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Abstract: This article tackles the computational burden of propagating uncertainties in the model
predictive controller-based policy of the probabilistic model-based reinforcement learning (MBRL)
system for an unmanned surface vehicles system (USV). We proposed filtered probabilistic model
predictive control using the unscented Kalman filter (FPMPC-UKF) that introduces the unscented
Kalman filter (UKF) for a more efficient uncertainty propagation in MBRL. A USV control system
based on FPMPC-UKF is developed and evaluated by position-keeping and target-reaching tasks in
a real USV data-driven simulation. The experimental results demonstrate a significant superiority
of the proposed method in balancing the control performance and computational burdens under
different levels of disturbances compared with the related works of USV, and therefore indicate its
potential in more challenging USV scenarios with limited computational resources.

Keywords: unmanned surface vehicle; model-based reinforcement learning; Gaussian process

1. Introduction

With the rapid development of machine learning technology in recent years, un-
manned surface vehicles (USVs) are becoming more and more intelligent and have been
widely deployed in various scenarios [1]. They not only improve the efficiency of the
shipping industry but also alleviate the shortage of human resources. On the other hand,
although USV has achieved impressive achievements in specific tasks, including position
control [2–5], trajectory tracking [6–12], and obstacle avoidance [13,14], it is still a long-term
goal in both industry and academia to develop a fully autonomous system that does not
rely on human intervention and numerical models based on human prior knowledge to
properly handle complex ocean disturbances [15].

As an appealing approach to learning a fully autonomous system without human prior
knowledge, reinforcement learning (RL) iteratively learns optimal and sub-optimal control
policies that maximize the long-term reward function through trial-and-error interactions
with unknown environments [16–18]. The traditional model-free RL approaches aim to
directly learn the target task in the Markov decision process (MDP) without modeling the
system. These methods have been extensively studied in USV simulations [19–24]. How-
ever, their implementation to the real-world USV remains limited due to the deteriorated
control capability under real ocean environments, where the observation and prediction of
the frequently changing disturbances are extremely difficult and expensive.

To address this issue, model-based reinforcement learning (MBRL) attempted to intro-
duce the probabilistic model to properly process environmental disturbances as uncertainty.
One of the most popular probabilistic MBRL, probabilistic inference for learning control
(PILCO) [25], employs Gaussian processes (GP) [26] to model the system uncertainties as
a collection of Gaussian distributions and learns its policy with a long-term propagation
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of uncertainties via analytic moment matching [27]. It successfully improved the control
performance results under system uncertainties with great sample efficiency in robot con-
trol [28,29]. On the other hand, PILCO assumes that all disturbances are controllable and
predictable in the full horizon of the rollout, which turns to a strenuous implementation
of USV due to the heavy computational burden of the frequent decision making against
the changing disturbances. To tackle the limitation of handling the real-time disturbances,
GP-MPC integrates PILCO and model predictive control (MPC) in [30]. This work opti-
mizes its policy with an expanded dimensionality for a deterministic dynamical system
with Lagrange parameters and state constraints under Pontryagin’s maximum principle
(PMP), which resulted in heavy computational cost and therefore limited its application
on simulated cart-pole and double pendulum tasks. Based on this work, probabilistic
model predictive control (SPMPC) [31] is developed for better efficiency without expanded
dynamics and PMP constraint. It is successfully implemented to USV with detailed evalu-
ation in the real ocean environment. Its control capability is further improved in filtered
probabilistic model predictive control (FPMPC) [32], where the state space is implicitly
extended from MDP to partially observed MDP (POMDP). Although these works have
demonstrated a great potential of probabilistic MBRL as a novel direction toward the fully
autonomous USV, they are still limited by the bottleneck of computational complexity
and are difficult to be widely applied in practice. The non-parametric characteristic of
GP turned to a rapidly increasing computational burden with the expanding data size.
It results in a difficult trade-off between the model expressiveness of GP and the control
frequency of MPC based on long-term uncertainty propagation, especially with the limited
computational resource on USV. Employing sparse GP [33] to balance the control perfor-
mance and the computational complexity, the real-world USV in [31] was only controlled
at 0.33 Hz, which is insufficient for more challenging scenarios.

To tackle the computational efficiency issue of the uncertainty propagation of GP,
unscented Kalman filter (UKF) [34,35] estimates the target distribution by the weighted σ
sampling rather than integrating the GP model over a Gaussian distribution input and there-
fore becomes an alternative solution besides analytic moment matching [27]. It achieved a
superior computational efficiency from an engineering perspective in various applications
of unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) [36–39]. In
the field of USV, UKF has been employed for the neural network controller [40] and model
parameters estimation [41]. Despite successful applications of UKF in engineering, less
work focused on using its efficient uncertainty propagation under RL’s trial-and-error
framework. This prevents the engineering implementation of UKF when the human’s prior
knowledge is unavailable.

Table 1. Relationship between the proposed approach and other related works,© and × denote
involve and uninvolved.

Approach Uncertainty Propagation MBRL MPC USV

PILCO [25] analytic moment-matching © × ×

GP-MPC [30] analytic moment-matching © © ×

SPMPC [31], FPMPC [32] analytic moment-matching © © ©

RC-LB-NMPC [36] UKF × © ×

RBFNN-UKF [40] UKF × × ×

FPMPC-UKF (proposed) UKF © © ©

In this work, we address the computational efficiency of uncertainty propagation
in GP-based MBRL USV. Extending UKF to the MBRL system specific for USV, filtered
probabilistic model predictive control with unscented Kalman filter (FPMPC-UKF) is
proposed to alleviate the computational burden of GP uncertainty propagation, especially
under larger sparse scales, i.e., the GP model is approximated by less sparse pseudo input.
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With the evaluation in position-keeping and target-reaching tasks on the simulation based
on the real boat-driven data [31] under different ocean conditions, the proposed FPMPC-
UKF demonstrated a significant superiority of the proposed method in the balance between
the control capability and the computational cost compared with the related MBRL USV
approach [32]. With a proper setting of the GP sparse pseudo input, it improved 20% to 28%
computational efficiency while achieving 15% to 29% better control performance. Based on
the relationship between the proposed method and other related approaches summarized
in Table 1, the contributions of this work are summarized as follows:

1. Algorithmically, the proposed FPMPC-UKF first attempts to extend the potential
of UKF uncertainty propagation to the GP-based MBRL. It not only contributes to
a more effective solution to trade off the control performance and computational
burden compared with the existing approaches with MPC-based policy [30–32] but
also demonstrates the broad prospects of traditional optimal filtering methods in
enhancing related MBRL approaches based on different prediction horizons [25] in
more challenging control tasks.

2. On the side of traditional optimal filtering technologies, this work can be seen as
extending the current state-of-the-art optimal filtering implementations in unmanned
systems [36–39] to the trial-and-error RL framework. It expanded the usage of optimal
filters in unmanned systems by adaptively obtaining an efficient filter to propagate
system uncertainties without human prior knowledge of the target model.

3. On the side of the application of MBRL, a USV control system based on FPMPC-UKF
was developed. We investigated the effect of sparse GP scales on both control capabil-
ity and model prediction error in position-keeping and target-reaching tasks under
different levels of disturbances. The proposed method significantly outperformed ex-
isting MBRL systems specific to USV [31,32] with over 15% less offset while reducing
more than 20% computational burden. It enabled the higher control frequency in the
existing work without damaging control performance and therefore expanded the
practicability of probabilistic MBRL in the USV domain.

The remainder of this paper is organized as follows. The USV control problem and
MBRL settings are introduced in Section 2. Section 3 explains the proposed FPMPC-UFK
and the corresponding USV control system. The experimental results are demonstrated in
Section 4. Section 5 presents the conclusions.

2. Preliminaries
2.1. Markov Decision Process of USV

The target USV dynamics is described in the bottom of Figure 1. The USV observation
states include its position in GPS (Xusv, Yusv), orientation Ψusv, velocity Vusv, the engine
throttle τusv and rudder angle δusv. The wind is defined as the observable disturbances in
this study with direction Ψwind and velocity Vwind, while other disturbances, such as current,
are considered unknown noises. The USV control problem is described as the Markov
decision process (MDP) in the RL domain [16] with state space S , action spaceA and reward
function R. The state vector is defined as x = [Xusv, Yusv, Ψusv, Vusv, τusv, δusv, Vwind ·
cos(Ψwind), Vwind · sin(Ψwind)] in S . The control signals to engine throttle and rudder
angle are defined as a vector u = [τaction, δaction] in A. Please note that the throttle and
rudder signals τusv, δusv are the current states read from sensors, which are different from
the current command sending to the throttle and rudder [τaction, δaction]. A reward function
R(x, u) is designed to evaluate the performance of USV in the target task.
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Figure 1. Principle of the uncertainty propagation in the GP-based MPC policy using UKF (top);
overview of MBRL USV control system in this work (bottom).

2.2. Model-Based Reinforcement Learning

The goal of MBRL is to iteratively learn a policy π : xt → ut that maximizes the
reward function in the long term by not only interacting with the environment but also
approximating the following system transition model at time step t:

xt+1 = f̂ (xt, ut) + w (1)

where w represents the model error. Define a data set D to store the exploration sample
for updating the policy and system model, and the interaction process of MBRL can be
generalized as a loop: (1) execute control signals via the current policy u∗t ∼ π(xt); (2) get
the state in the next step xt+1 and expand data set; and (3) move to the next step t = t + 1,
then return to 1.

As one appealing solution for alleviating the impact of complex and frequently chang-
ing disturbances, the MPC controller is widely utilized in several engineering MBRL
systems [30–32]. At time step t, it plans a trajectory of control signals from the current state
xt to maximize the expected long-term reward over a pre-defined horizon H:

[u∗t , ..., u∗t+H−1] = arg max
ut ,...,ut+H−1

H−1

∑
s=0
R(xt+s+1, ut+s).

s.t. xt+s+1 = f̂ (xt+s, ut+s) + w

xt+s+1 ∈ S , ut+s ∈ A.

(2)

The nonlinear optimization approaches are applied to search for the optimal action
sequence based on the approximated system model f̂ (·).
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3. Approach
3.1. Probabilistic Model of USV

In this work, GP [26] is utilized to model the USV dynamics under a noisy environment
in a probabilistic perspective. For each dimension of the state vector a = 1, ..., D, the
approximated GP model of the target USV is as follows:

ya,t+1 = f̂a(x̃t) + wa (3)

where x̃t := (xt, ut) combines state and action vectors, and the unobservable noises in
this dimension are simplified as one Gaussian noise wa ∼ N (0, σ2

wa). Since there is no
assumption that the USV state must be fully observable or predicted, the output vector of
model yt+1 is defined by elements Xusv, Yusv, Ψusv, Vusv, τusv, δusv without unpredictable
wind information. As a general model of USV, it is also free to expand the observable states
with pitch, yaw, roll and wave information using the specific sensors or remove any state
that cannot be easily accessed due to the limited hardware. In this work, the observable
states of USV are defined following the existing work [31], which has been implemented in
real-ocean boat with relatively limited observation states.

Let Λ̃a and α2
f̂a

denote a diagonal matrix of squared characteristic length-scales and

the noise variances of the target system, then the measurement of the distance of any two
inputs ka(x̃i, x̃j) is achieved by the squared exponential (SE) kernel function

ka(x̃i, x̃j) = α2
fa

e
(
−

(x̃i−x̃j)
TΛ̃−1

a (x̃i−x̃j)
2

)
. (4)

Although the SE kernel is selected based on related works [30–32], it is also valuable
and possible to investigate the power of other kernel functions [26] in modeling USV for
challenging control tasks. We leave this issue as our future work.

Define the kernel function of one input x̃∗ as ka∗∗ = ka(x̃∗, x̃∗), the distance mea-
surement of x̃∗ over the whole sample set as ka∗ = ka(X̃, x̃∗), and the kernel matrix Ka
with Ka,i,j = ka(x̃i) as the distance measurement of each sample in the whole set. Setting
βa = (Ka + σ2

wa I)−1Ya as the irrelevant term to the input, its prediction is determined by
the posterior mean m f̂a

(x̃∗) and the corresponding variance σ2
f̂a
(x̃∗):

m f̂a
(x̃∗) := E[ f̂a(x̃∗)|X̃, Ya] = kT

a∗(Ka + σ2
wa I)−1Ya = kT

a∗βa, (5)

σ2
f̂a
(x̃∗) := var[ f̂a(x̃∗)|X̃, Ya] = ka∗∗ − kT

a∗(Ka + σ2
wa I)−1ka∗. (6)

Given a training data set X̃, Y , the GP model’s hyper-parameters α2
fa

, Λa, σ2
wa for each

output dimension are determined by maximizing the log marginal likelihood via evidence
maximization [26], which is called the training of the GP model:

[Λ̃∗a, α∗f̂a
, σ∗wa ] = arg max log p(Ya|X̃, Λ̃a, α f̂a

, σwa)

p(Ya|X̃, Λ̃a, α f̂a
, σwa) = log

∫
p(Ya| f̂a, X̃, Λ̃a, α f̂a

, σwa)p( f̂a|X̃, Λ̃a, α f̂a
, σwa)d f̂a

= −1
2

YT
a (Ka + σ2

wa I)
−1

Ya −
1
2

log |Ka + σ2
wa I| − D

2
log(2π).

(7)

3.2. Uncertainty Propagation Using Unscented Kalman Filter

One core characteristic of existing probabilistic MBRL approaches, such as PILCO [25]
and GP-MPC [30], is the characteristic of propagating the uncertainty predicted by GP
in their policy. They employed analytic moment matching [27], which propagates the
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uncertainty by integrating the GP model over the Gaussian distribution input p(x̃∗) ∼
N (µ̃∗, Σ̃∗) rather than the deterministic state x∗:

p( f̂ (x̃∗)|µ̃∗, Σ̃∗) =
∫

p
(

f̂ (x̃∗)|x̃∗
)

p(x̃∗)dx̃∗, p(x̃∗) ∼ N (µ̃∗, Σ̃∗). (8)

Since the resulting distribution is non-Gaussian without an analytical solution [25], it
is estimated by a Gaussian distribution in analytic moment matching [27]:

[µ′∗, Σ′∗] = h(µ∗, Σ∗, u∗)

N (µ′∗, Σ′∗) ≈
∫

p
(

f̂ (x∗, u∗)|x∗, u∗
)

p(x∗)dx∗.
(9)

Although Equation (9) successfully captured uncertainties in various MBRL appli-
cations from the toy pendulum simulator to UGV and USV, it resulted in a heavy com-
putational burden due to the frequent inversions of the kernel matrix over the full data
set [31,42].

In this paper, we propose FPMPC-UKF to utilize UKF [34,35] to alleviate the com-
putational burden of the uncertainty propagation of GP from an engineering perspective.
Assuming the GP model’s input follows D-dimensional Gaussian distribution p(x∗) ∼
N (µ∗, Σ∗), where the action u∗ is deterministic following the setting of [31], SSUFK-MPC
employs unscented transform (UT) to approximate the mean and variance of the target
distribution by 2D + 1 sigma points, where D is the dimension of the GP input as demon-
strated on the top of Figure 1. The first point is initialized as the current input mean
χ0
∗ = µ∗. Other 2D points are selected by

χl
∗ =

 µ∗ +
(√

(D + λ)Σ∗
)

l
, l = 1, 2, . . . , D,

µ∗ −
(√

(D + λ)Σ∗
)

l
, l = D + 1, D + 2, . . . , 2D

(10)

where λ = α2(D + κ)− N is the scale factor for reducing the prediction error. We set α = 1
for a common distribution of sigma points. κ is set to 1 for the positive semi-definite of
UKF. Calculating the GP prediction over these points,

µl
∗ = m fa(χ

l
∗, u∗), l = 0, 1, . . . , 2D. (11)

The integration in Equation (9) can be approximated by 2D+ 1 sigma points as follows:

µ′∗ =
2D

∑
l=0

wl
mµl
∗,

Σ′∗ =
2D

∑
l=0

wl
c

(
µl
∗ − µ′∗

)(
µl
∗ − µ′∗

)T
+ Qe

(12)

where Qe = 10−4 is an additional noise of variance for better robustness, and the weights
of both predicting mean wl

m and variance wl
c for all 2D + 1 sigma points are calculated as

wl
m =

{
λ

D+λ , l = 0,
1

2(D+λ)
, l = 1, . . . , 2D. (13)

wl
c =

{
λ

D+λ +
(
1− α2 + β

)
, l = 0,

1
2(D+λ)

, l = 1, . . . , 2D (14)

where β = 2 is the weight coefficient.
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According to [42], the computational complexity of analytic moment matching is
O(D3M2), where D is the dimension number of the GP model, and M is the number of
samples or sparse pseudo inputs. As a comparison, GP-based UKF achieved O(N2M2)
in uncertainty propagation, which outperformed analytic moment matching, especially
with large M. Despite the prediction error caused by the limited sampling of UKF, its
superior computational efficiency resulted in wide engineering implementations [36–39].
With the equations above, we could efficiently calculate Equation (9) and employ it in the
H steps prediction of Equation (2) to properly consider the propagated uncertainties in the
MPC-based policy.

3.3. Filtered Probabilistic Model Predictive Control Using UKF

We detailed the workflow of the proposed method FPMPC-UKF for the USV control
task in this subsection. Following the existing GP-based MBRL USV control system [31,32],
the sample set D = (X̃, Y), where X̃ collects the state and action x, u at the current time
step t, Ỹ contains the controllable state x = [Xusv, Yusv, Ψusv, Vusv, τusv, δusv] in the next step
t + 1. The corresponding learning loop is shown in Algorithm 1. At the beginning, the
GP model of USV was initially trained by a pre-prepared sample set D = (X̃, Y) (usually
generalized by random policy or human driver). The MBRL is updated in the Ntrial rollout
during the learning. At the start of each rollout, the USV is reset to its initial state with
Xusv = 0, Yusv = 0, Ψusv = 0, Vusv = 0. The initial observation at this moment was recorded
as µ0|0 with an initial variance Σ0|0, an empty control action that would be executed in the
first step is set as u∗0 = [0, 0].

Algorithm 1: Learning loop of FPMPC-UKF USV control system.
Input initial prior variance Σ0|0, constant observation variance Σy, executing time

∆t, horizon of MPC-based policy H, sample set D = (X̃, Y).
# Initialize GP model
h = Train_GP(X̃, Y)

for i = 1, 2, ..., Ntrial do
[µ0|0, Σ0|0] =Reset_USV_State(), u∗0 = [0, 0]
for t = 1, 2, ..., Lrollout do

# CPU core 1
# Execute USV signal
Operate_USV_Actions(u∗t−1)
# Observe USV state after ∆t
xo

t = Observe_USV_State()

# CPU core 2
if t > 1 then

# Bayesian filter process following Equations (15) and (16)
[µt−1|t−2, Σt−1|t−2] = h(µt−2|t−2, Σt−2|t−2, u∗t−2)
µt−1|t−1 = W f µt−1|t−2 + Woyt−1
Σt−1|t−1 = W f Σt−1|t−2

# Bias compensation following Equation (17)
[µ̂t, Σ̂t] = h(µt−1|t−1, Σt−1|t−1, u∗t−1)
# Search MPC policy following Equation (2) using UKF
u∗t = MPC_Policy(µt−1|t−1, Σt−1|t−1, h, H)
# Expand sample set
X̃ = {X̃, (xo

t−1, u∗t−1)}, Y = {Y , yt}
# Iteratively update GP model
h = Train_GP(X̃, Y)

Return h

Following GPMPC [31] and FPMPC [32], the proposed method employs a double-
prediction process by two separate CPU cores for swift control against the frequently
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changing environmental disturbances. At time step t = 1, ..., Lrollout, two CPU parallelly
worked. The first CPU core operated the pre-prepared control signal u∗t−1 and stored the
currently observed state xo

t to buffer. During the same period, the second CPU core first
applied a Bayesian filter when t > 1 for superior robustness under complex environmental
disturbances [32]. Given the previous state and control signal [µt−2|t−2, Σt−2|t−2, u∗t−2] at
step t− 2, the belief of the next step prediction was calculated by one-step prediction of
Equations (11) and (12):

[µt−1|t−2, Σt−1|t−2] = h(µt−2|t−2, Σt−2|t−2, u∗t−2). (15)

Defining yt−1 as the real observation xo
t−1 without unpredictable information, such as

wind, and Σy as a constant observation variance, a Kalman filter based on the predicted be-
lief was applied to estimate the posterior belief of the prediction with weights W f and Wo:

µt−1|t−1 = W f µt−1|t−2 + Woyt−1,

Σt−1|t−1 = W f Σt−1|t−2,

W f = Σy(Σt−1|t−2 + Σy)
−1,

Wo = Σt−1|t−2(Σt−1|t−2 + Σy)
−1.

(16)

Based on the posterior belief, which was reported as a more robust and accurate
representation of the state in noisy environments [32] and previous control signal u∗t−1,
the USV state after executing the u∗t−1 was estimated to compensate for the potential bias
caused by the current action:

[µ̂t, Σ̂t] = h(µt−1|t−1, Σt−1|t−1, u∗t−1) (17)

which was achieved by one-step uncertainty propagation using UFK. The calculated
state [µ̂t, Σ̂t] was set as the input state of searching the optimal actions of horizon H
[u∗t , ..., u∗t+H−1] following Equation (2). The first action u∗t is executed by the first CPU core in
the next step. After each step, the sample set was expanded by X̃ = {X̃, (xo

t−1, u∗t−1)}, Y =
{Y , yt}, which is used for iteratively updating the GP model of USV at the end of each rollout.

4. Experimental Results
4.1. Simulation Settings

The proposed FPMPC-UKF was evaluated by the USV simulation developed based on
the real boat-driven data under different ocean condition in [31], whose appendix detailed
the parameters of dynamics. Three levels of disturbances, including observable wind (angle
ψwind and velocity vwind) and unobservable current (angle ψcurrent and velocity vcurrent),
were set to simulate increasing challenging ocean environments following the simulation
settings in [31]:

∗ Level 1, (ψwind) = 37◦ + U(−30, 30)◦, ψcurrent = 100◦ + U(−30, 30)◦, vwind = 2.0 +
U(0, 0.1) m/s, vcurrent = 0.25 + U(0, 0.1) m/s,

∗ Level 2, ψwind = 37◦ + U(−30, 30)◦, ψcurrent = 100◦ + U(−30, 30)◦, vwind = 4.0 +
U(0, 0.1) m/s, vcurrent = 0.5 + U(0, 0.1) m/s,

∗ Level 3, ψwind = 37◦ + U(−30, 30)◦, ψcurrent = 100◦ + U(−30, 30)◦, vwind = 6.0 +
U(0, 0.1) m/s, vcurrent = 0.5 + U(0, 0.1) m/s.

The wind and current changedper step following uniform distributions U. The simu-
lated boat had a single outboard engine with rudder range δusv ∈ [−30◦,+30◦], and the
engine speed was mapped to τusv ∈ [0%, 100%] up to 800 rpm.

In this paper, we focused on two USV tasks: position keeping and target reaching.
Define the reward function in Equation (2) as

R(pt+1) = −||pt+1 − ptarget||2 (18)
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where p = [Xusv, Yusv] represents the location of USV at the corresponding time step.
For the position-keeping task, the target position is set as ptarget = [0, 0]. For the target-
reaching task, it is set to ptarget = [20, 25]. For the setting of the MPC-based policy, we select
the prediction horizon as H = 3, and the initial variance Σ0|0 and observation variance
Σy are set as 10−4. The GP model of USV is initially trained with 500 samples with a
random control policy. The agent is iteratively trained in Ntrial = 20 rollouts with length
Lrollout = 100. Exploration noise was added to actions we, set to Σe = 0.1. After the
training process, it is evaluated by another 30 rollouts. For the baseline approach, we select
FPMPC [32] based on its superior performance among related works. It can be treated as the
proposed method without employing UKF uncertainty propagation. All approaches were
developed GPflow [43], while the bound optimization by quadratic approximation [44] in
NLopt (http://github.com/stevengj/nlopt accessed on 20 May 2021) was used to optimize
the MPC-based policy. All experimental results were conducted on a computational server
with an Intel Xeon(R) W-2275 CPU and 64 GB memory by five independent trials with
different random seeds for statistical evidence.

4.2. Evaluation of Learning Capability

We first evaluated the learning capability of the proposed method in position keeping
and target reaching with different sparse GP pseudo input sizes. According to the learning
curves in Figure 2, both FPMPC-UKF and the baseline approach achieved convergence
behaviors within 20 rollouts under various numbers of pseudo input in sparse GP. Com-
pared with FPMPC using analytic moment matching, the proposed method enjoyed more
stable learning curves with less standard deviation in the average position offset and usu-
ally converged faster with less sparse GP pseudo input (≤10). These results indicate the
superiority of FPMPC-UKF in convergence with less pseudo input in sparse GP. With the
increasing level of disturbances and pseudo input, both methods achieved a larger standard
deviation in the position-keeping task, while the learning curves of the target-reaching task
are relatively flat. The main reason is the higher USV velocity in the target-reaching task,
which resulted in better control capability against disturbances.

After training, the performance results of the proposed method in the testing proce-
dures were studied, shown in Tables 2 and 3, respectively. Several terms are compared in
these tables, including the average offsets, the median offsets and the average optimization
time. The success rates (final) indicate the rates of successfully holding the USV near the
target within 7 m at the end of each testing rollout. The success rates (overall), which are
only for the position-keeping task, indicate the success rate of holding the USV during the
whole rollout.

The result of the position-keeping task is shown in Table 2. The proposed FPMPC-UKF
outperformed the baseline approach FPMPC under all three levels of disturbances with
sparse GP pseudo input ≤ 10. With a 5 sparse size, despite its convergence in the training
procedure, FPMPC had insufficient generalization capability to finish the test. With the
increasing level of disturbances, it achieved very large average offsets (from 7 m to 28 m)
with low success rates (from 18% to 63%). As a comparison, FPMPC-UKF significantly
outperformed the baseline; it achieved 65% less average offset and 66% higher success
rate in the level 3 disturbances. Setting the sparse size to 10, FPMPC-UKF enjoyed better
performance with significant superiority to FPMPC: it achieved 29% to 78% less average
offsets and 17% to 70% higher success rates. With a sparse size larger than 10, the baseline
approach usually outperformed the proposed method as the power of analytical moment
matching in uncertainty propagation was fully released. However, it turned to heavy
computational burdens, which are reported in the next section.

http://github.com/stevengj/nlopt
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Level 1

Level 2

Level 3
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Target-reaching task

Position-keeping task

Figure 2. Learning curves under different disturbances levels in position keeping and target reaching
with different sparse GP pseudo input size, the lines and opaque regions representing position offsets’
mean and standard deviation.

The result in the target-reaching task is shown in Table 3, which is close to the one in the
position-keeping task. FPMPC-UKF outperformed the baseline approach at all three levels of
disturbances with sparse GP pseudo input ≤ 10 in both average offset and success rate. With
a 5 sparse size, FPMPC achieved large average offsets (from 10 m to 31 m) with low success
rates (from 24% to 47%) in all three levels of disturbances. As a comparison, FPMPC-UKF
reduced more than 50% average offset with 34% to 44% higher success rate. With 10 sparse size,
FPMPC-UKF still outperformed FPMPC: it achieved 11% to 44% less average offsets and 4% to
21% higher success rates. On the other hand, it obtained less benefit from more sparse GP pseudo
input compared with FPMPC using analytic moment matching.

4.3. Evaluation of Computational Efficiency and Model Quality

We further evaluate the computational efficiency (including one-step prediction time
and the overall prediction time in the MPC policy) and quickly model the orientation
and velocity, i.e., the model error of position, in one-step MPC prediction in this section.
According to the results of the proposed and the baseline approaches (represented by
green and red colors) in both position-keeping and target-reaching tasks, demonstrated
in Figures 3 and 4, the proposed FPMPC-UKF demonstrated a significant advantage in
the average optimization time with sparse size > 5, especially under larger environmental
disturbances. With 5 sparse GP pseudo inputs, although the average optimization time
of the proposed method was increased (up to 104% in the target-research task with level
1 disturbances), it was limited within 0.5 s, which is superior to the existing MBRL USV
control system [31]. Meanwhile, FPMPC-UKF achieved great improvements in the model
prediction error, which contributed to over 50% decrease in the average offset and a
significant increase in success rate, reported in Tables 2 and 3.
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Table 2. Test result of the proposed method and baseline approach in the position-keeping.

Disturbances Method Sparse Sizes Average Offset [m] Median Offset [m] Success Rate (Final) Success Rate (Overall)

Level 1

5 7.82± 14.35 4.25 62.67% 11.33%
10 5.10± 5.66 3.20 80.00% 20.00%

FPMPC 30 2.22± 2.90 1.54 96.00% 72.00%
50 2.30± 4.31 1.26 92.67% 77.33%
70 2.21± 2.20 1.56 95.33% 69.33%

100 5.06± 11.06 1.42 85.33% 67.33%
5 2.41± 4.79 (−69.18%) 1.47 (−65.41%) 97.33% (+34.66%) 78.00% (+66.67%)
10 1.65± 1.21 (−67.65%) 1.35 (−57.81%) 99.33% (+19.33%) 90.67% (+70.67%)

FPMPC-UKF 30 2.49± 5.11 (+12.16%) 1.47 (−4.55%) 94.67% (−1.33%) 77.33% (+5.33%)
50 1.93± 2.34 (−16.09%) 1.34 (+6.35%) 95.33% (+2.66%) 80.67% (+3.34%)
70 2.55± 3.13 (+15.38%) 1.67 (+7.05%) 92.00% (−3.33%) 52.67% (−16.66%)

100 2.31± 1.77 (−54.35%) 1.86 (+30.99%) 97.33% (+12.00%) 62.67% (−4.66%)

Level 2

5 14.38± 19.20 9.01 26.00% 1.33%
10 18.80± 33.99 4.88 64.67% 4.00%

FPMPC 30 4.90± 8.99 3.05 88.00% 18.00%
50 4.71± 7.21 3.03 88.67% 24.67%
70 3.27± 3.47 2.34 94.67% 37.33%

100 5.84± 10.48 3.26 85.33% 10.00%
5 4.94± 6.43 (−65.65%) 3.73 (−58.60%) 77.33% (+51.33%) 13.33% (+12.00%)
10 4.01± 4.20 (−78.67%) 3.35 (−31.35%) 95.33% (+30.66%) 24.67% (+20.67%)

FPMPC-UKF 30 6.40± 10.56 (+30.61%) 3.36 (+10.16%) 78.67% (−9.33%) 15.33% (−2.67%)
50 4.95± 5.94 (+5.10%) 3.05 (+0.66%) 82.00% (−6.67%) 12.67% (−12.00%)
70 6.28± 8.44 (+92.05%) 3.44 (+47.01%) 75.33% (−19.34%) 8.00% (−29.33%)

100 7.16± 13.32 (+22.60%) 3.60 (+10.43%) 74.00% (−11.33%) 5.33% (−4.67%)

Level 3

5 28.51± 35.60 14.59 18.67% 0.00%
10 6.05± 5.37 4.98 70.67% 1.33%

FPMPC 30 3.52± 2.64 2.95 94.00% 20.97%
50 4.17± 6.98 2.86 90.67% 19.33%
70 5.04± 7.84 3.44 86.00% 13.33%

100 7.16± 11.99 4.04 76.00% 1.33%
5 9.87± 34.20 (−65.38%) 4.27 (−70.73%) 85.33% (+66.66%) 14.67% (+14.67%)
10 4.29± 2.69 (−29.09%) 3.88 (−22.09%) 82.00% (+1.33%) 18.67% (+17.34%)

FPMPC-UKF 30 6.67± 10.09 (+89.49%) 4.02 (+36.27%) 70.00% (−24.00%) 12.00% (−8.67%)
50 10.09± 16.18 (+141.97%) 4.07 (+42.31%) 72.00% (−18.67%) 9.33% (−10.00%)
70 5.85± 5.91 (+16.07%) 4.13 (+20.06%) 78.67% (−7.33%) 2.67% (−10.66%)

100 9.01± 12.12 (+25.84%) 4.89 (+21.04%) 67.33% (−8.67%) 0.67% (−0.66%)

Table 3. Test result of the proposed method and baseline approach in the target-reaching.

Disturbances Method Sparse Sizes Average Offset [m] Median Offset [m] Success Rate (Final)

Level 1

5 10.91± 12.45 7.01 47.33%
10 5.99± 6.55 4.19 78.00%

FPMPC 30 3.53± 5.87 1.72 96.00%
50 3.19± 5.58 1.28 95.33%
70 3.57± 5.92 1.67 92.00%

100 4.27± 6.79 1.94 88.00%
5 4.89± 10.16 (−55.18%) 1.76 (−74.89%) 92.00% (+44.67%)

10 3.33± 5.06 (−44.41%) 1.89 (−54.89%) 99.33% (+21.33%)

FPMPC-UKF 30 2.87± 5.15 (−18.70%) 1.35 (−21.51%) 98.00% (+2.00%)
50 3.40± 5.33 (+6.58%) 1.76 (+37.50%) 89.33% (−6.00%)
70 3.45± 5.23 (−3.36%) 1.84 (+10.18%) 94.67% (+2.67%)

100 3.22± 5.15 (−24.59%) 1.75 (−9.79%) 98.67% (+10.67%)

Level 2

5 15.43± 19.86 12.13 24.00%
10 5.85± 5.71 4.33 75.33%

FPMPC 30 4.48± 5.69 2.89 92.67%
50 5.42± 7.28 3.37 83.33%
70 4.49± 5.77 2.72 90.00%

100 5.90± 7.80 3.67 80.00%
5 7.64± 12.61 (−50.49%) 4.38 (−63.89%) 66.00% (+42.00%)

10 5.15± 5.18 (−11.97%) 3.85 (−11.09%) 83.33% (+8.00%)

FPMPC-UKF 30 6.53± 8.52 (+45.76%) 3.43 (+18.69%) 70.67% (−22.00%)
50 4.62± 5.51 (−14.76%) 2.81 (−16.62%) 82.67% (−0.66%)
70 6.52± 8.98 (+45.21%) 4.04 (+48.53%) 68.67% (−21.33%)

100 6.09± 6.49 (3.22%) 4.17 (+13.62%) 72.67% (−7.33%)

Level 3

5 31.64± 39.31 16.15 27.33%
10 6.38± 10.04 3.93 77.33%

FPMPC 30 7.89± 19.91 2.86 84.67%
50 5.11± 5.52 3.47 78.67%
70 5.49± 6.68 3.39 87.33%

100 5.17± 6.07 3.66 80.67%
5 8.37± 14.42 (−73.55%) 5.46 (−66.19%) 62.00% (+34.67%)

10 5.43± 6.41 (−14.89%) 3.94 (+0.25%) 81.33% (+4.00%)

FPMPC-UKF 30 7.30± 11.61 (−7.48%) 3.76 (+31.47%) 78.00% (−6.67%)
50 5.71± 6.22 (+11.74%) 4.15 (+19.60%) 72.00% (−6.67%)
70 5.81± 5.71 (+5.83%) 4.22 (+24.48%) 72.67% (−14.66%)

100 6.27± 6.59 (+21.28%) 4.22 (+15.30%) 68.00% (−12.67%)



Drones 2023, 7, 228 12 of 18

Level 1

Level 2

Level 3

Figure 3. Average predicted time and errors of MPC-based policy in position keeping. The green and
red colors indicate the proposed method and baseline.
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Figure 4. Average predicted time and errors of MPC-based policy in target reaching. The green and
red colors indicate the proposed method and baseline.
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Increasing the sparse GP pseudo inputs from 10 to 100, the baseline approach improved
its model quality with heavy computational burdens (from 0.5 s to more than 2 s). As
a comparison, the proposed method still achieved close model prediction errors under
these sparse sizes while enjoying a far faster optimization. Compared with FPMPC, which
required over 2 s to search the optimal action with 100 sparse GP pseudo inputs, the
proposed method only needs less than 0.5 s (more than 70% faster), which is more suitable
in a real USV control system with a limited computational resource. Overall, the proposed
method considerably outperformed the baseline approach in control performance and
model prediction error, while enjoying a faster optimization time (about 0.3 s) with less
sparse GP pseudo input. With the increase in sparse GP pseudo input, the computational
burden of the proposed method increased significantly less than the baseline approach,
while maintaining close control performance and model prediction errors. These results
demonstrated the great potential of FPMPC-UKF in balancing its learning capability and
computational complexity and therefore contributed to a higher control frequency in
MBRL USV.

Based on our experimental results, one proper balance between the control perfor-
mance and computational efficiency was met when the sparse GP pseudo input was set to
10. In the position-keeping task, the proposed method achieved 67%, 78%, and 29% less
average offsets, and 70%, 20%, and 17% higher success rates in three levels of disturbances,
while achieving 28% to 32% superior computational efficiency, except for one tiny degra-
dation in optimization time in level 1 disturbances compared with the baseline approach.
In the target-reaching task, the proposed method achieved 15%, and 12% less average
offsets, and 21%, 8%, and 4% higher success rates in three levels of disturbances while
achieving 20% to 25% superior computational efficiency, except for one degradation in
optimization (42.11% slower but still be close to 0.5 s) time in level 1 disturbances compared
with FPMPC.

Figure 5 illustrates the trajectories of USV in position-keeping and target-reaching
tasks under level 3 disturbances during one test rollout of FPMPC and FPMPC-UKF with 10
sparse pseudo inputs as one case study. The environmental disturbances for all approaches
were generated by the same random seed. It can be observed that in both tasks, the
proposed FPMPC-UKF enjoyed better control performance. The fewer prediction errors in
the orientation and velocity resulted in a more sophisticated control policy that smoothly
drove the USV to hold its position/reach its target without over-large control signals in
both the rudder and throttle. After reaching the target, the proposed method fully utilized
uncertainty propagation to keep its position against disturbances. On the other hand, the
analytic moment matching in the baseline approach did not work well in such a large
GP sparse scale and therefore resulted in unstable driving trajectories and struggled with
position keeping.
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Figure 5. Trajectories of USV including states and control signals in one test rollout of position-
keeping and target-reaching tasks under level 3 disturbances with 10 sparse pseudo inputs. The real
value is presented as blue lines, and the predicted mean of model is shown as red lines.

5. Conclusions

In this work, we proposed FPMPC-UKF, a novel GP-based MBRL approach specific
for USV by introducing an efficient uncertainty propagation using UKF to the MPC-based
policy for a superior control performance of USV against the real-time disturbances, es-
pecially with less sparse GP pseudo input. As a bridge connecting probabilistic MBRL
and optimal filtering technologies toward fully autonomous USV, FPMPC-UKF naturally
released the efficiency of the optimal filter in uncertainty propagation under the trial-and-
error framework of RL with a system specific to USV. The proposed method was validated
in both position-keeping and target-reaching tasks under different levels of environmental
disturbances. The comprehensive comparisons with the related baseline approach in the
learning capability, computation efficiency and model quality show the superiority of the
proposed method in balancing the learning capability, control performance and computa-
tional burdens, which expands the potential of probabilistic MBRL in more challenging
USV scenarios with limited computational resources.
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USV Unmanned Surface Vehicle
RL Reinforcement Learning
MDP Markov Decision Process
POMDP Partially observed Markov Decision Process
MBRL Model-based Reinforcement Learning
PILCO Probabilistic Inference for Learning Control
GP Gaussian Processes
MPC Model Predictive Control
SPMPC Sample-efficient Probabilistic Model Predictive Control
FPMPC Filtered Probabilistic Model Predictive Control
UKF Unscented Kalman Filter
UGV Unmanned Ground Vehicle
UAV Unmanned Aerial Vehicle
FPMPC-UKF Filtered Probabilistic Model Predictive Control with Unscented Kalman Filter
UT Unscented Transform
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