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Abstract: Path planning is one of the key parts of unmanned aerial vehicle (UAV) fast autonomous
flight in cluttered environments. However, it remains a challenge to efficiently generate a high-quality
trajectory for flight tasks with a high success rate. In this paper, a robust planning framework is
proposed, which can stably support autonomous flight tasks in complex unknown environments
with limited onboard computing resources. Firstly, we propose the directed frontier point information
structure (DFP), which can roughly capture the frontier information of the explored environment.
The planning direction of a local planner can be evaluated and rectified efficiently based on the DFP
to avoid falling into traps with limited cost. Secondly, an adaptive fusion replanning method is
designed to generate a high-quality trajectory efficiently by incorporating two optimization methods
with different characteristics, which can both take advantage of different optimization methods while
avoiding disadvantages as much as possible, but also adjust the focus of the optimization according to
the actual situation to improve the success rate of the planning method. Finally, sufficient comparison
and evaluation experiments in simulation environments are presented. Experimental results show
the proposed method has better performance, especially in terms of adaptability and robustness,
compared to typical and state-of-the-art methods in unknown complex scenarios. Moreover, the
proposed system is integrated into a fully autonomous quadrotor, and the effectiveness of the
proposed method is further evaluated by using the quadrotor in real-world environments.

Keywords: path planning; unmanned aerial vehicle; autonomous flight; adaptive fusion replanning

1. Introduction

Unmanned aerial vehicles (UAVs) have been widely used in surveying and map-
ping [1-6], ecological monitoring [7], rescue [8], military, and other fields [9-12]. However,
autonomy and intelligence are still lacking in these scenarios. As one of the key parts
of UAV autonomous capability, the motion planning module plays an essential role in
achieving full autonomy, which can provide a high-quality trajectory for UAV to generate
safe and smooth motions [13-15].

Although many excellent motion planning algorithms have emerged in recent years,
there are still some critical problems to be solved [16-18]. Firstly, most of the motion
planning methods can only be used for fast obstacle avoidance of small obstacles. Once the
work environment contains large obstacles, the methods will have a low success rate or
even fail due to the lack of global information. Secondly, given limited time and onboard
computing resources, there are few methods that can efficiently provide global-level guiding
in real time. However, it is important to improve the stability and effectiveness of the
planning methods in different flight tasks. Thirdly, few methods can efficiently generate
a high-quality trajectory that satisfies various constraints in real time. Current motion
planning methods use hard-constrained methods or soft-constrained methods to generate
a trajectory. The former can generate a high-quality flight trajectory that strictly satisfies the
constraints set in advance, but its planning efficiency is relatively low. The latter methods
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can generate a safe and smooth trajectory efficiently, but their optimization results do not
strictly meet the various constraints. As a result, current motion planning methods are
unable to meet the needs of real-time and high-quality planning tasks.

Motivated by the issues mentioned above, in this paper, we propose a robust online tra-
jectory replanning system that can support fast autonomous flight in a complex, unknown
environment. We innovatively propose a directed frontier point information structure (DFP)
that can efficiently provide global guiding to evaluate and rectify the initial path generated
by the local planner according to the essential frontier information (the boundary between
reached and unreached areas) stored in DFP. The structure can be updated incrementally
with limited costs when the new information is collected, so it can support high-frequency
guiding to help the planner detour large obstacles or traps without a significant increase in
computation and memory burden. Then, to generate a high-quality trajectory efficiently, a
fusion trajectory replanning strategy is adopted, which consists of two different types of
optimization methods. The hard-constrained method is used to generate a high-quality
trajectory for a flight at a low frequency. The soft-constrained method is responsible for
optimizing the local flight trajectory for fast obstacle avoidance when a newly discovered
obstacle affects flight safety. Meanwhile, an adaptive optimization function is used to
improve planning success rate and flight safety, which can adjust the focus of optimization
by using different weight allocation according to the real-time flight environment.

We compare our method with three typical and state-of-the-art methods in three
different simulation environments. The experimental results show that our proposed
method not only improves the trajectory quality while maintaining efficient planning,
but also significantly improves the adaptability and robustness of the planner to the
environment with limited additional cost. In addition, we also verify the effectiveness of
our method through onboard real-world experiments. The contributions of this paper are
as follows:

*  Anincrementally updated DFP that can capture essential information from the entire
unexplored space and provide global guiding efficiently to evaluate and rectify the
direction of the local planner with limited costs in high frequency.

* A fusion replanning strategy, which incorporates two optimization methods with
different characteristics to generate a high-quality trajectory efficiently. The method
can achieve a balance between planning quality and efficiency by leveraging the ad-
vantages of different optimization methods through a reasonable replanning strategy.

* Anadaptive optimization method that can adjust the focus of the optimization function
by using different weight allocation according to the actual flight environment to
improve planning stability.

e  Sufficient quantitative comparison experiments are conducted in simulation. Mean-
while, real-world experiments are also carried out to validate our method in vari-
ous environments.

The rest of the paper is organized as follows: Section 2 introduces the related work
about motion planning. Section 3 describes the proposed robust planning system for fast
flight by using DFP in detail. In Section 4, the experimental results of the proposed method
are presented and analyzed. Finally, concluding remarks are presented in Section 5.

2. Related Work

The problem of motion planning has been studied by many scholars in recent years,
and numerous methods from multiple angles have been proposed, mainly divided into the
following two categories: hard-constrained methods and soft-constrained methods.

2.1. Hard-Constrained Methods

The method in [19] first adopted hard-constrained optimization to generate a minimum-
snap trajectory by solving the quadratic programming (QP). Ref. [20] extended the work
of [19], which used the close form to solve the minimum snap trajectories and designed
a method to ensure the safety of the trajectories. To obtain a high-quality and safe tra-
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jectory, lots of methods [21-23] used a two-step pipeline for trajectory generation: safe
flight corridor construction and convex optimization. Ref. [24] proposed a method to
obtain a better flight trajectory by constructing a bigger safe flight corridor (SFC). Ref. [25]
proposed an efficient method to track an agile target efficiently by optimizing the trajectory
within a space flight corridor. Ref. [16] generated both a high-quality flight trajectory by
SFEC in free-known and unknown space and a safe replacement trajectory in free-known
space. Meanwhile, they also proposed a method to generate a better time allocation for
the trajectory. Ref. [26] proposed a flexible and efficient planning framework, which can
reliably achieve high-efficiency, high-quality planning requirements by deforming and
simplifying the planning problem.

2.2. Soft-Constrained Methods

Soft-constrained methods essentially constitute an approach that regards the trajectory
generation problem as a non-linear optimization problem that takes smoothness, safety,
and dynamic feasibility into account. Many studies have shown its superiority for fast
and autonomous flight in unknown environments. Ref. [27] first introduced the Euclidean
signed distance field (ESDF) and proposed a method to generate discrete-time trajectories
by using covariant gradient descent. Ref. [28] proposed the stochastic sampling strategy to
solve the optimization problem and avoid the problem of local minima, but the method
increased the computational burden and was easily affected by dynamical constraints.
Ref. [29] extended the method and avoided numeric differential errors. However, it suffered
from a low success rate, and its computational resource cost was heavy. To solve the problem
of low success rate, ref. [30] found a high-quality initial path before optimization. Due to
the unique nature of uniform B-spline, ref. [31] used it to represent the trajectory, which
makes it easy to meet the continuity and dynamic feasibility of the trajectory. Ref. [17]
considered kinodynamic constraints when searching the initial path and also proposed
a time adjustment strategy to make the trajectories meet the dynamically feasibilities
and non-conservativeness. Ref. [32] proposed a robust trajectory replanning method by
considering the environment perception. Ref. [33] proposed an adaptive optimization
function to generate a high-quality trajectory in complex environments. Ref. [34] proposed
a lightweight planner based on the topology-guided graph to improve the efficiency and
the trajectory quality. To reduce the computation time caused by ESDF, [18] proposed a
novel method, which can optimize the trajectory efficiently without ESDF. The method
used a collision-free guiding path to generate the collision term.

The framework of the proposed method is shown in Figure 1, composed of an in-
cremental update of the DFP (Sections 3.1 and 3.2), an initial path rectifying method
(Section 3.3), and an adaptive fusion replanning method (Section 3.5). First, we design a
directed frontier point information structure DFP to store the information of unexplored
areas, which not only can provide an optimal DFP target and corresponding collision-free
path for the local planner, but also can be continuously updated in real time with limited
cost as the sensors move. Second, according to the guiding of DFP, the initial path generated
by the local planner will be evaluated and rectified at the global level when necessary to
avoid getting stuck in traps. Finally, an adaptive fusion replanning method is used to
generate the local high-quality trajectory efficiently based on the corrected initial path.
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Figure 1. An overview of the proposed robust planning system by using sparse directed frontier
points (DFP). The main operation process is shown as a red line.

3. Proposed Approach
3.1. Directed Frontier Point Information Structure

Generally, to avoid the local planner getting stuck in traps, high-frequency global path
searching in a global map is used. This is obviously inefficient because a global map is
needed, and the search process is time-consuming. To solve this, we design DFP and use it
to both capture the frontier information of the explored space covered by the sensor and
provide global guiding efficiently without maintaining the traditional global map. The
data structure of DFP designed in this paper is shown in Table 1, which stores the position
Pos; of the directed frontier point, the orientation UO; of the unknown space, and the
collision-free geometric path Path; from the directed frontier point to the current position
of the UAV. We use the set DFPs of the directed frontier points to store the frontier points,
which can be updated continuously by new data from sensors. Based on the set, we can
rectify the local planner by selecting the optimal DFP (introduced in Section 3.3).

Table 1. Data contained by a DFP FP; in the set DFPs.

Data Explanation

Pos; Position of frontier point

uo; Orientation of unexplored space

Path; Collision-free path between the frontier point and the UAV

3.2. Directed Frontier Point Generation and Update

In order to obtain the DFP and provide the guiding efficiently, we design a generation-
and-update method, as shown in Algorithm 1.

At first, as shown in Figure 2, the candidate directed frontier points CPs are generated
by using SamplingInFOV() to sample points in the field of view (FOV) based on the state
Xo(po, o) of UAV and the information from sensors (Line 1). po and ¢y represent the
current position and yaw of the UAV, respectively. The max sampling range depends
on the FOV and the maximum detection distance rs of the sensor, while the sampling
interval’s distance and angle are determined by the minimum safe flight space that the
UAV can pass. Then, as shown in Figure 3, each candidate point is judged in turn to select
the points based on the following steps: (1) we use CheckOccupiedPoint() to find the
points in or near obstacles and add the points to the set of obstacle points OPs (Line 3-5);
(2) CheckDFPConditions() is used to select the candidate points as the directed frontier
points, and they are added to DFPs, which needs the points to meet conditions that contain
both the unknown space and the free space in local (red circle) and that are inter-visible
with the current position pg (Line 6); (3) once the candidate point meets the conditions of
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(2), we use CalculateUnknownDir() to obtain the orientation UO; of unexplored space in
Pos;. Next, CheckSamePoint() and CheckPointInOPs() are used to check if similar points
already exist in DFPs and OPs. If the point is a unique point, we will add it to DFPs (Line
7-15). Finally, in order to quickly provide a guiding path for the local planner without
maintaining a global map when necessary, we use UpdateDFPsPath() to update Path; for
each FP; in real time, which is a collision-free path from the directed frontier point FP; to
the current position pg of the UAV. In this way, inefficient global path searching is omitted.
The detailed update process is described in Algorithm 2.

Algorithm 1 DFP generation and update.

Input: Xo(po,&o), DFPs, OPs
Output: DFPs,OPs
1: CPs <— SamplingInFOV (X))
2: for each cp € CPs
3:  if CheckOccupiedPoint(cp) then

4: OPs.add(cp)
5: continue
6:  if CheckDFPConditions(cp, Xy) then
7: UO ¢ CalculateUnknownDir(cp)
8: samePoint < false
9: foreachdfp € DFPs
10: if CheckSamePoint(cp, dfp) then
11: samePoint < true
12: if IsamePoint then
13: samePoint <~ CheckPointInOPs(cp, OPs)
14: if !IsamePoint then
15: DFPs.add(cp)

16: UpdateDFPsPath(DFPs)
17: return DFPs, OPs

.
.

Candidate point +— 4"

Figure 2. An overview of DFP candidate point generation. Left is the vertical plane of FOV, and right
is the horizontal plane. We obtain the candidate points by sampling the FOV in angle and distance
according to the sampling interval set by us (6, in vertical angle, 8), in horizontal angle, and ds in
distance).

Since we only maintain a local map, we need to update the frontier path Path; for each
FP; in real time to ensure that all parts of the path remain collision-free with limited cost.
Firstly, we judge the Path; (represented by path in Algorithm 2) of each node (Line 1-2). If
the distance between the last node and the current position py is greater than s, we add po
to the end of Path; (Line 3-5, 12-13). Otherwise, we use Check Visibility() to judge the inter-
visibility between pg and the node. Once it is inter-visible, the part of Path; after the node
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will be removed (Line 7-8). If the last node is not inter-visible with py, GetVertexPoint()
will be used to calculate the vertex point and add it to the end of Path;; therefore, the vertex
point is inter-visible with the last node and py at the same time (Line 9-11).

I £t I I:l Unknown
44)? ]
=
Free
H "4
| i . Occupied

o 'q.:.

\¥ '
5 4 Local
4 map
7 Frontier
4
‘ 7 I § path

[ I Current
| | I | * position

Figure 3. A diagram of maintaining directed frontier points. We judge the candidate points (green

points) in the local range (red circle) and select the frontier points (red points) among them as well as
the obstacle points (blue points) to update the maintained point sets DFPs and OPs. Meanwhile, the
collision-free path (yellow path) for each directed frontier point will be updated.

Algorithm 2 Frontier path update of DFP.

Input: pg,rs, DFPs
Output: DFPs
1: foreach dfp € DFPs

2. path < dfp.Path

3: N < path.size()

4 for0<j< Ndo

5: dist < (path[j] — po).norm()

6: if dist < rs then

7: if CheckVisibility (path[j], po, vertex) then
8: path.erase(path.begin()+j+1, path.end())
9: else if j == N — 1 then

10: vertex <— GetVertexPoint(path[j], po)
11: path.add(vertex)

12: elseif j == N — 1 then

13: path.add(po)

14: return DFPs

3.3. Local Path Seaching and Rectifying

The initial path generation is critical, as its quality directly affects the efficiency of the
path optimization and the success rate of the flight. Most of the existing methods adopt the
kinodynamic path searching method (KPS) [17], A* [35], or jump point searching (JPS) [16]
to find the initial path. KPS is a method that originated from the hybrid-state A* search,
which can generate a safe and kinodynamically feasible trajectory, but it has low efficiency
in some complex environments due to control space sampling. A* and JPS are well-known
path searching methods that can quickly search a collision-free geometric path, but they
do not consider the feasibility of dynamics. In order to search a high-quality initial path
with a high success rate, we adopt a fusion searching strategy. We first use KPS to search
the initial path path;,;;;; in local based on the motion state and dynamic constraints of the
UAV. However, since KPS depends on the discrete control space during the search process,
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it will be difficult to find a high-quality path in a short time when the environment becomes
complex. Therefore, to ensure the efficiency and stability of the initial path search, once
KPS fails or the time cost exceeds the maximum time set by us, A* is performed.

However, since only the local map is maintained for planning, we can not blindly
trust the search result, because it is easy to get into traps or continuous back-and-forth
maneuvers if only the above method is used in unknown complex environments. To
solve this problem, DFP is useful. At first, based on the motion state of the UAV and the
target position, an optimal frontier point target FP,; is selected from DF Ps by solving the
problem:

argmin 1 fe + V2 fg + 13 fac + vafag = 1llPosi — poll,
FP;

1 @
+72||ps — Posi, +’YsHU—)Oi - 7H2 -i-’mHIﬁ - U—dz

2

where f, represents the distance between the directed frontier point FP; and the current
position py; f; represents the distance between FP; and the goal point pg; f;. denotes the

P
angle deviation between the orientation UO; of unexplored space of FP; and the current

motion direction 7; fag denotes the angle deviation between lﬂ and Iﬁ, where PC is
the orientation between FP; and pg; and 71, 72, 3, and 4 are the coefficients of the above
four items, respectively. We use this energy cost function to find the point with the lowest
energy cost as the local optimal target point FF,, to the goal point. Then, as shown in
Figure 4, we make a quality evaluation of the initial path path;;, (green path, generated
by KPS or A*) by comparing the path path,,: of FPypt with path;,,. If the deviation angle
7 is less than 7 (typically ¢ ~ 45°), we consider the path path;,;;;, to be plausible. The
path is then normally used for path optimization. Otherwise, we consider path;,;;;, to not
be credible, and we will rectify the flight direction by directly using the collision-free path
pathept maintained by FP, ¢ as the initial path for path optimization.

A

%

NN

[

.
.

Wz

Figure 4. A diagram of the adaptive fusion replanning process. In normal circumstances, the hard-
constrained method is adopted as a priority to generate a high-quality trajectory (red path) by
optimizing the safe flight corridor (purple area). Once there are newly obstacles that affect the safety
of the current flight trajectory, the soft-constrained method is adopted immediately, and the flight
path (red path) is optimized in real time to generate a local safe path (light green path).
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3.4. Adaptive Fusion Replanning

Although the initial path can be generated by Section 3.3, the path is not optimal
in theory due to the discrete control space and the lack of consideration for trajectory
smoothness. Therefore, after determining the initial path, we will optimize the trajectory
in terms of smoothness, safety, and dynamic feasibility to improve the trajectory quality.
Currently, trajectory optimization mainly uses the hard-constrained method or the soft-
constrained method. The quality of the path generated by the former is high, but its
planning efficiency is relatively low. The planning efficiency of the latter is high, but the
trajectory generated by the method may not strictly satisfy the pre-set constraints. Different
from the existing methods, as shown in Figure 4, we design an adaptive fusion replanning
strategy by elaborating the advantages of both optimization methods, which will use
different methods depending on the situation: the former for quality and the latter for
safety.

First, we generate the optimal flight trajectory based on the initial path by solving
the problem:

T
i Tw T
min /0 u(t)™Wu(t)dt + o(T),

st u(t) =p®(t),vt € [0,T],
G(p(t),....pP () <0Vt € [0,T), @
p(t) € F,vte[0,T],
pE1(0) = po, pt1(T) = py,

where p(t) represents the trajectory; T and W are the trajectory time and a positive diagonal
matrix; u(t) represents the control input; p, and ps denote the initial condition and the
terminal condition; p(T) represents the time regularization to trade off between the control

effort and the expectation of total time; G (p(t), .., p® (t)) is used to meet the user-defined

state-input constraints. To ensure safety of the trajectory, we constrain the trajectory p(t)
in F that is the obstacle-free area in the configuration space (purple area in Figure 4). To
solve the problem efficiently, we use the same method as in [26], which bridges the gaps
among solution quality, planning efficiency, and constraint fidelity with limited resources
and maneuvering capability compared with other methods. Its generality and robustness
have also been verified by extensive experiments and applications. We refer the readers
to [26] for more details about the problem solving method. Due to the high quality of the
path generated by the above method, we regard the path as the optimal path (red path) to
execute.

Due to the limited sensing range, we plan in both the known space and in the unknown
space to improve the flight speed and reduce the planning cost; however the safety of the
whole flight trajectory can not be guaranteed. At the same time, the path generated by the
above optimization method makes it easy to get close to obstacles, and the planning process
often takes a long time. Therefore, to ensure safety and achieve real-time and efficient
obstacle avoidance, once there are new obstacles that affect the safety of the flight trajectory,
the soft-constrained method is adopted to optimize the trajectory in local based on its high
efficiency in planning. In this part, uniform B-spline is used to represent the trajectory. Due
to the convex hull characteristics of the B-spline, it is easy to optimize the trajectory to meet
the requirements of safety and smoothness by changing the position of its control points.
Therefore, we can optimize its safety, smoothness, and dynamic feasibility by solving the
problem:

inn J = A1Js +AzJe + Az]y, 3)
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where Q is the control point of the B-spline; Js, /., and J; represent the penalty items of
smoothness, collision, and feasibility, respectively; and A1, A2, and A3 are penalty weights
for each items. To free the optimization method from ESDF and make the planning efficient,
we follow the work of [18] in calculating the penalty items, especially the J:

0 (¢; <0)

Fe(Qi) = c; (0 <ci <sg), )
3sfc? — 3s2¢; + 55 (c; >s¢)
fCi fCi f i f

C; = Sf - dl' (5)
Nec
Je = XFC(Qi)r (6)

where F. (i) is the collision cost for control point Q;; d; is the obstacle distance from Q; to the
obstacle, which is calculated by an anchor point at the obstacle surface with a corresponding
repulsive direction vector generated by a collision-free path p and which frees the planner
from ESDF; and sy represents the safety clearance. Therefore, due to the special design, it is
easy to obtain the gradient by directly computing the derivative of F. with respect to Q;.
More details about the penalty items can be found in [18].

In addition, different from the other methods that use the optimization function with
fixed penalty weights for all complex and changeable environments, we adopt an adaptive
optimization method as in our previous work [33], which can improve the planning quality
and planning success rate by using different parameters to optimize the trajectory according
to the changing environment. To achieve this, when p (mentioned above, yellow path in
Figure 4) is obtained to optimize the trajectory away from obstacles (details can be found
in [18]), we perceive the environment and obtain the distance d; of the narrowest passage
based on the path. Once the environment is narrow, we make safety an optimization
priority by improving the weight of the collision penalty. Meanwhile, inspired by [16,32],
we add another adjustment strategy to improve the safety of the flight around the corners.
As shown in Figure 5, we use the normal optimization when the distance d,;, between the
intersection point p, and the current position py satisfies the minimum safety condition:

Z7%/2{1max < dou — Rq- (7)

If the condition is not satisfied, we can improve the safety of the path by lengthen-
ing the distance d,,, which can be satisfied by pushing the trajectory far from obstacles.
According to the above theory, A1 and A, can be formulated as follows:

M ds > dy

“_FM(M—{ N-n(- %) dsd, ©
A ds > dy

Yo = Blded) = st (1 - ) do <y )
Ad + 12dy dy >0

du = 02/ 20max + Rg — dou, (10)

where A} and A} represent the initial smoothness weight and the initial collision weight,
respectively; 1 and -y, are the weights for adjusting A1 and A;; d;, is a threshold that can
be used to find a narrow space; and d, indicates the difference to meet Equation (7).
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Goal

Unknown

Figure 5. A diagram of adaptive optimization adjustment. Once the distance between the intersection
point p, (the current trajectory (green path) and the unknown space) and the current position py does
not meet the minimum safety condition, we dynamically adjust the optimization function to generate
a better trajectory (red path) so that the distance between pg and p,, is longer than before.

3.5. Replanning Strategy

Due to the limited sensing and planning range, we have to replan the trajectory
frequently to ensure the quality of the flight trajectory when the UAV flies in an unknown
environment. To make the above process stable and efficient, a replanning strategy is
designed: (1) when the flight time exceeds half the duration of the trajectory generated
by the hard-constrained method, the method is triggered again to regenerate the flight
trajectory; (2) when the newly discovered obstacles affect the safety of the current trajectory,
the soft-constrained method is triggered to quickly optimize the trajectory in local; (3)
once the replanning by the soft-constrained method fails or the path provided by DFP
is adopted, the hard-constrained method is used to generate the trajectory again; and (4)
when the target point appears in the field of view, the hard-constrained method is triggered
to generate the final trajectory and stop the replanning part. In this way, we consider both
the quality of the trajectory and the rapid response to the newly discovered obstacles.

4. Experimental Results
4.1. Benchmark Comparisons

In the simulation experiment, we compare the proposed method with several state-
of-the-art methods in different environments: FASTER [16], EGO-Planner [18], and Fast-
Planner [17]. FASTER is a typical method that belongs to the hard-constrained category.
EGO-Planner and Fast-Planner are two well-known soft-constrained methods for real-
time UAV motion planning and have achieved good results. We adopt its open-source
implementation and default configuration. Meanwhile, it should be noted that the dynamic
limits we used in all simulation experiments are v, = 3.0 m/s and a5y = 2.0 m/ s? for
each method. The FOVs of the sensors are set as [80 x 60] deg with a maximum range
of 4.5 m. Additionally, all experiments are conducted on a computer with an Intel Core
i9-9900K@ 3.6 GHz, 64 GB memory, and ROS Melodic.
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4.1.1. Random Scenario

At first, we conducted a comparison experiment of the four methods in 40 x 40 x 3 m
random environments containing three different obstacle densities: 0.2 obstacles/ m2,0.3
obstacles/m?, and 0.4 obstacles/m?. Three maps were randomly generated for each obsta-
cle density, and each method was tested 10 times in a map under the same experimental
conditions. Samples of the maps and the flight trajectories are shown in Figure 6. The
detailed result of the experiments is shown in Table 2.

Figure 6. Samples of the maps with different obstacle density. (a—c) correspond to 0.2, 0.3, and 0.4
obstacles/m?, respectively. The flight trajectories of each method in different maps are also provided
(the red, green, purple, and blue trajectories in them represent the performance of the proposed
method, FASTER, EGO-Planner, and Fast-Planner, respectively).
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Table 2. Flight statistics in random scenarios with different obstacle density.

Scene Method Flight Time (s) Flight Distance (m) Energy (m;/s%) Replan Success
Avg Std Max Avg Std Max  Avg Std Max  Time(ms) Rate (%)
Fast-Planner 1595 15 1847 35.67 1.06 37.44 255.02 87.2 400.91 3.2 86
0.2 obs/m? FASTER 1538 25 21.66 3385 24 3923 12547 322 174.98 29.9 93.3
’ EGO-Planner 1514 1.7 19.67 3335 1.0 3515 215.02 447  286.98 1.9 100
Proposed 1569 03 1634 3348 0.6 3432 168.22 62.2 261.10 3.3 100
Fast-Planner 1827 21 2066 36.65 15 3870 33936 1019  510.59 3.2 80
0.3 obs/m? FASTER 1766 22 2136 3373 1.0 3591 196.02 58.2 339.10 34.9 86
’ EGO-Planner 1720 24 2193 3537 1.7 3779 43166 1127 67538 2.5 93
Proposed 17.45 21 2331 3466 14 3720 267.08 75.3 472.30 3.9 100
Fast-Planner 2476 44 31.61 37.63 22 40.84 67538 168.85 95241 3.4 33.3
0.4 obs/m? FASTER 2378 27 2771 3607 23 4171 32947 71.0 464.19 41.0 53.3
’ EGO-Planner 17.80 1.8 2252 3587 1.1 3883 46422 1268  762.39 2.4 66.7
Proposed 1864 1.8 21.60 3575 12 3817 304.06 66.5 462.58 4.8 100

It can be seen that Fast-Planner performs relatively poorly, and its planning success
rate decreases significantly with the increase in obstacle density. This is because the method
incorporates the gradients of ESDF in a collision cost to push the trajectory out of the way
of the obstacles, and the cost is combined with the smoothness and dynamic feasibility
cost to form an objective function. Therefore, the method will always encounter local
minima problems resulting in optimization failure when there are valleys or ridges in
scenarios. In addition, the method generates the initial kinodynamic path using discrete
control space, which will cause detours due to the loss of solution space when the obstacle
density becomes high. Since EGO-Planner proposes a lightweight yet effective trajectory
refinement algorithm, it achieves the highest planning efficiency and the best performance
in terms of flight time and flight distance. Meanwhile, due to the help of the guiding path,
the method avoids the local minima problems, and its planning success rate performs better
compared to Fast-Planner. However, the method is overly dependent on its reference path
(the line between the start point and end point), which will cause unnecessary detours and
influence the flight performance in some scenarios. FASTER is a hard-constrained method
that can generate a high-quality trajectory, so its trajectory energy cost is the best. However,
it takes much more time than other methods because it needs to solve two trajectories for
safety in the constructed SFC at the same time. Since the method takes the result of jump
point search (JPS) as the initial path that does not consider dynamic feasibility, the success
rate of and quality of the optimization will be affected. It can be seen that our method
achieves a more balanced result compared to the above three methods. This is because
we realize the advantages of different optimization methods while reducing the influence
of their drawbacks by designing an adaptive fusion replanning method, which fuses the
hard-constrained with soft-constrained methods by using a reasonable replanning strategy
to compensate for the shortcomings of one another. Specifically, we preferentially execute
the trajectory generated by the hard-constrained method, and the soft-constrained method
is adopted to optimize the flight trajectory to avoid new obstacles in local. Therefore,
our method takes advantage of both the high quality of the trajectory generated by the
hard-constrained method and the high efficiency of the soft-constrained method (EGO-
Planner). The experimental results also verify our theory. The planning efficiency of our
method is much higher than FASTER and is similar to EGO-Planner and Fast-Planner. The
energy cost of our method is only slightly higher than FASTER. Meanwhile, compared with
EGO-Planner, since we use the hard-constrained method to keep updating our reference
trajectory instead of using the straight line between the start point and the end point
all the time, our flight trajectory is more smooth and reasonable than EGO-Planner. In
addition, since we use a guiding path to help the optimization and can adjust the focus
of the optimization according to the actual environment, our method can avoid the local
mimima problem and pass through narrow areas easily. These help our method achieve
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the best performance of the four methods in terms of success rate, and these experimental
results also cover our contribution to adaptive fusion replanning.

4.1.2. Office Scenario

To verify the planning effectiveness and stability of each method in complex office
scenarios that contain large obstacles, as shown in Figure 7, we compare the four methods
in the two complex office scenarios (office-1 and office-2). Compared to random scenes
that contain only small obstacles, the office scenarios are more complex, having not only
small obstacles but also large obstacles and traps between the start point and the goal point.
Therefore, these scenarios are closer to the real scenarios. The detailed experimental result
is shown in Table 3. It can be seen from the results that, due to the limitation of the planning
range and the lack of global information, EGO-Planner and Fast-Planner are not suitable
for these environments, as the planning success rate for both methods is severely impacted,
especially in office-2. Since FASTER maintains a larger local map, it performs better than
the first two methods. However, its success rate is also low in office-2 because the scenario
contains large obstacles between the start point and the goal point. Compared with the
above three methods, our method can still operate stably in these scenes containing large
obstacles. This is because of the directed frontier point information structure DFP that
is designed in this paper, which can both roughly capture the frontier information of the
explored environment and efficiently provide global-level guidance. Based on the global
evaluation and rectifying of DFP, our method can work stably and will not get stuck in
traps of large obstacles. In addition, to verify the efficiency of DFP, as shown in Table 4,
we also provide the average cost of maintaining part of DFP in different scenarios. It can
be seen that, although we added a new component to provide global rectifying compared
with other methods, the computational burden added by this component is very limited,
and there is no additional significant computational cost beyond a few hundreds points in
each experiment. However, if more precise guidance is needed to reduce the probability of
misdirection, the number of DFPs and the cost will increase gradually.

(b)

(a)

Figure 7. Benchmark comparison of the experimental results in two office scenarios containing large
obstacles. (a,b) correspond to office-1 and office-2 scenarios, respectively; the red, green, and purple
trajectories in them represent the performance of the proposed method, FASTER, EGO-Planner,
respectively.
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Table 3. Flight statistics in office scenarios containing large obstacles.
Flight Time (s) Flight Distance (m) Energy (m;/s%) Replan Success
Scene Method Ti ( ) Rat (o/ )
Avg Std Max Avg Std Max Avg Std Max 1me tms ate {7
Fast-Planner / / / / / / / / / / 0
Office-1 FASTER 1739 29 2564 3243 48 4639 178.89 40.8 25524 39.7 100
EGO-Planner 1955 1.8 2244 3332 1.0 3433 303.03 353 331.54 3.3 80.0
Proposed 1772 24 2293 33.06 29 3810 176.65 49.0 296.79 4.8 100
Fast-Planner / / / / / / / / / / 0
Office-2 FASTER 33.71 / 33.71 65.91 / 6591 170.73 / 170.73 38.4 10.0
EGO-Planner / / / / / / / / / / 0
Proposed 3293 1.7 3541 6751 20 7129 19890 43.0 272.37 9.8 100
Table 4. Average cost to maintain part of the DFP in different scenarios.
S DFPs Update Time (ms) DEPs N OPs N
cene Avg Std Max Min s Num. s Num.
0.2 obs./m? 0.34 0.07 0.52 0.29 116.0 67.3
0.3 obs./m? 0.28 0.02 0.34 0.25 81.4 95.8
0.4 obs./m? 0.26 0.02 0.29 0.23 78.7 108.4
Office-1 0.17 0.03 0.28 0.17 45.1 73.0
Office-2 0.26 0.09 0.36 0.25 98.4 59.8

4.1.3. Further Evaluation

In addition, in order to compare the performance and stability of the four methods in
different scenarios more visually, as shown in Figure 8, we provide the actual distribution of
all experimental results (flight time, flight distance, and energy cost) for the four methods in
different scenarios. It can be seen that the results of the distribution of the experimental data
are the same as the previous analysis. In general, the indicators (flight time, flight distance,
and energy cost) of the four methods all increase with the complexity of the scenario, and
the fluctuation range of flight time also becomes larger. Although the experimental results
of our method are not optimal in a certain indicator, our method is more balanced in all
indicators and achieves better adaptability in all scenarios. However, due to the effect of
directional rectifying, there is a fluctuation in flight efficiency because the DFP is obtained
by sampling and its global guiding does not always make the best choice every time since
the scenario is unknown.

4.2. Real-World Experiments

To verify the effectiveness of the proposed method, we also present real-world experi-
ments in outdoor cluttered environments by using a customized quadrotor equipped with
a forward-facing RealSense D435. The quadrotor is shown in Figure 9. In the experiments,
we use [36] to provide the quadrotor state. All the modules run on an Intel Core i5-1135G7@
2.40 GHz, 16 GB memory, and ROS Melodic.

At first, as shown in Figure 10, we present experiments in a forested environment,
which contains large trees and wire poles. The environment is typically unstructured and
irregular, in which the quadrotor needs to perform agile maneuvers to avoid obstacles such
as tree branches and leaves. In the experiment, the quadrotor flies through the forest to
the goal 35 m away from the initial position. The velocity profile is shown in Figure 10c.
The maximum speed and the average speed reach 3.21 m/s and 2.39 m/s, respectively.
The flight takes 37.15 m and 15.51 s. The actual flight trajectory and the online generated
map are shown in Figure 10b. From the experimental results, it can be seen that the actual
flight trajectory of the UAV is smooth and the speed changes smoothly. In addition, we also
conducted experiments in a park environment containing various types of obstacles. The
experimental result is shown in Figure 11. The performances in the above two real-world
experiments all prove the practicality and effectiveness of our method.
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Figure 8. Benchmark comparison of the experimental results in different scenarios. (a—c) respectively
show the specific experimental distributions of flight time, flight distance, and energy for the four
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Figure 9. The customized quadrotor used in the experiment.
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Figure 10. The results of real-world experiments conducted by our customized quadrotor. (a) is
the detailed flight status during the actual flight, which contains the UAV status from different
viewpoints, flight velocity in different axis directions, actual flight trajectory, and the mapping result.
(b) is the overall result of the real flight trajectory and the mapping. (c) shows the velocity of the
UAV during the whole flight (the red, blue, yellow, and green lines represent the total velocity,
x-axis, y-axis, and z-axis, respectively). Video of the real-world experiment can be found at https:
//github.com/Zyhlibrary/LRPS (accessed on 16 March 2023.) .
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Figure 11. The results of the flight experiment in a park. (a,b) are the actual flight status corresponding
to different moments, respectively. (c) is the actual flight trajectory and the mapping result, and it
also provides the positions of (a,b) in the whole trajectory.

5. Conclusions

In this paper, we propose a robust planning framework for fast autonomous flight
in a complex, unknown environment by using sparse directed frontier points. First, an
incrementally sparse directed frontier point (DFP) is designed, which can both roughly
record the position and direction of unreachable areas to provide global information with
limited cost and efficiently maintain a collision-free geometric path from the UAV to the
position. Second, supported by the DFD, the local initial path generated by the planner
is evaluated, and the initial path is rectified at the global level when necessary. Then,
an adaptive fusion replanning method is proposed to generate a high-quality trajectory
efficiently, which incorporates two optimization methods with different characteristics
to achieve quality and efficiency by a reasonable replanning strategy. In addition, an
adaptive optimization function is also introduced to improve planning stability, which
can adjust the focus of the optimization according to the actual environment. Sufficient
benchmark experiments in simulation are conducted to verify the performance of our
method. The result shows that, compared with other methods, we improve the planning
quality while ensuring the higher planning efficiency by using the fusion replanning
strategy. Meanwhile, since DFP can efficiently provide global-level guidance for the local
planner, the planning success rate and the adaptability to the environment of our method
are significantly improved compared to other methods. Moreover, the proposed system
is integrated into a fully autonomous quadrotor, and the effectiveness of the proposed
method is further evaluated by using the quadrotor in real-world environments.
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