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Abstract: Multi-UAV cooperative path planning can improve the efficiency of task completion. To
deal with the space and time conflicts of multi-UAVs in complex environments, a multi-collision-
based multi-UAV cooperative path planning algorithm, multi-conflict-based search (MCBS), is pro-
posed. First, the flight and cooperative constraints of UAV are analyzed, and a three-dimensional
environment model is established that incorporates geographical information. Then, hierarchical
optimization is used to design collaborative algorithms. In the low-level path design, UAV flight
constraints are combined with a sparse A* algorithm, and by improving the cost function, the search
space is reduced, and the search time is shortened. In high-level cooperation, the priorities of differ-
ent conflicts are set, heuristic information is introduced to guide the constraint tree to grow in the
direction of satisfying the constraints, and the optimal path set is searched by the best priority search
algorithm to reduce the convergence time. Finally, the planning results of the proposed algorithm,
the traditional CBS algorithm, and the sparse A* algorithm for different UAV tasks are compared, and
the influence of the optimization parameters on the calculation results is discussed. The simulation
results show that the proposed algorithm can solve cooperative conflict between UAVs, improve the
efficiency of path searches, and quickly find the optimal safe cooperative path that satisfies flight and
cooperative constraints.

Keywords: multi-UAV cooperative; path planning; conflict-based search; sparse A*

1. Introduction

In recent years, as the flight environment and mission of UAVs have become more
complex, a single UAV can no longer meet the mission requirements. Multi-UAV coopera-
tive systems have attracted much attention from researchers due to their advantages such
as scalability and robustness [1]. Multi-purpose UAVs are widely used in both military
and civilian applications such as search and rescue, detection, and surprise defense [2–4].
Avoiding various threats in the environment is a key problem in achieving cooperative
operations with multi-UAVs [5,6], which is usually defined as finding the optimal set of
paths that satisfy various constraints of multi-UAVs [7,8].

Many multi-UAV path planning algorithms have been recently proposed by research
scholars, and can be divided into two categories: reactive collision avoidance methods and
active cooperative path generation methods. In reactive collision avoidance methods [9–11], any
UAV that detects a risk of collision with another UAV performs a local cooperative replanning
algorithm to avoid collision. Many algorithms based on reactive collision avoidance methods
have been proposed, such as optimal reciprocal collision avoidance (ORCA) [12] and distributed
reactive collision avoidance (DRCA) [13,14]. Reactive collision avoidance methods have been
widely used in practice by virtue of their efficiency [15]. However, such methods only consider
local cooperative collision avoidance, and thus tend to fall into a local optimum. In addition,
such algorithms are difficult to deal with path planning problems that require satisfying both
time and space cooperative constraints on UAVs. Among the active cooperative path generation
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methods, decoupling methods and coupling methods are mainly included. The decoupling
method uses a hierarchical architecture to deal with the multi-UAV path planning problem,
i.e., after coordinating the planning order of all UAVs through the path coordination method,
the cooperative paths are generated for each UAV in turn independently. The multi-UAV path
planning algorithms based on decoupling methods are the hierarchical cooperative A* algorithm
(HCA*) [16], the prioritized planning algorithm (PP) [17], and the ADPP [18]. The decoupling
algorithm can transform the multi-UAV cooperative path planning problem into a single-UAV
path planning problem so it can obtain the cooperative path quickly and effectively. However,
such methods usually can only obtain feasible paths and have some limitations in finding
optimal solutions. On the other hand, coupled methods usually design only one cooperative
path planner for multi-UAVs and are able to plan the set of safe paths, meeting the constraints
for all UAVs simultaneously. Some coupling-based algorithms usually convert the cooperative
path planning problem into problems that have been well studied to obtain cooperative paths,
such as linear programming (LP) [19] and the constraint satisfaction problem (CSP) [20]. In
addition, some search-based coupling methods such as CBS have been proposed. Coupled
methods are able to obtain find the globally optimal set of collaborative paths, and they have
gained extensive research this year.

This paper is devoted to the research of the cooperative path planning problem of
multiple fixed-wing UAVs under the scenario of a surprise defense. The multi-UAV
cooperative path planning problem is essentially a multi-agent problem. Sharon [21]
proposed the conflict-based search algorithm, a recent achievement in multi-agent path
planning that has been applied in warehouse robot systems [22]. Conflict-based search
(CBS) uses a low-level heuristic search algorithm to find the optimal path for the agent to
satisfy the constraints of the high level where a binary tree is constructed to set constraints
according to the conflict between the agent paths. The best-first search algorithm is adopted
to ensure optimal planning results. CBS converts the multi-agent path planning problem
into multiple single-agent problems and searches for the optimal solution. Experimental
results showed that CBS reduced the search time by up to an order of magnitude. Therefore,
it has great potential for solving the multi-UAV path planning problem.

Based on the CBS algorithm, many improved methods have been proposed. Fatih
Semiz [23] proposed an incremental algorithm by replacing the low-level A* algorithm of
CBS with D*-lite for the multi-agent path planning problem in a dynamic environment.
Bare [24] proposed an enhanced CBS (ECBS) algorithm that replaces the best-first search
algorithm in the high and low levels of CBS with a focused search. Li Jiaoyang [25] replaced
the focused search with an explicit estimation search based on ECBS and proposed a new
bounded suboptimal variant of CBS called explicit estimation CBS (EECBS).

It is not difficult to see that researchers’ improvements for CBS focused on improving
algorithm solution efficiency. CBS and its improvement methods are not suitable for multi-
UAV cooperative path planning because they do not take into account how a complex 3D
environment affects UAVs, their flight constraints or the cooperative constraints between
UAVs. In particular, how to use CBS to solve the multi-agent path planning problem with
time constraints is a current research blind spot. Therefore, when solving it in a complex
3D environment, the flight, space and time constraints of UAVs and environmental threats
should be fully considered [26]. For example, in the sparse A* algorithm, Zhe Zhang [27]
introduced the flight constraints of the UAV into the sparse A* algorithm to realize 3D UAV
path planning. In some swarm agent algorithms, Cheng Xu [28] comprehensively consid-
ered the time and space constraints between UAVs and realized multi-UAV cooperative
path planning in four-dimensional space.

Therefore, we propose a multi-conflict-based optimal algorithm for the multi-UAV
cooperative path problem in complex environments by combining the flight constraints
of UAVs and the cooperative constraints between them. At the low level of the algorithm,
we designed a sparse A* algorithm that satisfied the flight constraints of UAVs in a 3D
environment; at the high level of the algorithm, we defined the cooperative conflicts
between multi-UAVs, set the priorities of different conflicts, changed the growth mode of
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the constraint tree and designed a heuristic function to guide the algorithm search. The
proposed algorithm has been proven effective in simulation experiments.

The main contributions of our work are as follows:

(1) Considering the constraint information of UAVs, the complex environment of multiple
UAVs was modeled.

(2) A sparse A * algorithm was designed to meet the flight constraints of UAVs, which
reduces the search space and shortens the search time.

(3) The collaborative conflict between multiple UAVs was defined; the priority of different
collaborative conflicts is set; and the heuristic information was designed to guide the
constraint tree to grow in the direction of conflict resolution to improve the algorithm’s
convergence time.

The arrangement of this article is as follows: in Section 2, we establish a constrained
optimization model for multi-UAV cooperative path planning, analyze the model’s flight
and cooperative constraints, and then model the battlefield environment; in Section 3, we
present in detail the multi-UAV cooperative path planning algorithm based on CBS; in
Section 4, we evaluate the performance of the algorithm through simulation experiments;
the conclusion is given in Section 5.

2. Problem Description

The problem studied in this paper is the cooperative path planning problem when a
multi-UAV performs tasks in a complex environment. The multi-UAV cooperative path
planning algorithm not only needs to find the path with the smallest cost for each aircraft, but
also needs to satisfy certain constraints, such as those imposed by the physical characteristics
of UAVs, environment threats and obstacles, and the cooperative constraints between the
UAVs. Therefore, the multi-UAV cooperative path planning problem can be regarded as a
constrained optimization problem that can be described as the following formula:

minJ(P/E) s.t.
{

g(P) ≤ 0
h(P) = 0

(1)

where E is the environment for path planning; g(P) and h(P) are inequality constraints
that comprehensively consider UAV flight and cooperative constraints; P is a set of paths
that satisfy the constraints, which can be expressed as P = {p1, p2, · · · , pN}.

2.1. Path Cost Analysis

The total path cost J is the sum of all UAV path costs:

J(P/E) =
N

∑
i=1

Ji(pi/E) (2)

where pi is the path of the ith UAV; N is the number of UAVs; J(P/E) is the total path cost
of the path set P in the current environment E. The path cost Ji of the ith UAV is composed
of two parts: the path length cost Jlength(pi) and the path threat cost Jlength(pi):

Ji(pi/E) = Jlength(pi) + Jthreat(pi/E) (3)

2.1.1. Path Length Cost Function

When planning the path of the ith UAV, the path pi is the set of waypoints where the
ith UAV is located at different times. When evaluating the length cost of the UAV path pi,
the path length cost function of the nth waypoint vi

n is as follows:

jl(vn
i ) =

√
(xn − xn−1)

2 + (yn − yn−1)
2 + (zn − zn−1)

2 (4)

where (xn, yn, zn) is the 3D coordinates of the ith waypoint in the path.
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The path length cost is the sum of all waypoint length costs except for the starting
point. The calculation formula is as follows:

Jlength(pi) =
li

∑
n=2

jl(vn
i ) (5)

where li is the number of waypoints in the path.

2.1.2. Path Threat Cost Function

The path threat cost mainly comes from five aspects: terrain, air defense radar, surface-
to-air missile, anti-aircraft artillery and no-fly zones. The path threat cost is the sum of the
threat costs of all waypoints in the path. The path threat cost function is as follows:

Jthreat(pi/E) =
li

∑
n=1

jt(vn
i ) (6)

where the threat cost jt of the nth waypoint vi
n is the weighted sum of five threat costs, as

shown in the following formula:

jt = kg ·Ug + kr ·Ur + km ·Um + ka ·Ua + kn ·Un (7)

where kg, kr, km, ka, and kn are weighting factors.
The path threat cost is affected by the environment E, so it is crucial to model environ-

mental threats accurately.

(1) Terrain threat model and cost analysis

To make the simulation environment based on path planning closer to the real envi-
ronment, this paper selected a 500 × 500 km digital elevation model as the environmental
model for path planning, as shown in Figure 1. The digital elevation model is located
roughly between 107◦–119◦ E and 34◦–35◦ N. The size of the digital elevation model is
1000 × 1000 and 106 data points exist.
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For waypoint vi
n, the terrain threat cost is calculated as follows:

Ug(vn
i ) =

{
qg if

(
zn − hg

)
< Hmin

0 if
(
zn − hg

)
> Hmin

(8)

where zn is the height of the waypoint vi
n; hg is the ground height; and Hmin is the minimum

height above ground.

(2) Air defense radar model and analysis

When modeling the radar, we took into account the radar blind spot created by terrain
obscuring. The calculation steps of radar terrain masking a blind area are as follows:

(a) Calculate the radar ray equation

Assuming that the height of the radar station is hr, the schematic diagram of the radar
detecting the terrain obscuring blind area in a certain azimuth is as shown in Figure 2.
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Based on known polar coordinates P(θ,k) of different radar detection azimuths and
digital elevation models h(θ,k), the radar detection ray L1 equation is:

L1(P(θ,k)) = hr +
h(θ,1) − hr

P(θ,1) − P(θ,0)
(P(θ,k) − P(θ,0)) (9)

(b) Calculate the height of the radar blind spot

Expand outward in turn from P(θ,0). If the terrain height h(θ,k) is below the radar
detection ray, there is a blind spot. If the terrain height h(θ,k) is above the radar detection
ray, update ray, and continue expanding outward to calculate the blind spot height. If
the terrain height at P(θ,2) is below the radar detection ray and there is a blind spot, its
height at this point can be represented by the dotted line in Figure 2, and the height value
is L1(P(θ,2))− h(θ,2). The threat range of the radar in the final environment is shown in
Figure 3, and the radar detection area is above the curved surface.

When the UAV flies over the radar detection area above the radar detection blind spot
surface, it will face the danger of being detected by the enemy. We represent the radar
threat cost of waypoint vi

n using the radar detection probability:

Ur(vn
i ) =

(1 + 1
1+ 2×d4

Rr4

)
−2

, vn
i ⊆ Pr

0 , otherwise
(10)

where Pr is the point set of the radar detection coverage area; Rr is the radar detection radius;
and d is the horizontal distance between the waypoint vi

n and the radar center point.



Drones 2023, 7, 217 6 of 25

Drones 2023, 7, x FOR PEER REVIEW 6 of 26 
 

Based on known polar coordinates ( , )kPθ  of different radar detection azimuths and 
digital elevation models ( , )kh θ , the radar detection ray 1L  equation is: 

( ,1)
1 ( , ) ( , ) ( ,0)

( ,1) ( ,0)

( )= ( )r
k r k

h h
L P h P P

P P
θ

θ θ θ
θ θ

−
+ −

−
 (9) 

(b) Calculate the height of the radar blind spot 
Expand outward in turn from ( ,0)Pθ . If the terrain height ( , )kh θ  is below the radar 

detection ray, there is a blind spot. If the terrain height ( , )kh θ  is above the radar detection 
ray, update ray, and continue expanding outward to calculate the blind spot height. If the 
terrain height at ( ,2)Pθ  is below the radar detection ray and there is a blind spot, its height 
at this point can be represented by the dotted line in Figure 2, and the height value is 

1 ( ,2) ( ,2)( )L P hθ θ− . The threat range of the radar in the final environment is shown in Figure 
3, and the radar detection area is above the curved surface. 

 
Figure 3. Radar detection area. 

When the UAV flies over the radar detection area above the radar detection blind 
spot surface, it will face the danger of being detected by the enemy. We represent the radar 
threat cost of waypoint n

iv  using the radar detection probability: 

( )
2

4

4

1(1 ) ,
21

0                         ,otherwise

n
i r

n
r i

r

v P
d

U v R

− + ⊆ × += 



 
(10) 

where rP  is the point set of the radar detection coverage area; rR  is the radar detection 
radius; and d  is the horizontal distance between the waypoint n

iv  and the radar center 
point. 
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mated by a hemisphere. The path planning space we studied was mainly aimed at an 
airspace of 6000 m and below for the flight of midair UAVs, so the surface-to-air missile 
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Figure 3. Radar detection area.

(3) Surface-to-air missile threat model and analysis

For general surface-to-air missiles, the interception coverage area can be approximated
by a hemisphere. The path planning space we studied was mainly aimed at an airspace of
6000 m and below for the flight of midair UAVs, so the surface-to-air missile interception
coverage area at this height is represented as the remaining hemisphere with the top part
removed. The threat range of the surface-to-air missile in the environment is shown in
Figure 4.
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The threat cost of the surface-to-air missile to the target within the attack range can be
expressed by the following formula:

Um(vn
i ) =

{
(rm−Rmmin)×(Rmmax−rm)

(Rmmin+Rmmax)
2/4

, Rmin ≤ rm ≤ Rmax and vn
i ⊆ Pm

0 , otherwise
(11)

where rm is the distance between the missile launcher and the attack target; Rmmax is the
maximum attack distance of the missile; Rmmin is the minimum attack distance of the
missile; and Pm is the point set of the surface-to-air missile interception coverage area.

(4) Anti-aircraft artillery threat model and analysis

Similar to the surface-to-air missile, the threat space of anti-aircraft artillery can also be
represented as the remaining hemisphere with the upper part removed. The threat range
of anti-aircraft artillery in the environment is shown in Figure 5.
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Within the scope of the anti-aircraft artillery, the closer the target is to the firing point
of the artillery, the greater the probability of its being shot down; the farther the target is
from the firing point, the smaller the probability, and the probability is zero when it exceeds
the artillery range. The air defense artillery threat cost of the path waypoint vi

n at a certain
point can be represented by Ua, which can be determined using the following formula:

Ua(vn
i ) =

{
exp(− (xn−x0)

2+(yn−y0)
2+(zn−z0)

2

Ra2/9 ) , vn
i ⊆ Pa

0 , otherwise
(12)

where (x0, y0, z0) is the position coordinate of the anti-aircraft artillery; (xn, yn, zn) is the
waypoint coordinate; Ra is the maximum firing radius of the anti-aircraft artillery; and Pa
is the effective point set of the anti-aircraft artillery.

(5) No-fly zone threat model and analysis

Besides avoiding entering enemy threat areas, UAVs also need to avoid no-fly areas
set by meteorological, political or other criteria. Generally speaking, their design is mostly
quadrilateral, so we use quadrangular prisms to represent the no-fly zone for UAVs. The
threat range is shown in Figure 6.
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For waypoint vi
n, define Pn as the point set in the no-fly zone space, and the calculation

method of the no-fly zone threat cost is as follows:

Un(vn
i ) =

{
qn, vn

i ⊂ Pn
0, vn

i 6⊂ Pn
(13)
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2.2. Constraint Analysis

The different sources of constraints that UAVs must satisfy in flight can be divided
into two categories: UAV flight constraints derived from its physical characteristics, and
the cooperative constraints between UAVs.

2.2.1. UAV Flight Constraint Analysis

For the multi-UAV path planning problem studied in this paper, we select and derive a
set of flight constraints suitable for this paper based on the representative constraints in the
literature [29,30] to consider the key performance constraints and complex environmental re-
quirements in UAV path planning. We mainly consider the following four UAV flight constraints:

(1) Minimum turning radius

Due to maneuvering constraints, the UAV turning radius needs to be larger than
the minimum. Therefore, the planned path needs to impose a minimum turning radius
constraint to be flyable, and this can be expressed as:

ri > rmin(i = 1, 2, . . . n) (14)

where ri is the turning radius of the planned path in the first path segment, and rmin is the
minimum turning radius of the UAV.

(2) Minimum path segment length

The minimum path segment length is the minimum distance that the UAV must fly
before changing its attitude. The planned path unit step size we set needed to meet the
minimum path segment length constraint, which can be expressed as

dS > dSmin (15)

where dS is the path planning unit step size, and dSmin is the minimum path length.

(3) Maximum path slope angle

Since the UAV is constrained by engine performance and flight safety, the verti-
cal ascent and dive angles of the path are also limited. Therefore, within a unit path
step, the planned flight path of the UAV must meet the maximum path slope angle con-
straint. Assuming that the horizontal projection of the ith path is expressed as ai =

(xi − xi−1, yi − yi−1)
T , the difference in the vertical direction is bi = |zi − zi−1|, and the

maximum path slope angle is assumed to be θmax, then the maximum path slope angle
constraint can be expressed as:

bi
ai
≤ tan θmax(i = 1, 2, . . . , n) (16)

(4) Minimum ground height

To avoid collision with terrain threats such as mountains, it is necessary to set the
minimum height above the ground, so that the flying height of the UAV is greater than
the minimum height above the ground. The minimum ground height constraint can be
expressed as:

zi ≥ Hmin(i = 1, 2, . . . , n) (17)

where zi is the height value of the ith path planning point, and Hmin is the minimum height
above the ground.

2.2.2. Constraint Analysis

In addition to satisfying the flight constraints of a single aircraft, multi-UAV path
planning also needs to meet the cooperative constraints that require UAVs to cooperate
to complete the task within a specified time without any space conflicts. According to
the task requirements, UAVs need to keep consistent or fly in a certain order. Therefore,
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the cooperative constraints between UAVs are divided into space and time cooperative
constraints.

(1) Time cooperative constraint analysis

A time cooperative constraint requires that each UAV flies from different starting
points according to the planned cooperative path and reaches the target point according
to a certain time sequence or the same time interval. Assuming that the planned track
length of the ith UAV is Li and the speed range is [Vmin, Vmax], the time range Ti for the
UAV to reach the target point is [Li/Vmax, Li/Vmin]. To enable all N UAVs to reach the
target point at the same time through speed allocation, it is necessary that the intersection
of the expected arrival time windows Ti of UAVs not be empty, that is, the cooperative
arrival time window of the UAV group should be T = T1 ∩ T2 ∩ . . . ∩ TN . Although the
time cooperation between UAVs can be achieved by adjusting speed, the adjustable range
is limited. Therefore, as shown in Figure 7, we mainly considered adjusting the arrival time
by adjusting the UAV path length.

Drones 2023, 7, x FOR PEER REVIEW 10 of 26 
 

limited. Therefore, as shown in Figure 7, we mainly considered adjusting the arrival time 
by adjusting the UAV path length. 

 
Figure 7. Time cooperative path. 

(2) Space cooperative constraint analysis 
During multi-UAV cooperative path planning, in addition to the time cooperation of 

UAVs, it is also necessary to consider the space cooperation of different UAVs. As shown 
in Figure 8, the space cooperative constraint is that the distance between any two UAVs in 
flight at the same time is always greater than the safety distance safeD . Suppose the dis-
tance between the ith UAV and jth UAV at the time t  is ( )ijD t . If all N  UAVs are re-
quired to maintain a safe distance, the following formula must be satisfied for any time t
: 

minz ( 1,2,..., )i H i n≥ =  (18) 

 
Figure 8. Space cooperative path. 

3. Multi-Conflict-Based Optimal Algorithm 
Compared with single-UAV path planning, multi-UAV path planning has much 

greater complexity because it needs to consider not only the optimal path of the single-
UAV but also the multi-UAV cooperative path problem. We noticed that the CBS algo-
rithm solved the space cooperative problem of planar multi-agent path planning excel-
lently, so we tried to solve the multi-UAV path planning problem using the CBS algorithm; 
however, new problems were encountered. For example, the low-level A* algorithm had 

Figure 7. Time cooperative path.

(2) Space cooperative constraint analysis

During multi-UAV cooperative path planning, in addition to the time cooperation of
UAVs, it is also necessary to consider the space cooperation of different UAVs. As shown
in Figure 8, the space cooperative constraint is that the distance between any two UAVs
in flight at the same time is always greater than the safety distance Dsa f e. Suppose the
distance between the ith UAV and jth UAV at the time t is Dij(t). If all N UAVs are required
to maintain a safe distance, the following formula must be satisfied for any time t:

zi ≥ Hmin(i = 1, 2, . . . , n) (18)
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3. Multi-Conflict-Based Optimal Algorithm

Compared with single-UAV path planning, multi-UAV path planning has much
greater complexity because it needs to consider not only the optimal path of the single-UAV
but also the multi-UAV cooperative path problem. We noticed that the CBS algorithm
solved the space cooperative problem of planar multi-agent path planning excellently, so
we tried to solve the multi-UAV path planning problem using the CBS algorithm; however,
new problems were encountered. For example, the low-level A* algorithm had difficulty
carrying out 3D space path planning; the UAV had many constraints; and the path conflict
between UAVs was lacking. The specific definition and coordination problems included
both space and time conflicts. In response to these problems, we made a new algorithm
called multi-conflict-based search (MCBS).

3.1. Conflict Based Search

Conflict-based search (CBS) is a multi-agent path planning algorithm chiefly designed
to create a constraint set for each agent according to the conflicts between the paths of
agents and break down the multi-agent path planning problem into a large number of
constrained combinations of single-agent path planning problems. The CBS algorithm is
divided into two levels. The high level is responsible for discovering the conflicts between
paths of agents and adding constraints; the low level is responsible for planning paths that
meet the constraints of the single agent.

The pseudo-code for CBS is shown in Algorithm 1. The high level uses the best-first
search algorithm. The algorithm will generate a root tree node Root with empty constraints
set at first. It consists of four parts: the set of paths, the solution Root.solution, the cost of
the node Root.cost, and the constraints set Root.constraints. The search tree then begins to
expand. All the tree nodes that have not been selected yet are put into the OPENcbs table
and then the node with the lowest growth cost is selected. Each tree node contains a set
of constraints to avoid path conflicts and a set of paths that meet the constraints. The cost
of the node is the sum of the lengths of the paths. When expanding the constraint tree
node, the algorithm will first check the conflict between paths, that is, whether multiple
agents are occupying the same vertex or the same edge at the same time. If there is no
conflict, the path is the target path, and the algorithm terminates. Otherwise, if there is
a conflict between the ith agent ai and the jth agent aj at vertex v, CBS will generate two
child nodes, with the current constraint tree node as the parent. Each child node inherits a
path set and constraint information from its parent, which resolves the conflict by adding
new constraints cs to the child nodes and then replanning the path of the agent through the
low-level A* algorithm. By the growth of the constraint tree, the CBS algorithm analyzes the
two solutions to a conflict to ensure the completeness of the algorithm and the optimality
of the algorithm through the best-first search at both high and low levels.
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Algorithm 1 Pseudocode of the CBS algorithm.

Input: MAPF instance
Root.constraints← ∅ ;
Root.solution← Find path for each agent through A*;
Root.cost← cost(Root.solution) ;
Insert Root into OPENcbs;
While OPENcbs 6= ∅

Find the tree node N with the minimal cost in OPENcbs;
if N.solution has conflicts,
find the conflict (ai, aj, v, t) which occurs first in N.solution;
Remove N from OPENcbs;
for ax in

[
ai, aj

]
:

Create a new constraint set cs = (ax, vx, t);
P← CreatNode() ;
P.constraints← N.constraints + cs ;
P.solution← N.solution ;
P.solution(ax)← Find path for agent ax through A*;
P.cost← cost(P.solution) ;
Insert P into OPENcbs;

if N.solution does not have conflicts,
return N.solution.

3.2. Algorithm Design of MCBS

Corresponding to the two-level design of the CBS algorithm, MCBS divides the
constraints of multi-UAV path planning into two categories: constraints that must be
satisfied in single aircraft planning, such as physical constraints in flight, and the other is
space and time constraints between UAVs. We dealt with these two kinds of constraints in
the low level and the high level of the algorithm, respectively, to find the optimal solution
to satisfy the constraints. For low-level path planning, we designed a sparse A* algorithm
based on the flight constraints of a UAV, which solved the problem of the A* algorithm
adopted by the CBS algorithm having difficulty dealing with UAV path planning in 3D
space. For high-level design, the CBS algorithm only considered the space conflict, whereas
MCBS considers both space and time conflicts and sets the priority of conflict resolution.
The constraint tree always grows first because of the space conflict, and when there is no
space conflict it grows according to the time conflict. The constraint tree will continue to
grow until it finds a path combination solution that has neither a time nor space conflict.
When searching for the optimal path combination solution in the constraint tree, the search
is carried out according to the best priority of the path cost. However, in extreme cases, the
algorithm will traverse all path combinations, making the convergence of the algorithm
slow. Therefore, we designed a heuristic function to make the algorithm search in the
direction of fewer conflicts.

3.2.1. High Level Search

The purpose of the high level is to search different path combinations to find the
optimal one through the growth of the constraint tree. We defined the path conflict between
UAVs and improved the growth mode of the constraint tree and designed a conflict
resolution framework to solve the time and space cooperative problems, as well as a new
heuristic function to guide the algorithm search.

(1) Conflict detection and constraint generation

Unlike the grid environment, the path planning space in the 3D environment is larger,
so the conflict is more difficult to define. We divided the conflict in the path planning
problem of a multi-UAV into two categories: space and time.

(a) Space conflict
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When UAVs fly, it is necessary to maintain a safe distance between UAVs at the same
time. The two space conflicts we considered were point and edge. Point conflict is shown
in Figure 9. Conflict occurs when two aircraft are at the same path point at the same time
or when the distance between two points at the same time is less than the safe distance. As
shown in Figure 10, the edge is formed by connecting the front and rear path points. When
the distance between the points on the edges of two aircraft at the same time is less than
the safe distance, edge conflict occurs.
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Space conflict can be generated as (ai, aj, t, Dsa f e), which means that the mutual dis-
tance between UAV ai and UAV aj at the path point at time t was less than the safe distance
Dsa f e. Space conflict cs can be generated as (ai, vi, t), where vi is the waypoint where UAV
ai is in the event of a conflict, which means that UAV ai is forbidden to be at the waypoint
vi at time t.

(b) Time conflict

Due to mission constraints, multi-UAVs need to reach a target point at the same time
or in a certain order. When the speed is given, the UAV arrival time is determined by the
path length, so the time can be expressed by the number of waypoints in the UAV path.
When the difference between the number of path nodes in the path set is greater than the
maximum time difference required for time cooperation, a time conflict occurs.

This conflict can be generated as (ax, Ttar), which means that the difference between
the path waypoints of UAV ax and the maximum waypoints in the path set is greater than
the target time difference Ttar. The time constraint ct can be expressed as (ax, vt, t, dS), and
vt is the path point of the UAV ax at the time t. The time constraint means that UAV ax is
prohibited from occupying the sphere with path point vt as its center and radius dS at time
t, making this sphere a time-limited area.

(2) The constraint tree

A high-level search uses the best-first search in the nodes of the constraint tree. The
growth of the constraint tree represents the increase in the searchable path combination
solutions. Compared with CBS, MCBS needs to deal with two conflicts because its constraint
tree designs different growth methods for different conflicts.



Drones 2023, 7, 217 13 of 25

Each tree node in the constraint tree includes three parts: constraint set, path set, and
tree node cost. However, compared with CBS, MCBS subdivides the constraint set into a
time set CTime and space set CSpace according to the two conflicts.

(3) Create tree nodes

When the constraint tree generates the initial tree node, it does not consider space and
time cooperation with other UAVs; instead, it plans a path set that only meets the flight
constraints of UAVs as the initial tree node. Each time the constraint tree grows, the tree
node with the lowest cost is selected as the current node. When the conflicts of the current
node are different, the growth methods of the constraint tree are different. The growth
process is shown in Figure 11. If the current node has a time conflict, then the current node
is taken as the parent node to generate child nodes. As shown in Figure 11a, the number of
child nodes is equal to the number of waypoints l in the path of the UAV with time conflict.
Then, a new time constraint cti is added to the ith child node’s time set CTime to solve the
conflict. If the current node has a space conflict, the growth mode of the constraint tree
is the same as that of the CBS. As shown in Figure 11b, the first conflict in the path set
is selected, and then the current node is taken as the parent node to generate two child
nodes and add new space constraint cs for each child node. The child nodes inherit all the
information from the parent and update their own path set through a low-level algorithm
to provide a feasible solution to the conflict. If the current node has both time and space
conflict, the constraint tree of MCBS defines which has priority. It always grows according
to the space conflict first. When the current node has no space conflict, it grows according
to the time conflict.
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(4) Tree node cost

At the high level, the algorithm will maintain an open set, select the tree node with
the lowest path cost in the open set as the parent node for the next growth, then put
the new growth node into the open set and remove the parent node. If the path cost
is calculated according to Formula (2), the algorithm will traverse all tree nodes with
conflicting connections in extreme cases, which will lead to a huge search space. To reduce
both the search space and the time to find the optimal solution, we added the number of
space conflicts of paths and the time cooperative violation of paths as heuristic information
to the path cost and designed a new cost function to guide the growth of the constraint tree.
The new node cost function is defined as follows:

F = J + ωs × ns + ωt ×
n

∑
i=1

(lmax − li) (19)

where ns is the number of space cooperative conflicts between UAVs; lmax is the maximum
number of waypoints in the path set; li is the number of waypoints in the path of the ith
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UAV; ωs and ωt are space and time cooperative penalty factors; and J is the current total
path cost. When the algorithm finds out the target path set, the number of space conflicts
between UAVs is equal to zero, and the difference in the number of voyages in the path set
ns is 0. At this time, F = J.

(5) Conflict resolution

The flow chart of the conflict resolution framework is shown in Figure 12. The
conflict resolution framework can be divided into space conflict and time conflict resolution
frameworks, each with different conflict resolution methods. The process is as follows:

Drones 2023, 7, x FOR PEER REVIEW 15 of 26 
 

 
Figure 12. The flow chart of the conflict resolution framework. 

For the current tree node, the space conflicts in the path sets are detected first. When 
space conflict ( , , , )i j safea a t D  occurs, two child nodes are grown with the current tree node 
as the parent node, and the child nodes inherit the original constraint set and add space 
constraints ( , , )i ia v t  and ( , , )j ja v t , respectively. Thus, the two solutions to the current 
space conflict are discussed through the child nodes. 

Time conflict is not caused by a fixed path point or an edge but by a certain path in 
the path set. As shown in Figure 13, the time conflict can be solved by using the time 
constraint set to make the low-level algorithm bypass the point where the cost is too small 
and prolong the path length, which is too short. When there is no space conflict in the 
current node, we look for a time conflict. When the time conflict ( , )x tara T  occurs at the 
current node, it is used as the parent node to grow xl  child nodes, and each child node 
randomly selects path point tv  at a time t  in the path of UAV xa  as the time constraint 

Figure 12. The flow chart of the conflict resolution framework.

For the current tree node, the space conflicts in the path sets are detected first. When
space conflict (ai, aj, t, Dsa f e) occurs, two child nodes are grown with the current tree node
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as the parent node, and the child nodes inherit the original constraint set and add space
constraints (ai, vi, t) and (aj, vj, t), respectively. Thus, the two solutions to the current space
conflict are discussed through the child nodes.

Time conflict is not caused by a fixed path point or an edge but by a certain path in
the path set. As shown in Figure 13, the time conflict can be solved by using the time
constraint set to make the low-level algorithm bypass the point where the cost is too small
and prolong the path length, which is too short. When there is no space conflict in the
current node, we look for a time conflict. When the time conflict (ax, Ttar) occurs at the
current node, it is used as the parent node to grow lx child nodes, and each child node
randomly selects path point vt at a time t in the path of UAV ax as the time constraint
(ax, vt, t, dS). Then, the time constraint is added to the original time constraint set of child
nodes. lx is the number of waypoints in the path of UAV ax, which means that all solutions
to the current time conflict are discussed and analyzed through subsequent subnodes to
ensure the completeness of the algorithm.

Drones 2023, 7, x FOR PEER REVIEW 16 of 26 
 

( , , , )x ta v t dS . Then, the time constraint is added to the original time constraint set of child 
nodes. xl  is the number of waypoints in the path of UAV xa , which means that all solu-
tions to the current time conflict are discussed and analyzed through subsequent sub-
nodes to ensure the completeness of the algorithm. 

 
Figure 13. Path extension. 

3.2.2. Low Level Search 
The algorithm sets the constraint set for each UAV according to the conflict at the 

high level and finds a path satisfying the constraint set for the UAV at the low level. We 
adopted the sparse A* algorithm at the low level and, based on it, we eliminated invalid 
points by combining the flight constraints of the UAV, thus reducing the search space, 
shortening the search time, and meeting the physical characteristics of UAV, which can be 
directly applied to its flight. 
(1) Waypoint cost function 

When the sparse A* algorithm was expanded, the cost function of the nth waypoint 
could be determined according to the following formula: 

( ) ( )( ) ( )n i i n
l tf v f v f v h v= + +  (20) 

where ( )ilf v  is the cumulative length cost; ( )itf v  is the path threat cost; and ( )nh v  is 
heuristic information. As shown in formula (21), the cumulative length cost ( )ilf v  is the 
sum of the distances from the starting point to the current waypoint, and the cumulative 
threat cost ( )itf v  is the sum of the threat costs of all waypoints. 

( ) ( )

( ) ( )
2

1

n
i i

l l
i
n

i i
t t

i

f v j v

f v j v

=

=

 =

 =




 (21) 

The heuristic information ( )nh v   is the Manhattan distance from the current way-
point to the target waypoint. When the waypoint is identical to the target waypoint, ( )nh v  
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3.2.2. Low Level Search

The algorithm sets the constraint set for each UAV according to the conflict at the high
level and finds a path satisfying the constraint set for the UAV at the low level. We adopted
the sparse A* algorithm at the low level and, based on it, we eliminated invalid points by
combining the flight constraints of the UAV, thus reducing the search space, shortening the
search time, and meeting the physical characteristics of UAV, which can be directly applied
to its flight.

(1) Waypoint cost function

When the sparse A* algorithm was expanded, the cost function of the nth waypoint
could be determined according to the following formula:

f (vn) = fl

(
vi
)
+ ft

(
vi
)
+ h(vn) (20)

where fl
(
vi) is the cumulative length cost; ft

(
vi) is the path threat cost; and h(vn) is

heuristic information. As shown in Formula (21), the cumulative length cost fl
(
vi) is the

sum of the distances from the starting point to the current waypoint, and the cumulative
threat cost ft

(
vi) is the sum of the threat costs of all waypoints.

fl
(
vi) = n

∑
i=2

jl
(
vi)

ft
(
vi) = n

∑
i=1

jt
(
vi) (21)

The heuristic information h(vn) is the Manhattan distance from the current waypoint
to the target waypoint. When the waypoint is identical to the target waypoint, h(vn) is
zero, and the waypoint cost ft

(
vi) is equal to the path cost Ji of the UAV.

(2) Waypoint extension

Successor waypoints can be divided into upper, horizontal, and lower layers according
to the different heights. Each layer contains three subsequent waypoints at the same
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altitude. When the waypoint is expanded, subsequent waypoints on the horizontal plane
are calculated according to the current yaw angle and the minimum turning radius of the
UAV; then the maximum climb and maximum dive altitudes that correspond to the aircraft
are calculated based on the maximum path slope angle. Finally, the successor waypoints of
the upper and lower layers are calculated.

The expansion of the waypoint in the horizontal layer is shown in Figure 14. On
the horizontal plane, each waypoint expands three subsequent waypoints at one time. Si

j
indicates that the parent waypoint of the current waypoint Sj is Si.
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In Figure 14, dS is the unit step size of the waypoint and rmin is the minimum
turning radius of the UAV. The coordinates of the next generation extended waypoints
(Sn+1

n , Sn+2
n , Sn+3

n ) can be calculated as

dψ = dS/Rmin (22)

c = Rmin

√
2 · (1− cos(dψ)) (23)

Sn+1
n = Sn +

−c · cos(ψ + 0.5dψ)
c · sin(ψ + 0.5dψ)

dψ

 (24)

Sn+2
n = Sn +

−dS · cos(ψ)
dS · sin(ψ)

0

 (25)

Sn+3
n = Sn +

−c · cos(ψ− 0.5dψ)
c · sin(ψ− 0.5dψ)

−dψ

 (26)

3.3. Algorithm Procedure

The multi-UAV cooperative path planning problem is essentially a constrained opti-
mization problem. The MCBS algorithm adopts a two-level design; the low level is used to
find the optimal path of UAV, and the high level is used to find the optimal combination
path of a multi-UAV. MCBS divides the UAV constraints into flight and cooperative con-
straints. Flight constraints are resolved at the low level, and collaborative constraints at the
high level.

The high level solves the time and space conflicts separately by setting different
priorities for the UAV constraints. Corresponding to lines 8 to 19, the algorithm first solves
the space conflict through the space constraint set. According to lines 20 to 30, when the
current node has no space conflicts, time conflicts are resolved through the time constraint
set. Lines 31 to 33 state that when there are no space or time conflicts at the current node, a
solution that satisfies the constraints is obtained. To obtain the solution that satisfies the
constraints as the optimal solution, the best-first algorithm was carried out in the constraint
tree to ensure the optimality of the algorithm, which corresponds to line 26.
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The lower level of the algorithm combines the flight constraints of the UAV to limit the
waypoint selection so that the final path meets the physical characteristics of the UAV. At
the high level, when resolving a space conflict, the constraint tree generates two child nodes,
and when resolving a time conflict, the constraint tree generates child nodes with the same
number of waypoints in the path where the time conflict occurred. In this way, all solutions
to different conflicts are analyzed and evaluated in detail, ensuring the completeness of
the algorithm. At the high and low levels, we introduce heuristic information to accelerate
convergence and ensure that the results were optimal. The algorithm pseudocode is shown
in Algorithm 2.

Algorithm 2 Pseudocode of proposed algorithms.

Input: number of UAV, starting points, target points, Dsa f e, Ttar.
Output: optimal solution that satisfies flight constraints and cooperative constraints.
Root.time_constraints← ∅ ;
Root.space_constraints← ∅ ;
Root.solution← Find path for UAV through low level search;
Root.cost← cost(Root.solution) ;
insert Root into OPENcbs;
while OPENcbs 6= ∅

find the tree node N with the minimal cost in OPENcbs;
if N.solution has space conflicts,
find the space conflict (ai, aj, t, Dsa f e) which occurs first in N.solution;

remove N from OPENcbs;
for ax in

[
ai, aj

]
create a new space constraint set cs = (ax, vx, t);
P← CreatNode() ;
P.time_constraints← N.time_constraints ;
P.space_constraints← N.space_constraints + cs
P.solution← N.solution
P.solution(ax)← Find path for UAV ax through low level search;
P.cost← cost(P.solution) ;
insert P into OPENcbs;

if N.solution does not have space conflicts but has time conflicts (ax, Ttar),
remove N from OPENcbs;
for i =1 : lx

Create a new time constraint set cti = (ax, vt, t, dS);
P← CreatNode() ;
P.time_constraints← N.time_constraints + cti ;
P.space_constraints← N.space_constraints ;
P.solution← N.solution ;
P.solution(ax)← Find path for UAV ax through low level search;
P.cost← cost(P.solution) ;
insert P into OPENcbs;

if N.solution has neither space conflicts nor time conflicts,
break;
then, return N.solution.

4. Simulation Studies

We simulated and analyzed MCBS in a complex environment. It mainly verified the
superiority of a heuristic search at the high-level and the applicability of solving temporal
and space cooperation problems in multi-UAV cooperative path planning.

4.1. Environmental and Parametric

In order to be close to the real battlefield environment, we set the parameters of various
threats, as shown in Table 1, based on the real environment space in a certain western
region as the battlefield setting area.
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Table 1. Parameters related to various threats.

Type of Threat Attributes

Air defense
radar

radar number coordinates radius
radar 0 [300, 400, 20] 80 km
radar 1 [700, 600, 25] 70 km

Surface-to-air
missile

missile number coordinates radius

missile 0 [400, 750, 20] 60 km

Anti-aircraft
artillery

artillery number coordinates radius
artillery 0 [600, 180, 25] 30 km
artillery 1 [750, 320, 20] 30 km

No-fly zone
vertex coordinates:

p1 = [520, 320]; p2 = [620, 340];
p3 = [600, 430]; p4 = [520, 430];

The cooperate constraints imposed on UAVs are affected by the type of mission. We
selected the most common allocation and rendezvous task for the multi-UAV. The allocation
task was to require the UAV to avoid various threats and reach the airspace near the target
point from an initial point, which required high space cooperation. The rendezvous tasks
required all UAVs to arrive at the same target point at the same time, which required higher
space and time coordination. The parameter settings of the algorithm are shown in Table 2.

Table 2. Parameters related to various tasks.

Allocation Task Rendezvous Task

Safe distance Dsa f e 7.5 km 7.5 km

Maximum node difference Ttar 0 0

Minimum unit step dSmin 25 km 25 km

Minimum turning radius rmin 25 km 25 km

Minimum ground height Hmin 2.5 km 2.5 km

4.2. Algorithm Comparative Analysis

(1) Allocation task

Figures 15 and 16 show the multi-UAV cooperative path planning results of the MCBS
algorithm when the number of UAVs performing the allocation tasks was different. As can
be seen in Figures 15 and 16, the MCBS algorithm is able to find a safe path for each UAV.

However, it is difficult to see from Figures 15 and 16 whether the set of paths satisfies
the cooperation constraints. Therefore, we set the velocity of all UAVs to 600 km/h and
calculate the shortest distance between UAVs and the time tolerance of the path set. The
time tolerance of the ith UAV is calculated as follows,

∆t =
li − lm

vi
, (27)

where li is the length of the path of the ith UAV; is the median of all UAV path lengths; and
vi is the velocity of the ith UAV. If the time tolerance of all UAVs is less than 1.5 min, the time
cooperative constraints are met. Figure 17 shows shortest distance results between UAVs
when five and ten UAVs performed allocation tasks by different algorithms. Figure 18
shows time tolerance results of different algorithms when five and ten UAVs performed
allocation tasks by different algorithms.
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To further verify that the paths satisfy the flight constraints and to evaluate the set of
paths planned by different algorithms, we present the constraints satisfaction results for
different algorithms in Table 3. From Table 3, it can be seen that the paths planned by all
three algorithms can satisfy the flight constraints of UAVs. However, the results of sparse
A* cannot handle the cooperative constraints, and CBS handled the space constraints well,
but not the time constraints. Only the set of paths planned by the MCBS algorithm can
meet all the constraints.

Table 3. Paths’ constraints evaluation by different algorithms when 10 UAVs perform allocation tasks.

Sparse A* CBS MCBS

Minimum unit step of the paths 25.57 km 25.36 km 25.11 km

Minimum turning radius of the paths 25.54 km 25.38 km 25.21 km

Minimum ground height of the paths 3.62 km 3.62 km 2.97 km

Maximum node difference of the paths 4 4 0

Shortest distance of the paths 0.93 km 7.60 km 7.51 km

Maximum time tolerance of the paths 10.10 min 4.52 min 1.26 min

(2) Rendezvous task

Figures 19 and 20 shows the multi-UAV cooperative path planning results of the MCBS
algorithm when the number of UAVs was different when performing rendezvous tasks.
Figure 21 shows the path length and shortest distance results at the same moment, planned
by different algorithms when five and ten UAVs performed a rendezvous task. Figure 22
shows the time tolerance results of different algorithms when five and ten UAVs performed
rendezvous tasks by different algorithms. Table 4 presents the constraints meet results for
different algorithms. As can be seen from Figures 19 and 20, MCBS is capable of planning
safe paths for UAVs performing the rendezvous task. From Figures 21 and 22 and Table 4,
MCBS can solve the time and space cooperative constraints and found the optimal path set
for multi-UAVs to fly safely and meet the flight constraints.
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Figure 20. Algorithm simulation results when 10 UAVs perform rendezvous tasks. (a) 3D view.
(b) Top view.
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Figure 21. Shortest distance results of different algorithms. Note that the experimental scenario is a
rendezvous task scenario, so collision checking ends when it reaches the path nodes before the target
node (i.e., assuming there are no collisions in the target region). (a) Shortest distance between 5 UAVs.
(b) Shortest distance between 10 UAVs.
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Table 4. Paths’ constraints evaluation by different algorithms when 10 UAVs perform rendezvous
tasks. Note that the target point is removed when calculating the shortest distance.

Sparse A* CBS MCBS

Minimum unit step of the paths 25.31 km 25.31 km 25.15 km

Minimum turning radius of the paths 25.85 km 25.85 km 25.31 km

Minimum ground height of the paths 3.86 km 3.86 km 3.1 km

Maximum node difference of the paths 4 4 0

Shortest distance of the paths 1.20 km 7.52 km 9.02 km

Maximum time tolerance of the paths 21.90 min 21.90 min 1.40 min

4.3. Parametric Analysis
4.3.1. Task Parameter Analysis

Based on the above environment, we selected different starting and ending points
many times to test the runtime of our algorithm under different parameters. The number
of UAVs varied from 3 to 23; the maximum time difference Ttar from 0 to 2 min; and safe
distance Dsa f e from 0 to 7.5 km in increments of 2.5 km. The test results are shown in
Figure 23.

4.3.2. Penalty Factor Parameter Analysis

Previously, we introduced heuristic information including penalty factors in the cost
function of tree nodes. To verify the effectiveness of this scheme, we analyzed the impact
of the penalty factor on the success rate of the algorithm when performing different tasks
based on the environment in 4.1. We stipulated that the algorithm failed when it could not
give a valid solution within 5 min. The simulation results are shown in Figure 24.

The size of the penalty factor influenced the importance of space and time cooperation
when the constraint tree grew. As it did, we prioritized resolving space conflicts. Then,
on the basis that the space conflicts have been resolved, the constraint tree was made to
grow in the direction of resolving time conflicts without generating a new space conflict.
Therefore, as can be seen from Figure 24, when ωt = 5 and ωs = 10 such as that ωs×∆ns >

ωt × ∆
n
∑

i=1
(lmax − li) > ∆J, the algorithm was the most efficient.
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Figure 23. The runtime of MCBS under different parameters. (a) Dsa f e = 0 km. (b) Dsa f e = 2.5 km.
(c) Dsa f e = 5 km. (d) Dsa f e = 7.5 km. The runtime related positively to the number of conflicts it
needed to deal with. When the number of UAVs was fewer than 15, the number of conflicts was
relatively small, and the optimal solution to the problem was found within 5 min. When the time and
space cooperative conditions became more stringent or the number of UAVs increased, the number
of collaborative conflicts increased rapidly, as did the time used by the MCBS.
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5. Conclusions

In this study, a cooperative path planning algorithm for UAVs based on multi-collision
detection was proposed. A complex mission environment model was established based on
UAV flight and cooperative constraints, and a spatial and temporal collaborative solution
framework was designed for multi-UAV collaborative problems. A three-dimensional
environment path planning method based on an improved sparse A* was designed for
a single aircraft. For multi-UAV cooperation, the collaborative conflict between multiple
UAVs was defined; the priority of different collaborative conflicts was set; the growth mode
of the constraint tree was changed; and a new heuristic function was designed to guide the
search to reduce the convergence time of the algorithm. A comparison was made among
the planning results of this algorithm, the traditional CBS, and the sparse A * algorithm
for different UAV group tasks in a complex mission environment. The simulation results
showed that the proposed algorithm could deal with the coupling problem of time and
space cooperation in complex environments and find the optimal safe cooperative path
that satisfied the flight and cooperation constraints for multiple UAVs.
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In the multi-UAV cooperative track planning problem, this paper mainly focused on
the static threat before the start of the mission; in fact, the threat in the mission environment
was often highly dynamic. Therefore, on the basis of cooperative track planning research,
more dynamic scenarios such as mobile threats and random mobile threats can be con-
sidered to improve the adaptability of cooperative track planning to a complex mission
environment.

In the future work, we plan to apply the MCBS algorithm to a multi-UAVs system
with local communication for real outdoor experiments. In the planned experiments,
the proposed algorithm requires each UAV to have an independent communication unit
to achieve real-time communication. Therefore, ensuring the reliability and real-time of
communication between UAVs is also a challenge to be faced during the implementation
of this algorithm. In addition, we plan to further evaluate the algorithm through real
experiments to study how to handle dynamic threats.
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