD with an exponential relationship [20]. An exponential relationship might lead to large
errors when generalized to other data or regions. Therefore, we converted the independent
variable into ln(CVMVI) (Figure 4b,e) to ensure that the fitting line of k to GDD was linear
(Figure 4c,f).
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CVMOSAVI2 and AGB at the pre-heading stage. (e) Linear regression between ln(CVMOSAVI2) and
AGB at the post-heading stage, grouped by sampling time. (f) Linear regression between k or b and
GDD, at the post-heading stage.

Noting that the data distribution at pre-heading (9 July and 14 July) and post-heading
(27 July to 21 August) stages were different (Figure 4a), we introduced a piecewise function
and proposed the second new method iCBA-PF. At the pre-heading stage, simple linear
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regression (SLR) was used to estimate AGB using CVMVI as the independent variable
(Figure 4d). At the post-heading stage, iCBA was adopted (Figure 4e,f).

2.6. Accuracy Assessment

We divided the calibration set and validation set according to the ratio of 8:2, with 264
samples for calibration and 67 samples for validation. The whole dataset (331 samples) was
divided in the following way: First, 331 random numbers with uniform distribution were
generated and assigned to the 331 samples. Second, the samples were sorted in ascending
order according to the random number. Third, the first 80% (264 samples) were used as the
calibration set and the last 20% (67 samples) formed the validation set.

The prediction accuracy of the above methods were evaluated by coefficient of deter-
mination (R2) and root mean square error (RMSE), which were calculated as follows [53]:

R2 = 1− ∑
(
Yi − Ŷi

)2

∑
(
Yi −Yi

)2 (6)

RMSE =

√
∑n

i=1
(
Yi − Ŷi

)2

n
(7)

where Yi and Ŷi represent observed and predicted AGB and Yi represents the average of
predicted AGB.

To verify the robustness of the method, we ran the five methods 20 times using
different calibration and validation sets. In each run, the calibration and validation sets
were generated with a different set of random numbers. The 20 R2 and RMSE were recorded
and summarized to represent the accuracy distribution of the five methods. Because the
accuracy varies with the division of samples, we used paired t-test to test whether there
was a significant difference in the mean accuracy [54].

3. Results
3.1. Correlation Analysis between VI, CVMVI, and AGB

The MS_VI with the highest correlation with AGB was NDRE, with a correlation
coefficient of 0.58 (Figure 5a), while the RGB_VI with the highest correlation with AGB
was bn, with a correlation coefficient of 0.7 (Figure 5b). Scatterplots of OSAVI2 and bn
versus AGB were included in Figure A1 in the Appendix A. As can be seen from Figure 5c,
the correlation between MS_VI and AGB was basically lower than 0.6, while the RGB_VI
was higher. The average value of the correlation between RGB_VI and AGB was about
0.2 higher than MS_VI. Nevertheless, there was one RGB_VI (i.e., rn) with significantly
lower correlation to AGB than the other RGB_VI, which was shown as an outlier in the
boxplot (orange dot in Figure 5c).

CVMVI, which combined VI and CHM, showed an overall higher correlation than VI.
The MS_CVMVI with the highest correlation with AGB was CVMOSAVI2, with a correlation
coefficient of 0.87 (Figure 5a), while the RGB_CVMVI with the highest correlation with
AGB was CVMbn, also with a correlation coefficient of 0.87 (Figure 5b). It was generally
believed that, when the absolute value of correlation coefficient |r| was greater than or
equal to 0.8, there was a strong correlation between the two variables [55]. In MS_CVMVI,
there were eight indices with correlation coefficient |r| over 0.8. In the RGB_CVMVI, the
correlation coefficient of only five indices exceeded 0.8. The scatter plots of MS_CVMVI and
RGB_CVMVI versus AGB were shown in the Figures A2 and A3, respectively. As can be
seen from Figure 5c, the average RGB_CVMVI was less than 0.6, while that of MS_CVMVI
was close to 0.8, and the difference between the two was about 0.2. Nevertheless, two
MS_CVMVI indices (i.e., CVMEVI and CVMSCCCI) had significantly lower correlation to
AGB than the other MS_CVMVI, which were shown as outliers in the boxplot (green dots
in Figure 5c).
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Figure 5. Correlation analysis between the indicators and AGB. (a) Indicators from the MS data.
(b) Indicators from the RGB data. (c) Comparison between the four types of indicators. The red
dashed lines in (a,b) represent the correlation coefficient |r| equal to 0.8.

According to the results of correlation analysis, MS_NDRE and RGB_bn were used as
input indicators of the CBA method, and MS_CVMOSAVI2 and RGB_CVMbn were used as
input indicators for both iCBA and iCBA-PF.

To better understand the correlation between VI, CVMVI, and AGB, we compared
the temporal change in different indices with that of AGB in the whole growing season,
using bn, OSAVI2, and their corresponding CVMVI as examples (Figure 6). The average VI,
CVMVI, and AGB of all the 56 plots were shown on the vertical axes. The two VIs were
almost constant throughout the growing season, while AGB was continuously increasing
(Figure 6a,c). In contrast, the temporal trend of CVMVI was similar to that of AGB as a
whole (Figure 6b,d).



Drones 2023, 7, 254 12 of 24

Drones 2023, 7, x FOR PEER REVIEW 13 of 25 
 

 
Figure 6. Time series of indicators and AGB in the maize growing season. (a) RGB_bn and AGB. (b) 
RGB_CVMbn and AGB. (c) MS_OSAVI2 and AGB. (d) MS_CVMOSAVI2 and AGB. 

3.2. Estimation of AGB with Benchmark Methods 
Figures 7–9 were the results of maize AGB estimation by MLR, RFR, and CBA, re-

spectively. In the MLR method, the difference between the results of VI and CVMVI was 
evident. Specifically, regardless of data source (MS_VI or RGB_VI), AGB was overesti-
mated at the pre-heading stage. The overestimation in CVMVI at the pre-heading stage 
was alleviated, although not eliminated. The difference between the estimation results 
using VI and CVMVI of MS (Figure 7c versus 7d) was smaller than that of RGB (Figure 7a 
versus 7b). There was little difference between the estimation results of the two CVMVI 
(Figure 7b versus 7d), with the RGB_CVMVI estimates (R2 = 0.87, RMSE = 187.04 g/m2) 
slightly more accurate. 

Figure 6. Time series of indicators and AGB in the maize growing season. (a) RGB_bn and AGB. (b)
RGB_CVMbn and AGB. (c) MS_OSAVI2 and AGB. (d) MS_CVMOSAVI2 and AGB.

3.2. Estimation of AGB with Benchmark Methods

Figures 7–9 were the results of maize AGB estimation by MLR, RFR, and CBA, re-
spectively. In the MLR method, the difference between the results of VI and CVMVI was
evident. Specifically, regardless of data source (MS_VI or RGB_VI), AGB was overesti-
mated at the pre-heading stage. The overestimation in CVMVI at the pre-heading stage
was alleviated, although not eliminated. The difference between the estimation results
using VI and CVMVI of MS (Figure 7c versus Figure 7d) was smaller than that of RGB
(Figure 7a versus Figure 7b). There was little difference between the estimation results of
the two CVMVI (Figure 7b versus Figure 7d), with the RGB_CVMVI estimates (R2 = 0.87,
RMSE = 187.04 g/m2) slightly more accurate.

As shown in Figure 8, the AGB estimation results of the RFR method with each type
of indicator as input variables were underestimated at the R4 stage, while only MS_VI and
RGB_VI were overestimated at the pre-heading stage. AGB was slightly underestimated at
the R4 stage (with high AGB) with VIs as the input (Figure 8a,c), which was lightened when
CVMVI were the input (Figure 8b,d). The most accurate estimation result was achieved
based on MS_CVMVI among all indicators, with the highest R2 and the lowest RMSE
(R2 = 0.94, RMSE = 132.76 g/m2) (Figure 8d). The accuracy of CVMVI estimation results
was higher than the VI, which was the same as the MLR.
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The k and b of GDD fitting were shown in Table 3. The coefficients in models for b were
very small in some cases. This is because b was fitted as an exponential or power function,
and GDD ranged from 400 to 1300. There would be a small factor to inhibit the explosive
growth of b when the GDD value was relatively large. The results of estimating maize
AGB at the six growth stages by the CBA method with MS_VI and RGB_VI were shown in
Figure 9. The results of estimating maize AGB with bn (R2 = 0.93, RMSE = 138.05 g/m2,
Figure 9b) were more accurate than with NDRE (R2 = 0.93, RMSE = 154.03 g/m2, Figure 9a).
The results of the CBA method for estimating AGB had a clear boundary between different
growth stages, especially in the RGB_VI estimates. Compared with the results of MLR
and RFR, CBA had much less underestimation at the pre-heading stage. Although the
estimation of maize AGB using CBA did not appear to be obviously underestimated at R4
stages, the closer to the harvest stage, the more dispersed the estimation results, which was
one of the reasons for the estimation errors.
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Table 3. CBA model functions derived using GDD.

Data Source Coefficient Model R2

MS_NDRE
k −0.0047 × GDD2 + 8.3097 × GDD − 2589.5 0.75
b 2 × 10−11 × GDD4.5221 0.98

RGB_bn
k −0.0265 × GDD2 + 39.614 × GDD − 13021 0.65
b 5.1096 × e0.005 GDD 0.94

3.3. Estimation of AGB by iCBA and iCBA-PF

In the iCBA and iCBA-PF methods, k and b were all fitted with linear equations
(Table 4). The results of estimating maize AGB using iCBA and iCBA-PF were shown in
Figure 10. Regardless of MS or RGB, R2 was higher than 0.9 for all estimates and RMSE was
less than 150 g/m2. The best estimation was the iCBA-PF method based on MS_CVMVI,
with R2 of 0.95 and RMSE of 126.52 g/m2. Whether MS or RGB images, iCBA overestimated
AGB at the pre-heading stages. The iCBA-PF method lessened this problem by fitting a
separate simple linear equation at the pre-heading stage. Both methods improved the
overall estimation accuracy of maize AGB for the whole growing season.
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Figure 10. Estimated and measured maize AGB (g/m2) with iCBA and iCBA-PF: (a) iCBA based on
RGB_CVMbn; (b) iCBA-PF based on RGB_CVMbn; (c) iCBA based on MS_CVMOSAVI2; (d) iCBA-PF
based on MS_CVMOSAVI2.
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Table 4. iCBA and iCBA-PF model functions derived using GDD.

Method Data Source Coefficient Model R2

iCBA
MS_CVMOSAVI2

k 0.56 × GDD − 268.09 0.95
b 2.53 × GDD − 1144.3 0.96

RGB_CVMbn
k 0.5904 × GDD − 285.44 0.95
b 3.1185 × GDD − 1416.2 0.97

iCBA-PF
MS_CVMOSAVI2

k 0.72 × GDD − 432.2 0.95
b 3.2 × GDD − 1835.9 0.97

RGB_CVMbn
k 0.778 × GDD − 476.08 0.96
b 3.8954 × GDD − 2205.2 0.97

3.4. Comparison between the Benchmark and New Methods

The AGB estimation accuracy of all the above models were summarized in Table 5.
The iCBA-PF method was the most accurate, with the highest R2 and lowest RMSE. For
each method, two or four models were constructed depending on the type of input variable.
The most accurate model using each method was marked in bold in Table 5. The optimal
input indicators for MLR, RFR, CBA, iCBA, and iCBA-PF methods were all RGB_CVMVI,
all MS_CVMVI, RGB_bn, MS_CVMOSAVI2, and MS_CVMOSAVI2, respectively. These optimal
input indicators were used in the following method robustness evaluation.

Table 5. Summary of the AGB estimation accuracy of all methods from Figure 7 to Figure 10.

MLR RFR CBA iCBA iCBA-PF

VI CVMVI VI CVMVI VI CVMVI VI CVMVI VI CVMVI

R2 MS 0.82 0.84 0.92 0.94 0.93 - - 0.93 - 0.95
RGB 0.81 0.87 0.91 0.92 0.93 - - 0.92 - 0.94

RMSE
(g/m2)

MS 214.46 198.81 159.40 132.76 154.03 - - 139.18 - 126.52
RGB 208.69 187.04 159.43 145.80 138.05 - - 148.38 - 131.93

The accuracy of the 20 runs of the five methods is shown in Figure 11. The results of
R2 and RMSE of the validation set are shown in Figure 11a,c, and are further summarized
in the boxplots (Figure 11b,d). Maize AGB estimated by MLR was significantly worse than
those of the other four methods. The MLR method was the least accurate and robust of
the five methods, followed by the CBA method. The accuracy of iCBA-PF, iCBA, and RFR
methods were higher than MLR and CBA, but the robustness of RFR methods were slightly
lower (accuracy variation was larger) than iCBA-PF and iCBA.

We further summarized the average accuracy (mean) and standard deviation (SD) of
the 20 runs in Table 6. According to the 20 runs, the iCBA-PF method was the best maize
AGB estimation method among the five methods. The average R2 of iCBA-PF was the
highest and the average RMSE was the lowest, while the SD of both R2 and RMSE was the
smallest (Table 6). Moreover, the paired t-test showed that the difference between iCBA-PF
and the other four methods was statistically significant (p < 0.01).
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Figure 11. Maize AGB estimation accuracy from the five methods run 20 times. (a) R2 of the 20 runs
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Table 6. Summary of the AGB estimation accuracy of the five methods with 20 runs.

Method Independent Variables
R2 RMSE

Mean SD Mean SD

MLR all RGB_CVMVI 0.77 0.07 278.89 64.58
RFR all MS_CVMVI 0.88 0.03 212.54 33.74
CBA bn 0.84 0.05 231.94 37.89
iCBA MS_CVMOSAVI2 0.89 0.02 195.85 22.86

iCBA-PF MS_CVMOSAVI2 0.90 0.02 190.02 22.11

By applying the most accurate model, i.e., the iCBA-PF method based on MS_CVMOSAVI2,
we created the maize AGB maps (Figure 12). Each map was generated using the MS image
and LiDAR point cloud collected on the corresponding date, details of which could be found
in Table 1. The spatial distribution of maize AGB can be observed. Differences among maize
varieties and different densities were also discerned. For example, the AGB of Zhengdan 958
(M2, black rectangles in Figure 12f) increased with increasing density (the planting density
increases from left to the right). Differences in time were also evident in all plots. Moreover, the
AGB values of bare soil (e.g., roads between plots) were close to 0 in each period, which also
indicated that this method was suitable for the estimation of maize AGB.
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4. Discussion

A new method for estimating maize AGB, iCBA-PF, was proposed in this paper by
improving the selection of indicators, analysis methods, and grouping of maize growth
stages. In indicator selection, CVMVI was used instead of VI, which combines 3D structure
information with spectral information. Methodologically, the CBA method was applied
to maize and improved to develop the iCBA method. On the grouping of growth stages,
the growth stages were further divided into pre-heading and post-heading stages and
modeled separately, which not only improved the accuracy of the method estimation, but
also increased the efficiency. Experiments showed that the proposed iCBA-PF method
was significantly more accurate than the existing methods in estimating maize AGB. We
anticipate that iCBA-PF could be applied to other crops that have a heading stage, although
experiments need to be conducted to verify this.

4.1. Comparison of MS and RGB Data in Different Methods

Optical images, especially MS and RGB images, are widely used for crop AGB estima-
tion [14,56,57]. It is generally believed that RGB imagery has the advantages of low cost
and high accuracy in the study of indicator estimation by remote sensing methods [58],
while the advantages of MS imagery are mainly reflected in its RE and NIR bands which
are more sensitive to vegetation.

The correlations of RGB_VI to AGB were stronger than those of MS_VI, which is con-
sistent with previous studies [3,7,11]. Although MS_VI contains more spectral information,
the RGB images in this study have much higher spatial resolution than the MS images. The
differences in spatial resolution might be the main reason for the lower correlation between
the MS_VI and AGB.
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However, the correlation between MS_CVMVI and AGB was higher than that of
RGB_CVMVI (Figure 5). The MS_CVMVI having strong correlation with AGB (|r| > 0.8)
were mostly calculated with the NIR band, especially those in the normalized difference
format. Maimaitijiang et al. [15] used RGB_CVMVI to estimate soybean AGB and found
that CVMGRRI was the most relevant coefficient. Our results also confirmed that CVMGRRI
was strongly correlated to AGB, whether it is calculated using MS or RGB data. Therefore,
we infer that CVMGRRI is a good indicator when used to estimate the AGB of other crops.

The performance of these indices in AGB estimation was different from the correlation
analysis. For example, although RGB_VI had higher correlation with AGB, the estimated
AGB was not always more accurate than MS_VI, depending on which of the five AGB
estimation methods were used. In this study, RGB factors were more accurate in MLR and
CBA to estimate maize AGB, while MS factors were more accurate in the other methods
(Table 5). Nevertheless, the accuracy difference between models with RGB and MS factors
was not substantial, with R2 difference up to 0.03 (MLR with RGB_CVMVI vs MLR with
MS_CVMVI) and RMSE difference less than 15.98 g/m2 (CBA with RGB_NDRE vs CBA
with MS_bn).

4.2. Performance Comparison between VI and CVMVI of Two Sensors

Both MLR and RFR methods used VI and CVMVI to estimate maize AGB. The results
of both methods showed that CVMVI had higher accuracy than VI, which was reflected in
the lower RMSE and higher R2 (Table 5). The difference between CBA and iCBA mainly
lies in the use of VI and CVMVI indicators. By replacing VI with CVMVI, the accuracy and
robustness of the iCBA method (R2 = 0.89 ± 0.02, RMSE = 195.85 ± 22.28) both exceeded
CBA (R2 = 0.84 ± 0.05, RMSE = 231.94 ± 36.93), as shown in Figure 11 and Table 6.

The comparison between the temporal trends of indices and AGB in the whole growing
season (Figure 6) gave us some idea about why AGB was estimated with higher accuracy
by CVMVI than by VI. While the VIs were almost constant throughout the growing season,
both AGB and CVMVI had continuously increasing trends. This might be the reason
for the high correlation between CVMVI and AGB. In addition, it also explains why VI
overestimated AGB at early growth stage and underestimated AGB at late growth stage
more severely than CVMVI.

4.3. Performance Comparison between New Methods and Benchmark Methods

Compared with the other methods, the iCBA-PF method had the highest accuracy
and robustness in estimating maize AGB. The CBA method performed well in the study
of estimating the AGB of winter wheat [20]. In this study, we used it to estimate the AGB
of maize and found that the accuracy and robustness were greatly improved by replacing
VI with CVMVI and applying a logarithmic conversion. Furthermore, by separating the
pre- and post-heading stages, the iCBA-PF method achieved even higher accuracy. It
was mainly reflected in the fact that there was almost no overestimation in its early stage.
Although the problem of underestimation at the R4 stage remained unsolved, the overall
AGB estimation accuracy in the whole growing season was improved. The stability of the
iCBA-PF method was outstanding, which might be due to the use of CVMVI indicators that
are more similar to the trend of AGB over the whole reproductive period (Figure 6).

Previous studies [19,59] used different methods to estimate the AGB of crops over the
whole growing season and at different growth stages, and reached the same conclusion:
the later the growth stage, the lower the accuracy of crop AGB estimation, and the accuracy
of AGB estimation at the post-heading stage was generally lower than that at the whole
growth stage. In this study, we take advantage of this finding to propose the iCBA-PF
method, which first models separately the AGB at the pre- and post-heading stages and
then combines them to obtain the complete AGB dataset. This approach proved effective,
as evidenced by the higher accuracy and robustness of iCBA-PF than that of iCBA.
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4.4. Limitation and Future Work

On the basis of previous studies, we proposed a method suitable for maize AGB
estimation, and verified its accuracy and stability. However, it is uncertain whether this
method is suitable for AGB estimation of other crops. We believe the crops that have a
heading stage and the canopy volumn still changed at post-heading stage are suitable for
estimating AGB using our method. Nevertheless, it is necessary to verify the applicability
of the method on other crops in the future.

Although the new method proposed by us weakens the problem of underestimation
of AGB at the R4 stage to a certain extent, the closer the harvest stage was, the more discrete
the estimation result was. Part of the reason might be that the time difference between the
acquisition of UAV and the ground truth was too long at the reproductive growth stage
(e.g., UAV data on August 8 were paired with field data on August 13). In the future, we
will conduct in-depth research and make improvements on this problem.

5. Conclusions

In this study, we proposed two new methods, iCBA and iCBA-PF, for AGB estimation.
VI and CVMVI based on different data sources (MS and RGB) were calculated. AGB was
estimated by three benchmark methods (MLR, RFR, CBA) and the two new methods
(iCBA, iCBA-PF). The advantages and disadvantages between the iCBA-PF method and
the benchmark methods were analyzed. Specific conclusions are as follows:

We found that RGB_VI had a higher correlation with maize AGB than MS_VI through
correlation analysis, which was consistent with previous studies. However, the performance
of MS data in AGB estimation was generally better than RGB data. On the other hand,
RGB had a great advantage of price and spatial resolution. Hence, we recommend that you
consider the balance of cost and accuracy when selecting the data source.

In the comparison of indicators, compared with VI, CVMVI had higher correlation with
AGB and higher estimation accuracy regardless of method. We found that the temporal
change trend of CVMVI and AGB during the whole growing season was more similar than
VI, and might be a good substitute of VI in the future AGB estimation research.

Our proposed iCBA-PF method had the highest accuracy and the best robustness in
estimating AGB among the selected methods. The accuracy improvement was statistically
significant. The better performance of the iCBA-PF method over iCBA without separating
growth stages also proved that modeling AGB at the pre-heading stage and post-heading
stage separately was higher-performance than directly modeling the whole growing season.

Traditional field management mainly depends on the experience of agronomic experts.
The accurate estimation of crop AGB at different growth stages helps agricultural managers
to get a quantitative idea about the growth status of their crops. The AGB estimation ap-
proach with UAV remote sensing proposed in this study is highly efficient, non-destructive,
and labor-saving. Moreover, the findings of this paper provide theoretical and technical
support to the farmers regarding which sensors to purchase, how to plan flights, and how
to process the data to monitor crop AGB.
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