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Abstract: Today, invasive alien species cause serious trouble for biodiversity and ecosystem services,
which are essential for human survival. In order to effectively manage invasive species, it is important
to know their current distribution and the dynamics of their spread. Unmanned aerial vehicle (UAV)
monitoring is one of the best tools for gathering this information from large areas. Vegetation indices
for multispectral camera images are often used for this, but RGB colour-based vegetation indices can
provide a simpler and less expensive solution. The goal was to examine whether six RGB indices
are suitable for identifying invasive plant species in the QGIS environment on UAV images. To
examine this, we determined the shoot area and number of common milkweed (Asclepias syriaca) and
the inflorescence area and number of blanket flowers (Gaillardia pulchella) as two typical invasive
species in open sandy grasslands. According to the results, the cover area of common milkweed was
best identified with the TGI and SSI indices. The producers’ accuracy was 76.38% (TGI) and 67.02%
(SSI), while the user’s accuracy was 75.42% (TGI) and 75.12% (SSI), respectively. For the cover area
of blanket flower, the IF index proved to be the most suitable index. In spite of this, it gave a low
producer’s accuracy of 43.74% and user’s accuracy of 51.4%. The used methods were not suitable for
the determination of milkweed shoot and the blanket flower inflorescence number, due to significant
overestimation. With the methods presented here, the data of large populations of invasive species
can be processed in a simple, fast, and cost-effective manner, which can ensure the precise planning
of treatments for nature conservation practitioners.

Keywords: biological invasions; blanket flower; common milkweed; drone (UAV); image processing;
QGIS; remote sensing; RGB colour-based vegetation indices; spectral discrimination

1. Introduction

Invasive alien species (IAS) are species that usually enter a new habitat with human
help (intentionally or accidentally), where their population size increases in a monotonous
way in space and time. Alien species are one of the most serious causes of the degradation
of the remaining natural habitats and the decrease of native species [1]. They severely
damage ecosystem services, which would be essential for human well-being and survival,
thus causing not only economic but also human health problems worldwide [2,3]. The
damage caused by IAS and their treatment is growing exponentially; for example, in the
EU alone it cost € 116.24 billion in 2020, compared to a loss of € 19.64 billion in 2013 [4].

In protected areas, the management and control of IAS is one of the most important
tasks of nature conservation [5]. Therefore, it is important to know the current distri-
bution and population dynamics of IAS, which is only possible with proper monitoring
methods [6]. However, accurate survey of IAS over larger areas (e.g., hectares) by using
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traditional methods (based on transects or quadrats) is extremely limited in terms of time,
energy, and cost. The disturbance of vegetation in the traditional survey (e.g., trampling,
soil compaction, etc.) may cause further problems [7,8], which may create favourable
conditions for the further establishment of invasive plant species [9]. Remote sensing
(RS) has long been preferred for mapping invasive species (mainly invasive plant species)
because of its ability to provide synoptic images of large geographic areas. This is an
advantage over field surveys, which are often limited to small areas and almost impossible
in hard-to-reach places. Historically, RS has been crucial in the identification of IAS [7,8].
Satellite RS can provide important information about the general characteristics of soil
forms and vegetation types, but often the spatial and temporal resolution is not good
enough to determine the distribution of each species or to fine tune the landscape char-
acteristics between vegetation types. In addition, the available satellite images are not
always acquired during the desired phenological stage for a given species or vegetation
type [7,8,10]. Therefore, they usually are more synopsis in nature. One possible solution to
this problem could be to develop a new RS-based method with unmanned aerial vehicles
(UAVs), or more commonly called drones. There are several advantages of their application
described in the literature. Monitoring can be performed without disturbing the vegetation.
Drone-based surveys may cover a much larger area, but it should be noted that the size
of the surveyed vegetation stands (few hectares) is between the size of traditional field
surveys and satellite-based surveys. Their resolution is suitable not only for vegetation,
but sometimes even for a finer identification of species. Many authors point out that
time and costs of work are also significantly reduced [11–14]. Taking advantage of these
benefits, drones have been used successfully to study many IAS, in a variety of ecosystems,
including grassland habitats [15,16].

Grasslands have significant biodiversity, carbon sequestration, and their primary
production and habitats are also vulnerable to damage by IAS [8]. However, in the case
of grasslands, the observation of these species, or even their recognition at all, can cause
serious difficulties with RS. They may show spectral properties similar to native species or
grow with native species, so their visual separation from the “background” can be quite
challenging. In response to these constraints, monitoring of invasive species by RS is often
only possible indirectly. Indirect methods often rely on data and models from multiple
sources to identify IAS and thereby estimate their distribution [8]. Phenological divergence
(e.g., flowering, dormancy phenology), for example, may help to distinguish between
native vegetation and invasive species [7,8,17,18].

For the EU, the Pannonian sand grasslands in Hungary are important habitats that
are threatened by the spread of many IAS [19,20]. In the present study, we examined
two of them in the open sandy grassland habitats of Lake Kolon: common milkweed
(Asclepias syriaca L.) as one of the most common and dangerous transformer species. The
other is blanket flower (Gaillardia pulchella Foug.), which shows a remarkable population
increase in the studied area, and will probably cause serious problems for nature conser-
vation in the future. The characteristic colours and shapes of the two species are easily
identifiable, and they are easily distinguishable from other species at higher resolutions,
which always makes it easier to distinguish them. Thus, plant number and cover estimates
for the two target species were determined based on RGB images.

The use of UAV-based remote sensing for identifying invasive plant species allows
for the generation of higher spatial resolution aerial data of specific areas compared to
unmanned aerial platforms or satellite sensors [21–24]. Various sensors have been used
to monitor invasive species on different platforms over the last 15–20 years [25]. The
methods used to classify invasive vegetation in scientific literature are diverse and of
varying complexity. Among others, we encounter spectral angle mapping (SAM) [26–28],
support vector machines (SVMs) [29,30], regression trees [29], and MaxEnt [29–32]. Several
studies have applied SVMs and ANN to map the distribution of milkweed.
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To analyse RGB images, three simple and three structured indices were used: R-G,
R-B, G-B (Simple Difference Indices) [33], and Triangular Greenness Index (TGI) [34], Shape
Index (IF) [35] and Spectral Shape Index (SSI) [36].

Many methods exist to classify high-resolution RGB images. In this study, we present a
novel method that is transparent, robust, and does not require additional input features. The
method does not require prerequisites about the statistical distribution of the input data, like
for many other traditional classification methods (e.g., maximum likelihood). Our method
also allows for explanation of the results, which is sometimes difficult for classification
results of neural networks, where the values of weights of the model cannot directly be used
for interpretation. Furthermore, computing requirements are relatively small, compared
to machine learning approaches like random forest, support vector machine (SVM), and
especially ANN or deep learning methods. Finally, our method does not require extra
functionality from the software packages that were used. All steps of the method can be
conducted without external packages, libraries, or algorithms.

Control of invasive alien species reflects an approach to agricultural weed control, as its
foundations have been laid with its help [37]. The study focuses on developing a monitoring
procedure for two invasive plant species, rather than treating them. The aim is to provide a
way to accurately identify and assess the invasive species in a semiautomatic way, which
can be cost-effective and accurate. This approach can help with planning treatment and
analysing its effectiveness. The study can also serve as a model for monitoring other
invasive or protected plant species.

The aim of the study was to identify two invasive plant species on real-color drone
images by using six RGB indices in the QGIS environment. With the applied method, the
coverage of the target vegetation (m2) and the number of individuals were determined
(number). Two types of validation were used for this: polygon-based and pixel-based
(using a confusion matrix).

2. Materials and Methods
2.1. Studied Species
2.1.1. Common Milkweed—Asclepias syriaca

Common milkweed belongs to the milkweed family (Asclepiadaceae) and is a peren-
nial. Its shoots are 80–150 cm with high, bright green leaves, and the leaves are in cross-
opposite positions and they have wide leaf blades, so they can be well identified in the
study area based on their characteristic shape and colour. Common milkweed is native
to North America and was introduced to Europe in 1629. It is currently present in about
23 European countries, in many habitat types [38,39]. The species is considered as one of
the most dangerous invasive species [40–42]. It prefers loose soils with good drainage, and
therefore it mainly spreads on sandy soils. Its thick roots run parallel to the soil surface, at
a depth of 10–40 cm, but can also penetrate into deeper soil layers (1–3.8 m), which ensure
its vegetative reproduction [38]. The invasion of milkweed is the most dynamic in those
plant communities that have already been degraded by some effect or disturbance [9,43].
It can impede the regeneration of seminatural vegetation [9,44]. Its efficient vegetative
(clonal) growth makes it suitable for slow but hardy space occupancy, even in open sandy
grasslands [9,43,44]. It has already transformed natural vegetation in significant areas, but
it also threatens the remaining natural ones. Given that the extent of degraded areas is
increasing, milkweed is occupying them at a similar rate [43,45,46].

2.1.2. Indian Blanket Flower—Gaillardia pulchella

Indian blanket flower belongs to the sunflower family (Asteraceae). It is a short-lived
perennial or annual plant, and it is native species to northern Mexico and the southern and
central United States. It prefers arid, sunny habitats and sandy or well-drained soils [47].
In the inflorescence of G. pulchella the ray flowers are deeply lobed, the inside half of them
is purple and the outsides are yellowish. They have an appendix on the inner involucral
bract. The leaves are undivided and have intact edges. In Hungary, its flowering lasts
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from July to October [48]. The species is used as an ornamental plant due to its decorative,
strikingly coloured inflorescences, so it has been introduced to many countries around
the world. The inflorescences of the blanket flower are well detectable and should not
be confused with other native species in the study area. In Hungary, the behaviour of
G. pulchella is invasive [49]. This is further reinforced by the fact that other species of the
family of Asteraceae may most likely become invasive species too [50,51]. Surprisingly, the
monitoring, spread, and invasion of the species in the area have been dealt with by quite a
few studies. In view of this and the fact that the blanket flower is present abundantly in
the area of Lake Kolon, its establishment may be a cause for nature conservation concern.
For the identification of blanket flower, its inflorescence was used because they are purple,
yellowish, and larger (up to 5 cm in diameter) than other species’ flowers or inflorescence
in this habitat.

2.2. Study Area

The study of the two invasive species was carried out in the Lake Kolon, which is part
of the Kiskunság National Park in 2020. The protected area is located in the westernmost
part of the sand dunes between the Danube and the Tisza, on 3058 hectare, which developed
from a tributary of the Danube in the postglacial period [52,53]. The average depth of the
lake is 1 m. It is in the late succession phase; therefore a significant part is covered with
reeds. It is surrounded by marshes and grove forests, swampy and marshy meadows,
with sand dunes in the western part. The lake is dominated by contiguous reeds in the
north–south direction, interspersed with a few patches of open water which are maintained
artificially. The area is rich in flora and fauna [52,54].

Two investigated sites (hereafter referred to as stands I. and II.) were designated in
the sand dune areas (Figure 1) and surveyed on 6 July 2020. The habitat of the surveyed
stands naturally regenerating old-fields, belongs to the endemic open sand grasslands or
Pannonic steppes, which are of major importance to the European Union Habitat Directive
(Natura 2000 code: 6260) [54]. Stand I. was 8.5 hectares while stand II. was 6.7 hectares
(Figure 2). In both stands, the two invasive plants had significant cover. Open source QGIS
software version 3.10 [55] was used to create Figure 1 showing the location of the stands.
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Figure 2. Ortomosaics of the stand I. (a) and II. (c). Locations of randomly selected 10 m × 10 m
study areas (1–10) in stand I. (b) and in stand II. (d).

2.3. Documentation Methods

The two stands near Lake Kolon were flown with a senseFly eBee X fixed-wing drone
owned by the Applied Geoinformatics and Remote Sensing Laboratory of the Department
of Geoinformatics, Physical and Environmental Geography, University of Szeged. The
drone wingspan is 116 cm, weighs 1.1–1.4 kg (depending on payload), and has a maximum
flight time of 45 min. Its maximum radio connection distance is 3 km/1.9 mi [56]. During
the drone flight, a senseFly S.O.D.A. was used as RGB camera. This camera has the
following parameters: RTK/PPK support, 5472 × 3648 pixels resolution, shutter speed was
global shutter 1/30–1/2000s, and JPEG image format [57].

A single flight was performed in both areas with the drone-mounted senseFly S.O.D.A.
camera. The flights were executed according to preplanned flight routes. The average
flight speed was 13 m/s. In order to have as many overlapping images as possible, and
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thus more accurate data on the two sample areas, in both cases, we increased the length
of the flight path, and thus the size of the photographed area as well. The applied flight
parameters for the two stands were: flight altitude of 53.1 m/AED, flight time of 14 min
and 51 s for stand I. and 16 min and 1 s for stand II. A total of 476 images were taken from
stand I., while 360 images were taken from stand II. The images had 5 cm/pixel resolution
and 60% longitudinal and 80% transverse image overlap. The weather conditions at the
time of the flight as well as in the week ahead of the flight were sunny, dry, and free of
precipitation and humidity.

2.4. Data Processing Methods

Agisoft Metashape Professional 1.5.4. photogrammetric software [58] was used to
create orthophotos of the two stands from the aerial images. During the workflow in
the Agisoft program, ground reference points were not used, instead of this the so-called
onboard references (OtF meaning on_the_fly reference method) were used. The X, Y, and Z
coordinates of the image center points were measured with an onboard GNSS with geodetic
accuracy. Although the eBee UAV is an RTK capable platform, the corrections were applied
during postprocessing.

In the orthophotos of both stands, 10 study areas were selected and each was 10 m × 10 m
in size. These study areas were homogeneous patches with good representation of stands.
For the selection of the study areas, the primary criterion was to ensure that the two invasive
species were well represented and as homogeneously covered as possible, but it was also
tried to select them randomly and in a spatially dispersed manner (Figure 2).

To identify invasive species in the study areas, the study used vegetation indices
which are used in agriculture and/or forestry and applied bands of RGB images. The
workflow took place in the QGIS [55] environment. The schematic illustration of this is
shown in Figure 3.

2.4.1. The Used RGB Indices

In order to identify and select the two invasive species in the study areas, six RGB
indices were calculated from drone images for the purpose of classification. Three of them
are simple indices that can be calculated from the difference between red, green, and blue
values [33]. Their equations are as follows:

R-G = R − G (1)

R-B = R − B (2)

G-B = G − B, (3)

where R is the red band, G is the green band and B is the blue band. These simple difference
indices show a significant relationship with photosynthetic pigments (chlorophyll-a and
-b) contents; therefore they are often incorporated into other more structured vegetation
indices (mentioned below). However, by themselves the indices may be suitable for spectral
discrimination of IAS.

Three more complex indices that use the simple difference indices were evaluated as
well. The TGI [34] estimates the chlorophyll concentration of leaves and foliage based on
the area of a triangle formed by three characteristic reflectance points. TGI can be calculated
using the formula

TGI = −0.5 × [(λr − λb) × (R − G) − (λr − λg) × (R − B)], (4)

where λr = 670 nm, λg = 550 nm, and λb = 480 nm. The absorbance of these three wave-
lengths is determined by the amount of chlorophyll-a and -b. The three wavelengths
define a triangle, the area of which is used to calculate the TGI. The area of the triangle is
essentially given by the variation in the reflectance of the 550 nm wavelength. If the chloro-
phyll content decreases, the area of the triangle becomes larger, because the reflectance
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at 550 nm increases strongly. Examination of PROSPECT leaf model simulations have
shown that green reflectance increases when chlorophyll content decreases due to nitrogen
deficiency [34,59,60]. Chlorophylls (and also carotenoids, which are dyes that increase the
efficiency of photosynthesis) are strongly absorbed at 480 nm, so the reflectance at blue
wavelengths does not change as the chlorophyll content decreases. Chlorophyll-a has a
much higher absorption coefficient at 670 nm than at 550 nm, so as chlorophyll content
decreases, the increase is greater at 550 nm than at 670 nm [34].
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The calculation of the IF index (shape index) is based on the formula [35]:

IF =
2 × R − G − B

G − B
(5)

IF describes the general shape of the spectral signature curve and allows the identifica-
tion and distinction of soils and rock formations according to lithology [61].

The spectral shape index (SSI) allows good separation of shadows found in the vegeta-
tion [36]. Moreover, SSI showed a remarkable results for isolation of intense green leaves
and blue and red shades of flowers [62]. The SSI is computed as

SSI = |R + G − 2 × G|. (6)

2.4.2. Data Validation Processes

The accuracy of RGB indices-based separation of the two target species was estimated
by the following validation method. For this, we created polygons and centroids for the
target vegetation of the study areas. The area of the polygons refers to the cover (in m2),
while the number of centroids indicates the number of shoots and inflorescences. The
validation workflow can be divided into three parts.

First, the milkweed shoots and blanket flower inflorescences were manually delineated
in each study area. This means that the shoots or shoot groups, inflorescences, or inflores-
cence groups were delineated by hand. On these delineated polygons (so-called, hereafter,
manual polygons), the areas of the shoot and inflorescence were only indicated. Moreover,
each individual shoot and inflorescence was marked manually too (hereafter, manual
centroids) for the realistic indication of the shoot and inflorescence numbers (Figure 3).

Secondly, by using the applied indices, polygons and centroids were created for the
two target species in QGIS. For this, the index-based selection was used to create so-called
index polygons with indices. Six RGB indices were used to examine their applicability
to separate the two invasive species compared to the manual delineation method. By
using an RGB index, we created a so-called index map from a study area. Next, the
index map was converted into a binary map by specifying a threshold value that best
separated the target species. To create binary maps, thresholds must be defined for each
study area by using the value ranges in the index maps (Table S1). The threshold values
were determined based on the comparison of manually delineated polygons with index
polygons created by using index-based selection in QGIS. Six RGB indices were used to
examine their applicability in separating the two invasive species, and the value ranges
of each index were analyzed to determine the characteristic intervals and sensitivity to
the target species. For each study area, threshold values were defined to create binary
maps from the index maps that most closely matched the areas of the manual polygons.
Overall, the threshold values were selected based on the value ranges of each index and
the desired accuracy of the index polygons compared to the manual polygons. The essence
of applying a threshold is to reclassify pixels below it to 0 and above it to 1, thus obtaining
a binary map. Then, the resulting binary map was vectorized. The vector map contains
the index polygons (Figure 3). To illustrate the number of index polygons, their centroids
were created (hereafter index centroids) (Figure 3). To check the number of shoots and
inflorescences of the two target species, the number of index centroids were compared to
the number of manual centroids.

Thirdly, the area and location of the index polygons were compared with the manual
polygons. For this, intersection was used from the index polygons and manual polygons,
and thus overlapping polygons are obtained from it. These overlapping polygons show
the accuracy (area and location) available with index polygons (Figure 3). If the three
polygon types are displayed together, manual polygons can be perceived as false negatives,
index polygons as false positives, and overlapped polygons as true positive areas. The
explanation for this is that where the manual polygons are visible, the index did not find
the areas that belong to the target vegetation. Thus, there was no overlap between index
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polygons and manual polygons. The index polygons are visible if the area delineated by
the index does not belong to the target vegetation. This is because there is no intersection
with the manual polygons. In the case of overlapped polygons, there is an intersection
between the manual polygons and the index polygons. These areas are completely part of
the target vegetation. Figure 4 illustrates the connection between the three polygon types.
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Figure 4. Overlapping polygons were used to check the accuracy of the area and locations of the
index polygons. These overlapping polygons are derived from the intersection of manual polygons
and index polygons. In the case of milkweed (a), the green areas indicate the false negative, blue are
the false positive, and purple polygons refer to the true positive areas. (b) The same maps were made
for blanket flower, where the red areas are the false negatives, yellow are the false positive areas, and
pink areas indicate the true positive ones. The image used for illustration shows a detail of the first
study area of the first stand. Moreover, the index polygons were formed with the G-B index in the
case of milkweed, and the IF index in the case of blanket flower.

Accuracy assessment can be used to evaluate the classification results of remotely
sensed data. The confusion matrix with the reference and classified pixels can be used
to determine the overall accuracy, the Kappa coefficient, and the producer’s and user’s
accuracy values for the classes [62]. The overall accuracy means the ratio between the
reference pixels correctly classified by the classification algorithm and all reference pixels.
In this case, this is the ratio of the pixels of rasterized manual polygons and binary maps.
The producer’s accuracy value shows the ratio of the number of pixels correctly classified
by index for a given plant to the number of pixels delimited by a manual polygon for the
given plant. This is closely related to the omission error, which shows the percentage of
pixels in the reference category that were placed in the wrong class (false positive). The
value of the user’s accuracy means the ratio of the number of pixels correctly classified by
index for a given plant to the total number of pixels classified by index for the given plant.
The commission error shows the percentage of elements classified in a given class that were
wrongly classified (false negative). In general, it is better to consider the Kappa values, and
the producer’s and user’s accuracy instead of the overall accuracy, because the latter can be
misleading due to the many correctly classified background pixels (Tables S4 and S5).
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2.5. Statistical Analysis

To check whether the applied threshold of the indices show a dependence between the
two stands, an unpaired (two tailed) t-test was used. Correlation (Pearson r) and simple
percentage comparison were used to determine the suitability of the RGB indices. Statistical
analyses were performed in Graph Pad Prism 8.0.1.244 for Windows (GraphPad Software,
La Jolla, CA, USA). The lowest significant value was p = 0.05, higher p values are not
considered significant.

3. Results

To identify the two invasive plant species on drone images in QGIS, six RGB indices
were used. The present work examined the characteristic intervals of each index, the
sensitivity of the index to the target species (which index can be applied to which species,
and which threshold values are best used to select them). Threshold values were applied
such that the delineated areas (m2) were the most similar to the areas (m2) of the manual
polygons in the given study area, and a given illumination spectrum and soil and plant
surface moisture, respectively.

In the case of simple difference indices, the index intervals and the used threshold
values were as follows. The intervals of the R-G index were between −59 and 82 (Table S1).
This index was applicable to both target species. In the index map, milkweed shoots
appeared as black spots, while blanket flower inflorescences were white (Figure 5). In order
to create binary maps from index maps, threshold values between −23 and 5 were applied
in the case of milkweed shoots, while in the case of blanket flower, the used threshold
values were between 21 and 42 (Table 1). The intervals of the R-B index map were between
−12 and 179 (Table S1). On these index maps, the inflorescences of the blanket flower can
be easily selected, as they appeared as black spots (unlike on the previous map, where they
were white ones). The used threshold values for creating binary maps were between 72 and
108 (Table 1). The intervals were between −8 and 141 on the G-B index map (Table S1). In
the G-B index maps, the milkweed shoots appeared as black spots, which made it possible
to sort them. For the formation of the binary maps, we used 52 to 79 threshold values in
the study areas (Table 1).
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Figure 5. A detail of the RGB image of the first study area of the first stand before R-G index selection
(a) and after (b). In the RGB image (a), the bright green milkweed shoots, and they are clearly
recognizable as black spots in the index map (b), while the blanket flower inflorescences are orange,
purple in RGB image (a) and appear as white spots in the index map (b).
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Table 1. The identified threshold values of the indices for identification of common milkweed shoots
and blanket flower inflorescences.

Applicability to Species Milkweed Blanket
Flower

Blanket
Flower Milkweed Milkweed Blanket

Flower Milkweed

Applied Thresholds R-G R-G R-B G-B TGI IF SSI

ST
A

N
D

I.

1.study area <−1 >38 >99 >71 >4050 >130 >67
2.study area <5 >37 >100 >64 >3500 >119 >55
3.study area <−3 >40 >102 >71 >4250 >135 >72
4.study area <−5 >35 >87 >68 >4250 >113 >74
5.study area <−5 >42 >98 >72 >4150 >135 >70
6.study area <−1 >38 >108 >70 >4050 >137 >67
7.study area <−3 >37 >96 >79 >4250 >129 >69
8.study area <−3 >38 >92 >71 >4200 >119 >71
9.study area <−1 >38 >98 >71 >4050 >128 >68
10.study area <2 >34 >89 >64 >3550 >111 >58

ST
A

N
D

II
.

1.study area <−17 >27 >97 >68 >4500 >116 >82
2.study area <−22 >25 >98 >78 >5300 >116 >97
3.study area <−5 >29 >93 >57 >3500 >110 >60
4.study area <−7 >30 >94 >72 >4350 >116 >75
5.study area <−23 >21 >72 >53 >3500 >88 >65
6.study area <−17 >23 >78 >52 >3500 >92 >65
7.study area <−10 >33 >89 >73 >4550 >116 >79
8.study area <−11 >38 >101 >73 >4600 >132 >81
9.study area <−12 >29 >89 >60 >3850 >110 >68
10.study area <−12 >24 >86 >57 >3800 >92 >68

The index intervals and the used threshold values were as follows on the structured
indices. The minimum and maximum intervals of the TGI index of the study areas ranged
from −1080 to 9740 (Table S1). The TGI index was suitable for determining the milkweed
shoots, because they were the white spots in the index map of the open sand grassland
vegetation. For the formation of binary maps, the applicable threshold values were found
to be 3500 and 4600 (Table 1). For IF, the minimum and maximum intervals of study areas
were −37.656 and 260.651 (Table S1), and the applied thresholds were bigger than 88 and
137. This index was applicable to the delineation of blanket flower inflorescence. It shows
the presence of inflorescences in the vegetation as white spots (Table 1) similarly to the R-G
index (Figure 5). The intervals of the SSI index were between 0 and 179 (Table S1). The
index was suitable for the separation of milkweed shoots in open sand grassland vegetation,
as the shoots of the species appeared as black spots on the index maps. Binary maps can be
created from the SSI index maps using 55 to 97 threshold values (Table 1).

To check whether the indices show a dependence between the two stands, a t-test was
used. There were significant differences in the applied thresholds of R-G and IF between
the two stands (Table 2). In the case of the R-G index, the threshold values suitable for both
milkweed shoots and blanket flower inflorescences showed a strong significant difference
between the two stands. Due to the intense green colour of the milkweed shoots and the
bright purple and yellowish shades of the blanket flower inflorescences, the R-G values
calculated from the RGB intensity showed lower values in areas covered with milkweed
and higher values in the areas where the blanket flower dominated.

A threshold value was set that shows close to 100% similarity between the area
of the index polygons and the area of the manual polygons in the study area for the
given species. For both species, the greatest similarity could be achieved with the more
structured indices (Tables S2 and S3). This similarity was also checked with correlation
tests, according to which there is a strong significant similarity (Figure S1). However, this
does not yet show how misleading the indices used for delineation were (false positive,
false negative areas). This can be examined with overlapping polygons, as they not only
show the areal similarity of manual polygons and index polygons, but also the matching of
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their locations. In other words, they indicate how accurately the index polygons fall on
the manual polygons (namely the target vegetation). Therefore, manual polygons were
compared with overlapping polygons to check the coverage area and location. In the case
of milkweed, the largest areal overlap can be achieved with the TGI index, it was 69.13%.
The SSI and G-B indices show a percentage similar to the former, 69.05% and 65.34%.
The smallest areal overlap was shown by the R-G index, this was 57.51% overlapping
with the manual polygons (Table 3). Based on the correlation test, it can be concluded
that manual polygons and polygons created with indices significantly correspond to each
other (p < 0.0001) (Figure 6). Overall, it can be said that the indices calculated for common
milkweed give a good indication of the cover of the species and match their location with
great accuracy.

Table 2. Examination of the differences in the applied threshold values between the two stands.
Unpaired t test (two-tailed) was used, n = 10. Significance was applied from a value of p = 0.05, values
higher than this were not significant.

Unpaired
t Test

Stand I. vs. Stand II.

R-G
(Milkweed)

R-G
(Blanket
Flower)

R-B
(Blanket
Flower)

G-B
(Milkweed)

TGI
(Milkweed)

IF
(Blanket
Flower)

SSI
(Milkweed)

p value <0.0001 <0.0001 0.0537 0.096 0.5934 0.0054 0.1002

Table 3. The common milkweed shoot area in the study areas. The percentage values showed the
similarities of the overlapped polygons to the manual polygons. SD, standard deviation, n = 20.

Milkweed SHOOT
AREA

Manual
Polygons

R-G Overlapped
Polygons

G-B Overlapped
Polygons

TGI Overlapped
Polygons

SSI Overlapped
Polygons

m2 m2 % m2 % m2 % m2 %

ST
A

N
D

I.

1.study area 8.601 5.235 60.86 5.719 66.49 6.077 70.65 6.139 71.37
2.study area 7.594 4.109 54.11 5.495 72.35 5.530 72.82 5.424 71.42
3.study area 8.440 4.496 53.23 4.026 47.66 5.362 63.48 5.341 63.24
4.study area 10.098 5.259 52.08 6.078 60.19 6.108 60.48 5.986 59.28
5.study area 1.984 1.049 52.87 1.082 54.54 1.232 62.11 1.247 62.86
6.study area 16.944 11.450 67.57 12.415 73.26 12.991 76.66 13.028 76.88
7.study area 2.393 1.113 46.52 1.022 42.72 1.361 56.86 1.423 59.44
8.study area 7.596 4.517 59.47 4.909 64.63 5.126 67.49 5.138 67.64
9.study area 9.456 6.046 63.93 6.482 68.55 6.894 72.90 6.849 72.42

10.study area 4.232 2.305 54.48 2.672 63.16 2.774 65.56 2.762 65.27

ST
A

N
D

II
.

1.study area 22.422 16.198 72.24 16.991 75.77 17.572 78.37 17.593 78.46
2.study area 24.573 16.550 67.35 19.116 77.79 19.210 78.17 19.101 77.72
3.study area 11.129 6.916 62.14 8.034 72.19 8.110 72.87 8.102 72.80
4.study area 4.222 2.140 50.68 2.409 57.06 2.584 61.20 2.580 61.11
5.study area 3.200 1.002 31.33 1.717 53.65 1.980 61.88 1.994 62.30
6.study area 5.904 3.279 55.55 4.087 69.23 4.215 71.40 4.163 70.51
7.study area 3.389 1.649 48.66 2.138 63.09 2.196 64.79 2.184 64.44
8.study area 8.088 3.631 44.89 5.331 65.91 5.147 63.64 4.960 61.32
9.study area 13.992 10.224 73.07 10.324 73.78 10.779 77.03 10.961 78.33

10.study area 20.889 16.531 79.13 17.730 84.88 17.588 84.20 17.582 84.17

Average % 57.51 65.34 69.13 69.05

SD % 11.20 10.47 7.42 7.41
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Figure 6. The correlation between the manual polygons and overlapped polygons (overlapping of
the index polygons and manual polygons) in the case of the common milkweed (a) and blanket
flower (b). Pearson r correlation (two-tailed) was used, n = 20. Significance was applied from a value
of p = 0.05, values higher than this were not significant.

The areal overlap of the indices which used to separate the inflorescences of the blanket
flower with the manual polygons showed a significantly lower percentage of similarities
than in the case of the milkweed. However, here too, the more structured index (IF) showed
the greatest overlap, 46.99%. The R-G and the R-B indices display lower similarities,
38.47% and 36.83%, respectively (Table 4). In contrast, a strong correlation was detected
between the overlapping polygons and the manual polygons (p < 0.0001) (Figure 6). Thus,
with the indices used to separate the inflorescences of the blanket flower, high accuracy
can be achieved in terms of their location, but they are less informative for the area of
the inflorescences.

Table 4. The blanket flower inflorescence area in the study areas. The percentage values showed the
similarities of the overlapped polygons to the manual polygons. SD, standard deviation, n = 20.

Blanket Flower
Inflorescence Area

Manual
Polygons

R-G overlapped
Polygons

R-B Overlapped
Polygons IF Overlapped Polygons

m2 m2 % m2 % m2 %

ST
A

N
D

I.

1.study area 1.406 0.580 41.25 0.641 45.58 0.753 53.54
2.study area 1.402 0.464 33.11 0.168 12.01 0.479 34.22
3.study area 0.899 0.397 44.16 0.402 44.77 0.476 52.91
4.study area 1.439 0.533 37.03 0.442 30.74 0.677 47.08
5.study area 0.949 0.427 45.06 0.485 51.12 0.512 53.92
6.study area 1.445 0.64 44.27 0.664 45.92 0.774 53.56
7.study area 5.505 2.667 48.44 2.827 51.37 2.974 54.02
8.study area 2.316 0.737 31.83 0.735 31.75 1.015 43.81
9.study area 1.706 0.761 44.59 0.657 38.52 0.908 53.22
10.study area 1.169 0.398 34.09 0.280 23.95 0.504 43.12
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Table 4. Cont.

Blanket Flower
Inflorescence Area

Manual
Polygons

R-G overlapped
Polygons

R-B Overlapped
Polygons IF Overlapped Polygons

m2 m2 % m2 % m2 %

ST
A

N
D

II
.

1.study area 1.506 0.746 49.55 0.734 48.78 0.881 58.54
2.study area 1.413 0.67 47.43 0.639 45.28 0.747 52.85
3.study area 0.421 0.137 32.66 0.093 22.16 0.156 37.09
4.study area 1.043 0.365 35.05 0.339 32.52 0.431 41.33
5.study area 0.629 0.268 42.58 0.347 55.15 0.347 55.11
6.study area 0.509 0.172 33.75 0.172 33.86 0.221 43.34
7.study area 1.046 0.34 32.50 0.295 28.22 0.368 35.20
8.study area 0.436 0.129 29.62 0.174 39.94 0.187 42.96
9.study area 0.731 0.248 33.94 0.270 36.94 0.327 44.78
10.study area 0.336 0.096 28.53 0.060 18.05 0.132 39.18

Average % 38.47 36.83 46.99

SD % 6.76 11.95 7.41

The individual numbers were also checked by comparing manual centroids and
index centroids.

The number of centroids given by R-G correlated with the number of manual centroids
at the p = 0.01 level for the shoot numbers of milkweed. The number of centroids obtained
with the other indices (G-B, TGI, and ISS) did not show a significant correlation. The
number of centroids of the indices used for the selection of blanket flower inflorescences
did not correlate with the number of manual centroids in any case (Figure 7).
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Figure 7. The correlation between the manual centroids (manually sorted centroids) and overlapped
centroids (overlapping of the index centroids and manual centroids) in the case of the common
milkweed (a) and blanket flower (b). Pearson r correlation (two-tailed) was used, n = 20. Significance
was applied from a value of p = 0.05, values higher than this were not significant.



Drones 2023, 7, 207 15 of 23

The overestimation of the milkweed shoot number and the blanket flower inflores-
cences number are typical for the index centroids numbers (Tables 5 and 6). The index-based
delineation, contrary to our expectation, achieved a more fragmented delineation, which is
why the index centroids numbers were higher. This was best experienced in the case of
milkweed shoots, which is illustrated in Figure 8. An exception was the IF index, which
was used to separate blanket flower inflorescences, which shows a 93.87% similarity with
the manual centroids, but this was only achieved with a high standard deviation (Table 6).

Table 5. The common milkweed shoot numbers in the study areas. The percentage values showed the
similarities of the index centroid (R-G, G-B, TGI and SSI centroids) numbers to the manual centroids
numbers. SD, standard deviation, n = 20.

Milkweed Shoot
Number

Manual
Centroids R-G Centroids G-B Centroids TGI Centroids SSI Centroids

Number Number % Number % Number % Number %

ST
A

N
D

I.

1.study area 259 794 306.56 467 180.3 437 168.72 414 159.84
2.study area 193 936 484.97 382 197.92 404 209.32 417 216.06
3.study area 236 444 188.13 358 151.69 315 133.47 315 133.47
4.study area 248 484 195.16 458 184.67 399 160.88 380 153.22
5.study area 78 243 311.53 184 235.89 204 261.53 188 241.02
6.study area 420 1184 281.9 622 148.09 646 153.8 650 154.76
7.study area 113 357 315.92 377 333.62 344 304.42 313 276.99
8.study area 190 630 331.57 531 279.47 475 250 455 239.47
9.study area 264 563 213.25 433 164.01 390 147.72 388 146.96
10.study area 156 514 329.48 296 189.74 298 191.02 264 169.23

ST
A

N
D

II
.

1.study area 245 937 382.44 543 221.63 596 243.26 532 217.14
2.study area 809 1145 141.53 555 68.6 551 68.1 537 66.37
3.study area 440 995 226.13 442 100.45 470 106.81 498 113.18
4.study area 159 420 264.15 294 184.9 240 150.94 227 142.76
5.study area 184 354 192.39 276 150 328 178.26 364 197.82
6.study area 256 542 211.71 290 113.28 262 102.34 281 109.76
7.study area 158 387 244.93 316 200 310 196.2 332 210.12
8.study area 324 746 230.24 690 212.96 657 202.77 627 193.51
9.study area 414 580 140.09 403 97.34 375 90.57 373 90.09
10.study area 680 606 89.11 312 45.88 293 43.08 304 44.7

Average % 254.06 173.02 168.16 163.82

SD % 92.23 68.94 67.22 61.01

Table 6. The blanket flower inflorescence numbers in the study areas. The percentage values are
derived from the index centroid (R-G, R-B and IF centroids) numbers to the manual centroids numbers.
SD, standard deviation, n = 20.

Blanket Flower
Inflorescence Number

Manual
Centroids R-G Centroids R-B Centroids IF Centroids

Number Number % Number % Number %

ST
A

N
D

I.

1.study area 331 285 86.10 245 74.01 190 57.40
2.study area 262 379 144.65 262 100.00 345 131.67
3.study area 121 130 107.43 107 88.42 94 77.68
4.study area 232 329 141.81 285 122.84 203 87.50
5.study area 186 159 85.48 131 70.43 125 67.20
6.study area 204 237 116.17 290 142.15 183 89.70
7.study area 269 771 286.61 524 194.79 566 210.40
8.study area 163 631 387.11 374 229.44 307 188.34
9.study area 238 266 111.76 266 111.76 200 84.03
10.study area 93 361 388.17 227 244.08 215 231.18
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Table 6. Cont.

Blanket Flower
Inflorescence Number

Manual
Centroids R-G Centroids R-B Centroids IF Centroids

Number Number % Number % Number %

ST
A

N
D

II
.

1.study area 331 240 72.50 262 79.15 206 62.23
2.study area 262 247 94.27 207 79.00 136 51.90
3.study area 121 120 99.17 118 97.52 98 80.99
4.study area 232 215 92.67 152 65.51 142 61.20
5.study area 186 146 78.49 115 61.82 120 64.51
6.study area 204 127 62.25 107 52.45 100 49.01
7.study area 269 233 86.61 221 82.15 188 69.88
8.study area 169 182 107.69 142 84.02 112 66.27
9.study area 238 153 64.28 169 71.00 123 51.68
10.study area 93 138 148.38 150 161.29 88 94.62

Average % 138.08 110.59 93.87

SD % 98.00 55.88 53.91
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Figure 8. The degree of fragmentation of the index-based delineation in the milkweed shoots of index
polygons (a) and their index centroids (b). The images show a part of the first study area of the first
stand, the R-G index was used for the delineation in the case of milkweed shoots.

During the accuracy assessment, when comparing the number of pixels of the manu-
ally delineated vegetation with the binary maps, the following results were obtained. In the
case of milkweed shoots, the best classification could be achieved with the TGI. On average,
the Kappa coefficient was 0.71, while the producer’s and user’s accuracies were 76.38%
and 75.42%. This was followed by SSI, whose Kappa coefficient was also 0.71, and the
producer’s and user’s accuracies were 67.02% and 75.12%. Among the two simple indices,
G-B gave the best approximation with a Kappa coefficient of 0.69, while the producer’s
accuracy was 65.62% and the user’s accuracy was 73.17% (Table 7). In the case of milkweed,
the overall accuracy and errors resulting from the false negative (commission error) and
false positive (omission error) classifications are presented in Table S4.
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Table 7. The confusion matrix of the classification of milkweed shoots. The producer’s and user’s
accuracy values, and Kappa coefficient were used to evaluate the classification results of the pixels of
the remotely sensed images. SD, standard deviation.

R-G G-B TGI SSI

Producer’s
acc. %

User’s
acc. %

Kappa
co.

Producer’s
acc. %

User’s
acc. %

Kappa
co.

Producer’s
acc. %

User’s
acc. %

Kappa
co.

Producer’s
acc. %

User’s
acc. %

Kappa
co.

ST
A

N
D

I.

51.51 63.53 0.57 57.45 71.66 0.63 59.62 74.31 0.66 59.44 74.27 0.66

ST
A

N
D

II
.

65.67 66.67 0.66 73.79 74.67 0.74 75.14 76.52 0.76 74.96 75.97 0.75

Average 58.59 65.10 0.62 65.62 73.17 0.69 67.38 75.42 0.71 67.20 75.12 0.71

SD 10.01 2.22 0.06 11.56 2.13 0.08 10.98 1.56 0.07 10.97 1.20 0.06

The pixel-based classification of the inflorescences of the blanket flower showed gen-
erally worse results here than for the milkweed. The proportion of pixels corresponding
to the target vegetation obtained with the structured IF index was the highest: the Kappa
coefficient was 0.47, the producer’s accuracy was 43.74%, and the users’ accuracy was
51.4%. Among the two simple indices, R-G could be used to sort out the pixels belong-
ing to the blanket flower with a Kappa coefficient of 0.4, a producer’s accuracy of 36.8%
and a user’s accuracy of 43.7% (Table 8). Table S5 shows the overall accuracy, false nega-
tives (commission error) and false positives (omission error) obtained during the blanket
flower classification.

Table 8. The confusion matrix of the classification of blanket flower inflorescence. The producer’s
and user’s accuracy values and the Kappa coefficient were used to evaluate the classification results
of the pixels of the remotely sensed images. SD, standard deviation.

R-G R-B IF

Producer’s
acc. %

User’s
acc. % Kappa co. Producer’s

acc. %
User’s
acc. % Kappa co. Producer’s

acc. %
User’s
acc. % Kappa co.

ST
A

N
D

I.

34.54 47.96 0.40 45.90 45.90 0.39 41.02 56.02 0.47

ST
A

N
D

II
.

39.06 39.44 0.39 39.35 39.35 0.39 46.46 46.77 0.47

Average 36.80 43.70 0.40 42.62 42.62 0.39 43.74 51.40 0.47

SD 3.20 6.02 0.01 4.63 4.63 0.00 3.85 6.54 0.00

Overall, the number and ratio of pixels identified as target vegetation showed similar
results (Tables S4 and S5, Tables 7 and 8) as the polygon-based comparison. The more
structured indices found the target vegetation better than the simpler indices. It is worth
mentioning that, in the case of milkweed shoots, larger standard deviations were observed
for the producer’s accuracy and user’s accuracy (Table 7). In contrast to this, there were
no significant differences in these parameters between the two stands for blanket flower
inflorescences (Table 8).
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4. Discussion

In the present study, six vegetation indices were examined, calculated from RGB
images were examined to provide the best opportunity to classify two selected inva-
sive species.

The values of the index maps calculated from RGB images are typical for the given
index. They are in about the same range of values for the study areas. However, the two
stands show typical differences within the index value range (Table S1).

The RGB indices have a characteristic threshold value, below or above which the
two species can be clearly distinguished from the surrounding vegetation (Table 1). Thus,
here we demonstrated that the spectral discrimination of the two invasive plants is also
possible with RGB indices. However, these threshold values—within a given index—show
differences between the 20 study areas; therefore, the threshold values need to be used as
an interval (Table 1). It seems that the threshold values of some indices (R-G and IF) are
also affected by the two stands. This dependence can be caused by the time of day, the
presence of other similar species, or temporary camera failure, etc. Interestingly, among
the simpler indices, the R-G index seemed suitable for both invasive species at the same
time for their selection; however, overall, the simpler RGB indices are characterized by
high uncertainty and margin of error. In QGIS, the structured indices (TGI, SSI, and IF) are
more suitable for selecting the cover of shoots and inflorescences of the two target species.
This may be due to the fact that the values of the more structured indices have a much
larger interval, and are therefore able to give a finer delineation (wider threshold setting)
(Table S1).

In the case of determining the cover of the common milkweed, two indices, TGI and
SSI, gave a better approximation, which was supported by the polygon and pixel based
validations as well. In the present study, the producer’s accuracy of these RGB indices were
76.38% (TGI) and 67.02% (SSI) (Table 7). The accuracy of TGI turns out to be slightly better
than the best producer’s accuracy obtained during the work of Papp et al. (2021) [63], which
was 73.6%. In their work, they used a hyperspectral camera, and SVM and ANN models to
identify milkweed plants. The study of Ozcan et al. [64] can also be mentioned, in which
a vehicle-mounted camera (RGB) was used to identify milkweed plants autonomously.
Among the models they used, ResNet-based Faster R-CNN for milkweed identification
achieved a mean average accuracy of 0.98 (training dataset) and 0.44 (test dataset). In
contrast, the overall accuracy corresponding to these values in the present study was
99.46% (Table S4). However, the results of the overall accuracy should be treated with
caution, as it can be misleading due to the many correctly classified background pixels
(Table S4).

Similarly, in the work of Papp et al. (2021) [63], it was also observed that the detection
of the milkweed shoots were minimally disturbed by the shrubs of invasive trees that rarely
occur in the area (Ailathus altissima (Mill.) Swingle and Robinia pseudoacacia L.), as they
have similar spectral properties to the milkweed shoots. However, these can be excluded,
because the height of the shrubs is different from the native vegetation and target plants.
They can be excluded by using a digital surface model (DSM) [65], or based on polygons of
the nontarget vegetation. Furthermore, they show a lower sensitivity to some species of the
open sand grasslands, and the resulting errors can be corrected by optimally setting the
threshold value. Furthermore, the two classification methods used by Papp et al. (2021) [63]
gave false positive results for bare sandy soils as well, but such false sensitivity was not
observed in the present study at all.

Interestingly, in the present study, SSI could only be applied to milkweed shoots and
did not give an evaluable signal for blanket flower. This is similar to what Wijesingha et al.
(2020) [16] showed in their study of invasive Lupinus polyphyllus Lindl. by means of plants
in flowering and vegetative state. They solved the problem by extending their methods
with two more indices and object based image analysis (OBIA).

It has been shown that hyperspectral RS data can be used to identify milkweeds on
UAV aerial photos, but this requires more expensive cameras and more complex processing
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methods (e.g., deep learning programs) [63]. Furthermore, Kunah and Papka (2016) [66]
investigated the vegetation preferences of milkweeds in agricultural areas using the veg-
etation indices of multispectral satellite images (including NDVI). This can also be used
during surveying with a drone, as the NDVI or SAVI values of the vegetation of natural
habitats can be examined with a higher resolution. In this way, it is possible to examine
the spatial and temporal changes in the cover of the invasive species and native vegetation
or their response to nature conservation treatment. It can be especially useful if the goal
is to detect changes in vegetation after the disappearance of invasive species as a result
of a nature conservation treatment, which could not be detected by traditional vegetation
monitoring [67,68].

In the case of blanket flower, in the RGB images of the areas, it is difficult to separate
the vegetative parts of the species (leaf, stem) from the surrounding vegetation, but the
inflorescences seem to be more easily recognizable and have a distinctive appearance. The
results of the polygon-based validation of the blanket flower fell between the producer’s
and user’s accuracy values of the pixel-based (confusion matrix) validation (Tables 4 and 8).
Similar to milkweed, the more structured IF index seemed to be the most sensitive to
the area of the blanket flower inflorescences among the RGB indices used in the present
study. The best result was given by the user’s accuracy of the IF index, but this too
barely exceeded 51% (Table 8). In de Sá et al. (2018) [18], the Kappa value was 0.85 for
the detection of the yellow inflorescence of Acacia longifolia (Andrews) Willd. Similarly
to this, Paz–Kagan et al. (2019) [30] achieved a high Kappa coefficient value (0.89) by
SVM classification of multispectral images of other yellow-flowered acacia species. In
contrast, in the case of blanket flower this value was only 0.47 for the IF index (Table 8).
This may be due to the fact that the mass or visibility of the bloom can affect the success
of the validation. Due to the shading of the canopy [32] or after the flowering peak, a
lower accuracy was achieved when examining the inflorescence of A. longifolia [18]. The
nonhomogeneous color of the inflorescences can make it more difficult to identify the
inflorescences of blanket flower, causing a worse validation result. In general, the centre of
the inflorescence of the blanket flower is purple, while the outer edge is yellowish. One
solution to this could be the method used by Hill et al. (2017) [13], who created a specific
size buffer zone around each pixel identified as a flower. Simpler indices can be used with
lower efficiency. This is especially true for the R-B index, which seemed suitable for the
simultaneous selection of both invasive species. However, it can be said that in the case
of these indices, we did not find flowers or inflorescences of other species, which would
cause confusion (perhaps inflorescences of Targopogon sp.). Due to the striking color of
flowers and inflorescences, even simple RGB images and indices calculated from them can
be suitable for their identification, which is regularly used in studies of this kind. Similarly,
de Sá et al. (2018) [18] found that the yellowish flower color provided greater specificity in
the present study as well. From the point of view of identifying yellow flowers, the blue
band is the most important, since the detection of yellow flowers with a low blue value is
possible with a combination of red and green [18]. The detection of inflorescences can be
useful approaches to study the flowering dynamics of species [30] as a means of calculating
reproductive success or propagule pressure. This is because the magnitude of flowering will
provide an important indicator of seed productions. Moreover, the numbers, density, and
spatial distributions of the target plants can be concluded from this and this can optimize
conservation management in a site-specific way, as explained by Gröschler and Oppelt [69].
Blooming can also be used for the detection and mapping of many invasive plant species,
as their flowers often have very striking, bright colors, and RGB aerial imagery can be
sufficient for this. Nonetheless, floral resource mapping is currently still rarely used in UAV
base studies. Carl et al. (2017) [70] successfully used RGB images taken from a drone to not
only identify the flowers of black locust (Robinia pseudoacacia L.), but also to estimate their
number. In the present study, the determination of the area and number of inflorescences
was low (Figure 7, Tables 4 and 8). In spite of that the R-B, R-G and IF examined here can
also be used for other invasive species with yellow or purple-yellowish flower color, e.g.,:
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Helianthus agg. or Solidago sp. The RGB-based acquisitions of goldenrod species from an
airplane were carried out by Bakó (2013, 2015) [7,71]. De Sá et al. (2018) [18] published an
interesting example of drone monitoring of flower resources. In their work, A. longifolia
was used to map the flowering of invasive plant species and to assess the effectiveness of
biocontrol treatment. In the case of flowers or inflorescences monitoring, another interesting
opportunity may be offered by sensors which is measuring in the ultraviolet (UV) band
(280–400 nm) and to choose indices using this band for processing, since many flowers or
inflorescences show a very significant reflectance in this band because of the interaction
with pollinators [72].

The methods presented in this study gave a good approximation of the area of shoots
and inflorescences, but less so for their quantity. It was not possible to determine the
exact number of individuals, since the centroids fit into the area of the polygons, but the
calculations can even include several shoots or inflorescences in one polygon, if they are
located very close to each other. Similar problems occurred with the models of Ozcan et al.
(2020) [64], who also observed that they combined the milkweed shoots that were located
close to each other. This can cause problems, especially in those parts where the shoots
and inflorescences are densely located; therefore the determination of the exact quantity of
shoots is limited in such cases. In order to overcome this problem, even for both species,
more advanced classification procedures can be applied. The other problem is that index-
based delineation resulted in a very fragmented delimitation (Figure 8). That is, one shoot
or inflorescence was delimited by several polygons, which thus slightly underestimates the
cover (polygons, and pixels) (Figure 6, Tables 3 and 4), but significantly overestimates the
number of individuals (centroids) (Figure 7, Tables 5 and 6). One suitable method might be
the use of a convolutional neural network (CNN), which could automatically recognize
not only the species, but also could separate the individual shoots and inflorescences from
each other, thereby giving more accurate plant counts for larger areas. In this study, the use
of indices (especially the more structured indices) based on RGB images can be suitable
for some basic investigations such as coverage estimations for larger stands of the two
invasive species, which, when extrapolated over a longer period of time, can even be used
to estimate population or flowering dynamics.

5. Conclusions

The study examined the role of six vegetation indices in the identification of two inva-
sive plant species, calculated from RGB drone images in QGIS software. The RGB-based
method presented here can provide a good approximation for common milkweed cover
and match their location with great accuracy. However, the indices used to separate for the
inflorescences of the blanket flower showed a significantly lower percentage of accuracy.
Overall, the study shows that RGB indices can be used to identify invasive plants and de-
termine their cover and level of invasion. Thus, it helps the nature conservation treatments,
because the method creates an opportunity for practitioners to easily monitor and choose a
treatment method based on the density of the target vegetation (e.g., mechanical, chemical
treatment). However, due to differences in threshold values, the uncertainty and error of
the indices may be high, and the method is less suitable for estimating accurate population
quantities. Further development of the results and further refinement of the camera and
processing software promote the efficiency and effectiveness of this type of research.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/drones7030207/s1, Figure S1: The correlation between the Manual
Polygons (manually delineated polygons) and Index Polygons in the case of the two target species.;
Table S1: RGB based indices intervals used to generate binary maps and to which species a given
index can be applied.; Table S2: The area of common milkweed shoots area per study areas.; Table S3:
The inflorescence area of blanket flower per study areas.; Table S4: The confusion matrix of the
classification of milkweed shoots.; Table S5: The confusion matrix of the classification of blanket
flower inflorescence.
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