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Abstract: Mobile robots, including ground robots, underwater robots, and unmanned aerial vehicles,
play an increasingly important role in people’s work and lives. Path planning and obstacle avoidance
are the core technologies for achieving autonomy in mobile robots, and they will determine the
application prospects of mobile robots. This paper introduces path planning and obstacle avoid-
ance methods for mobile robots to provide a reference for researchers in this field. In addition, it
comprehensively summarizes the recent progress and breakthroughs of mobile robots in the field
of path planning and discusses future directions worthy of research in this field. We focus on the
path planning algorithm of a mobile robot. We divide the path planning methods of mobile robots
into the following categories: graph-based search, heuristic intelligence, local obstacle avoidance,
artificial intelligence, sampling-based, planner-based, constraint problem satisfaction-based, and
other algorithms. In addition, we review a path planning algorithm for multi-robot systems and
different robots. We describe the basic principles of each method and highlight the most relevant
studies. We also provide an in-depth discussion and comparison of path planning algorithms. Finally,
we propose potential research directions in this field that are worth studying in the future.

Keywords: mobile robot; autonomous underwater robot; unmanned aerial robot; path planning;
multi-robot cooperative

1. Introduction

Mobile robots have been effectively used in various fields over the past few decades,
including the military, industry, and security settings, to carry out important unmanned
duties [1,2]. In recent years, robots have been given increasingly more applications, which
can improve production efficiency, reduce manpower, and improve the working environ-
ment [3]. Ground robots are usually used to automate tasks, such as materials handling in
warehouses, luggage picking up in airports, and mobile security inspection robots. Under-
water robots are usually used to take samples, carry out testing, installation, maintenance,
and overhaul of underground water environments, marine environments, and lake and
river water environments. Aerial robots are usually used to conduct airborne search and
rescue, search terrain data collection, aerial remote sensing, and other tasks [4,5]. The
development of robot applications is bringing more and more innovations. The practicality
of robots is dependent on their autonomous navigation planning capability. Hence, they
need to not only understand the environment they face but also autonomously navigate
and plan paths in given areas to meet task requirements. The capability of autonomous
navigation and path planning is critical for robot applications, which can not only speed up
the running speed of robots but also effectively avoid their blind spots and achieve more
efficient task completion. One of the most fundamental issues that need to be resolved
before mobile robots can move and explore on their own in complex surroundings is path
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planning [6]. According to a given robotic machine’s working environment, a mobile robot
searches for an optimal or suboptimal path from the starting state to the goal state based on
specific performance criteria. This is known as the path planning problem [7]. For mobile
robots, effective path planning strategies can save significant time and minimize wear, tear,
and capital expenditure. Therefore, the correct choice of a navigation technique is the most
important step in robot path planning.

It is necessary to conduct a comprehensive investigation of mobile robot path planning
owing to the recent technological progress and breakthroughs in the field. The purpose
of this review is to summarize the path planning work of mobile robots and the technical
details of some representative algorithms and discuss some open problems to be solved
in this field. Articles on the path planning of the mobile robot were retrieved from the
databases of Engineering Village and the Web of Science. The search terms during the
data retrieval process were “path planning” and “mobile robot.” We selected well-known
publications and articles from conferences in the field of robotics, with a focus on the path
planning algorithms of mobile robots. In addition, we provide an in-depth discussion and
comparison of path planning algorithms. Finally, we hope that this paper will provide a
preliminary understanding of mobile robots and path planning for researchers who have
just entered this field.

The remainder of this paper is organized as follows: Section 2 introduces the path
planning algorithms for mobile robots. Section 3 introduces the path planning algorithms
for multiple robots. Section 4 introduces a path planning algorithm for the cooperation
of different robots. Section 5 discusses and summarizes the study. The conclusions are
presented in Section 6.

2. Path Planning Algorithm

We will introduce the following different types of path planning algorithms: graph-
based search, heuristic intelligence, local obstacle detection, artificial intelligence, sampling,
path planners, constraint problem satisfaction algorithms, and other algorithms. For the
classification of the above path planning algorithms, we consider that some traditional
path planning algorithms can be applied to ground, underwater, and aerial robots. The
following path planning algorithms [8] are then categorized based on how they work.

2.1. Algorithms Based on Graph Search
2.1.1. A* Algorithm

The A* algorithm, which is typically used for static global planning, is an efficient
search method for obtaining the shortest paths and is also a typical heuristic algorithm.
The effect of the A* algorithm is shown in Figure 1. The yellow box represents the starting
point, the black box represents the obstacle, the pink box represents the end-point, and the
blue polyline represents the path. The A* algorithm is used to realize the path planning
from the starting point (yellow grid) to the ending point (pink grid) in an environment
with obstacles.
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based on the A* algorithm, which mainly uses terrain information to analyze the area 
matching performance. It also proposed a search length and a dynamic matching 
algorithm to reduce time consumption. The simulations showed that this method can 
avoid obstacles with less-than-perfect matching and shorten the length of the path. As the 
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cannot guarantee the safety of the mobile robot. The turning cost function was added in 
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To address the problem of global navigation satellite systems (GNSS) positioning 
map errors for unmanned aerial robots, an improved path planning algorithm based on 
the GNSS error distribution fusion A* was proposed [14]. The effectiveness of the 
improved A* algorithm was tested at different altitudes using a quadcopter in an actual 
urban environment. The experimental findings demonstrate that, compared to the 
traditional A* and artificial potential field (APF) algorithms, the revised A* algorithm 
offers safe pathways based on position error prediction at a low cost. The RiskA* 
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However, there are issues associated with the A* algorithm that limit its use. The
system path planning has an excessive number of inflection points and turns, which makes
it difficult for the robot to move in its actual surroundings. In [9], the T * algorithm, which
combines the A* search algorithm with linear time logic path planning and uses the search
process of the A* algorithm to generate the optimal path satisfying the time logic search, was
proposed. The final experimental results reveal that the T * algorithm reduces the number
of nodes and the generation time of the path compared with the existing algorithms when
solving the temporal logical path planning problem in two- and three-dimensional spaces
in a large workspace. In [10], the concept of optimality was introduced on a weighted color
graph, which expresses the geometric and semantic information in the search space. On
this basis, the class-ordered A (COA*) algorithm that finds the globally optimal path in the
weighted color graph by heuristic construction of the optimal search tree was proposed.
Compared with the traditional A* algorithm, this algorithm is better at finding uncertain
paths. As the A* algorithm faces challenges in real-time path planning and collision-free
path planning in a large-scale dynamic environment, in [11], the calculation of the distance
cost of the risk cost function was simplified, key path points were extracted, and the number
of nodes was reduced. Finally, combined with the adaptive window method, path tracking,
and obstacle avoidance were achieved. The simulation results reveal that the algorithm can
meet the real-time requirements of mobile robots in large–scale environments.

Owing to the low accuracy of existing terrain matching methods in areas with small
eigenvalues, this study [12] proposed a seabed terrain matching navigation algorithm
based on the A* algorithm, which mainly uses terrain information to analyze the area
matching performance. It also proposed a search length and a dynamic matching algorithm
to reduce time consumption. The simulations showed that this method can avoid obstacles
with less-than-perfect matching and shorten the length of the path. As the traditional
A* algorithm does not consider the turning cost and redundant path points, it cannot
guarantee the safety of the mobile robot. The turning cost function was added in [13] to
avoid the detour and frequent turning of the mobile robot. Additionally, the search points
near the obstacles were reduced to ensure a safe distance, determine whether the point is
redundant by judging whether there are obstacles around each path point, and optimize
the generated trajectory. Compared to the traditional A* algorithm, it reduces the path
length, search time, and several nodes.

To address the problem of global navigation satellite systems (GNSS) positioning map
errors for unmanned aerial robots, an improved path planning algorithm based on the
GNSS error distribution fusion A* was proposed [14]. The effectiveness of the improved
A* algorithm was tested at different altitudes using a quadcopter in an actual urban
environment. The experimental findings demonstrate that, compared to the traditional A*
and artificial potential field (APF) algorithms, the revised A* algorithm offers safe pathways
based on position error prediction at a low cost. The RiskA* algorithm was presented for
unmanned aerial robot path planning optimization in urban environments [15]. The
path length and risk cost are both considered while designing the cost function, and the
final path minimizes the sum of these two costs. According to the simulation findings,
the RiskA* algorithm performs well and can account for the risk posed by the ground
population, a crucial element in urban areas, to determine the best solution. For rotary-wing
unmanned aerial robots performing low-altitude missions in three-dimensional complex
mountain environments, a fusion algorithm of the sparse A* algorithm and bio-inspired
neurodynamic model was proposed [16]. This improved the A* algorithm in terms of
the process structure and evaluation function. It also mitigated the computationally large
problem of the A* algorithm in the three-dimensional (3D) trajectory planning process.
Based on experimental findings, the fusion algorithm enables a rotary-wing unmanned
aerial robot to design a safe, quick, and economical course in challenging mountainous
terrain by reducing the complexity and time requirements of the A* algorithm.

In short, the A* algorithm is the most effective search algorithm in a static environment.
However, it has many disadvantages, such as an excessive number of redundant nodes.
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Therefore, in recent years, scholars have mostly chosen to improve the cost function or re-
duce the number of nodes in its path. Moreover, it can meet the needs of different scenarios
through different cost functions. However, in large environments, the A* algorithm still
exhibits slow path planning. In [10,11], scholars also provided solutions to this problem.
Therefore, in future research on the A* algorithm, enabling the A* algorithm to plan the
optimal path in real-time in large environments is a possible direction.

2.1.2. Dijkstra’s Algorithm

Dijkstra’s algorithm was proposed by E.W. Dijkstra in 1959 [17]. It is a typical algorithm
for solving the shortest-path problem in directed graphs. The algorithm sets the point
where the mobile robot is located as the initial node and traverses the remaining nodes. It
then adds the node with the closest distance to the initial node to the set of nodes, which
spreads outward from the initial node in layers until all the nodes in the graph are traversed.
Subsequently, it finds the shortest path from the initial node to the target node according to
the magnitude of the path weight.

Owing to the uncertainty of odometer positioning, which offsets the path planning
of a mobile robot [18], a path planning algorithm considering the minimum cumulative
error of the sensor offset is proposed. Through statistical, qualitative, and quantitative
analyses of the accumulated error of odometer positioning, the planning path with the
minimum accumulated error is generated. Through simulations and comparative analysis,
this method effectively reduces the cumulative error under complex conditions. Similarly,
an improved Dijkstra algorithm was proposed for Dijkstra’s non-adaptation to complex
environments. This introduces the concept of equivalent paths, analyzes the influencing
factors and weights of equivalent paths, and finally obtains the conversion formula between
equivalent paths and actual paths [19]. Combined with engineering examples, the shortest
water avoidance path for a mine was calculated.

For dynamic obstacles in the ocean, the Dijkstra algorithm was improved by adding
additional functions [20]. Furthermore, the algorithm alters the course according to the
current dynamics.

The Dijkstra algorithm is a classic algorithm for finding the shortest path of a single
source and is mainly used to find the optimal path of a geographic information system.
However, with the massive growth of data, the operational efficiency of the classic Dijkstra
algorithm has been unable to meet people’s needs, and it needs to be optimized from all
aspects.

2.2. Heuristic Intelligent Search Algorithm
2.2.1. Genetic Algorithm

The genetic algorithm (GA), also known as the evolutionary algorithm, is a heuristic
search algorithm. It generates an optimal solution to a problem by simulating the evolution
of organisms using the principle of survival of the fittest. A population consists of a certain
number of individuals, each carrying a certain number of coded genes, and the population
is equivalent to a set of solutions to the problem. A diagram of the genetic algorithm
is shown in Figure 2. It includes initializing the population randomly, selecting suitable
individuals, carrying out the selection, crossover, and mutation genetic operations, and
constantly updating the population.



Drones 2023, 7, 211 5 of 37

Drones 2023, 7, 211 5 of 40 
 

2.2. Heuristic Intelligent Search Algorithm 
2.2.1. Genetic Algorithm 

The genetic algorithm (GA), also known as the evolutionary algorithm, is a heuristic 
search algorithm. It generates an optimal solution to a problem by simulating the 
evolution of organisms using the principle of survival of the fittest. A population consists 
of a certain number of individuals, each carrying a certain number of coded genes, and 
the population is equivalent to a set of solutions to the problem. A diagram of the genetic 
algorithm is shown in Figure 2. It includes initializing the population randomly, selecting 
suitable individuals, carrying out the selection, crossover, and mutation genetic 
operations, and constantly updating the population. 

 
Figure 2. Flow chart of genetic algorithm evolution [21]. 

Genetic algorithms have a low computational rate and consume a large number of 
computer resources in the process, which is also a major constraint to their development. 
A static global path planning method using a genetic algorithm was proposed, followed 
by dynamic obstacle avoidance using a Q-learning algorithm [21]. The entire method is 
an “offline” and then “online” hierarchical path planning method that successfully 
achieved the path planning of mobile robots. In [22], a new genetic modification operator 
was proposed to address the shortcomings of the GA algorithm, which has poor 
convergence and neglects inter-population cooperation. The improved algorithm can 
better avoid the local optimum problem and has a faster convergence speed. To address 
the multi-robot cooperation problem, a co-evolutionary mechanism is proposed to 
achieve collision-free obstacle avoidance planning for multiple robots. The efficiency of 
the algorithm is demonstrated by the experimental findings.  

The GA was used [23] to generate offline optimal 3D paths, and the degree of path 
optimization was considered to provide a planning approach appropriate for 3D 
underwater environments. In [24], a path planner combining a GA and dynamic planning 
was proposed. In this algorithm, the random crossover operator from the traditional 
genetic algorithm is replaced by a crossover operator that is always the same and is based 
on dynamic planning. The path planner simultaneously optimized the path length, 
minimized the turning angle, and maximized the elevation rate. Compared to traditional 
genetic algorithms, this path planner is more adaptable and has a faster rate of 
convergence. 

Reference [25] combined mixed integer linear programming (MILP) with genetic 
algorithms to propose a new method for improving unmanned aerial robot path planning 
in complex environments, and the effectiveness of the proposed method was validated 
using two, five, and seven unmanned aerial robots in urban and mountainous areas, 
respectively. The experimental findings demonstrate that in terms of cost-effectiveness 

Figure 2. Flow chart of genetic algorithm evolution [21].

Genetic algorithms have a low computational rate and consume a large number of
computer resources in the process, which is also a major constraint to their development. A
static global path planning method using a genetic algorithm was proposed, followed by
dynamic obstacle avoidance using a Q-learning algorithm [21]. The entire method is an
“offline” and then “online” hierarchical path planning method that successfully achieved
the path planning of mobile robots. In [22], a new genetic modification operator was
proposed to address the shortcomings of the GA algorithm, which has poor convergence
and neglects inter-population cooperation. The improved algorithm can better avoid
the local optimum problem and has a faster convergence speed. To address the multi-
robot cooperation problem, a co-evolutionary mechanism is proposed to achieve collision-
free obstacle avoidance planning for multiple robots. The efficiency of the algorithm is
demonstrated by the experimental findings.

The GA was used [23] to generate offline optimal 3D paths, and the degree of path
optimization was considered to provide a planning approach appropriate for 3D under-
water environments. In [24], a path planner combining a GA and dynamic planning was
proposed. In this algorithm, the random crossover operator from the traditional genetic
algorithm is replaced by a crossover operator that is always the same and is based on
dynamic planning. The path planner simultaneously optimized the path length, minimized
the turning angle, and maximized the elevation rate. Compared to traditional genetic
algorithms, this path planner is more adaptable and has a faster rate of convergence.

Reference [25] combined mixed integer linear programming (MILP) with genetic
algorithms to propose a new method for improving unmanned aerial robot path planning
in complex environments, and the effectiveness of the proposed method was validated
using two, five, and seven unmanned aerial robots in urban and mountainous areas,
respectively. The experimental findings demonstrate that in terms of cost-effectiveness and
energy optimization environments, the proposed method outperforms the ant colony and
genetic algorithms. Reference [26] proposed a dynamic genetic algorithm by optimizing
the crossover and variation operators of the genetic algorithm to automatically adjust the
crossover and variation probabilities using individual fitness. To quickly and effectively
reject maladapted individuals and increase the search efficiency in the early phases of the
algorithm, these operators are dynamically changed in real-time using individual fitness
values. According to the experimental results, the GA optimization method can significantly
increase search speed. Genetic algorithms and fuzzy logic have been combined [27] to
increase path planning accuracy. This study interprets the path planning problem as a
multi-traveler problem, solving the problem of returning each unmanned aerial robot to its
starting point at the end of its action.

A GA can obtain multiple solutions through multiple runs. These solutions can be
compared, and the best solutions can be selected. However, the operation process of GA is
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relatively complex, and it is necessary to select appropriate parameters. If inappropriate
parameters are selected, the performance of the algorithm may deteriorate. Improvements
can be made to its genetics. The future direction of improvement is still related to machine
learning and other technologies to further improve the adaptive ability and intelligence
level of the algorithm.

2.2.2. Ant Colony Algorithm

The ant colony algorithm (ACO) is a positive feedback mechanism algorithm proposed
by the Italian scholar Dorigol in 1992, in which a pheromone-focused path has a heuristic
influence on the search for the next node. Each ant produces a secretion as a reference
along its walking path and senses the secretions generated by other ants when they are
seeking food. This is the underlying concept behind the ACO algorithm. The mechanism
of the ant colony algorithm is shown in Figure 3. The ants can communicate and make
decisions based on this secretion, often referred to as pheromone. The colony migrates to a
path where there are more pheromones than on other paths and releases more secretions
as it moves, increasing the concentration of the pheromone and drawing more ants to the
path, generating a positive feedback process. The pheromone concentration on the short
road steadily increases over time, leading to an increase in the number of ants choosing
it, whereas the pheromone concentration on other paths gradually diminishes until it
disappears. The entire colony eventually focuses on the best route. The act of foraging by
the ants is comparable to that of robotic path planning. The ants will choose the quickest
route to the food if there are a sufficient number of them in the nest to overcome the barriers.
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A new pheromone updating technique was proposed in a dynamic environment to
avoid unnecessary loops and achieve faster convergence [28]. An improved algorithm with
an adaptive search step size and pheromone waving strategy was proposed to address the
problem of the ACO algorithm being prone to a local optimum and inefficient search [29].
For the path conflict problem caused by the over-concentration of multiple robot paths, a
load-balancing strategy to avoid path conflict is proposed. Simulation results demonstrate
that the proposed strategy is feasible and efficient. A hybrid approach based on the regres-
sion analysis-adaptive ant colony optimization (RA-AACO) humanoid robot navigation
method was proposed [30], and a Petri net controller was designed to prevent multiple
robots from colliding with one another in a re-simulation. The controller successfully
implemented single and multi-robot navigation. This process can be applied as a reliable
solution for humanoid robot navigation and other robotic applications.

An ant colony technique with particle swarm optimization was proposed [31] for the
autonomous underwater robot to discover the ideal path through a complicated seafloor. To
enhance the pheromone update rule, the particle swarm optimization technique was added
to the path-length heuristic function. The strategy also restricts the initialization range
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of particular populations, considerably enhancing the search efficiency and preventing
a series of superfluous pitches and undulations, considering how challenging it is for
autonomous underwater robots to locate pathways in a three-dimensional space. Unlike
the conventional “ant colony” algorithm, path optimization is significantly reduced. For the
problem of autonomous underwater robots needing to traverse complex environments with
dense obstacles, an ACO-A* algorithm was proposed by combining the ACO algorithm
with the A* search algorithm [32]. Here, the ACO is responsible for determining the target
travel order based on the cost map, and A* performs pairwise path planning based on the
search map obtained from fine-grained modeling. Simulation results demonstrate that the
time efficiency of the ACO-A* is verified.

An improved multi-objective swarm intelligence method was used to plan an accurate
unmanned aerial robot 3D path (APPMS) [33]. The path planning problem is transformed
in the APPMS approach into a multi-objective optimization task with numerous restric-
tions. In addition, a precise swarm intelligence search technique based on enhanced ant
colony optimization was introduced to find the best unmanned aerial robot 3D flight path.
This technique uses preferential search directions and a stochastic neighborhood search
mechanism to enhance both global and local search capabilities. The simulation results
demonstrate that the superiority of the proposed approach is supported by three sets of
digital terrain (three, four, and eight threats) and genuine DEM data for the simulated
disaster response missions. Another study suggested using [34] a 2-OptACO approach that
builds on the 2-opt algorithm to enhance the ant colony optimization algorithm and is used
to optimize the unmanned aerial robot path for search and rescue missions. According
to the simulation findings, the 2-OptACO approach converges more quickly than the GA
and ACO approaches. Better global optimal solutions are attained. Reference [35] pre-
sented a method based on ant colony optimization to determine the minimum time search
path for multiple unmanned aerial robots (minimum time search-ant colony optimization
MTS-ACO). Two different pheromone table encodings were proposed for MTS-ACO. A
minimum–time search heuristic function was designed that enables the ant colony opti-
mization algorithm to generate high-quality solutions at the initial stage and accelerate the
convergence of the algorithm.

The ant colony algorithm can find the optimal path in a known static large-scale
environment and is also suitable for multi-objective optimization problems. However,
it easily falls into the local optimal solution, resulting in a slow convergence speed of
the algorithm. Scholars have also improved its convergence speed. Nonetheless, its
convergence speed and global searchability can be improved further.

2.2.3. Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm mimics the behavior of birds in
their search for food, sharing information regarding their current location as the flock
forages. The entire flock can reach its final food source through proper communication
between the individuals and group members. The basic principle is that individuals and
groups collaborate and share information to obtain optimal solutions. This algorithm was
proposed by Eberhart and Kennedy [36] in 1995 to determine the global optimum in terms
of the current search for the optimum. It has the advantages of easy implementation, high
accuracy, and quick convergence, and is not only suitable for multi-robot path planning
but also capable of single-robot route planning. Figure 4 shows a schematic that mimics the
behavior of birds seeking food. By communicating with the group, find the closest bird to
the food and travel with it to find the ultimate largest food source. The circle represents the
bird. The green vegetation represents food; most food is in the grove, and most food is in
the forest.
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The performance of the proposed particle swarm algorithm depends on how its
parameters are adjusted, managed, and changed. A robot path smoothing strategy was
proposed to address the problem of unnecessary turns caused by unsmoothed paths
generated by the PSO algorithm [37]. The strategy is based on the PSO algorithm, which
introduces adaptive fractional-order velocities to improve the ability to search the space
and increase the “smoothness” of the mobile robot path by using higher-order Bessel
curves. Experiments show that the modified PSO algorithm is better than several existing
PSO algorithms on several benchmark functions. The superiority of the new approach is
supported by numerous thorough simulations of smooth path planning for mobile robots.
A study [38] presented a new method for determining the optimal path of a multi-robot in
a cluttered environment using a combination of the improved particle swarm optimization
algorithm (IPSO) and the improved gravitational search algorithm (IGSA). The simulation
results demonstrate that the proposed method outperforms other algorithms used for the
navigation of multiple mobile robots.

To reduce energy usage for autonomous underwater robot path planning, a dis-
tance evolutionary nonlinear particle swarm optimization (DENPSO) algorithm was sug-
gested [39]. The approach uses penalty functions to set the energy optimization goals under
obstacles and in the ocean. It also changes linear inertial weight factors and learning factors
into nonlinear ones so that the particles can fully explore the 3D underwater world during
the evolution process. In the 3D simulated underwater environment, the simulation results
demonstrate that DENPSO uses significantly less energy than the linear PSO algorithm.
An evolutionary-based docking-path optimization technique was suggested [40]. The first
step is the analysis and modeling of the ocean environment and its restrictions. The second
design goal of the control points was to satisfy the model constraints. To accomplish global
time optimization, adaptive rules, and quantum behavior were included in PSO. Finally,
the proposed technique was assessed using Monte Carlo simulations. The experimental
findings revealed considerable improvements to this approach.

A 3D path planning method based on adaptive sensitivity decision operators and
particle swarm optimization was presented [41], where an adaptive sensitivity decision area
was built to address the drawbacks of local optimality and slow convergence. To increase
computational efficiency, alternative possibilities are eliminated, and prospective particle
sites with a high probability are found by employing this defined region. In addition,
the relative particle directionality obtained from the current position enhances the search
accuracy. In terms of the path cost and path generation, the simulation results demonstrate
that the upgraded PSO algorithm performs better than the GA and PSO approaches. For
modern warfare, the ability of unmanned aerial robots to avoid enemy radar reconnaissance
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and artillery fire at the lowest cost has become an important research problem in unmanned
aerial robot path planning. An algorithm (SHOPSO) combining a selfish herd optimizer
(SHO) and a particle swarm optimizer (PSO) was proposed [42]. By combining SHO
and PSO, the structure of SHO is simplified, and the SHO search capability is improved.
In the simulation experiments, five two-dimensional complex battlefield environments
and five three-dimensional complex battlefield environments were designed, and the
proposed algorithm was compared with other algorithms that have better optimization
performance. The results of the experiments demonstrate that this strategy offers the best
path for unmanned aerial robots. For the 3D path planning issue of unmanned aerial
robots in complex environments, an improved particle swarm optimization algorithm
(called DCA*PSO) was proposed [43]. It is based on the dynamic divide-and-conquer
(DC) strategy and the improved A* algorithm, and divides the entire path into multiple
segments and evolves the paths of these segments using the DC strategy. The intricate,
high-dimensional challenge is divided into numerous parallel, low-dimensional issues.
According to the experimental results, the proposed DCA*PSO method can find workable
pathways in complex landscapes with several waypoints.

Particle swarm optimization has no crossover or mutation operations and only requires
the adjustment of some parameters. Additionally, it has a memory function that can find
the best path in a short time. However, because of its randomness, a globally optimal
solution cannot be guaranteed. Scholars have also improved their search abilities. Particle
swarm optimization can be combined with a machine-learning algorithm to improve its
performance and accuracy.

2.3. Algorithm Based on Local Obstacle-Avoidance
2.3.1. Dynamic Window Approach

The dynamic window approach (DWA) [44] is a technique that immediately samples
the environment and determines the state of activity of the robot at the following instant.
This approach permits quick access to the desired location while preventing robot collisions
with objects in the search area. As shown in Figure 5, the surrounding circles represent
walls, the inner circles represent dynamic obstacles, and the small circle represents a robot.
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Figure 5. Schematic diagram of the path planning algorithm based on the DWA.

An improved DWA algorithm based on Q-learning was proposed [45]. The method
modified and extended the original evaluation function of the DWA, added two new
evaluation functions, enhanced its global navigation capability, and adaptively de-adjusted
the weights of the evaluation function through Q-learning. The experimental results
demonstrate that the method has a high navigation efficiency and success rate in complex
and unknown environments. A dynamic collision model that can predict future collisions
with the environment by simultaneously considering the motion of other objects was
designed [46]. According to experimental findings, this approach reduces the likelihood of
robot collisions in dynamic environments. A global dynamic window navigation scheme
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based on model predictive control with unweighted objective functions was proposed
in [47] to address the problem of most planning methods treating the robot as a single point,
which leads to the inability of passing through narrow bands.

The dynamic window method is suitable for real-time path planning because of its
speed, and it can also optimize the algorithm’s performance by adjusting the window
parameters. However, it is sensitive to changes in the environment and requires frequent
updates of obstacle information around the mobile robot. Therefore, in the future, it can be
combined with a machine learning algorithm to predict the distribution of obstacles in an
environment and optimize the accuracy and efficiency of path planning.

2.3.2. Artificial Potential Field Method

The physical concept of a potential field, which considers the motion of an object as
the product of two forces, is the source of the idea of an artificial potential field [48]. As
shown in Figure 6, the gravitational pull of a goal point pulls on a robot in the planning
space, and an obstacle repels it. Under the combined influence of these two forces, the
robot advances in the direction of the goal point and can successfully navigate around any
obstacle in its path to reach its destination without incident. The black box represents the
starting point, the red circle represents the ending point, and the green circle represents the
obstacle.
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Another study [49] presents a bacterial potential field method that ensures a feasible,
optimal, and safe path for a robot in both static and dynamic environments. The bacterial
potential field method combines an artificial potential field method with a bacterial evo-
lutionary algorithm, thereby fully utilizing the APF method. According to experimental
results, the bacterial potential field approach exhibits significant local and global controlla-
bility in dynamic and complex situations. To solve the problem of optimal motion planning,
a continuous, deterministic, provable, and safe solution based on a parametric artificial
potential field has been proposed [50]. Reinforcement learning was used to properly adjust
the parameters of the artificial potential field to minimize the Hamilton–Jacobi–Bellman
(HJB) error. In the simulation experiment, the cost function value and running time were
better than with the fast search random tree algorithm.

A real-time path planning algorithm with an upgraded APF algorithm was proposed
to solve the path planning problem for static and dynamic environments with unidentified
obstacles (static and dynamic) [51]. This technique augments the repulsive potential field
function with a distance adjustment factor to address the target unreachability issue based
on the conventional APF. The relative velocity technique, which not only considers the
relative distance but also the relative velocity between the autonomous underwater robot
and moving objects, addresses the local minimum problem by combining the positive
hexagonal guidance method and the APF. The experimental results demonstrate that
this method reduces the computational effort required for navigation. To resolve the
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poor dynamic obstacle avoidance performance in the autonomous path of an underwater
3D autonomous underwater robot, a local obstacle avoidance technique based on the
vectorial artificial potential field method was proposed [52], and the space vector method
was employed to enhance the calculation of the direction of the combined force and the
computational effectiveness of the algorithm. Eventually, by using the vector artificial
potential field approach, the key path points were employed as local target locations to
avoid nearby obstacles. The findings of the simulation demonstrate that the strategy can
help the autonomous underwater robot efficiently avoid different obstacles and lower
the cost.

Reference [53] provides a technique for avoiding local minima in an artificial potential
field and maneuvering around the closest obstacle, allowing an unmanned aerial vehicle
to successfully escape from the local minima without hitting any obstacles. The study
suggests a parallel search technique that requires the unmanned aerial robot to navigate
around the nearest obstacle to approach the target while detecting the obstacle between
the current location and the target being too far away and having too many obstacles to
reach it. Simulation results show that the path planning algorithm and controller that
were suggested are useful. Reference [54] addresses the problem that most unmanned
aerial robot path planning techniques do not consider, which is wind interference. A new
3D online APF path planning technique that enhances the sensitivity of the unmanned
aerial robot to wind speed and direction was proposed. This is performed by presenting
a new, improved attractor with a modified wind resistance gravitational function that
considers any small changes in the relative displacement caused by the wind. This causes
the unmanned aerial robot to drift in a certain direction. The proposed path planning
technique is evaluated for various simulation scenarios. Its performance is superior in
handling wind disturbances. Reference [55] describes an enhanced artificial potential
field method incorporating the chaotic bat algorithm. It uses an artificial potential field
to accelerate the convergence of bat position updates. It proposes an optimal success rate
strategy with adaptive inertia weights and a chaotic strategy to prevent hitting a local
optimum. The method is particularly robust for dealing with path planning issues, and the
simulation results demonstrate that it considerably improves the success rate of discovering
suitable planning paths and reduces the convergence time.

The artificial potential field method has great advantages in avoiding unknown obsta-
cles. However, it can easily fall into the local minimum in complex environments, and it is
also sensitive to noise interference. In the future, a complex artificial potential field could
be designed to improve the adaptability of the algorithm.

2.3.3. Time Elastic Banding Algorithm

The timed elastic band algorithm (TEB) [56] is a classical local obstacle avoidance
algorithm for two-wheeled differential robots. The method explicitly augments the “elastic
band” with temporal information, thus allowing the dynamic constraints of the robot to
be considered and the trajectory to be modified directly, transforming the traditional path
planning problem into a graph optimization problem [57].

An active trajectory planning technique has been proposed for autonomous mobile
robots operating in dynamic situations [58]. The proactive timed elastic band (PTEB) model,
as suggested in this method, focuses on integrating the hybrid reciprocal velocity obstacle
model (HRVO) into the goal function of the TEB algorithm. According to the simulation
findings, the proposed motion planning model can control the mobile robot to actively
avoid dynamic impediments and provide safe navigation. An improved TEB algorithm was
proposed to address the anomalous behavior of the conventional TEB algorithm in cluttered
scenarios where planning is prone to backward and large steering. Here, a hazard penalty
factor constraint that can plan a safer motion trajectory, an acceleration jump suppression
constraint to reduce large shocks in motion, and an end-smoothing constraint to reduce end
shocks were added; the improved TEB achieved a smooth and accurate arrival of the target
points [59]. The simulation findings demonstrate that the enhanced TEB algorithm may
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produce a more logical robot motion and create a safe and smooth course in challenging
situations.

The time-elastic band algorithm considers the continuity of time, making the path
smoother, but it cannot deal with complex scenes, such as large-scale scenes and high-
dimensional space. In the future, it could be combined with a machine learning algorithm
to improve the accuracy of path planning.

2.4. Algorithm Based on Artificial Intelligence
2.4.1. Neural Networks

An artificial neural network is an information processing system that mimics the
structure and operation of a neural network in the brain. It is a complex network structure
comprising several interconnected processing units (neurons) [60]. A typical artificial
neural network has the following three components: input, hidden input, and hidden
output. The input, hidden, and output layers are the first, intermediate, and last layers,
respectively. The number of neurons in the input layer is determined by the input data,
and the number of neurons in the other layers is altered to reflect the current condition.
The concealed layers may have any number of layers, occasionally having multiple layers.

A guided autowave pulse coupled neural network (GAPCNN) was proposed to ad-
dress the fact that most fast collision-free path planning algorithms cannot guarantee the
superiority of paths, and it significantly improves the path query time by introducing a
directed automatic wave control and accelerated discharge of neurons based on dynamic
thresholding techniques [61]. The temporal effects of the algorithm demonstrate that it
may be utilized for route planning in static as well as dynamic contexts. The simulation
and testing findings demonstrate that the GAPCNN is a reliable and quick path planning
technique. A multi-robot path planning algorithm based on a combination of Q-learning
and convolutional neural network (CNN) algorithms was proposed for the problem of
conflict-free path planning for multiple robots caused by practical tasks [62]. This technol-
ogy enables many mobile robots to quickly design courses in various surroundings while
successfully accomplishing the mission, according to experimental data. A new Fast Simul-
taneous Localization and Mapping (FastSLAM) algorithm based on the Jacobi-free neural
network was proposed [63], which utilizes a multilayer neural network to compensate for
the measurement error online and train the neural network online during Simultaneous
Localization and Mapping (SLAM). The third integration rule of the Gaussian weight-
ing method is also utilized to calculate the nonlinear leap density before the Gaussian
third-order nonlinearity, estimate the state of the SLAM state (robot path and environment
map), and train the neural network compensator online. According to simulation data, the
mobile robot’s ability to navigate in unfamiliar areas and avoid collisions with objects was
improved; SLAM performance was also improved.

An approach that combines a bio-inspired neural network and the potential field
was suggested [64] to address the safety issue of autonomous underwater robot path
planning in dynamic and uncertain situations. A bio-inspired neural network uses the
environment to determine the best course for an autonomous underwater robot. The path
of the bio-inspired neural network is modified by the potential field function such that
the autonomous underwater robot can avoid obstructions. The experimental findings
demonstrate that the strategy strikes a balance between autonomous underwater robot
safety and path logic. The intended routes can accommodate the need for navigation in
dynamic and unpredictable surroundings. Based on the excellent performance of deep
learning, a hybrid recurrent neural network framework was proposed to estimate the
position of an autonomous underwater robot [65]. In this approach, the raw sensor readings
are processed in a single computational cycle using unidirectional and bidirectional long
short-term memory networks (LSTM) with numerous memory units. The completely
linked layer can then determine the displacement of the autonomous underwater robot
using the output of the LSTM and the time interval of the previous cycle. The simulation
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results demonstrate that the approach presents significant navigational usefulness and high
accuracy while minimizing sensor bias interference.

2.4.2. Reinforcement Learning

The basic principle of reinforcement learning [66] is that intelligence is continuously
learned under the stimulus of environmental feedback rewards or punishments and contin-
uously adjusts its strategy based on the feedback to eventually reach reward maximization
or a specific goal. A deep Q-learning algorithm for experience replay and heuristic knowl-
edge was proposed [67]. In this algorithm, neural networks are used to solve the problem of
the dimensional catastrophe of Q-tables in reinforcement learning. This makes the most of
the robot’s ability to collect data based on its experience as it moves. Heuristic knowledge
helps avoid blind exploration by the robot and provides more efficient data for training
the neural net for faster convergence on the optimal action strategy. Considering the local
path planning problem in complicated dynamic environments, a fast extended random
tree path planning method based on reinforcement learning SARSA(λ) optimization has
been suggested [68]. This method increases the selection of expansion points, introduces
the concept of biased goals, uses task return functions, goal distance functions, and an-
gle constraints to improve the performance of the rapidly-exploring random tree (RRT)
algorithm, decreases the number of invalid nodes, and ensures the randomness of the RRT
algorithm. Reinforcement learning aims to train the intelligence to take action to maximize
its reward with strong decision-making capabilities. Deep learning can extract high-level
features from the raw mass of data and has a strong perceptual capability. Deep reinforce-
ment learning [69] is an artificial intelligence program that combines the perceptual and
decision-making abilities of reinforcement learning to make a more accurate model of the
human mind. A learning-based map-free motion planner is proposed for obstacle-free
maps and sparse distance information by considering the sparse ten-dimensional range
results and the position of the target relative to the coordinate system of the mobile robot as
the input and a continuous steering command as the output [70]. An asynchronous deep
reinforcement learning technique can be used to train a mapless motion planner from one
end to the other. This methodology is more reliable in excessively complex contexts.

For autonomous underwater robots to find a feasible collision-free path in complex
underwater environments, the use of deep reinforcement learning algorithms to learn
processed sonar data for autonomous underwater robot navigation in complicated situa-
tions has been proposed as an active sonar technique [71]. The process of switching the
trajectory is accelerated by the addition of line-of-sight guidance. The performance of this
approach was compared with that of genetic algorithms and deep learning algorithms in
three environments: random static, hybrid static, and complicated dynamic, and it was
found that the algorithm surpassed the other algorithms in terms of success rate, obstacle
avoidance performance, and generalization capability. An enhanced deep deterministic
policy gradient (DDPG) algorithm for real-time obstacle avoidance and 3D path tracking
has also been suggested [72]. To address the problem of DDPG requiring a large training
set to explore the strategy, a line-of-sight guidance-based approach is used to generate the
target angle for path tracking and the error relative to the carrier coordinate system, which
facilitates the filtering of irrelevant environmental information and generates the corre-
sponding strategy. The method provides a more accurate approximation of the approach
than the original DDPG algorithm, according to the simulation findings.

A deep reinforcement learning method for unmanned aerial robot path planning
based on global situational information was proposed [73]. In this method, a situational
evaluation model was developed based on the simulation environment provided by the
Stage Scenario software. In this model, the probability of an unmanned aerial robot’s
survival under enemy radar detection and missile attack was considered. Using a com-
peting dual-depth Q network, the algorithm obtains a set of situational maps as input to
approximate the Q values corresponding to all the candidate operations, which results in
higher cumulative rewards and success rates compared to the dual-depth Q network. A
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distributed deep reinforcement learning framework that divides the unmanned aerial robot
navigation task into two simple subtasks, each solved by a designed LSTM-based deep
reinforcement learning network, was developed [74]. The simulation results demonstrate
that the unmanned aerial robot performance of this method outperforms other state-of-the-
art deep reinforcement learning methods in highly dynamic and uncertain environments.
In [75], an interpretable deep neural network path planner was proposed for the automatic
navigation problem of small unmanned aerial robots in unknown environments. The
method models the navigation problem as a Markovian decision process that uses deep
reinforcement learning to train the path planner in a simulation environment and proposes
a feature attribute-based model interpretation method to better train the model. Based
on experimental results in a genuine setting, the path planner can be directly used in a
real environment. In reference [76], a 3D coverage map was first created, which stores the
estimated disruption probability at each point to solve the communication interference
from overhead buildings in unmanned aerial robot 3D path planning. Using the created
coverage map, an approach based on multi-step dueling DDQN (multi-step D3QN) is
suggested to build locally optimal unmanned aerial robot pathways. The unmanned aerial
robot functions act as an agent in this algorithm, learning the proper course of action to
perform the flight task.

Reinforcement learning can be used to learn the optimal strategy independently in
a complex environment and can adaptively adjust the path planning scheme. However,
reinforcement learning requires many calculations and also requires the adjustment of
many parameters, which may have a significant impact on the final path. In the future,
we will consider introducing this model to reinforcement learning. Additionally, to meet
the interpretability of the reinforcement learning algorithm for path planning, we can
investigate interpretable path planning.

2.4.3. Brain-like Navigation

As one of the research directions of artificial intelligence technology, brain-like navi-
gation involves several interdisciplinary aspects such as brain science and control science.
Brain-like navigation is a new navigation technology that mimics biological cognitive
characteristics by sensing environmental information through multiple sensors and us-
ing intelligent and exogenous technologies to achieve navigation information fusion and
cognitive map construction with knowledge memory, learning, and reasoning character-
istics, as well as real-time intelligent path planning with cognitive characteristics [77].
Current studies regarding brain-like navigation have been conducted considering various
aspects, including brain-like environmental perception, brain-like spatial cognition, and
goal-oriented brain-like navigation. An integrated research system for modeling, simula-
tions, and experimental validation has been initially formed. However, it remains in the
exploration and improvement stage. Brain-like environmental perception mainly focuses
on the extraction of multidimensional features from the navigation information of the
carrier and the surrounding environment, drawing on the rich biological structures of the
auditory, visual, olfactory, and sensory information processing mechanisms of animals. The
University of California, Berkeley [78] designed an insect-like lightweight micro-unmanned
aerial robot hardware platform for the US Defense Advanced Research Projects Agency
(DAPPA) research. It also integrated multimodal bionic sensors such as compound eyes,
insect balance bar gyroscopes, optical flow sensors, and U-shaped magnetometers. It has
various advantages, such as retrieving rich environmental perception information, strong
adaptation to the dynamic flight environment, accurate measurements, and energy savings.
In 1948, Tolman [79] proposed a cognitive map by studying rats walking in a maze. In 1948,
Tolman proposed the concept of a cognitive map by studying rats walking in mazes and
suggested that rats use a certain spatial representation formed inside the brain to guide
themselves in path planning, obstacle avoidance, and other navigational behaviors. The
brain-inspired spiking neural network (SNN) is closer to the actual biological structure than
other artificial neural network models. The output of its neurons has a pulse sequence en-
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coded in the temporal dimension, and multiple neurons can achieve the ability to represent
a two-dimensional space in time–space. Most of the connections of SNN-based brain-like
spatial cognition models are predefined by brain structures, and less parameter learning
is required to better model clusters of brain navigation cells, such as position cells, grid
cells, and head orientation cells, which encode navigation information to map the envi-
ronment [80]. The Google DeepMind team’s [81] dual-path deep reinforcement learning
navigation architecture uses a two-path deep circulation neural network to remember the
kernel of common navigation pathfinding strategies in different environments and present
positions in different environments. Convolutional neural networks are then used to get
visual input in real-time. The destination was successfully reached in an offline street view
without reference to a map library and with only a few points (mission reward).

2.5. Sampling-Based Algorithms
2.5.1. Rapidly-Exploring Random Tree

The rapid-exploration random tree algorithm is built by randomly generating a tree
starting from a starting point and connecting the generated tree to the trunk of the starting
point to form a search tree. This continues until all of the branches of the tree lead to the
target point. This algorithm is commonly used in the static path planning of mobile robots.
In [82], based on the RRT* algorithm, a motion planning algorithm called Smooth RRT* that
provided a smoother solution for robots with nonlinear dynamic constraints and could be
used to reconnect two nodes in a given state was proposed. Compared with the traditional
RRT algorithm and the Kinedynamic-RRT (Kino-RRT) [83] algorithm, the Smooth RRT*
algorithm in this study is based on the number of nodes, and its path length and path
smoothness are better than those of the previous two algorithms. In [84], the neural RRT*
(NRRT*) algorithm, which is based on a convolutional neural network, was proposed as
a new way to plan the best path. In this study, the optimal path and map information
generated by the A* algorithm were used as datasets, and a large number of optimal paths
generated by the A* algorithm were used to train the CNN model. Compared with the
traditional RRT* algorithm and the informed RRT* [85] algorithm, the algorithm proposed
in this paper is more effective with regard to path generation time and memory usage. As
some path planning algorithms cannot guarantee the optimization memory and smoothness
of the trajectory when a mobile robot completes a complex task, a bidirectional RRT (KB-
RRT) algorithm based on kinematic constraints is proposed [86]. This algorithm limits the
number of generated nodes without affecting its accuracy and uses kinematic constraints to
generate a smoother trajectory. Compared to the bidirectional RRT [54] algorithm in three
highly cluttered environments, the KB-RRT algorithm reduces the number of nodes and
the running time and significantly improves memory utilization.

A Q-RRT* algorithm was suggested [87], which may be used with a sampling tech-
nique to further enhance the performance and demonstrates superior initial solution and
convergence speed than the RRT* algorithm. A dual-tree expansion approach called Bi-RRT
has been suggested [88] as being more effective than single-tree expansion. The initial
and target points serve as the starting points for the expansion of the random tree by the
algorithm. After choosing a random node, two trees are chosen one at a time, randomly
extended on top of that, and their expansion orders are exchanged in the following iteration.
A closed-loop stochastic dynamic path planning algorithm based on incremental sampling
techniques was described in [89] as a closed-loop rapid exploration random tree (CL-RRT)
algorithm. Here, in the autonomous underwater robot model, three fuzzy controllers were
used to assess the scope of the search tree and whether the vertices satisfy the incomplete
dynamic constraints of the autonomous underwater robot. The ability of CL-RRT to locate
collision-free pathways in 3D environments with crowded obstacles was demonstrated
using an Extended PC (xPC) target generator. According to the experimental results on
terrain barriers and floating objects, AUVs can approach the ideal path considerably more
quickly, and a study [90] suggests that a concentrated search employing heuristic ellipsoidal
subset sampling improves the RRT* method.
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An informed RRT* (IRRT*) algorithm was developed [91], which integrates the skewed
cylindrical subset integration method into the RRT* algorithm for optimal unmanned
aerial robot path planning. According to the experimental findings, the IRRT* algorithm
is superior to the traditional RRT* method in terms of optimizing the path length and
ensuring safe flying over a larger search region. A study [92] proposes a biased sampling
potentially guided intelligent bidirectional RRT* (BPIB-RRT*) algorithm, which combines
the bidirectional artificial potential field method with the idea of bi-directional biased
sampling. This technique adapts the sample space with flexibility, considerably minimizing
incorrect spatial sampling, and accelerating convergence. The advantage of the BPIB-RRT*
algorithm suggested in this study is demonstrated by the simulation results.

The fast search random tree algorithm can efficiently explore the path and find the
optimal solution in a complex environment, but its path quality is unstable, and there may
be jitters. In the future, it can be combined with fuzzy control and machine learning to
improve path stability.

2.5.2. Probabilistic Roadmap Method

The probabilistic roadmap method (PRM) algorithm is based on state–space sampling.
It first uses random sampling to build a path network graph in the environment, converts
continuous space into discrete space, and then performs path planning on the path network
graph to solve the problem of low search efficiency in high-dimensional space. As it is
difficult to use offline path planning to plan available paths in a dynamic and complex
environment with narrow corridors when mobile robots perform tasks, a probabilistic
path map algorithm based on obstacle potential field sampling strategy called the obstacle
potential field probabilistic path map algorithm (OP-PRM) has been proposed [93]. The
specific area of the obstacle is determined by introducing the potential field of the obstacle.
The area of a certain range near the obstacle is taken as the target sampling area, and the
number of sampling points in the narrow area is increased. After constructing the random
road map, the incremental heuristic D* Lite algorithm is used to search for the shortest
path between the starting point and target point on the road map. The simulation results
reveal that this method can enable a robot to pass through a narrow corridor in a dynamic
and complex environment. In [94], a hierarchical planning method for remote navigation
tasks was proposed by combining PRM with reinforcement learning (PRM-RL). PRM-RL
uses reinforcement learning to build a road map to ensure its connectivity instead of using
collision-free linear interpolation in the C space of ships, and the road map built by PRM-RL
follows robot dynamics and task constraints. This method can complete a planning task in
a large environment.

Compared to the RRT algorithm, the PRM algorithm has a path that is less likely to
jump around and is more stable. However, it takes a long time to calculate, so it is not good
for real-time applications. In the future, we plan to develop methods that can quickly build
a road map to reduce calculation time.

2.6. Planner-Based Algorithms
2.6.1. Covariant Hamilton Optimization Motion Planning

The covariance Hamiltonian optimal motion planning (CHOMP) is a gradient-based
trajectory optimization program that makes many daily motion planning problems simple
and trainable. Although most high-dimensional motion planners divide trajectory genera-
tion into different planning and optimization stages, the algorithm uses covariant gradient
and functional gradient methods to design a motion planning algorithm that is completely
based on trajectory optimization in the optimization stage. In [95], several methods for
adapting CHOMP to vehicles with incomplete constraints were presented. These included
using a separate objective function to constrain the curvature, integrating CHOMP with
a smooth target, and introducing sliding and rolling constraints on the trajectory. In this
study, experiments were carried out in real-world scenarios to help trucks with trailers
avoid obstacles. In [96], an improved CHOMP algorithm was used for local path planning
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in automatic driving. An objective function that took into account the path’s deviation and
the vehicle’s kinematic constraints was also added to create the right path. The research
in this paper shows that, compared with traditional methods, the CHOMP algorithm has
obvious advantages in terms of time and cost when used for path planning in automatic
driving.

2.6.2. Trajectory Optimization for Motion Planning

Trajectory optimization (TrajOpt) is a sequential convex optimization algorithm for
motion-planning problems. It relaxes non-convex, non-radial equality, and inequality
constraints and uses approximate linearization and convexity to create an objective function.
In [97], a new navigation framework was proposed that uses an enhanced version of TrajOpt
for rapid 3D path planning of autonomous underwater vehicles. This study was also the
first to apply TrajOpt to the 3D path planning of mobile robots.

2.7. Constraint Satisfaction Problem-Based Algorithms
2.7.1. Chance Constrained Programming

Chance–constrained programming is a method that achieves the best performance
with a certain sense of probability. This is a random programming method that is suitable
for a problem in which constraint conditions contain random variables and the decision
must be made before the realization of the random variables is observed. In [98], a general
chance–constrained trajectory planning formula was proposed that can deal with the non-
Gaussian mixture distribution of the agent position. To strengthen the chance–constraint, a
framework is proposed to generate an expression using a symbolic function. Based on the
statistical moment of the basic distribution, the generated expression sets the upper limit
of the polynomial chance–constraint. However, this study produced overly conservative
results. In [99], a real-time method was proposed to solve a chance–constrained motion-
planning problem with dynamic obstacles. The obstacles were considered to have uncertain
locations, models, and interference in the form of additive Gaussian noise. In addition,
this study developed a closed-form differentiable bound on the set probability to safely
approximate the disjunction chance–constrained optimization problem to a nonlinear
program. Experimental results revealed that, compared with other real-time methods, it
reduces the degree of conservatism relatively and can still effectively control a mobile robot
when considering multiple obstacles.

2.7.2. Model Predictive Control

Model predictive control is an advanced control method of the control process in
process control that is mainly used for tracking the lane line in automatic driving to keep
the vehicle track relatively stable when specific constraints are met. The MPC reconstructs
the task of lane tracking into the problem of finding the optimal solution. The optimal
solution to the optimization problem is the optimal trajectory. Every step we take will
solve an optimal trajectory based on the current state, then the trajectory, and then the
optimal trajectory will be solved again based on the new value from the sensor. This is
performed to make sure that the trajectory and the lane line we want to track fit together
as well as possible. Because autonomous vehicles exhibit poor performance in emergency
obstacle avoidance, in [100], a new model predictive controller combined with a potential
function was proposed to deal with complex traffic scenarios. To improve the security of
the potential function, a sigmoid-based secure channel (SPMPC) was embedded in the
MPC constraint, and a specific trigger analysis algorithm for monitoring traffic emergencies
was designed. In two-lane and three-lane simulation experiments, the methods proposed in
this study can successfully avoid obstacles that suddenly change lanes. In [101], an optimal
guidance method based on MPC considering the current disturbance was proposed, and
a path-tracking controller was designed by combining it with adaptive dynamic sliding
mode control technology. This method can be applied not only to autonomous underwater
vehicles but also to the path planning of other unmanned vehicles.



Drones 2023, 7, 211 18 of 37

2.7.3. Quadratic Programming

Quadratic programming is used to solve nonlinear programming problems. The
objective function is quadratic. The constraint conditions are the same as those of the linear
programming problem, that is, linear or linear inequalities. As UAVs need to operate safely
at high speeds in unknown environments, yet the realization of this operation usually
leads to a slow and conservative trajectory, a fast and safe trajectory planner was proposed
in [102] to solve these problems. The fast–safe trajectory planner obtains a high-speed
trajectory by optimizing the local planner in known and unknown space and proposes a
mixed integer quadratic programming formula. Finally, in the simulation flight experiment
and an actual flight experiment, it was determined that the UAV successfully reached
3.6 m/s. In [103], an autonomous motion planning framework, including path planning
and path generation, was proposed. In this framework, the PRM algorithm was used to first
plan a safe path, and then the problem of minimizing the differential thrust and positioning
clearance polynomial path was converted into unconstrained quadratic programming,
which was solved in a two-step optimization. Compared with other methods, this method
achieves higher computational efficiency and plans a safe trajectory.

2.7.4. Soft-Constrained Programming

The soft constraint generates a force on the robot to keep it away from obstacles.
The most intuitive representation is the distance description. The Euclidean symbolic
distance field (ESDF) is very important for evaluating the gradient size and direction in
the gradient planner of a four-rotor UAV. However, it only covers a very limited subspace
during trajectory optimization. In [104], a gradient-free programming framework based
on ESDF was proposed. The collision term in the penalty function is established by
comparing the collision trajectories and collision-free guidance paths. We introduce an
anisotropic curve-fitting algorithm to change the high-order derivative of the trajectory
without changing its shape. Experiments in the real world have verified its robustness
and efficiency. In [105], a four-rotor UAV motion-planning system for rapid flight in a
complex three-dimensional environment was proposed. The dynamic path search method
was used to find a safe, dynamic, feasible, and minimum-time initial trajectory in the
discrete control space. We improve the smoothness and clearance of the trajectory through
B-spline optimization, which combines the gradient information and dynamic constraints
of the Euclidean distance field and effectively utilizes the convex hull characteristics of the
B-spline. Finally, by representing the final trajectory as a nonuniform B-spline, the iterative
time adjustment method was adopted to ensure a dynamic, feasible, and nonconservative
trajectory. This method was verified for real, complex scenes.

2.8. Other Algorithms
2.8.1. Differential Evolutionary Algorithm

Differential evolution (DE) is an effective global optimization approach. In addition, it
uses a population-based heuristic search technique in which each member of the population
represents a solution vector. This is similar to genetic algorithms. DE is another global
optimization technique that comprises operations for selection, crossover, and compilation.
DE also differs from genetic algorithms in that the variance vectors in the different evolution
are generated from the variance vectors of the parents. Additionally, it directly chooses
from the parent individuals and intersects the parent’s vectors to create a new individual
vector. A new prediction-based path evaluator was designed to assess the fitness of
possible paths by introducing a differential evolution algorithm as an optimizer [106].
The experimental results demonstrate that this method helps autonomous underwater
robots make full use of ocean currents and effectively avoid collisions. Additionally, the
control points produced by the B-spline were optimized using a differential evolutionary
method [107]. This enables the autonomous underwater robot to successfully navigate
a variety of obstacles in 3D space. The cost function used for methodology in this study
accounted for the kinematic restrictions placed on the autonomous underwater robots’
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sway, yaw, and pitch components. The results of the experiments were reported. The
projected trend can be fully utilized for autonomous underwater robot path planning based
on a differential evolutionary algorithm to address unforeseen perturbations.

The differential evolution algorithm has a strong global optimization ability and can
find the global optimal solution or a solution close to the optimal solution. However,
compared with those of other algorithms, its convergence speed is low. In the future, we
need to focus on improving its efficiency and accuracy.

2.8.2. Biogeography Optimization Algorithm

Dan Simon proposed the Biogeography-Based Optimization (BBO) algorithm in
2008 [108], which has the same characteristics as other biology-based optimization methods
(genetic algorithms and particle swarm optimization). Therefore, BBO can be used to solve
many of the same problems that GA and PSO can, including high-dimensional problems
with multiple local optima. A two-stage recursive task planning system for autonomous
underwater robots based on the BBO algorithm was designed, and simulation experiments
were conducted for three scenarios, which demonstrated that the algorithm is significantly
effective in real-time [109].

2.8.3. Level Set Approach

The level set method (LSM) is a numerical technique for interface tracing and shape
modeling [110]. The benefits of using the LSM are that evolving curved surfaces can be
numerically calculated on a cartesian grid without the need to parameterize the surfaces,
and the topological changes of an object can be easily tracked. Therefore, this approach
can be utilized to address issues caused by underwater dynamics. LSM was used in
studies [111,112] to reconcile the ocean-current problem with the planning time. A time-
optimized LSM and a 3D ocean modeling optimization technique were combined [113]. This
plan makes it possible to predict ocean currents and makes it easier to quickly coordinate
autonomous underwater robot dynamic control plans. Stochastic dynamic orthogonal
level set equations that can be used in dynamically varying current fields were derived,
and a simplified form for numerical implementation was obtained [114]. The results
demonstrate that the new algorithm is accurate and efficient. To address the problems
of low computational efficiency and long planning times in autonomous underwater
robot multiterminal route planning, the traditional level set function was localized, and
a polynomial distance regularized (P-DRE) term was introduced to derive a new discrete
iterative equation that improves the computational efficiency of the level set algorithm.

2.8.4. Fast Marching Method

The fast marching (FM) algorithm [115] is comparable to Dijkstra’s algorithm, except
that Dijkstra’s algorithm updates with the Euclidean distance between two nodes, whereas
the FM method updates a rough partial differential equation simplified by a non-linear
Eikonal equation. The FM algorithm is applied in a large 3D environment for autonomous
underwater robots and solves the pathfinding problems of autonomous underwater robots
in terms of navigation, safety, and energy consumption. A hybrid search fast marching
method (HSFM) based on the FM algorithm has been proposed [116]. The algorithm takes
into account underwater undercurrents based on the relationship between the gradient
lines and feature lines in a velocity profile. It also takes into account several constraints
and decision criteria, such as currents, shoals, reefs, dynamic obstacles, and navigation
rules, while reducing the paths and time. Thus, autonomous underwater robots are now
more competitive in dynamic underwater obstacle avoidance. A novel FM method paired
with the A* algorithm has been suggested [117] as a way to improve search precision and
produce a finite curvature that can be used by autonomous underwater robots of all sizes.
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2.8.5. Fuzzy Logic Method

By mimicking the ability of the human brain to evaluate uncertainty and make deci-
sions based on environmental data and fuzzy rules, fuzzy logic can solve the path planning
problem. To solve the problem of autonomous underwater robots being prone to receive
sea-current interference when performing underwater path planning, a fuzzy optimization
technique based on auto-disturbance rejection control (ADRC) was suggested to increase
the adaptation of autonomous underwater robots to the marine environment by including
ADRC to manage sea-current interference [118]. The findings of this trial demonstrate
that the autonomous underwater robot can exert superior control in a challenging marine
environment. An optimized fuzzy control algorithm was proposed for the autonomous
underwater robot 3D path planning problem [119]. Horizontal and vertical sonar planes
were used to collect the environmental data. A fuzzy system with an acceleration module
was used to calculate the acceleration values, and an optimal fuzzy set was created by
contrasting the two optimization techniques to determine the best course of action. The
results of the experiments demonstrate that the method can complete the path planning
of a 3D autonomous underwater robot. The change in distance between the autonomous
underwater robot and obstacles was employed as an extra input to the fuzzy affiliation
function [120] because it is challenging to determine the speed of obstacles moving in the
actual world. When obstacles move quickly, the results demonstrate that the proposed
method performs noticeably better than the conventional fuzzy logic algorithm.

The biggest advantage of the fuzzy logic algorithm is that it does not require an
accurate mathematical model, and its operation principle is basically similar to human
cognition. However, its definition of fuzzy rules depends on people’s experiences, and
it cannot adapt to complex environments. Future research needs to focus on developing
more intelligent path planning algorithms so that robots can adjust their paths intelligently
according to environmental changes and user needs.

2.9. Discussion

Table 1 summarizes the advantages and disadvantages of each path planning algo-
rithm. Both the A* and Dijkstra algorithms are classic algorithms based on graph search that
are used to solve the shortest path problem. They can deal with path planning problems
in a static environment, but the A* algorithm can find the optimal solution faster with
the introduction of a heuristic function. Their disadvantage is that they cannot effectively
address the path planning problem in a dynamic environment. Genetic algorithms typically
perform many evolutionary operations. Therefore, they take up a considerable amount of
storage space, and there are more parameters to be adjusted, resulting in a slower conver-
gence speed. The advantage of the genetic algorithm is that it has a strong global search
ability and can overcome the suboptimal solution of the A* algorithm. Similar to genetic
algorithms, differential evolution algorithms also have genetic operators such as selective
crossover mutations, which can be defined in different ways. The excellent robustness of
differential evolution algorithms in a wide range of path planning applications has been
proven in practice.
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Table 1. Summary of robot path algorithms.

Algorithms Mechanism References Year Improvements Advantages Limitations

A*
Find the shortest

path to the
current node but
to the destination

[9] 2020 Incorporate the A* algorithm
into linear time logic.

Reduces the number
of nodes and the time
to generate paths.

/

[11] 2019

The risk cost and distance cost
functions are simplified, and
the critical path points are
extracted, which are combined
with the window method

Reduces the number
of A* nodes and
eliminates the need
for speed space
modeling

Most parameters
are determined in
simulation
experiments

[13] 2021

The turning cost function is
added, the generated
trajectory is optimized, and
the maximum search distance
and maximum path length are
limited

Reduces search time,
path length, and
number of nodes

/

[14] 2019
New cost function designed
using ray tracing technique to
simulate reflection paths

Provides a safe path
based on position
error prediction

Energy loss to the
unmanned aerial
robot when there
are sharp turns in
the path

[15] 2019
A cost function is designed
that considers both path
length and risk cost

Minimizing the risk to
the crowd

There is no
guarantee that the
path is the
optimal solution

[16] 2016
Fusing sparse A* algorithms
with bio-inspired
neurodynamic models

Mitigates the
computational bulk of
the A* algorithm
during 3D track
planning

More complex
dynamic
impediments
such as air
resistance are not
taken into
account

GA

Populations
generate new
populations

through crossover
and mutation

[21] 2017

Combined with Q-learning
algorithms and designed for
continuous environments
with R-values and actions

Autonomously
finding suitable
obstacle avoidance
routes and using
Q-learning algorithms
for dynamic obstacle
avoidance

Q-learning
algorithms need
to learn from
mistakes and
robots need to
experience
failures to find a
route

[22] 2013
Combining co-evolutionary
mechanisms with improved
genetic algorithms

Faster convergence by
avoiding local
optimum problems

Currently only
running in
known static
environments

[23] 2015

Combines genetic algorithms
and particle swarm
optimization algorithms for
global path planning in
autonomous underwater
robots and uses current factors
as evaluation factors for
genetic algorithms

Reduces energy
consumption of
autonomous
underwater robots
when navigating in a
wide range of marine
environments

No consideration
of the impact of
autonomous
underwater robot
movement on the
performance
assessment

[24] 2010
Combined with dynamic
planning, use a B-spline curve
to optimize the path

Optimizes path
length, minimum
turning call, and a
maximum pitch angle

/

[25] 2018
Combining mixed integer
linear programming with
genetic algorithms

Better paths can be
achieved through
lower energy costs

/

[27] 2016 Combining genetic algorithms
and fuzzy logic

Improving the
accuracy of route
planning

Its cost function
takes slightly
longer to run
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Table 1. Cont.

Algorithms Mechanism References Year Improvements Advantages Limitations

ACO
Ants move

toward areas of
high pheromone

concentration

[28] 2017 Introduced probability
multiplication factor

Reduced
computational effort
and smoother paths

The planned path
closely follows
the edge of
obstacles

[29] 2020

Propose an adaptive
pheromone volatility factor
strategy; propose a load
balancing strategy

Improved efficiency
of algorithm
operation

Planned paths
through the
corners of
adjacent obstacles

[30] 2018

RA and AACO navigation
controller designed;
RA-AACO hybrid controller
designed using the logic RA
and AACO logic

Enabling path
planning for
humanoid robots

6–7% error in the
planned path
length and time
spent

[31] 2020

Introduction of particle swarm
optimization algorithms to
improve pheromone update
rules

Improved search
efficiency and shorter
optimization paths

Slow convergence
rate

[32] 2018 Combined with the A*
algorithm

The optimal path is
obtained

As the number of
search
dimensions
increases, there is
a risk of falling
into a local
optimum

[33] 2022

Transformation of the path
planning task into a
multi-objective optimization
task with multiple constraints,
introducing an exact
population intelligence search
method that improves ant
colony optimization

Improving the
effectiveness of
unmanned aerial
robot mission
planning

/

[35] 2017

Two different pheromone
table encodings for MTS-ACO
are proposed and a minimum
time search heuristic function
is designed

Better route planning
solutions in less time

The trajectories
obtained can only
be flown directly
by drones with
specific
capabilities

PSO

Individual and
group

collaboration and
information

sharing

[37] 2021 Introduction of adaptive
fractional speed

Enhanced ability to
step out of the local
optimum solution

Computationally
intensive,
unstable
numerical
oscillations, and
difficulty in
model
optimization

[38] 2016

Combination of improved
particle swarm optimization
algorithm and gravitational
search algorithm

Optimized path
length, number of
turns, and arrival
events

Focusing only on
evacuation path
optimization
problems with a
single evacuation
path

[39] 2019

Converts inertial weighting
factors and learning factors
from linear to non-linear to
describe the obstacle with a
penalty function

Reduced energy
consumption of
autonomous
underwater robots in
underwater
environments

May fall into a
local optimum
solution

[40] 2019
Introduction of adaptive laws
and quantum behavior for
global time optimization

Improved search
performance

Slow convergence
at later stages
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Table 1. Cont.

Algorithms Mechanism References Year Improvements Advantages Limitations

PSO

Individual and
group

collaboration and
information

sharing

[42] 2022

A combination of a selfish
population optimizer and a
particle swarm optimizer is
proposed

Simplifies the
structure of SHO and
improves SHO search
capabilities

/

[43] 2021

Parallel evolution of
segmented paths using DC
strategies to transform
high-dimensional problems
into multiple parallel
low-dimensional problems

Ability to search for
viable routes in
complex
environments with a
large number of
waypoints, providing
better stability

/

Dijkstra
Finding the

shortest path in a
directed graph

[18] 2022 The error caused by the sensor
is considered

Generates the
planning path with
the minimum
cumulative error

Inadequate
handling in large
environments

[19] 2019 Introduction of equivalent
paths

Optimal paths were
calculated

No experimental
results for
verification

DWA

Sampling of the
surroundings
(robot speed,

motion
parameters, and
position) at the
current moment

[45] 2020

Add two new evaluation
functions that use Q-learning
to adaptively learn the
parameters of DWA

The shortcomings of
the original
evaluation function
have been modified to
enhance global
navigation with
strong self-learning
and self-adaptation

The planned path
is not optimal

[46] 2019 A dynamic collision model is
proposed

Consider the
movement of other
obstacles and predict
future environmental
collisions

May provide
incorrect
modeling when
dealing with a
large number of
dynamic
obstacles

[47] 2012
Abandoned weighted
objective function and used
model predictive control

The navigation
function is defined as
the optimization
objective based on the
configuration space

Limitations when
applied to robots
with constrained
kinematics

APF

Changing the
direction of

motion of a robot
by repulsive and

gravitational
forces

[49] 2015

Combining the bacterial
evolutionary algorithm with
the artificial potential field
method the bacterial potential
field method is proposed

No need to calculate
the global optimal
path enhancing the
local and global
controllability of the
robot in dynamic
environments

Trajectory
planning is highly
dependent on the
hardware
architecture of the
robot

[50] 2020
Use reinforcement learning to
adjust the parameters of a
potential field

It has better running
time and cost function
value

/

[51] 2020

Addition of a distance
correction factor to the
repulsive potential field
function; combined with the
positive hexagonal bootstrap
method

Reduced calculations
during navigation

Obstacle
avoidance in 3D
environments
was not
considered in the
experiment

[52] 2022
Improved calculation of the
direction of combined forces
using the space vector method

Improved
computational
efficiency of
algorithms and
reduced cost of
obstacle avoidance for
autonomous
underwater robots

No consideration
of the mechanical
constraints of the
autonomous
underwater robot
and the size of the
obstacle
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Table 1. Cont.

Algorithms Mechanism References Year Improvements Advantages Limitations

APF

Changing the
direction of

motion of a robot
by repulsive and

gravitational
forces

[53] 2021

A method of moving around
the nearest obstacle is
introduced, and a parallel
search algorithm is proposed

Avoiding the trap of
local minima in
artificial potential
fields

/

[54] 2022

Proposing a new and
improved attraction to
enhance the sensitivity of
unmanned aerial robots to
wind speed and direction

A modified wind
resistance
gravitational function
that takes into
account any small
changes in relative
displacement caused
by the wind causing
the unmanned aerial
robot to drift in a
certain direction

/

Neural
Network

An information
processing system

that mimics the
structure and

function of the
brain’s neural

networks

[61] 2014

Introduction of directional
automatic wave control and
accelerated neuronal
discharge based on dynamic
thresholding techniques

Improved path query
times, the model uses
parameters
independent of
configuration space
and neuron properties

Training neural
networks offline
is
time-consuming

[62] 2019
Combining Q-learning
algorithms with convolutional
neural networks

Improved path
planning performance

Limited to a
single scenario, if
the target changes
it will not work
without a large
amount of
additional
training data

[63] 2015

Online compensation of range
errors using multilayer neural
networks and estimation of
robot paths and states of
environmental maps using
Gaussian weighted
integration of third-order
volume rules

Mitigation of error
accumulation caused
by inaccurate
linearization of the
SLAM non-linear
functions and
incorrect range
models

/

TEB

Start point and
target point states

are specified by
the global

planner, with N
robot poses

inserted between,
and movement
times defined

between points

[58] 2020

Proposing actively timed
elastic bands, incorporating a
hybrid inverse velocity barrier
model into the objective
function of the TEB algorithm

Drive mobile robots
to actively avoid
dynamic obstacles

There is a
tendency to
oversteer in
corners with
partial
meandering

[59] 2022

Add penalty function factor
constraint, acceleration jump
suppression constraint,
end-smoothing constraint

Reduced maximum
impact on the robot,
smooth and accurate
arrival at the target
point and reduced
end impact

Small
improvement
compared to
static weights

reinforcement
learning

Train intelligence
to take action to
maximize their

returns

[67] 2020

Combining deep Q-learning
with experience replay
mechanisms and heuristic
knowledge

Solves the
“dimensional
catastrophe” problem,
avoiding blind
exploration and faster
convergence to the
optimal action
strategy

Only possible in
idealized
environments

[68] 2020

Increase the choice of
extension points, introduce
the idea of biased targets, use
task return functions, target
distance functions, and angle
constraints

Reduces the number
of invalid nodes and
improves the
performance of the
RRT algorithm

The algorithm has
limited
generalization
capabilities
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Table 1. Cont.

Algorithms Mechanism References Year Improvements Advantages Limitations

reinforcement
learning

Train intelligence
to take action to
maximize their

returns

[70] 2017 Designed a learning-based
mapless path planner

Training the planner
by asynchronous
deep reinforcement
learning methods so
that training and
sample collection can
be performed in
parallel

Insufficient
theoretical
support and low
sample sampling
rate

[72] 2022

A line-of-sight-based
guidance method is used to
generate the target angle for
path tracking and to generate
the error relative to the carrier
coordinate system

Facilitates the filtering
of irrelevant
environmental
information and the
generation of
corresponding
policies, enabling
more efficient policy
approximation

Considers the
effect of only a
single
environmental
variable

[73] 2020

A deep reinforcement learning
method for unmanned aerial
robot path planning based on
global situational information
is proposed, using competing
dual-depth Q networks

Higher cumulative
rewards and success
rates can be achieved

For most winged
tactical drones,
this option is not
suitable

[76] 2021

A multi-step competitive
DDQN-based algorithm is
proposed to design locally
optimal unmanned aerial
robot paths using the
constructed coverage graph

Improved stability
and faster
convergence of the
algorithm

/

Rapid-
exploration

Random Tree

Built by the
random spanning

tree method,
connecting the

generated tree to
the trunk of the
starting point

[87] 2019

Extending the retrospective
scope of the two optimization
processes of the RRT*
algorithm; combined with a
sampling strategy

Guaranteed better
paths and faster
convergence with the
same time and space
complexity

More computing
resources
required

[89] 2019

Assessing the feasibility of
RRT extensions and
exploration through fuzzy
controllers combined with
six-degree-of-freedom
nonlinear models

Handling of random
and uncertain
information
Highly competent

High chance and
low accuracy

[91] 2018

Combining bi-directional
artificial potential field
methods with the idea of
bi-directional bias sampling

Reduced invalid
spatial sampling and
increased
convergence speed

/

Other
Algorithms

[106] 2022 Designed path evaluator

Helps autonomous
underwater robots
use ocean currents to
avoid collisions

No consideration
of the cost of local
paths

[107] 2018

Using differential
evolutionary algorithms to
optimize control points for B
spline generation

Effective handling of
obstacles in
three-dimensional
space

Failure to
consider the
complexity of the
underwater
terrain

[113] 2016

Derivation of stochastic
dynamic orthogonal level set
equations that can be used in
dynamically varying current
fields

Minimises energy
consumption and
optimizes the optimal
path

The final path is
vulnerable to
currents
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Table 1. Cont.

Algorithms Mechanism References Year Improvements Advantages Limitations

Other
Algorithms

[114] 2020

A new discrete iterative
equation is derived by
localizing the traditional level
set function and introducing a
polynomial distance
regularisation (P-DRE) term

Improved
computational
efficiency of the level
set algorithm

The simulation
does not provide
performance
results in the case
of obstacle
avoidance

[116] 2015

Introduction of multiple
constraints and decision
criteria to process water flows
according to velocity profiles

Reduces path search
time and generates
3D smooth paths

/

[118] 2019 Introduction of ADRC to
manage current disturbances

Improved
adaptability of
autonomous
underwater robots to
the marine
environment

If the initial
values are not set
correctly, the
control system
will be unstable

[119] 2018

Optimizing the value of the
affiliation function for fuzzy
logic using the quantum
particle swarm algorithm

Presents a certain
resistance to
interference and does
not require an
accurate
mathematical model

Insufficient
steady-state
accuracy in
practical
applications

The ant colony and particle swarm algorithms are bionic methods inspired by the
behavior mechanisms of natural biological groups. They can adapt to the environment
in a short time with the cooperation of individual organisms. The ant colony algorithm
guides the search process by simulating the behavior of ants when searching for food
through the role of pheromones and the process of pheromone volatilization, finally finding
the optimal solution. The particle swarm algorithm simulates the collective behavior
of birds and fish and finds the optimal solution by constantly adjusting the position of
the particles. However, both the ant colony and particle swarm algorithms have their
limitations, resulting in slow convergence. The RRT and PRM algorithms are sampling-
based random algorithms that can be used to solve path planning problems in spaces with a
lot of dimensions and complex shapes. Among them, the RRT algorithm leverages random
sampling and can obtain feasible paths in a short time, but it is difficult to guarantee the
quality of the paths. However, it can obtain better paths by building a road network;
however, it requires a longer calculation time to achieve this.

The artificial potential field method is a path planning method based on a physical
model that is suitable for path planning in a dynamic environment. It describes the
environment and target location by defining the physical potential field to avoid obstacles
and determine the optimal path. However, they can easily fall into a locally optimal
solution in a complex environment. The dynamic window method is a path planning
method based on control theory that can quickly give path planning results. It combines
the motion model of the robot with the environment model and uses the window model to
describe the motion state of the robot to evaluate the feasible motion trajectory. However,
the calculation time increases with an increase in the dimensions of the robot’s state space.
The TEB algorithm is based on time-space path planning and can deal with the motion and
obstacle avoidance of robots in complex environments. Using the time expansion method,
it changes the robot’s movement path into a time-space manifold. This makes it easier to
optimize the path and avoid obstacles. However, this requires considerable computing
resources and time. Reinforcement learning has a strong decision-making ability and can
be used to plan an optimal path without any prior knowledge. Additionally, reinforcement
learning exhibits strong adaptability and flexibility in complex and uncertain environments.
Compared with other traditional path planning algorithms, such as the A* and Dijkstra
algorithms, reinforcement learning does not require specific forms of objective functions.
In addition, reinforcement learning can learn and adjust adaptively to optimize path
planning. Traditional algorithms, such as swarm intelligence algorithms, typically need
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to set parameters manually and lack self-adaptability. However, reinforcement learning
requires considerable training data, computing resources, and long training times.

3. Multi-Robot

Multi-robot collaboration technology remains of significant interest in robotics. When
multiple robots share the same environment, collisions between them must be considered.
To solve the problems of obstacle avoidance and collisions between the robots in multi-
robot systems during formation, a method for obstacle avoidance and consistent formation
control based on the improved artificial potential field method (IAPF) was proposed [121].
To solve the local minimum and target unreachability problems in the artificial potential
field method, a rotating potential field was established. To avoid the collision problem
between multi-robot systems, a repulsive potential function, and a robot priority model
are set, and the consistency-based formation principle is used to design a stable topology
for multi-robot formation control. The simulation results demonstrate that the method
can effectively solve the obstacle avoidance problem of a multi-robot system during the
formation process. To solve the control problem during multi-robot navigation, a shortest
distance algorithm was proposed [122], which uses the current positions and directions of
other robots to calculate collision-free trajectories and is based on the concept of relative
orientation to ensure smooth and collision-free trajectories. To address the poor robustness
and low exploration efficiency of traditional robotic collaborative exploration algorithms, a
multi-robot collaborative spatial exploration method based on a rapidly expanding random
tree-greedy frontier search (RRT-GFE) was proposed in [123]. The boundary points in the
environment map were refined by proposing an improved boundary exploration algorithm
to improve the maximum gain of exploring the target points. The exploration target
points are dynamically assigned by introducing an improved task assignment algorithm,
thus reducing the time required and improving the efficiency of multi-robot exploration.
Simulations and prototype experiments were used to prove that the proposed method
works and is reliable.

An elite group-based evolutionary algorithm (EGEA) that combines the key benefits
of both approaches while integrating a group-based framework and an elite selection
method for evolutionary path planning was proposed [124]. Due to the group-based
architecture, each descendant of the evolutionary algorithm is allowed to provide its own
set of novel solutions with a specified probability. The PSO and SA approaches are also
presented to address the adaptive ocean sampling issue. According to the simulation
results, the EGEA-based planner was superior and more reliable. A non-stop collision-free
path planning system was proposed [125], which consists of a combination of a novel
B-spline data frame and a particle swarm optimization-based solution engine. Using the
unique B-spline data frame structure, candidate points can be intelligently sampled without
having to suspend the sampling job. For several unmanned surface vehicles (USVs) to
complete the sampling task from the starting point to the rendezvous point, the PSO-based
solution engine creates optimal, smooth, constraint-aware path profiles. The applicability
and reliability of the proposed path planning system for non-stop ocean sampling jobs are
confirmed by simulation results.

A distributed velocity-aware algorithm and a method for avoiding collisions between
multiple unmanned aerial robots have been proposed [126]. These are used to plan the
paths of many unmanned aerial robots and prevent them from running into each other. The
acceleration vectors on the pathways created by the velocity-aware algorithm converged at
a preset location. When path conflicts are anticipated, the collision avoidance algorithm is
activated to safeguard unmanned aerial robots from collisions. Compared to the hierarchi-
cal control model and the Lyapunov control method, this method improves the success rate
of unmanned aerial robot mission execution and shortens the path. In [127], a time-stamped
partitioning model was used to make it easier to process coordination costs between un-
manned aerial robots. This was conducted to solve the problem of planning an optimal
path for multiple unmanned aerial robots in a limited mission environment. A novel hybrid
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method (called HIPSO-MSOS) was subsequently proposed by fusing the improved particle
swarm algorithm (IPSO) and modified symbiotic organisms research (MSOS). The experi-
mental results demonstrate that the HIPSO-MSOS algorithm has considerable advantages
in terms of accuracy, convergence speed, and stability and can successfully construct feasi-
ble and efficient pathways for each unmanned aerial robot. For the collaborative detection
problem of avoiding collisions in three-dimensional space, a method based on adaptive DE
and distributed model predictive control was proposed [128]. The control scheme incorpo-
rates an adaptive improvement of the DE algorithm and introduces an adaptive selection
of the prediction range. In addition, the asymptotic convergence of the rolling optimization
is analyzed. The simulation results demonstrate the effectiveness of the proposed control
strategy. For the problem of path planning and formation control of multiple unmanned
aerial robots in three-dimensional space, a multi-unmanned aerial robot path planning
method based on an improved artificial potential field method [129] was proposed, which
can effectively avoid local minima by introducing a rotating potential field. Using the
leader-follower model, a formation controller based on the potential field function method
is designed to ensure that the expected angle and distance between the follower unmanned
aerial robot and the leader unmanned aerial robot are maintained. The simulation results
demonstrate that the method is significantly effective in achieving path planning and for-
mation control for multi-unmanned aerial robot systems. A multi-unmanned aerial robot
path planning model with an energy constraint (MUPPEC) has been suggested [130] as a
solution to the problem of multi-unmanned aerial robot energy consumption constraints
when conducting monitoring activities. To reduce the monitoring time, MUPPEC primarily
considers the unmanned aerial robot in various energy-consuming modes, such as accelerat-
ing and hovering. For the MUPPEC issue, a hybrid discrete grey wolf optimizer (HDGWO)
based on grey wolf optimization is suggested. In HDGWO, a discrete grey wolf update op-
erator is implemented, and the discrete problem space and grey wolf space are transformed
using integer encoding and the greedy method. According to the experimental results,
HDGWO can successfully solve the MUPPEC problem. In reference [131], a multi-objective
optimization algorithm, called the angle-coded particle swarm optimization (θ-PSO), is
proposed for multi-unmanned aerial robots performing infrastructure surface inspection
tasks to find feasible obstacle-free paths for the entire formation by minimizing a cost
function that combines multiple constraints on the shortest path and safe unmanned aerial
robot operations. The experimental results demonstrate the effectiveness and feasibility of
the method. A study [132] suggests a two-stage reinforcement-learning-based algorithm
for collision-free path planning for many unmanned aerial robots. The policy is optimized
using supervised training with a loss function that encourages the intelligence to follow a
shared collision-free policy in the first stage. In the second stage, a policy gradient was used
to hone the policy. The technique may produce time-effective and collision-free pathways
in environments that are aware of uncertainty, according to the simulation data.

Table 2 summarizes the advantages and disadvantages of multi-robot cooperative
path planning. In the field of robot technology, multi-robot cooperative path planning is
an important area of research. In the future, multi-robot cooperative path planning may
develop in the following aspects: Given the problems of high computational complexity
and long running time in multi-robot cooperative path planning, it is necessary to study
how to improve efficiency and real-time path planning in the future. Dynamic changes
often occur in the working environment of robots, such as the emergence of new obstacles
and the actions of other robots. Therefore, future multi-robot cooperative path planning
needs to consider the dynamic changes of the environment and be able to respond and
adapt in time. In addition to path planning, cooperation between robots is also a very
important part of a multi-robot cooperation system. In the future, cooperation strategies
among robots will need to be studied to achieve more efficient and intelligent multi-robot
cooperation.
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Table 2. Summary of multi-robot path algorithms.

Algorithms Mechanism References Year Improvements Advantages Limitations

Multi-robot

Cooperation
between multiple
robots to
complete a
predetermined
task

[121] 2022

Constructed a motion
situational awareness map,
created a rotational potential
field, set up a rejection
potential function and a robot
priority model

The situational
awareness map
ensures that the robot
makes the best
decisions at all times,
solving the local
minima and targeting
unreachability
problems of the
artificial potential
field method

Robot control
methods are not
optimal

[122] 2016
Proposed shortest distance
algorithm based on the
relative orientation

Ensures smooth and
collision-free robot
trajectories

The simulation
does not provide
performance
results in the case
of obstacle
avoidance

[123] 2022

Thiessen polygons are used to
model and partition the
environment, the GRF
algorithm is introduced to
refine the search, and a
multi-robot task allocation
method based on an improved
market mechanism is used to
dynamically allocate
exploration target points

The ability to achieve
rapid deployment of
functional modules
and rapid portability
of algorithms between
various types of
multi-robot systems.

Error between
simulation results
and prototype
experimental
results

[124] 2020

Integration of
population-based frameworks
and elite selection methods
into evolutionary path
planning; introduction of
simulated annealing methods
and particle swarm
optimization

Generates trajectories
with higher sampling
values, a lower
standard deviation,
and shorter execution
times

The method is not
applied to 3D
workspaces

[125] 2022

Combines a novel B-spline
data framework with a
particle swarm
optimization-based solution
engine

Robust for handling
interference and
abnormal operation,
providing fast
obstacle avoidance

/

[131] 2018

An angle-coded particle
swarm optimization
algorithm is proposed to
design multiple constraints
that combine the shortest path
and safe unmanned aerial
robot operation

Accelerated particle
swarm convergence
that generates safe
and reliable paths for
each unmanned aerial
robot in a formation

/

4. Ground Robot, Unmanned Aerial Robots Cooperative

Owing to the numerous applications in target tracking, intelligent surveillance, auto-
mated package delivery missions, and disaster rescue, research regarding unmanned aerial
robot/ground robot cooperative detection systems has gained considerable momentum.
For unmanned aerial robots and ground robots to simultaneously function in a system to
complete missions, path planning for unmanned aerial robot/ground robot cooperative
systems is a critical yet challenging problem. The path planning problem was modeled as a
constrained optimization problem that attempted to minimize the overall execution time
to complete an illegal urban building inspection task. Then, a two-level modal algorithm
(called Two-MA) was proposed to solve the path planning problem for unmanned aerial
robots and ground robots, finding the path with the shortest task execution time from
both the node and cluster levels [133]. The experimental results validate that Two-MA
outperforms classical algorithms in finding the path with the shortest task execution time
to detect nonstandard buildings in cities. A collaborative unmanned aerial robot–ground
robot system was developed [134] to implement unmanned aerial robot-assisted ground
robot path planning. First, the unmanned aerial robot performs target detection by seman-
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tic segmentation, extracts information regarding ground obstacles, presents the obstacles
in a circular approximation, and proposes an algorithm to derive the optimal collision
avoidance trajectory for unattended ground robots using strict concave-convex planning
techniques. According to the simulation findings, the path developed by the suggested
path planning algorithm can successfully minimize ground robot collisions while attaining
good energy efficiency. To decouple their routing based on air-ground cooperation, a
two-step technique combining ant colony optimization and evolutionary algorithms was
demonstrated [135] for the path planning problem of heterogeneous robotic systems used
to deliver parcels in urban environments. ACO is utilized in the initial stage to identify
the routes for the ground robots. Once the ground robot route has been predetermined in
the first stage, the unmanned aerial robot route is solved using a genetic algorithm in the
second stage. The simulation findings demonstrate the ability of the method to successfully
address the issue of unmanned aerial robot heterogeneous distribution and choose the
best course for unmanned aerial robots. A collaborative unmanned aerial robot-ground
robot path planning method for dynamic environments was proposed by performing a
semantic segmentation of images acquired from the perspective of an unmanned aerial
robot through deep neural networks [136]. The method was evaluated in a car parking
scenario to provide path planning for ground robots leading to empty parking spaces. For
heterogeneous ground air robots, a tightly connected perception and navigation paradigm
was suggested [137]. The primary contributions of this study are the derivation of high-level
coordination methods and low-level goal-directed navigation in a completely integrated
manner, as well as the provision of a unified framework for formulating collaborative navi-
gation issues. The ability of the system to execute collaborative mapping and navigation in
both structured and unstructured domains was demonstrated by the experimental findings.

5. Discussion

Path planning is an important research branch for improving the autonomy of mobile
robots and has attracted the attention of researchers all over the world in recent decades.
Although many path planning algorithms have been proposed and implemented in mobile
robots, they have several drawbacks and limitations that need to be further explored.

(1) Although a variety of classical algorithms are widely used for traditional path
planning, they have several shortcomings. Their adaptability to complex environments
is unsatisfactory, and their ability to model and process an environment is limited to a
certain extent. This is especially true in complex environments, which are hard to adapt
to and process, which makes path planning less efficient and accurate. For example, in
practical applications such as human–machine cooperation, multi-robot cooperation, and
other scenarios, often involving a complex environment and a variety of different robots,
the traditional A* and Dijkstra algorithms are not appropriate. Some traditional algorithms
have problems such as endless cycles and perform repeated searches in the process of path
search. This leads to low efficiency of the algorithm and affects its practical application.
Traditional algorithms are often based on static environment modeling and path search.
This means that they cannot be adaptively adjusted based on the actual environment and
robot behavior, resulting in insufficient robustness and adaptability in path planning.

(2) Most of the current algorithms are based on improving their characteristics and
demonstrating good results. However, the results are better when used with different
algorithms as opposed to individual algorithm improvements. No single path planning
algorithm can solve all the path planning problems in practical applications, especially in
complex environments. Moreover, it is difficult to research new algorithms, so it is expected
that more combined path planning algorithms will appear in the future to make up for
each other’s deficiencies.

(3) The development of path planning techniques based on reinforcement learning
and the derived deep reinforcement learning has important implications. Based on the
current state of development and the needs for future development, the following are
some possible directions for future research on path planning techniques based on rein-
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forcement learning methods: designing reward functions, studying combinations with
conventional path planning methods, and applying reinforcement learning to collaborative
path planning for multiple intelligences. However, reinforcement learning, which involves
trial-and-error learning and state generalization, consumes a lot of resources. Recently,
brain science and brain-like intelligence have become hot spots for research and compe-
tition all around the world. Brain-like intelligence is capable of intelligent information
acquisition, intelligent information processing and communication, and intelligent human–
computer interaction. This meets the needs of intelligent path planning. By mimicking
and interacting with the environment to carry out actions and plan, brain-like intelligence
has the ability of autonomous development and can learn with a small number of samples,
thus solving the defect of resource waste in reinforcement learning and making robots have
the developmental capacity, gradually improving the intelligence level of path planning.

(4) Research on multi-robot cooperative path planning is gaining more attention
as the robotic working environment is being extended, task complexity is increasing,
and the application area is being enlarged. The system must efficiently, rapidly, and
precisely coordinate several robots to cooperate and execute multiple tasks in tandem. This
system entails not only path planning but also communication between each robot and the
cooperative control, on the basis that members exchange messages.

(5) The possible future research directions and hotspots for mobile robot path plan-
ning are as follows: (1) Multi-robot cooperative path planning. With an increase in the
number of robots, multi-robot cooperative path planning has become an important re-
search direction. Future research will focus on cooperative actions among multiple robots,
such as collaboration on industrial production lines and search and rescue missions in the
wild; (2) performance improvement of path planning algorithms. Presently, many path
planning algorithms take a long time to find the global optimal solution; thus, improving
the efficiency of the algorithm has become a research hotspot. Future research will focus
on improving the efficiency of the algorithm, reducing computation time, and adopting a
new algorithm framework to solve this problem; (3) path planning based on reinforcement
learning. Reinforcement learning has achieved great success in many fields and has great
potential for use in mobile robot path planning. Future research will focus on how to use
deep learning to plan routes and move from lab experiments to real-world applications;
(4) planning routes by combining data from multiple sensors. The continuous development
of sensor technology provides more information sources for robot path planning. Future
research will pay more attention to how to fuse information from multiple sensors for path
planning and verify its effect in practical applications.

6. Conclusions

With the development of intelligent techniques and industrial automation, path plan-
ning for mobile robots is one of the hot research topics in the field of robotics both do-
mestically and internationally. This paper reviews the application fields of the current
path planning algorithms and their improvement/optimization of them in four aspects,
including ground robots, underwater robots, aerial robots, and collaborative robots. For
each aspect, the path planning algorithms are analyzed, and their improvement measures,
advantages, and disadvantages are discussed. Finally, a summary discussion is made to
provide a reference for path planning for mobile robots.
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semantic image segmentation for UAV-UGV cooperative path planning: A car park use case. In Proceedings of the International

http://doi.org/10.1016/j.robot.2016.09.007
http://doi.org/10.1109/34.387512
http://doi.org/10.1016/j.ocemod.2015.07.013
http://doi.org/10.1016/j.ocemod.2016.01.006
http://doi.org/10.2316/Journal.206.2015.2.206-4279
http://doi.org/10.1109/TRO.2007.895057
http://doi.org/10.3390/electronics8060608
http://doi.org/10.1007/s40815-017-0403-1
http://doi.org/10.1016/j.robot.2015.10.010
http://doi.org/10.1007/s10846-020-01155-7
http://doi.org/10.1016/j.oceaneng.2022.111328
http://doi.org/10.1016/j.future.2019.09.030
http://doi.org/10.1007/s10489-020-02082-8
http://doi.org/10.1007/s42405-019-00228-8
http://doi.org/10.1109/TCSII.2021.3112787
http://doi.org/10.1007/s10846-021-01490-3
http://doi.org/10.1109/LRA.2020.2974648
http://doi.org/10.1109/TASE.2021.3061870
http://doi.org/10.1109/TVT.2022.3168574
http://doi.org/10.1016/j.compeleceng.2021.107197


Drones 2023, 7, 211 37 of 37

Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 17–19 September 2020; Volume
2020, pp. 1–6.

137. Yue, Y.; Wen, M.; Putra, Y.; Wang, M.; Wang, D. Tightly-coupled perception and navigation of heterogeneous land-air robots in
complex scenarios. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30
May–5 June 2021; Volume 2021, pp. 10052–10100.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Path Planning Algorithm 
	Algorithms Based on Graph Search 
	A* Algorithm 
	Dijkstra’s Algorithm 

	Heuristic Intelligent Search Algorithm 
	Genetic Algorithm 
	Ant Colony Algorithm 
	Particle Swarm Optimization 

	Algorithm Based on Local Obstacle-Avoidance 
	Dynamic Window Approach 
	Artificial Potential Field Method 
	Time Elastic Banding Algorithm 

	Algorithm Based on Artificial Intelligence 
	Neural Networks 
	Reinforcement Learning 
	Brain-like Navigation 

	Sampling-Based Algorithms 
	Rapidly-Exploring Random Tree 
	Probabilistic Roadmap Method 

	Planner-Based Algorithms 
	Covariant Hamilton Optimization Motion Planning 
	Trajectory Optimization for Motion Planning 

	Constraint Satisfaction Problem-Based Algorithms 
	Chance Constrained Programming 
	Model Predictive Control 
	Quadratic Programming 
	Soft-Constrained Programming 

	Other Algorithms 
	Differential Evolutionary Algorithm 
	Biogeography Optimization Algorithm 
	Level Set Approach 
	Fast Marching Method 
	Fuzzy Logic Method 

	Discussion 

	Multi-Robot 
	Ground Robot, Unmanned Aerial Robots Cooperative 
	Discussion 
	Conclusions 
	References

