
Citation: Zhang, P.; Su, Y.; Li, B.; Liu,

L.; Wang, C.; Zhang, W.; Tan, L. Deep

Reinforcement Learning Based

Computation Offloading in

UAV-Assisted Edge Computing.

Drones 2023, 7, 213. https://doi.org/

10.3390/drones7030213

Academic Editor: Shiva Raj Pokhrel

Received: 24 February 2023

Revised: 13 March 2023

Accepted: 17 March 2023

Published: 19 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Deep Reinforcement Learning Based Computation Offloading
in UAV-Assisted Edge Computing
Peiying Zhang 1,2 , Yu Su 1, Boxiao Li 3,4, Lei Liu 2,5,*, Cong Wang 6, Wei Zhang 7,* and Lizhuang Tan 7

1 Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum
(East China), Qingdao 266580, China; zhangpeiying@upc.edu.cn (P.Z.)

2 State Key Laboratory of Integrated Services Networks, Xidian University, Xi’ an 710071, China
3 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
4 China Academy of Electronics and Information Technology, Beijing 100041, China
5 Xidian Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China
6 School of Computer and Communication Engineering, Northeastern University at Qinhuangdao,

Qinhuangdao 066004, China
7 Shandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center (National

Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences),
Jinan 250013, China

* Correspondence: leiliu@xidian.edu.cn (L.L.); wzhang@sdas.org (W.Z.)

Abstract: Traditional multi-access edge computing (MEC) often has difficulty processing large
amounts of data in the face of high computationally intensive tasks, so it needs to offload policies to
offload computation tasks to adjacent edge servers. The computation offloading problem is a mixed
integer programming non-convex problem, and it is difficult to have a good solution. Meanwihle,
the cost of deploying servers is often high when providing edge computing services in remote areas
or some complex terrains. In this paper, the unmanned aerial vehicle (UAV) is introduced into
the multi-access edge computing network, and a computation offloading method based on deep
reinforcement learning in UAV-assisted multi-access edge computing network (DRCOM) is proposed.
We use the UAV as the space base station of MEC, and it transforms computation task offloading
problems of MEC into two sub-problems: find the optimal solution of whether each user’s device
is offloaded through deep reinforcement learning; allocate resources. We compared our algorithm
with other three offloading methods, i.e., LC, CO, and LRA. The maximum computation rate of our
algorithm DRCOM is 142.38% higher than LC, 50.37% higher than CO, and 12.44% higher than LRA.
The experimental results demonstrate that DRCOM greatly improves the computation rate.

Keywords: multi-access edge computing; deep reinforcement learning; computation offloading

1. Introduction

With the rapid development of mobile communication technology, the number of
Internet users has exploded, and people have a higher pursuit: everything is connected,
which is the Internet of Things (IoT) [1]. The IoT is essentially an extension on the basis of
the Internet that combines various information sensing devices with the network to form a
huge network to realize the interconnection of people, machines, and things at any time
and any place. Nowadays, IoT has been applied to intelligent transportation, smart homes,
and other fields [2]. However, as users have higher and higher requirements for IoT devices,
the computing power of some IoT devices have difficulty processing a large amount of data.
At the same time, there are also hidden dangers in real-time, energy consumption, and data
security. In order to solve these problems, mobile edge computing comes into being.

In 2017, mobile edge computing officially changed its name to multi-access edge
computing (MEC) [3]. It can deploy tasks that require high-density computing, large traffic,
and low latency nearby to meet customers’ multiple requirements for security, speed, and

Drones 2023, 7, 213. https://doi.org/10.3390/drones7030213 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7030213
https://doi.org/10.3390/drones7030213
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-0990-5581
https://doi.org/10.3390/drones7030213
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7030213?type=check_update&version=1

Drones 2023, 7, 213 2 of 14

reliability [4]. Additionally, it can generally be regarded as a cloud server running at the
edge of the mobile network and running a specific task. Since the MEC is very close to the
user or information source geographically, the delay of the network responding to the user
request is greatly reduced, and the possibility of network congestion in the transmission
network and core network is also reduced. In traditional multi-access edge computing,
servers are mostly deployed in ground base stations [5]. In some remote areas with complex
landforms, the cost of deploying servers is often higher than the revenue. When we carry
out wilderness rescue and geological exploration, it is hard to apply MEC technology.

The cost of deploying servers is often high when providing edge computing services
in remote areas or some complex terrains. An unmanned aerial vehicle (UAV) is a kind
of unmanned aerial vehicle controlled by radio remote control equipment and program
control device. In the present era, it has been applied to highway surveillance, post-disaster
search and rescue, military, and other fields [6]. As shown in Figure 1, because of its small
size, low cost, ease of use, and high mobility, it can be applied to MEC as an aerial base
station, which can receive computationally intensive tasks offloaded from user devices. In
this paper, we consider that the offloading policy of user devices is binary, either computing
locally or offloading computing tasks to adjacent edge servers [7]. In general, the quality of
service of the system depends, to a certain extent, on the optimal offloading policy. Due
to its binary characteristics, this kind of problem is usually expressed as a mixed integer
programming (MIP) problem, which is an NP-hard problem. It is generally solved by the
branch and bound method [8], cut plane method [9], and heuristic algorithm [10]. The first
two methods have extremely high computational complexity in the face of large-scale MEC
networks, and the results obtained by the heuristic algorithm are sometimes unsatisfactory.
In order to solve these problems, scholars have introduced deep reinforcement learning
into MEC to make offloading policies in recent years. The contributions of this paper are
as follows:

• UAV is introduced into traditional multi-access edge computing, due to the character-
istics of being easy to use and having low cost. We can use it as a server to provide
edge computing services in remote areas or some complex terrains.

• A computation offloading method based on deep reinforcement learning in UAV-
assisted multi-access edge computing network (DRCOM) is proposed. In order to
maximize the computing rate, deep reinforcement learning is used to find the optimal
solution of whether each user device performs computation offloading.

• We transform the computation offloading problem into two sub-problems: computing
offloading policy problem and resource allocation problem. It transforms a MIP
problem into a complex problem, which reduces computational complexity.

The rest paper is structured as follows: related work is introduced in Section 2, in-
cluding multi-access edge computing and UAV-assisted multi-access edge computing. Our
model and problem description is introduced in Section 3. We first introduce local comput-
ing and computation offloading and then propose the optimization objective. In Section 4,
we introduce the overall deep reinforcement learning model, followed by the generation
and updating of offloading action. Additionally, we carry out the experiment and analyze
the experimental results in Section 5. In Section 6, we summarize the conclusions and
propose directions for future work.

Drones 2023, 7, 213 3 of 14

Cloud server

MEC server
UAV

Figure 1. UAV-assisted multi-access edge computing model.

2. Related Works

In this section, the research related to multi-access edge computing and UAV-assisted
mobile edge computing is introduced.

Multi-access edge computing is at the intersection of the wireless network edge and
the infrastructure edge, where the mobile network and the Internet meet and deliver data
traffic [11]. It shares the same goal as edge computing: offloading the computing power
closer to where data is generated and decisions are made for faster, more efficient responses.
By placing traditional digital infrastructures close to mobile networks, MEC enables tele-
com operators to provide substantial improvements in performance and latency reduction
for mobile communications, games, video streaming, and the Internet of Things [12]. All of
these are achieved through the combination of wireless networks and traditional Internet
infrastructure. MEC technologies mainly include four types: server placement technology,
resource allocation, computation offloading technology, and mobility management technol-
ogy [13]. The server placement technology mainly studies how to select the best placement
position of the server to make the system performance optimal. The resource allocation
and computation offloading technology mainly focuses on the joint management of the
system’s computing resources, storage resources, and communication resources and makes
offloading decisions to achieve the expected goal. In the aspect of mobility management
technology, more consideration is given to the mobility of the user device and whether to
perform task offloading when the user device moving in different cells [14].

This paper mainly focuses on the computation offloading problem in MEC, which
is usually formulated as a convex optimization problem in most research. Ren et al. [15]
focused on the problem of minimizing the delay in the mobile-edge computation offload-
ing system. For the partial compression offloading model, they transformed the original
problem into a piecewise convex problem, and proposed an optimal resource allocation
scheme based on the subgradient algorithm. Chang et al. [16] proposed a joint computation
offloading and radio and computation resource allocation algorithm based on Lyapunov
optimization. By minimizing the derived upper bound of the Lyapunov drift plus penalty
function, the main problem was divided into several sub-problems, which were addressed
separately in pursuit of the minimization of the energy consumption of the system under
consideration for each time slot. Zhao et al. [17] proposed a privacy-preserving computa-
tion offloading method based on privacy entropy. First, privacy entropy was proposed as a
quantitative analysis metric because of the task offloading frequency characteristics of user

Drones 2023, 7, 213 4 of 14

computation tasks. Then, privacy constraints were introduced into the existing offload-
ing decision model, and a privacy-preserving offloading decision model was established.
Finally, they solved the offloading decision, which satisfied the privacy constraints and op-
timal energy consumption goals based on the genetic algorithm, used the optimal decision
to train the artificial neural network parameters. Additionally, the trained neural network
was used to adjust the impact of privacy, energy consumption, and delay constraints.

Jeong et al. [18] studied a UAV-based mobile cloud computing system that deployed
computation offload capability for UAV. For the uplink and downlink transmissions re-
quired for the offloading procedure, two types of access schemes are considered, namely
orthogonal access and non-orthogonal access. They introduced successive convex approxi-
mation strategies to solve the problem of jointly optimizing the bit allocation for uplink and
downlink communications, as well as the computation at the UAV, which achieves total
mobile energy consumption minimization. Kim et al. [19] proposed an optimal task-UAV-
mobile edge server matching algorithm based on the Hungarian algorithm, which took into
account the energy consumption and processing, latency times in the mobile edge server,
and the location of the UAVs, tasks, and mobile edge server. In order to reduce the energy
consumption of the UAVs when they were moving, they not only considered the current
position of the UAVs, but also the position the UAVs returned. Zhang et al. [20] proposed a
new optimization problem formulation, which aims to minimize the total energy consump-
tion by optimizing bit allocation, slot scheduling, power allocation, and UAV trajectory
design. The energy included communication-related energy, computing-related energy, and
drone flight energy. Since the formulation problem was non-convex, it was difficult to find
the optimal solution. They solved the problem in two parts and obtained an approximate
optimal solution by the Lagrangian dual method and the successive convex approximation
technique, respectively. Liu et al. [21] proposed an optimization problem to jointly optimize
the CPU frequencies, the offloading amount, the transmit power, and the UAV’s trajectory,
in order to minimize the total energy required for UAVs in UAV-assisted MEC systems.
Since the problem was non-convex, they used an algorithm based on successive convex
approximation to solve the problem. However, it had high computational complexity, so
an algorithm based on decomposition and iteration was proposed.

3. Problem Description and Modeling

In this paper, we focus on the problem of computation task offloading policies for
UAV-assisted MEC. We need to pay attention to the fact that the UAV is equipped with
a server, and our research content is the MEC assisted by a single UAV. In fact, there is
more than one user device connected to a UAV in an area. We use a set U to represent
the set of user devices: U = {1, 2, ..., N}, where the user devices are all connected to the
UAV through the wireless network. The UAV can broadcast radio frequency energy to user
devices, each of which is powered and can store the received energy. The wireless power
transmission (WPT) and computation offloading are carried out in the same frequency
band. In order to avoid mutual interference between the WPT and computation offloading,
all circuits use time-division multiplexing circuits. Assuming that the computation power
of the UAV is higher than that of the connected user devices, the user devices can offload its
computation tasks to the UAV facing with computationally intensive tasks. We represent
the user device’s offloading policy as a binary policy, either offloading to the UAV or
performing local computations. We use the symbol fi to represent the policy of the ith user
device, where i ∈ N. If fi = 1, it means that the computation task is offloaded to the UAV.
If fi = 0, the computation task of the user devices is computed locally. The system time is
divided into continuous times of equal length T. We will introduce the whole process from
two aspects: local computing and computation offloading.

Drones 2023, 7, 213 5 of 14

3.1. Local Computing

The user devices may choose to perform local computing, which can harvest energy
and perform computation tasks concurrently [22]. The energy harvested by the ith user
device Ei can be given by:

Ei = ehiPxT, (1)

where e is the efficiency of energy harvesting and e ∈ (0, 1). P is the transmit power of the
UAV. hi is the wireless channel gain between the UAV and the ith device within T time. xT
is the length of time for WPT within T time, and x ∈ (0, 1) [23].

The energy consumption of the user device during T time is kc3T, where k is the
energy efficiency coefficient [24] and c refers to the computing speed of the processor. In
general, it should be less than or equal to the harvested energy, so we have:

kc3T ≤ Ei. (2)

In order to maximize the local computing power of the user devices, we assume that
they used up all the harvested energy. So we have:

kc3T = Ei, (3)

so we can deduce c = (Ei
kT)

1
3 .

Thus, the local computation rate RL,i(x) can be given by:

RL,i(x) =
cti
φT

=
(Ei

kT)
1
3 T

φT

=
(Ei)

1
3

k
1
3 T

1
3 φ

=
(eP)

1
3

φ
(

hi
k
)

1
3 x

1
3

= µ(
hi
k
)

1
3 x

1
3 ,

(4)

where µ = (eP)
1
3

φ , and cti
φ refers to the number of bits processed by the user device. What

we consider is that the user device makes full use of the T time period, so ti = T.

3.2. Computation Offloading

We define the time taken for ith user device computation offloading as yiT, where
yi ∈ [0, 1] and i ∈ N. Due to the limitation of its circuit, the user devices can only offload
the task to the UAV after harvesting energy. Assuming that the computing speed and
transmission power of the UAV are much greater than that of the user device [25], the time
of the UAV on computation offloading and downloading can be ignored, and each time
frame is only occupied by WPT and computation offloading. So we have:

N

∑
i=1

yi + x ≤ 1. (5)

In order to maximize the computing speed, the user devices will try to use up the
energy that is harvested during offloading, so the offloading power of the user devices pi is
denoted as:

pi =
Ei

yiT
. (6)

Drones 2023, 7, 213 6 of 14

Accordingly, the computing rate of the user device is equal to its data offloading
capability, so we have:

RO,i(x, yi) =
Byi
vu

log2(1 +
ePx(hi)

2

yiPN
), (7)

where RO,i(x, yi) is the data offloading capability, B is the bandwidth of the link, and PN is
the noise power [26].

3.3. Optimization Objective

We assume that only hi among the previously mentioned parameters changes over
time, and the other parameters are fixed. Therefore, the weighted sum computation rate of
MEC in T time frame is expressed as:

C(h, f , y, x) =
N

∑
i=1

wi((1− fi)RL,i(x) + fiRO,i(x, yi)), (8)

where wi denotes the weight assigned to the computing rate of the ith device.
During the task offloading process, a faster computation rate means the higher the

efficiency. Therefore, the optimization objective OPT is expressed as follows:

OPT(h) = max C(h, f , y, x) (9)

subject to
N

∑
i=1

yi + x ≤ 1, (10)

x ≥ 0, (11)

yi ≥ 0, (12)

fi ∈ {0, 1}, (13)

∀i ∈ N. (14)

The optimization problem is a mixed integer programming non-convex problem,
which is NP-hard. However, once fi is given, OPT can be transformed into a convex
problem, as follows:

OPT(h, f) = max C(h, f , y, x) (15)

subject to
N

∑
i=1

yi + x ≤ 1, (16)

x ≥ 0, (17)

yi ≥ 0, (18)

∀i ∈ N. (19)

Therefore, we can divide OPT(h) into two sub-problems: computation offloading
policy problem and resource allocation problem:

• Computation o f f loading policy. Each user device has two options: local computing
or offloading the computation task to the UAV, so there are 2N cases. In this paper, we
use the deep reinforcement learning algorithm to decide the computation offloading
policy, which can achieve better results in a shorter time.

• Resource Allocation. After solving the computation offloading policy problem, fi is
already a fixed value, and the problem is transformed into a convex problem, which
can be solved efficiently. Table A1 summarizes the notations commonly used in
this section.

Drones 2023, 7, 213 7 of 14

4. Deep Reinforcement Learning Based Computation Offloading in UAV-Assisted MEC

In this section, we describe the computation offloading algorithm based on deep
reinforcement learning in UAV-assisted MEC in detail. Our optimization objective is to
maximize the weighted sum computation rate of MEC. From the above derivation, we
divide the optimization objective into two sub-problems. First, deep reinforcement learning
is used to solve the computation offloading decision-making problem of user devices and
determine fi, and then we allocate resource to determine the time spent on WPT and
computation offloading in each time frame.

4.1. Offloading Action Generation

As shown in Figure 2, we observe the channel gain at time t. When t = 0, the
weights in the deep neural network are randomly initialized according to the normal
distribution with mean 0. Due to the approximation principle of neural network, ReLu,
whose output is expressed as f (x) = max(0, x), is used here as the activation function of
hidden layer [27]. Sigmod activation function is used in output layer, whose output is
expressed as S(x) = 1

1+e−x , and it can make offloading action between (0,1) [28]. Then, we
perform decision concretization on the trained vt, mapping it into a binary decision:

ft =

{
1, vt > 0.5,
0, vt ≤ 0.5.

(20)

resource allocation

DNN

computation offloading

Outputreplay memory

),(

tt fh

time frame

optimal

offloading

action
extract sample

train

tf

tf
th

),(maxarg

tt fhOPT

+

=

=

.

,0

,0

,1

),,,(max),(

1i

t

Ni

y

x

xy

xyfhCfhOPT

i

N

i

tttt

1 2

3

45

6

input outputhidden layers

Figure 2. Deep reinforcement learning model.

We bring the obtained offloading policy into the OPT(h, f) problem, solve the complex
problem, and find its optimal value. The offloading action ft

∗ at this time is expressed as:

ft
∗ = argmax OPT(ht, ft). (21)

4.2. Deep Reinforcement Learning

Deep reinforcement learning combines deep learning and reinforcement learning to
demonstrate powerful learning capabilities in the field of artificial intelligence, which is
mainly used to solve high-dimensional spatial tasks [29]. It mainly consists of five elements:
agent, environment, reward, state, and action. The agent, which is generally composed of a
neural network, performs new actions in the environment after training. The environment
will feed back rewards to the agent, and the agent will update its state accordingly [30]. As
shown in Figure 2, our computation offloading policy employs deep reinforcement learning
to make decisions.

The algorithm mainly consists of two processes: offloading action generation and
offloading action update. The generation of offloading action depends on the deep neural
network. At the time point t, the deep neural network takes the channel gain ht as input,
obtains the current offloading policy, and outputs the offloading action vt after training.

Drones 2023, 7, 213 8 of 14

After that, we quantify vt relaxation action into binary offloading actions ft, bring it into the
problem OPT(ht, ft), and select an optimal offloading action in the optimization problem.
We use argmax(ht, ft

∗) to represent this step. MEC performs the offloading action ft
∗ to

get the reward OPT(ht, ft
∗) and add the newly acquired state action (ht, ft

∗) to the replay
memory. Then, a batch of training samples is extracted from the replay memory to train
the deep neural networks (DNN) in the policy update phase of the t time frame [31], and
the DNN updates the parameters accordingly. We use the new offloading policy in the next
time frame to generate new offloading decisions based on the new channel ht+1 observed.
We iterate the model repeatedly, and the policy of the DNN is gradually improved.

4.3. Offloading Action Updates

We use the replay memory technology to train the deep neural network, which reduces
the correlation of samples and greatly improves the performance and stability of network
training. At time t, we put the obtained state action (ht, ft

∗) into the replay memory. Since
the memory is limited, the newly generated sample data will replace the oldest data sample
when the memory is full. We define ξ as the training interval. Every ξ time frames, we
randomly select a batch of training data samples from the memory for training. The Adam
algorithm [32] is used to optimize the parameters (weights of neurons in the hidden layer)
in the deep neural network. The pseudo code of the DRCOM algorithm is shown in
Algorithm 1.

Algorithm 1 Deep reinforcement learning training process

Input: Wireless channel gain ht;
Output: Offloading policy ft

∗, optimal resource allocation at time t;
1: Initialize the parameters of the DNN, set the number of iterations K and training

interval ξ, empty memory;
2: for t = 1, 2, ..., K do
3: Randomly generate an offloading strategy v0 according to a normal distribution

with a mean of 0;
4: Generate binary offloading decision ft by (20);
5: Put ft into OPT(h), calculate OPT(ht, ft) by (15);
6: Find the optimal allocation and output ft

∗;
7: Add (ht, ft

∗) to memory;
8: if K mod ξ = 0 then
9: Uniformly sample (ht, ft

∗) from the memory;
10: Train the DNN and update the parameters with the Adam algorithm;
11: end if
12: end for
13: return the candidate substrate nodes;

5. Performance Evaluation

In this section, we will introduce the details of our simulation experiments to demon-
strate the performance of the proposed algorithm.

5.1. Simulation Environment and Parameters

All experiments were performed on Core i5-8300H 2.3 GHz CPU and 16GB computers.
In this experiment, we use Powercast TX91501-3W as an energy emitter to simulate the user
device and set the energy harvesting efficiency to 0.51. The distance from the UAV to the
user device is represented by a uniform distribution. The average channel gain follows the
free-space path loss h = Ad(

3·108

4π fcdi
)de , where Ad = 4.11 is the antenna gain, fc = 915 MHZ

is the carrier frequency, and de = 2.8 is the path loss exponent. It is assumed that the
channel gain remains constant within one time frame and changes independently between
different time frames. Our deep neural network consists of an input layer, two hidden
layers, and an output layer.

Drones 2023, 7, 213 9 of 14

We implement our algorithm with tensorflow, setting the number of user devices to
30, the training batch size to 128, memory size to 1024, and the learning rate and training
interval of the Adam optimizer to 0.001 and 5 respectively. Here, we explain that all the
parameters are set according to the experiments we conducted. In order to make the article
not too long, we did not describe the experiments about memory size and training batch
size in detail in the article. We explained in Section 5.2 why the learning rate and training
interval are set to 0.001 and 5, respectively. There are a total of 30,000 sets of data, which
were split into separate training and testing datasets with a ratio of 8:2.

5.2. Experimental Results and Analysis

In order to see the training situation of the computation rate more clearly, we define
the normalized calculation rate R ∈ [0, 1] as follows:

R =
OPT(ht, ft)

max ft∈{0,1}N OPT(ht, f ∗t)
. (22)

The training time is generally between 2 and 3 minutes. As shown in Figure 3, the
training loss gradually decreases and stabilizes at 0.05 as time goes by. With the continuous
training of our deep neural network, the training loss decreases, which also means that our
model training effect is getting better and better. At the same time, it means our algorithm
automatically updates its offloading policy and converges to the optimal solution.

Figure 3. Training losses for DRCOM algorithm.

The normalized computation rate R in the training process is shown in Figure 4,
and the light blue part in the background is the maximum and minimum normalized
computation rate at this time point. It can be seen from Figure 4 that the normalized
computation rate gradually rises and converges to 1 when time frame is large.

Drones 2023, 7, 213 10 of 14

Figure 4. Normalized computation rates for DRCOM algorithm.

We further studied the effect of different algorithm parameters for the Adam optimizer
on the experimental results, including the learning rate and training intervals. We set the
number of iterations to 10,000 and calculate the average of the normalized computation rate
every 400 times. First, we set the learning rates to 0.1, 0.01, 0.001, and 0.0001, respectively.
As shown in the Figure 5, the curve oscillates and then stabilizes. We can see that the curve
with the learning rate of 0.001 is more stable and becomes stable earlier than the other
curves. Therefore, our experiment used an Adam optimizer with the learning rate of 0.001.

Figure 5. Average of R at different learning rates.

As shown in the Figure 6, we study the effect of different training intervals on the
experimental results. We set the training intervals to 5, 10, 50, and 100, respectively. The
experimental results show that the average of the normalized calculation rate increases

Drones 2023, 7, 213 11 of 14

gradually and then tends to 1 gradually. When the training interval is 5, the rate tends to
1 faster and is more stable, while the average of the normalized computation rate is not
stable when the training interval is 10 and 50. When the training interval is 100, the curve
tends to 1 at a slower rate. Therefore, we set the training interval in the experiment to 5, in
order to accelerate our algorithm to converge better and faster.

Figure 6. Average of R at different training intervals.

To demonstrate the superiority of our algorithm, we compare our algorithm DRCOM
with the following three offloading methods:

• Local computing (LC). All user devices perform local computation, i.e., each fi = 0.
• Computation offloading (CO). All user devices offload computation tasks to UAV, i.e.,

each fi = 1.
• Linear relaxation algorithm (LRA). fi is relaxed to be a real number between 0 and 1,

fi ∈ [0, 1]. Then, the problem OPT changes into a convex problem related to fi, and
we use the CVXPY convex optimization toolbox to solve it [24]. After obtaining the
solution of fi, we have:

fi
∗ =

{
1, fi > 0.5,
0, fi ≤ 0.5.

(23)

As shown in the Figure 7, we compared the maximum computation rate of our
algorithm with the other three methods. According to quantitative analysis from the
experimental results, the maximum computation rate of our algorithm DRCOM is 142.38%
higher than method LC, 50.37% higher than method CO, and 12.44% higher than method
LRA. We can see that our algorithm performs the best, followed by LRA. These two
methods are far better than LC and CO, and the experimental results of LC are the worst. It
further proves the importance of computation task offloading, which aims to increase the
computation rate.

Drones 2023, 7, 213 12 of 14

2 . 6 3 × 1 0 6

4 . 2 5 × 1 0 6

5 . 6 8 × 1 0 6
6 . 3 9 × 1 0 6

0
1 × 1 0 6
2 × 1 0 6
3 × 1 0 6
4 × 1 0 6
5 × 1 0 6
6 × 1 0 6
7 × 1 0 6
8 × 1 0 6

Ma
xim

um
 co

mp
uta

tio
n r

ate
 (b

its/
s)

 L C C O L R A D R C O M

 L C
 C O
 L R A
 D R C O M

Figure 7. Maximum computation rate of four methods.

6. Conclusions and Future Work

In this paper, a computation offloading method based on deep reinforcement learning
in UAV-assisted multi-access edge computing network (DRCOM) is proposed, which uses
UAVs as aerial base stations. Faced with the problem of high computation-intensive tasks,
which are often difficult to handle in the multi-access edge computing network, we carry
out computation policy offloading in the network. Since this problem is NP-hard, we divide
it into two sub-problems. Deep reinforcement learning is used to solve the problem of the
computation offloading policy, and then we allocate resources to pursue high computing
rate. Another three offloading methods are used to compared with DRCOM, and the exper-
imental results demonstrated that the maximum computation rates of DRCOM are 142.38%,
50.37%, and 12.44% higher than the other three methods LC, CO, and LRA, respectively. It
means that all user devices that perform local computing or computation offloading have
poor performance. Additionally, the algorithm DRCOM using deep reinforcement learning
has the highest computation rate.

In the future, we also need to consider the mobility of user devices in UAV-assisted
multi-access edge computing networks. In some practical situations, the user device is
mobile. So, our proposed method may not be suitable for mobile user device scenarios.
For mobile user device, we can propose a new framework and use mobility management
technology to solve it. In this paper, we regard the computation offloading policy of the
user device as a binary, which can only perform local computing or offloading. When the
number of user devices is large, this binary policy will greatly bring bandwidth pressure to
the network, so we can consider partial computation offloading in future work.

Author Contributions: Conceptualization, P.Z. and L.L.; methodology, Y.S.; software, C.W.; valida-
tion, L.L., C.W., W.Z. and L.T.; formal analysis, P.Z.; investigation, B.L.; resources, B.L.; data curation,
Y.S.; writing—original draft preparation, Y.S.; writing—review and editing, P.Z.; visualization, L.L.;
supervision, C.W.; project administration, B.L.; funding acquisition, P.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This work is partially supported by the Natural Science Foundation of Shandong Province
under grants ZR2022LZH015, ZR2020MF006, ZR2019LZH013, and ZR2020LZH010, partially sup-
ported by the Natural Science Foundation of Hebei Province under grant F2022501025, partially
supported by the Pilot International Cooperation Project for Integrated Innovation of Science, Ed-
ucation, and Industry of Qilu University of Technology (Shandong Academy of Sciences) under

Drones 2023, 7, 213 13 of 14

grant 2022GH007, partially supported by the Jinan Scientific Research Leader Studio Project under
grant 2021GXRC091, partially supported by the One Belt One Road Innovative Talent Exchange with
Foreign Experts under grant DL2022024004L, partially supported by the Industry-university Research
Innovation Foundation of Ministry of Education of China under grant 2021FNA01001, partially sup-
ported by the Major Scientific and Technological Projects of CNPC under grant ZD2019-183-006, and
partially supported by the Open Foundation of State Key Laboratory of Integrated Services Networks
(Xidian University) under grant ISN23-09.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Notations.

Notation Definition

U the set of user devices
fi offloading policy of the ith device
Ei the energy harvested by the ith user device
e the efficiency of energy harvesting
P the transmit power of the UAV
hi the wireless channel gain between the UAV and the ith device
xT the length of time for WPT within T time
k the energy efficiency coefficient
c the computing speed of the processor
RL,i(x) the local computation rate
cti
φ the number of bits processed by the user device

yiT the time taken for ith user device computation offloading
pi the offloading power of the user devices
RO,i(x, yi) the data offloading capability
B the bandwidth of the link,
PN the noise power
C(h, f , y, x) the weighted sum computation rate
wi the weight assigned to the computing rate of the ith device.
OPT the optimization objective

References
1. Xu, L.D.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [CrossRef]
2. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014,

1, 22–32. [CrossRef]
3. Zhang, P.; Wang, C.; Jiang, C.; Benslimane, A. UAV-Assisted Multi-Access Edge Computing: Technologies and Challenges. IEEE

Internet Things Mag. 2021, 4, 12–17. [CrossRef]
4. Anwar, M.R.; Wang, S.; Akram, M.F.; Raza, S.; Mahmood, S. 5G-Enabled MEC: A Distributed Traffic Steering for Seamless Service

Migration of Internet of Vehicles. IEEE Internet Things J. 2022, 9, 648–661. [CrossRef]
5. Lakew, D.S.; Tran, A.T.; Dao, N.N.; Cho, S. Intelligent Offloading and Resource Allocation in HAP-Assisted MEC Networks. In

Proceedings of the 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju
Island, Republic of Korea, 20–22 October 2021; pp. 1582–1587. [CrossRef]

6. Utsav, A.; Abhishek, A.; Suraj, P.; Badhai, R.K. An IoT Based UAV Network For Military Applications. In Proceedings of the 2021
Sixth International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India,
25–27 March 2021; pp. 122–125. [CrossRef]

7. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A Survey on Mobile Edge Computing: The Communication Perspective.
IEEE Commun. Surv. Tut. 2017, 19, 2322–2358. [CrossRef]

8. Narendra, P.M.; Fukunaga, K. A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 1977, 26, 917–922.
[CrossRef]

9. Sun, Z.; Zhang, Z.; Wang, H.; Jiang, M. Cutting Plane Method for Continuously Constrained Kernel-Based Regression. IEEE
Trans. Neural Netw. 2010, 21, 238–247. [CrossRef]

http://doi.org/10.1109/TII.2014.2300753
http://dx.doi.org/10.1109/JIOT.2014.2306328
http://dx.doi.org/10.1109/IOTM.001.2100092
http://dx.doi.org/10.1109/JIOT.2021.3084912
http://dx.doi.org/10.1109/ICTC52510.2021.9621158
http://dx.doi.org/10.1109/WiSPNET51692.2021.9419470
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/TC.1977.1674939
http://dx.doi.org/10.1109/TNN.2009.2035804

Drones 2023, 7, 213 14 of 14

10. Logenthiran, T.; Srinivasan, D.; Shun, T.Z. Demand Side Management in Smart Grid Using Heuristic Optimization. IEEE Trans.
Smart Grid 2012, 3, 1244–1252. [CrossRef]

11. Ju, Y.; Chen, Y.; Cao, Z.; Liu, L.; Pei, Q.; Xiao, M.; Ota, K.; Dong, M.; Leung, V.C.M. Joint Secure Offloading and Resource
Allocation for Vehicular Edge Computing Network: A Multi-Agent Deep Reinforcement Learning Approach. IEEE Trans. Intell.
Transp. Syst. 2023, in press. [CrossRef]

12. Ma, L.; Wang, X.; Wang, X.; Wang, L.; Shi, Y.; Huang, M. TCDA: Truthful Combinatorial Double Auctions for Mobile Edge
Computing in Industrial Internet of Things. IEEE Trans. Mob. Comput. 2022, 21, 4125–4138. [CrossRef]

13. Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On Multi-Access Edge Computing: A Survey of the Emerging
5G Network Edge Cloud Architecture and Orchestration. IEEE Commun. Surv. Tut. 2017, 19, 1657–1681. [CrossRef]

14. Guan, S.; Boukerche, A. A Novel Mobility-Aware Offloading Management Scheme in Sustainable Multi-Access Edge Computing.
IEEE Trans. Sustain. Comput. 2022, 7, 1–13. [CrossRef]

15. Ren, J.; Yu, G.; Cai, Y.; He, Y. Latency Optimization for Resource Allocation in Mobile-Edge Computation Offloading. IEEE Trans.
Wirel. Commun. 2018, 17, 5506–5519. [CrossRef]

16. Chang, Z.; Liu, L.; Guo, X.; Chen, T.; Ristaniemi, T. Dynamic Resource Allocation and Computation Offloading for Edge
Computing System. In Proceedings of the Artificial Intelligence Applications and Innovations. AIAI 2020 IFIP WG 12.5
International Workshops, Neos Marmaras, Greece, 5–7 June 2020; pp. 61–73.

17. Zhao, X.; Peng, J.; Li, Y.; Li, H. A Privacy-Preserving Computation Offloading Method Based on Privacy Entropy in Multi-access
Edge Computation. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC),
Chengdu, China, 11–14 December 2020; pp. 1016–1021. [CrossRef]

18. Jeong, S.; Simeone, O.; Kang, J. Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path
Planning. IEEE Trans. Veh. Technol. 2018, 67, 2049–2063. [CrossRef]

19. Kim, K.; Hong, C.S. Optimal Task-UAV-Edge Matching for Computation Offloading in UAV Assisted Mobile Edge Computing.
In Proceedings of the 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), Matsue, Japan,
18–20 September 2019; pp. 1–4. [CrossRef]

20. Zhang, T.; Xu, Y.; Loo, J.; Yang, D.; Xiao, L. Joint Computation and Communication Design for UAV-Assisted Mobile Edge
Computing in IoT. IEEE Trans. Ind. Inform. 2020, 16, 5505–5516. [CrossRef]

21. Liu, Y.; Xiong, K.; Ni, Q.; Fan, P.; Letaief, K.B. UAV-Assisted Wireless Powered Cooperative Mobile Edge Computing: Joint
Offloading, CPU Control, and Trajectory Optimization. IEEE Internet Things J. 2020, 7, 2777–2790. [CrossRef]

22. Wang, F.; Xu, J.; Wang, X.; Cui, S. Joint offloading and computing optimization in wireless powered mobile-edge computing
systems. IEEE Trans. Wirel. Commun. 2017, 17, 1784–1797. [CrossRef]

23. Bi, S.; Ho, C.K.; Zhang, R. Wireless powered communication: Opportunities and challenges. IEEE Commun. Mag. 2015,
53, 117–125. [CrossRef]

24. Guo, S.; Xiao, B.; Yang, Y.; Yang, Y. Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing. In
Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, San
Francisco, CA, USA, 10–14 April 2016; pp. 1–9. [CrossRef]

25. You, C.; Huang, K.; Chae, H. Energy Efficient Mobile Cloud Computing Powered by Wireless Energy Transfer. IEEE J. Sel. Areas
Commun. 2016, 34, 1757–1771. [CrossRef]

26. Huang, L.; Bi, S.; Zhang, Y.J.A. Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-
Edge Computing Networks. IEEE Trans. Mob. Comput. 2020, 19, 2581–2593. [CrossRef]

27. Kirana, K.C.; Wibawanto, S.; Hidayah, N.; Cahyono, G.P.; Asfani, K. Improved Neural Network using Integral-RELU based
Prevention Activation for Face Detection. In Proceedings of the 2019 International Conference on Electrical, Electronics and
Information Engineering (ICEEIE), Hangzhou, China, 16–18 October 2019; Volume 6, pp. 260–263. [CrossRef]

28. Kaloev, M.; Krastev, G. Comparative Analysis of Activation Functions Used in the Hidden Layers of Deep Neural Networks. In
Proceedings of the 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications
(HORA), Ankara, Turkey, 11–13 June 2021; pp. 1–5. [CrossRef]

29. Liu, L.; Feng, J.; Mu, X.; Pei, Q.; Lan, D.; Xiao, M. Asynchronous Deep Reinforcement Learning for Collaborative Task Computing
and On-Demand Resource Allocation in Vehicular Edge Computing. IEEE Trans. Intell. Transp. Syst. 2023, in press. [CrossRef]

30. Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.C.; Kim, D.I. Applications of Deep Reinforcement Learning in
Communications and Networking: A Survey. IEEE Commun. Surv. Tut. 2019, 21, 3133–3174. [CrossRef]

31. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

32. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSG.2012.2195686
http://dx.doi.org/10.1109/TITS.2023.3242997
http://dx.doi.org/10.1109/TMC.2021.3064314
http://dx.doi.org/10.1109/COMST.2017.2705720
http://dx.doi.org/10.1109/TSUSC.2021.3065310
http://dx.doi.org/10.1109/TWC.2018.2845360
http://dx.doi.org/10.1109/ICCC51575.2020.9345238
http://dx.doi.org/10.1109/TVT.2017.2706308
http://dx.doi.org/10.23919/APNOMS.2019.8892864
http://dx.doi.org/10.1109/TII.2019.2948406
http://dx.doi.org/10.1109/JIOT.2019.2958975
http://dx.doi.org/10.1109/TWC.2017.2785305
http://dx.doi.org/10.1109/MCOM.2015.7081084
http://dx.doi.org/10.1109/INFOCOM.2016.7524497
http://dx.doi.org/10.1109/JSAC.2016.2545382
http://dx.doi.org/10.1109/TMC.2019.2928811
http://dx.doi.org/10.1109/ICEEIE47180.2019.8981443
http://dx.doi.org/10.1109/HORA52670.2021.9461312
http://dx.doi.org/10.1109/TITS.2023.3249745
http://dx.doi.org/10.1109/COMST.2019.2916583
http://dx.doi.org/10.1038/nature14236

	Introduction
	Related Works
	Problem Description and Modeling
	Local Computing
	Computation Offloading
	Optimization Objective

	Deep Reinforcement Learning Based Computation Offloading in UAV-Assisted MEC
	Offloading Action Generation
	Deep Reinforcement Learning
	Offloading Action Updates

	Performance Evaluation
	Simulation Environment and Parameters
	Experimental Results and Analysis

	Conclusions and Future Work
	Appendix A
	References

