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Abstract: Recently, the unmanned aerial vehicle (UAV) synthetic aperture radar (SAR) has become
a highly sought-after topic for its wide applications in target recognition, detection, and tracking.
However, SAR automatic target recognition (ATR) models based on deep neural networks (DNN) are
suffering from adversarial examples. Generally, non-cooperators rarely disclose any SAR-ATR model
information, making adversarial attacks challenging. To tackle this issue, we propose a novel attack
method called Transferable Adversarial Network (TAN). It can craft highly transferable adversarial
examples in real time and attack SAR-ATR models without any prior knowledge, which is of great
significance for real-world black-box attacks. The proposed method improves the transferability via
a two-player game, in which we simultaneously train two encoder–decoder models: a generator
that crafts malicious samples through a one-step forward mapping from original data, and an
attenuator that weakens the effectiveness of malicious samples by capturing the most harmful
deformations. Particularly, compared to traditional iterative methods, the encoder–decoder model can
one-step map original samples to adversarial examples, thus enabling real-time attacks. Experimental
results indicate that our approach achieves state-of-the-art transferability with acceptable adversarial
perturbations and minimum time costs compared to existing attack methods, making real-time
black-box attacks without any prior knowledge a reality.

Keywords: unmanned aerial vehicle (UAV); synthetic aperture radar (SAR); automatic target
recognition (ATR); deep neural network (DNN); adversarial example; transferability; encoder–
decoder; real-time attack

1. Introduction

The ongoing advances in unmanned aerial vehicle (UAV) and synthetic aperture
radar (SAR) technologies have enabled the acquisition of high-resolution SAR images
through UAVs. However, unlike visible light imaging, SAR images reflect the reflection
intensity of imaging targets to radar signals, making it difficult for humans to extract
effective semantic information from SAR images without the aid of interpretation tools.
Currently, deep learning has achieved excellent performance in various scenarios [1–3],
and SAR automatic target recognition (SAR-ATR) models based on deep neural networks
(DNN) [4–8] have become one of the most popular interpretation methods. With their
powerful representation capabilities, DNNs outperform traditional approaches in image
classification tasks. However, recent studies have shown that DNN-based SAR-ATR models
are susceptible to adversarial examples [9].

The concept of adversarial examples was first proposed by Szegedy et al. [10], which
suggests that a carefully designed tiny perturbation can cause a well-trained DNN model to
misclassify. This finding has made adversarial attacks one of the most serious threats to ar-
tificial intelligence (AI) security. To date, researchers have proposed a variety of adversarial
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attack methods, which can be mainly divided into two categories from the perspective of
prior knowledge: the white-box and black-box attacks. In the first case, attackers can utilize
a large amount of prior knowledge, such as the model structure and gradient information,
etc., to craft adversarial examples for victim models. Examples of white-box methods in-
clude gradient-based attacks [11,12], boundary-based attacks [13], and saliency map-based
attacks [14], etc. In the second case, attackers can only access the output information or
even less, making adversarial attacks much more difficult. Examples of black-box methods
include probability label-based attacks [15,16] and decision-based attacks [17], etc. We now
consider an extreme situation, where attackers have no access to any feedback from victim
models, such that existing attack methods are unable to craft adversarial examples until
researchers discover that adversarial examples can transfer among DNN models perform-
ing the same task [18]. Recent relevant studies focused on improving the basic FGSM [11]
method to enhance the transferability of adversarial examples, such as gradient-based
methods [19,20], transformation-based methods [20,21], and variance-based methods [22],
etc. However, the transferability and real-time performance of the above approaches are
still insufficient to meet realistic attack requirements. Consequently, adversarial attacks are
pending further improvements.

With the wide application of DNNs in the field of remote sensing, researchers have
embarked on investigating the adversarial examples of remote sensing images. Xu et al. [23]
first investigated the adversarial attack and defense in safety-critical remote sensing tasks, and
proposed the mixup attack [24] to generate universal adversarial examples for remote sensing
images. However, the research on the adversarial example of SAR images is still in its infancy.
Li et al. [25] generated abundant adversarial examples for CNN-based SAR image classifiers
through the basic FGSM method and systematically evaluated critical factors affecting the
attack performance. Du et al. [26] designed a Fast C&W algorithm to improve the efficiency of
generating adversarial examples by introducing an encoder–decoder model. To enhance the
universality and feasibility of adversarial perturbations, the work in [27] presented a universal
local adversarial network to generate universal adversarial perturbations for the target region
of SAR images. Furthermore, the latest research [28] has broken through the limitations of
the digital domain and implemented the adversarial example of SAR images in the signal
domain by transmitting a two-dimensional jamming signal. Despite the high attack success
rates achieved by the above methods, the problem of transferable adversarial examples in the
field of SAR-ATR has yet to be addressed.

In this paper, a transferable adversarial network (TAN) is proposed to improve the
transferability and real-time performance of adversarial examples in SAR images. Specifi-
cally, during the training phase of TAN, we simultaneously trained two encoder–decoder
models: a generator that crafts malicious samples through a one-step forward mapping
from original data, and an attenuator that weakens the effectiveness of malicious samples
by capturing the most harmful deformations. We argue that if the adversarial examples
crafted by the generator are robust to the deformations produced by the attenuator, i.e., the
attenuated adversarial examples remain effective to DNN models, then they are capable
of transferring to other victim models. Moreover, unlike traditional iterative methods,
our approach can one-step map original samples to adversarial examples, thus enabling
real-time attacks. In other words, we realize real-time transferable adversarial attacks
through a two-player game between the generator and attenuator.

The main contributions of this paper are summarized as follows.

(1) For the first time, this paper systematically evaluates the transferability of adversarial
examples among DNN-based SAR-ATR models. Meanwhile, our research reveals that
there may be potential common vulnerabilities among DNN models performing the
same task.

(2) We propose a novel network to enable real-time transferable adversarial attacks. Once
the proposed network is well-trained, it can craft adversarial examples with high trans-
ferability in real time, thus attacking black-box victim models without resorting to any
prior knowledge. As such, our approach possesses promising applications in AI security.
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(3) The proposed method is evaluated on the most authoritative SAR-ATR dataset. Ex-
perimental results indicate that our approach achieves state-of-the-art transferability
with acceptable adversarial perturbations and minimum time costs compared to exist-
ing attack methods, making real-time black-box attacks without any prior knowledge
a reality.

The rest parts of this paper are arranged as follows. Section 2 introduces the relevant
preparation knowledge, and Section 3 describes the proposed method in detail. The
experimental results and conclusions are given in Sections 4 and 5, respectively.

2. Preliminaries
2.1. Adversarial Attacks for DNN-Based SAR-ATR Models

Suppose xn∈[0, 255]W×H is a single channel SAR image from the dataset X and f (·) is
a DNN-based K-class SAR-ATR model. Given a sample xn as input to f (·), the output is
a K-dimensional vector f (xn)=[ f (xn)1, f (xn)2, · · · , f (xn)K], where f (xn)i∈R denotes the
score of xn belonging to class i. Let Cp = arg maxi( f (xn)i) represent the predicted class of
f (·) for xn. The adversarial attack is to fool f (·) with an adversarial example x̃n that only
has a minor perturbation on xn. The detail process can be expressed as follows:

arg max
i

f (x̃n)i 6= Cp, s.t.‖x̃n − xn‖p ≤ ξ (1)

where the Lp-norm is defined as ‖v‖p=(∑i|vi|p)
1
p , and ξ controls the magnitude of adver-

sarial perturbations. The common Lp-norm includes the L0-norm, L2-norm, and L∞-norm.
Attackers can select different norm types according to practical requirements. For example,
the L0-norm represents the number of modified pixels in x̃n, the L2-norm measures the
mean square error (MSE) between x̃n and xn and the L∞-norm denotes the maximum
variation for individual pixels in x̃n.

Meanwhile, adversarial attacks can be mainly divided into two modes. The first basic
mode is called the non-targeted attack, making DNN models misclassify. The second one is
more stringent, called the targeted attack, which induces models to output specified results.
There is no doubt that the latter poses a higher level of threat to AI security. In other words,
the non-targeted attack is to minimize the probability of models correctly recognizing samples;
conversely, the targeted attack maximizes the probability of models identifying samples as
target classes. Thus, (1) can be transformed into the following optimization problems:

• For the non-targeted attack:

minimize(
1
N

N

∑
n=1

D(arg max
i

f (x̃n)i == Ctr)), s.t.‖x̃n − xn‖p ≤ ξ (2)

• For the targeted attack:

maximize(
1
N

N

∑
n=1

D(arg max
i

f (x̃n)i == Cta)), s.t.‖x̃n − xn‖p ≤ ξ (3)

where the discriminant function D(·) equals one if the equation holds; otherwise, it equals zero.
Ctr and Cta represent the true and target classes of the input. N is the number of samples in
the dataset. Obviously, the above optimization problems are exactly the opposite of a DNN’s
training process, and the corresponding loss functions will be given in the next chapter.
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2.2. Transferability of Adversarial Examples

We consider an extreme situation where attackers have no access to any feedback from
victim models, in which existing white-box and black-box attacks are unable to craft adver-
sarial examples. In this case, attackers can utilize the transferability of adversarial examples
to attack models. Specifically, the extensive experiments in [18] have demonstrated that
adversarial examples can transfer among models, even if they have different architectures
or are trained on different training sets, so long as they are trained to perform the same
task. Details about the transferability are shown in Figure 1.

Figure 1. Transferability of adversarial examples.

As shown in Figure 1, for an image classification task, we have trained three recogni-
tion models. Suppose that only the surrogate model fs(·) is a white-box model, and victim
models fv1(·), fv2(·) are black-box models. Undoubtedly, given an sample x, attackers can
craft an adversarial example x̃ to fool fs(·) through attack algorithms. Meanwhile, given
the transferability of adversarial examples, x̃ can also fool fv1(·) and fv2(·) successfully.
However, the transferability generated by existing algorithms is very weak, so this paper is
dedicated to crafting highly transferable adversarial examples.

3. The Proposed Transferable Adversarial Network (TAN)

In this paper, the proposed Transferable Adversarial Network (TAN) utilizes the
encoder–decoder model and data augmentation technology to improve the transferability
and real-time performance of adversarial examples. The framework of our network is
shown in Figure 2. As we can see, compared to traditional iterative methods, TAN in-
troduces a generator G(·) to learn the one-step forward mapping from the clean sample
x to the adversarial example x̃, thus enabling real-time attacks. Meanwhile, to improve
the transferability of x̃, we simultaneously trained an attenuator A(·) to capture the most
harmful deformations, which are supposed to weaken the effectiveness of x̃ while still
preserving the semantic meaning of x. We argue that if x̃ is robust to the deformations
produced by A(·), i.e., x̃∗ remains effective to DNN models, then x̃ is capable of transfer-
ring to the black-box victim model fv(·). In other words, we achieve real-time transferable
adversarial attacks through a two-player game between G(·) and A(·). This chapter will
introduce our method in detail.
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Figure 2. Framework of TAN.

3.1. Training Process of the Generator

For easy understanding, Figure 3 shows the detailed training process of the generator.
Note that a white-box model is selected as the surrogate model fs(·) during the training phase.

Figure 3. Training process of the generator.

As we can see, given a clean sample x, the generator G(·) crafts the adversarial
example x̃ through a one-step forward mapping, as follows:

x̃ = G(x) (4)

Meanwhile, the attenuator A(·) takes x̃ as input and outputs the attenuated adversarial
example x̃∗:

x̃∗ = A(x̃) (5)

Since x̃ has to fool fs(·) with a minor perturbation, and x̃∗ needs to remain effective
against fs(·), the loss function of G(·) consists of three parts. Next, we will give the
generator loss LG of non-targeted and targeted attacks, respectively.

For the non-targeted attack: First, according to (2), x̃ is to minimize the classification
accuracy of fs(·), which means that it has to decrease the confidence of being recognized as
the true class Ctr, i.e., to increase the confidence of being identified as others. Thus, the first
part of LG can be expressed as:

LG1( fs(x̃), Ctr) = − log
(

∑i 6=Ctr exp( fs(x̃)i)

∑i exp( fs(x̃)i)

)
= − log

(
1−

exp( fs(x̃)Ctr )

∑i exp( fs(x̃)i)

) (6)

Second, to improve the transferability of x̃, we expect that x̃∗ remains effective to fs(·),
so the second part of LG can be derived as:

LG2( fs(x̃∗), Ctr) = − log
(

∑i 6=Ctr exp( fs(x̃∗)i)

∑i exp( fs(x̃∗)i)

)
= − log

(
1−

exp( fs(x̃∗)Ctr )

∑i exp( fs(x̃∗)i)

) (7)
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Finally, the last part of LG is used to limit the perturbation magnitude. We introduce
the traditional Lp-norm to measure the degree of image distortion as follows:

LG3(x, x̃) = ‖x̃− x‖p

= (∑
i
|∆xi|p)

1
p

(8)

In summary, we apply the linear weighted sum method to balance the relationship
among LG1, LG2, and LG3. As such, the complete generator loss for the non-targeted attack
can be represented as:

LG = ωG1 · LG1( fs(x̃), Ctr) + ωG2 · LG2( fs(x̃∗), Ctr) + ωG3 · LG3(x, x̃) (9)

where ωG1 + ωG2 + ωG3 = 1. ωG1, ωG2, ωG3∈[0, 1] are the weight coefficients of LG1, LG2,
and LG3, respectively. The weight coefficients represent the relative importance of each
loss term during the training process. A larger weight implies that the corresponding loss
will decrease more rapidly and significantly, allowing attackers to adjust the parameters
flexibly according to their actual needs.

For the targeted attack: According to (3), x̃ is to maximize the probability of being
recognized as the target class Cta, i.e., to increase the confidence of Cta. Thus, LG1 here can
be expressed as:

LG1( fs(x̃), Cta) = − log
(

exp( fs(x̃)Cta)

∑i exp( fs(x̃)i)

)
(10)

To maintain the effectiveness of x̃∗ against fs(·), LG2 here is derived as:

LG2( fs(x̃∗), Cta) = − log
(

exp( fs(x̃∗)Cta)

∑i exp( fs(x̃∗)i)

)
(11)

The perturbation magnitude is still limited by the LG3 shown in (8). Therefore, the
complete generator loss for the targeted attack can be represented as:

LG = ωG1 · LG1( fs(x̃), Cta) + ωG2 · LG2( fs(x̃∗), Cta) + ωG3 · LG3(x, x̃) (12)

3.2. Training Process of the Attenuator

According to Figure 2, during the training phase of TAN, an attenuator A(·) was
introduced to weaken the effectiveness of x̃ while still preserving the semantic meaning of
x. We show the detailed training process of A(·) in Figure 4.

Figure 4. Training process of the attenuator.
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As we can see, the attenuator loss LA also consists of three parts. First, to preserve the
semantic meaning of x, fs(·) has to keep a basic classification accuracy on the following
attenuated sample x∗:

x∗ = A(x) (13)

It means that the first part of LA should increase the confidence of x∗ being recognized
as the true class Ctr, as follows:

LA1( fs(x∗), Ctr) = − log
(

exp( fs(x∗)Ctr )

∑i exp( fs(x∗)i)

)
(14)

Meanwhile, to weaken the effectiveness of x̃, A(·) also need to improve the confidence
of the attenuated adversarial example x̃∗ being identified as Ctr, so the second part of LA
can be expressed as:

LA2( fs(x̃∗), Ctr) = − log
(

exp( fs(x̃∗)Ctr )

∑i exp( fs(x̃∗)i)

)
(15)

Finally, to avoid excessive image distortion caused by A(·), the third part of LA is used to
limit the deformation magnitude, which can be expressed by the traditional Lp-norm, as follows:

LA3(x, x∗) = ‖x∗ − x‖p

= (∑
i
|∆xi|p)

1
p

(16)

As with the generator loss, we utilize the linear weighted sum method to derive the
complete attenuator loss as follows:

LA = ωA1 · LA1( fs(x∗), Ctr) + ωA2 · LA2( fs(x̃∗), Ctr) + ωA3 · LA3(x, x∗) (17)

where ωA1 + ωA2 + ωA3 = 1. ωA1, ωA2, ωA3∈[0, 1] are the weight coefficients of LA1, LA2,
and LA3, respectively.

3.3. Network Structure of the Generator and Attenuator

According to Sections 3.1 and 3.2, the generator and attenuator are essentially
two encoder–decoder models, so the choice of a suitable model structure is necessary.
We mainly consider two factors. First, as the size of original samples and adversarial
examples should be the same, the model has to keep the input and output sizes identical.
Second, to prevent our network from overfitting while saving computational resources,
a lightweight model will be a better choice. In summary, we applied ResNet Generator
proposed in [29] as the encoder–decoder model of TAN. The structure of ResNet Generator
is shown in Figure 5.

Figure 5. Structure of ResNet Generator.
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As we can see, ResNet Generator mainly consists of downsampling, residual, and
upsampling modules. For a visual understanding, given an input data of size 1× 128× 128,
the input and output sizes of each module are listed in Table 1.

Obviously, the input and output sizes of ResNet Generator are the same. Meanwhile,
to ensure the validity of the generated data, we added a tanh function after the output
module, which restricts the generated data to the interval [0, 1]. The total number of
parameters in ResNet Generator has been calculated to be approximately 7.83M, which is a
fairly lightweight network. For more details, please refer to the literature [29].

Table 1. Input–output relationships for each module of ResNet Generator.

Module Input Size Output Size

Input 1× 128× 128 64× 128× 128
Downsampling_1 64× 128× 128 128× 64× 64
Downsampling_2 128× 64× 64 256× 32× 32

Residual_1 ∼ 6 256× 32× 32 256× 32× 32
Upsampling_1 256× 32× 32 128× 64× 64
Upsampling_2 128× 64× 64 64× 128× 128

Output 64× 128× 128 1× 128× 128

3.4. Complete Training Process of TAN

As we described earlier, TAN improves the transferability of adversarial examples through
a two-player game between the generator and attenuator, which is quite similar to the working
principle of generative adversarial networks (GAN) [30]. Therefore, we also adopted an alter-
nating training scheme to train our network. Specifically, given the dataset X and batch size S,
we first randomly divided X into M batches {b1, b2, · · · , bM} at the beginning of each training
iteration. Second, we set a training ratio R∈N∗, which means that TAN trains the generator
R times and then trains the attenuator once, i.e., once per batch for the former and only once
per R batch for the latter. In this way, we can prevent the attenuator from being so strong that
the generator cannot be optimized. Meanwhile, to shorten training time, we set an early stop
condition Esc so that training can be ended early when certain indicators meet the condition.
Note that the generator and attenuator are trained alternately, i.e., the attenuator’s parameters
are fixed when the generator is trained, and vice versa. More details of the complete training
process for TAN are shown in Algorithm 1.

4. Experiments
4.1. Data Descriptions

To date, there is no publicly available dataset for UAV SAR-ATR, thus this paper exper-
iments on the most authoritative SAR-ATR dataset, i.e., the moving and stationary target
acquisition and recognition (MSTAR) dataset [31]. MSTAR is collected by a high-resolution
spotlight SAR and published by the U.S. Defense Advanced Research Projects Agency
(DARPA) in 1996, which contains SAR images of Soviet military vehicle targets at different
azimuth and depression angles. In standard operating conditions (SOC), MSTAR includes
ten classes of targets, such as self-propelled howitzers (2S1); infantry fighting vehicles
(BMP2); armored reconnaissance vehicles (BRDM2); wheeled armored transport vehicles
(BTR60, BTR70); bulldozers (D7); main battle tanks (T62, T72); cargo trucks (ZIL131); and
self-propelled artillery (ZSU234). The training dataset contains 2747 images collected at a
depression angle of 17◦, and the testing dataset contains 2426 images captured at a depres-
sion angle of 15◦. More details about the dataset are given in Table 2, and Figure 6 shows
the optical images and corresponding SAR images of each class.
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Algorithm 1 Transferable Adversarial Network Training

Input: Dataset X ; batch size S; surrogate model fs; target class Cta; training loss function
LG of the generator; training loss function LA of the attenuator; training iteration
number T; learning rate η; training ratio R of the generator and attenuator; early stop
condition Esc.

Output: The parameter θG of the well-trained generator.
1: Randomly initialize θG and θA
2: for t = 1 to T do
3: According to S, randomly divide X into M batches {b1, b2, · · · , bM}
4: for m = 1 to M do
5: Calculate LG(θG, θA, fs, bm, Cta)

6: Update θG = θG − η · ∂
∂θG
LG

7: if m%R == 0 then
8: Calculate LA(θG, θA, fs, bm)

9: Update θA = θA − η · ∂
∂θA
LA

10: else
11: θA = θA
12: end if
13: end for
14: if Esc == True then
15: Break
16: else
17: Continue
18: end if
19: end for

Figure 6. Optical images (top) and SAR images (bottom) of the MSTAR dataset.

Table 2. Details of the MSTAR dataset under SOC, including target class, serial, depression angle,
and sample numbers.

Target Class Serial
Training Data Testing Data

Depression Angle Number Depression Angle Number

2S1 b01 17◦ 299 15◦ 274
BMP2 9566 17◦ 233 15◦ 196

BRDM2 E-71 17◦ 298 15◦ 274
BTR60 k10yt7532 17◦ 256 15◦ 195
BTR70 c71 17◦ 233 15◦ 196

D7 92v13015 17◦ 299 15◦ 274
T62 A51 17◦ 299 15◦ 273
T72 132 17◦ 232 15◦ 196

ZIL131 E12 17◦ 299 15◦ 274
ZSU234 d08 17◦ 299 15◦ 274
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4.2. Implementation Details

The proposed method is evaluated on the following six common DNN models:
DenseNet121 [32], GoogLeNet [33], InceptionV3 [34], Mobilenet [35], ResNet50 [36], and
Shufflenet [37]. In terms of data preprocessing, we resized all the images in MSTAR to
128× 128 and uniformly sample 10% of training data to form the validation dataset. During
the training phase of recognition models, the training epoch and batch size were set to 100
and 32, respectively. During the training phase of TAN, to minimize the MSE between
adversarial examples and original samples, we adopted the L2-norm to evaluate the image
distortion caused by adversarial perturbations. Meanwhile, for better attack performance,
the hyperparameters of TAN are fine-tuned through numerous experiments, and the follow-
ing set of parameters is eventually determined to best meet our requirements. Specifically,
we set the generator loss weights [ωG1, ωG2, ωG3] to [0.25, 0.25, 0.5], the attenuator loss
weights [ωA1, ωA2, ωA3] to [0.25, 0.25, 0.5], the training ratio to 3, the training epoch to 50,
and the batch size to 8. Due to the adversarial process involved in TAN, training can
be challenging to converge. As such, we employed Adam [38], a more computationally
efficient optimizer, to accelerate model convergence, which also performs better in solving
non-stationary objective and sparse gradient problems. The learning rate is set to 0.001.
When evaluating the transferability, we first crafted adversarial examples for each surrogate
model and then assessed the transferability by testing the recognition results of victim
models on corresponding adversarial examples. Detailed experiments will be given later.

Furthermore, the following six attack algorithms from the Torchattacks [39] toolbox
were introduced as baseline methods for comparison with TAN: MIFGSM [19], DIFGSM [21],
NIFGSM [20], SINIFGSM [20], VMIFGSM [22], and VNIFGSM [22]. All codes were written
in Pytorch, and the experimental environment consisted of Windows 10 with an NVIDIA
GeForce RTX 2080 Ti GPU and a 3.6 GHz Intel Core i9-9900K CPU.

4.3. Evaluation Metrics

We mainly consider two factors to comprehensively evaluate the performance of
adversarial attacks: the effectiveness and stealthiness, which are directly related to the
classification accuracy Ãcc of victim models on adversarial examples and the norm value
L̃p of adversarial perturbations, respectively. For the Ãcc metric, the formula is as follows:

Ãcc =


1
N ∑N

n=1 D(arg maxi( fv(x̃n)i)==Ctr) for the non-targeted attack

1
K×N ∑K

Cta=1 ∑N
n=1 D(arg maxi( fv(x̃n)i)==Cta) for the targeted attack

(18)

where Ctr and Cta represent the true and target classes of the input data, K is the number
of target classes, and D(·) is a discriminant function. In the non-targeted attack, the Ãcc
metric reflects the probability that the victim model fv(·) identifies the adversarial example
x̃n as Ctr, while in the targeted attack it indicates the probability that fv(·) recognizes x̃n as
Cta. Obviously, in the non-targeted attack, the lower the Ãcc metric, the better the attack.
Conversely, in the targeted attack, a higher Ãcc metric represents fv(·) is more likely to
recognize x̃n as Cta, and thus the attack is more effective. In conclusion, the effectiveness of
non-targeted attacks is inversely proportional to the Ãcc metric, and the effectiveness of
targeted attacks is proportional to this metric. Additionally, there are other three similar
indicators, Acc, Acc∗, and Ãcc∗, that represent the classification accuracy of fv(·) for the
original sample xn, the attenuated sample x∗n, and the attenuated adversarial example
x̃∗n, respectively. Note that whether it is a non-targeted or targeted attack, Acc∗ always
represents the accuracy with which fv(·) identifies x∗n as Ctr, while the other three accuracy
indicators need to be calculated via (18) based on the attack mode. In particular, Ãcc∗

represents the recognition result of fv(·) on x̃∗n, which indirectly reflects the strength of the
transferability possessed by x̃n.
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Meanwhile, we applied the following Lp-norm values to measure the
attack stealthiness: 

L̃p = 1
N ∑N

n=1‖x̃n − xn‖p for the generator

L∗p = 1
N ∑N

n=1‖x∗n − xn‖p for the attenuator

(19)

where L̃p and L∗p represent the image distortion caused by the generator and attenuator,
respectively. In our experiments, the Lp-norm defaults to L2-norm. In summary, we can set
the early stop condition Esc mentioned in Section 3.4 with the above indicators, as follows:

Esc =


Ãcc ≤ 0.05, Acc∗ ≥ 0.9, Ãcc∗ ≤ 0.1, L̃2 ≤ 4, L∗2 ≤ 4 for the non-targeted attack

Ãcc ≥ 0.95, Acc∗ ≥ 0.9, Ãcc∗ ≥ 0.9, L̃2 ≤ 4, L∗2 ≤ 4 for the targeted attack

(20)

Furthermore, to evaluate the real-time performance of adversarial attacks, we introduced
the Tc metric to denote the time cost of generating a single adversarial example, as follows:

Tc =
Time

N
(21)

where Time is the total time consumed to generate N adversarial examples.

4.4. DNN-Based SAR-ATR Models

A well-trained recognition model is a prerequisite for effective adversarial attacks, so
we have trained six SAR-ATR models on the MSTAR dataset: DenseNet121, GoogLeNet,
InceptionV3, Mobilenet, ResNet50, and Shufflenet. All of them achieve outstanding recog-
nition performance, with the classification accuracy of 98.72%, 98.06%, 96.17%, 96.91%,
97.98%, and 96.66% on the testing dataset, respectively. In addition, we show the confusion
matrix of each model in Figure 7.

Figure 7. Confusion matrixes of DNN-based SAR-ATR models on the MSTAR dataset. (a) DenseNet121.
(b) GoogLeNet. (c) InceptionV3. (d) Mobilenet. (e) ResNet50. (f) Shufflenet.
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4.5. Comparison of Attack Performance

In this section, we first evaluated the attack performance of the proposed method
against DNN-based SAR-ATR models on the MSTAR dataset. Specifically, during the
training phase of TAN, we took each network as the surrogate model in turn and assessed
the recognition results of corresponding models on the outputs of TAN at each stage. The
results of non-targeted and targeted attacks are detailed in Tables 3 and 4, respectively.

Table 3. Non-targeted attack results of our method against DNN-based SAR-ATR models on the
MSTAR dataset.

Surrogate Acc ˜Acc Acc∗ ˜Acc∗ L̃2 L∗
2

DenseNet121 98.72% 1.90% 81.53% 24.03% 3.595 4.959
GoogLeNet 98.06% 3.83% 89.78% 36.11% 2.884 3.305
InceptionV3 96.17% 0.82% 89.41% 19.62% 3.552 4.181
Mobilenet 96.91% 2.72% 87.88% 36.81% 3.218 4.083
ResNet50 97.98% 3.34% 83.80% 28.65% 3.684 4.568
Shufflenet 96.66% 3.46% 84.30% 23.66% 3.331 3.286

Mean 97.42% 2.68% 86.12% 28.15% 3.377 4.064

Table 4. Targeted attack results of our method against DNN-based SAR-ATR models on the
MSTAR dataset.

Surrogate Acc ˜Acc Acc∗ ˜Acc∗ L̃2 L∗
2

DenseNet121 10.00% 98.08% 88.47% 78.09% 3.086 3.587
GoogLeNet 10.00% 99.09% 89.25% 85.90% 3.377 4.289
InceptionV3 10.00% 98.81% 86.87% 78.97% 3.453 3.495
Mobilenet 10.00% 97.40% 88.38% 81.37% 3.257 3.553
ResNet50 10.00% 97.69% 87.29% 82.10% 3.408 3.490
Shufflenet 10.00% 98.36% 86.85% 83.11% 3.345 3.874

Mean 10.00% 98.24% 87.85% 81.59% 3.321 3.714

In non-targeted attacks, the Acc metric of each model on the MSTAR dataset exceeds
95%. However, after the non-targeted attack, the classification accuracy of all models on the
generated adversarial examples, i.e., the Ãcc metric, is below 5%, and the L̃2 indicator is
less than 3.7. It means that adversarial examples deteriorate the recognition performance of
models rapidly through minor adversarial perturbations. Meanwhile, during the training
phase of TAN, we evaluate the performance of the attenuator. According to the Ãcc∗

metric, the attenuator leads to an average improvement of about 25% in the classification
accuracy of models on adversarial examples, that is, it indeed weakens the effectiveness
of adversarial examples. We also should pay attention to the metrics Acc∗ and L∗2 , i.e., the
recognition accuracy of models on the attenuated samples, and the deformation distortion
caused by the attenuator. The fact is that the Acc∗ indicator of each model exceeds 80%,
and the average value of the L∗2 metric is about 4. It means that the attenuator retains most
semantic information of original samples without causing excessive deformation distortion,
which is in line with our requirements.

In targeted attacks, the Acc metric represents the probability that models identify
original samples as target classes, so it can reflect the dataset distribution, i.e., each category
accounts for about 10% of the total dataset. After the targeted attack, the probability of each
model recognizing adversarial examples as target classes, i.e., the Ãcc metric, is over 97%,
and the L̃2 indicator shows that the image distortion caused by adversarial perturbations is
less than 3.5. It means that the adversarial examples crafted by the generator can induce
models to output specified results with high probability through minor perturbations.
As with the non-targeted attack, we evaluate the performance of the attenuator. The
Ãcc∗ metric shows that the attenuator results in an average decrease of about 17% in the
probability of adversarial examples being identified as target classes. Meanwhile, the Acc∗
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metric of each model exceeds 85%, and the average value of the L∗2 indicator is about 3.7.
That is, the attenuator weakens the effectiveness of adversarial examples through slight
deformations, while preserving the semantic meaning of original samples well.

In summary, for both non-targeted and targeted attacks, the adversarial examples
crafted by the generator can fool models with high success rates, and the attenuator is
able to weaken the effectiveness of adversarial examples with slight deformations while
retaining the semantic meaning of original samples. Moreover, we ensure that the generator
always outperforms the attenuator by adjusting the training ratio between the two models.
To visualize the attack results of TAN, we took ResNet50 as the surrogate model and display
the outputs of TAN at each stage in Figure 8.

Finally, we compared the non-targeted and targeted attack performance of differ-
ent methods against DNN-based SAR-ATR models on the MSTAR dataset, as detailed
in Table 5. Obviously, for the same image distortion, the attack effectiveness of the pro-
posed method against a single model may not be the best. Nevertheless, we focused
more on the transferability of adversarial examples, which will be the main topic of the
following section.

Figure 8. Visualization of attack results against ResNet50. (a) Original samples. (b) Adversarial
examples. (c) Adversarial perturbations. (d) Attenuated samples. (e) Deformation distortion.
(f) Attenuated adversarial examples. From top to bottom, the corresponding target classes are None,
2S1, and D7, respectively.

Table 5. Attack performance of different methods against DNN-based SAR-ATR models on the
MSTAR dataset.

Surrogate Method
Non-Targeted Targeted

˜Acc L̃2 ˜Acc L̃2

DenseNet121

TAN 1.90% 3.595 98.08% 3.086
MIFGSM 0.00% 3.555 98.61% 3.613
DIFGSM 0.00% 3.116 95.39% 2.816
NIFGSM 0.21% 3.719 68.72% 3.550

SINIFGSM 1.15% 3.676 82.32% 3.648
VMIFGSM 0.00% 3.665 98.14% 3.602
VNIFGSM 0.08% 3.691 96.89% 3.635
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Table 5. Cont.

Surrogate Method
Non-Targeted Targeted

˜Acc L̃2 ˜Acc L̃2

GoogLeNet

TAN 3.83% 2.884 99.09% 3.377
MIFGSM 0.04% 3.615 98.36% 3.601
DIFGSM 0.04% 3.090 94.47% 2.830
NIFGSM 0.41% 3.674 64.32% 3.520

SINIFGSM 4.04% 3.647 69.79% 3.615
VMIFGSM 0.04% 3.587 97.84% 3.601
VNIFGSM 0.37% 3.588 95.74% 3.636

InceptionV3

TAN 0.82% 3.552 98.81% 3.453
MIFGSM 0.00% 3.599 96.00% 3.563
DIFGSM 0.04% 3.010 86.72% 2.811
NIFGSM 0.21% 3.671 51.66% 3.397

SINIFGSM 2.93% 3.689 62.46% 3.593
VMIFGSM 0.00% 3.614 91.54% 3.577
VNIFGSM 0.00% 3.632 84.02% 3.605

Mobilenet

TAN 2.72% 3.218 97.40% 3.257
MIFGSM 8.29% 3.557 99.86% 3.538
DIFGSM 6.64% 2.821 91.64% 2.610
NIFGSM 6.88% 3.575 80.05% 3.519

SINIFGSM 1.77% 3.664 85.14% 3.662
VMIFGSM 2.35% 3.572 99.40% 3.499
VNIFGSM 1.32% 3.635 95.58% 3.582

ResNet50

TAN 3.34% 3.684 97.69% 3.408
MIFGSM 0.95% 3.659 97.08% 3.613
DIFGSM 0.33% 3.141 90.35% 2.824
NIFGSM 0.33% 3.710 45.34% 3.501

SINIFGSM 3.96% 3.720 71.64% 3.652
VMIFGSM 0.87% 3.644 96.17% 3.618
VNIFGSM 0.25% 3.692 94.17% 3.632

Shufflenet

TAN 3.46% 3.331 98.36% 3.345
MIFGSM 0.00% 3.567 100.00% 3.518
DIFGSM 0.00% 2.790 97.54% 2.599
NIFGSM 0.16% 3.632 91.77% 3.455

SINIFGSM 0.00% 3.660 95.79% 3.568
VMIFGSM 0.00% 3.617 100.00% 3.511
VNIFGSM 0.04% 3.654 99.73% 3.568

4.6. Comparison of Transferability

In this section, we evaluated the transferability of adversarial examples among DNN-
based SAR-ATR models on the MSTAR dataset. Specifically, we first took each network
as the surrogate model in turn and crafted adversarial examples for them, respectively.
Then, we assessed the transferability by testing the recognition results of victim models
on corresponding adversarial examples. The transferability in non-targeted and targeted
attacks are shown in Tables 6 and 7, respectively.

In non-targeted attacks, when the proposed method sequentially takes DenseNet121,
GoogLeNet, InceptionV3, Mobilenet, ResNet50, and Shufflenet as the surrogate model, the
highest recognition accuracy of victim models on the generated adversarial examples are
12.90%, 26.88%, 23.45%, 18.59%, 11.01%, and 23.54%, respectively. Equivalently, the highest
recognition accuracy of victim models on the adversarial examples produced by baseline
methods are 36.11%, 44.44%, 56.06%, 65.99%, 33.84%, and 68.51%, respectively. Meanwhile,
for each surrogate model, victim models always have the lowest recognition accuracy on
the adversarial examples crafted by our approach. Obviously, compared with baseline
methods, the proposed method slightly sacrifices the performance on attacking surrogate
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models, but achieves state-of-the-art transferability among victim models in non-targeted
attacks. Detailed results are shown in Table 6.

Table 6. Transferability of adversarial examples generated by different attack algorithms in non-
targeted attacks.

Surrogate Method DenseNet121 GoogLeNet InceptionV3 Mobilenet ResNet50 Shufflenet

DenseNet121

TAN 1.90% 4.25% 7.46% 9.93% 9.11% 12.90%
MIFGSM 0.00% 10.10% 12.82% 26.46% 16.32% 28.65%
DIFGSM 0.00% 8.16% 11.46% 26.01% 19.17% 30.83%
NIFGSM 0.21% 14.67% 14.67% 26.75% 20.07% 30.67%

SINIFGSM 1.15% 16.69% 19.29% 35.66% 17.64% 36.11%
VMIFGSM 0.00% 8.86% 11.62% 24.40% 15.13% 25.89%
VNIFGSM 0.08% 8.04% 11.62% 22.38% 13.60% 23.54%

GoogLeNet

TAN 6.88% 3.83% 8.16% 23.62% 10.51% 26.88%
MIFGSM 10.18% 0.04% 17.72% 32.36% 27.66% 42.13%
DIFGSM 8.33% 0.04% 14.47% 32.52% 24.73% 38.66%
NIFGSM 22.88% 0.41% 24.28% 32.32% 35.16% 44.44%

SINIFGSM 7.96% 4.04% 13.15% 33.22% 15.09% 28.07%
VMIFGSM 8.57% 0.04% 16.32% 29.72% 25.64% 38.58%
VNIFGSM 10.02% 0.37% 15.50% 27.99% 26.30% 36.93%

InceptionV3

TAN 8.20% 9.60% 0.82% 21.43% 14.67% 23.45%
MIFGSM 19.25% 35.00% 0.00% 39.45% 33.14% 42.54%
DIFGSM 16.86% 33.22% 0.04% 43.69% 33.76% 47.07%
NIFGSM 32.11% 34.46% 0.21% 42.09% 43.08% 44.89%

SINIFGSM 27.37% 38.05% 2.93% 49.22% 41.18% 56.06%
VMIFGSM 18.51% 26.92% 0.00% 34.46% 31.04% 37.18%
VNIFGSM 21.68% 26.38% 0.00% 33.80% 34.50% 37.63%

Mobilenet

TAN 14.34% 15.83% 13.56% 2.72% 14.18% 18.59%
MIFGSM 65.99% 59.32% 53.59% 8.29% 55.56% 59.77%
DIFGSM 51.28% 53.34% 49.34% 6.64% 49.34% 52.18%
NIFGSM 65.75% 58.66% 51.85% 6.88% 52.31% 55.56%

SINIFGSM 64.67% 45.14% 49.01% 1.77% 51.81% 58.37%
VMIFGSM 62.49% 52.10% 50.45% 2.35% 49.63% 52.84%
VNIFGSM 56.27% 50.04% 43.61% 1.32% 43.82% 48.19%

ResNet50

TAN 5.94% 9.27% 10.14% 12.94% 3.34% 11.01%
MIFGSM 14.59% 24.15% 17.72% 16.90% 0.95% 26.42%
DIFGSM 11.13% 17.07% 15.09% 20.45% 0.33% 26.59%
NIFGSM 21.72% 28.19% 20.28% 19.74% 0.33% 29.43%

SINIFGSM 26.50% 24.15% 22.59% 30.50% 3.96% 33.84%
VMIFGSM 13.31% 22.42% 16.36% 15.95% 0.87% 23.33%
VNIFGSM 15.00% 22.67% 16.45% 14.47% 0.25% 22.63%

Shufflenet

TAN 17.72% 23.54% 16.49% 22.22% 17.85% 3.46%
MIFGSM 66.69% 70.03% 65.00% 55.81% 65.00% 0.00%
DIFGSM 53.46% 57.58% 55.32% 51.44% 55.44% 0.00%
NIFGSM 67.23% 61.58% 58.62% 48.35% 61.62% 0.16%

SINIFGSM 68.51% 58.33% 60.92% 50.41% 56.64% 0.00%
VMIFGSM 57.25% 55.32% 54.29% 40.23% 53.34% 0.00%
VNIFGSM 56.68% 54.25% 51.57% 37.30% 52.14% 0.04%

In targeted attacks, the proposed method still takes DenseNet121, GoogLeNet,
InceptionV3, Mobilenet, ResNet50, and Shufflenet as the surrogate model in turn, and
the minimum probability that victim models identify the generated adversarial examples
as target classes are 52.39%, 55.02%, 54.57%, 57.66%, 66.26%, and 47.78%, respectively.
Correspondingly, the minimum probability that victim models recognize the adversarial
examples produced by baseline methods as target classes are 22.18%, 19.63%, 19.49%,
15.52%, 19.36%, and 13.06%, respectively. Moreover, for each surrogate model, victim
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models always identify the adversarial examples crafted by our approach as target classes
with the maximum probability. Thus, the proposed method also achieves state-of-the-art
transferability among victim models in targeted attacks. Detailed results are shown in
Table 7.

Table 7. Transferability of adversarial examples generated by different attack algorithms in targeted attacks.

Surrogate Method DenseNet121 GoogLeNet InceptionV3 Mobilenet ResNet50 Shufflenet

DenseNet121

TAN 98.08% 79.12% 70.71% 59.03% 62.31% 52.39%
MIFGSM 98.61% 52.47% 49.05% 39.47% 43.78% 37.62%
DIFGSM 95.39% 51.08% 46.62% 35.02% 39.51% 32.29%
NIFGSM 68.72% 33.06% 27.61% 22.18% 25.78% 22.92%

SINIFGSM 82.32% 40.62% 33.17% 29.95% 31.93% 30.59%
VMIFGSM 98.14% 48.94% 44.10% 33.56% 39.29% 34.06%
VNIFGSM 96.89% 48.78% 46.03% 34.70% 39.80% 35.52%

GoogLeNet

TAN 81.04% 99.09% 66.59% 56.72% 63.86% 55.02%
MIFGSM 61.56% 98.36% 47.57% 34.16% 37.57% 29.75%
DIFGSM 58.81% 94.47% 47.91% 32.17% 36.20% 26.88%
NIFGSM 31.46% 64.32% 25.34% 19.85% 23.14% 19.63%

SINIFGSM 41.97% 69.79% 34.39% 28.21% 29.77% 25.48%
VMIFGSM 53.37% 97.84% 42.19% 30.67% 34.94% 26.36%
VNIFGSM 56.26% 95.74% 43.96% 32.31% 36.11% 29.49%

InceptionV3

TAN 75.11% 71.56% 98.81% 67.23% 63.62% 54.57%
MIFGSM 42.64% 35.92% 96.00% 32.49% 35.00% 29.51%
DIFGSM 42.99% 33.70% 86.72% 31.16% 34.13% 28.20%
NIFGSM 27.12% 24.67% 51.66% 19.49% 23.76% 22.45%

SINIFGSM 26.76% 25.23% 62.46% 21.90% 24.36% 22.59%
VMIFGSM 36.38% 34.05% 91.54% 30.15% 31.43% 28.52%
VNIFGSM 37.82% 33.55% 84.02% 31.44% 32.28% 28.58%

Mobilenet

TAN 61.30% 57.66% 61.53% 97.40% 60.97% 63.11%
MIFGSM 19.98% 18.66% 22.87% 99.86% 23.55% 20.31%
DIFGSM 23.96% 21.92% 23.79% 91.64% 24.51% 22.65%
NIFGSM 15.76% 15.58% 16.85% 80.05% 18.06% 15.91%

SINIFGSM 16.81% 15.52% 18.96% 85.14% 21.20% 16.63%
VMIFGSM 18.46% 17.84% 18.70% 99.40% 21.49% 19.61%
VNIFGSM 21.60% 18.41% 22.34% 95.58% 24.67% 21.96%

ResNet50

TAN 71.39% 71.54% 71.02% 73.68% 97.69% 66.26%
MIFGSM 43.23% 30.51% 41.57% 42.41% 97.08% 36.29%
DIFGSM 45.18% 34.25% 42.37% 39.40% 90.35% 34.36%
NIFGSM 22.07% 20.45% 20.33% 19.36% 45.34% 19.75%

SINIFGSM 25.81% 21.38% 27.15% 31.01% 71.64% 26.02%
VMIFGSM 36.44% 26.33% 35.75% 38.61% 96.17% 32.79%
VNIFGSM 40.80% 27.10% 38.26% 38.87% 94.17% 36.49%

Shufflenet

TAN 53.91% 47.78% 51.69% 60.35% 58.78% 98.36%
MIFGSM 18.29% 16.43% 17.06% 19.46% 17.20% 100.00%
DIFGSM 23.55% 20.36% 20.80% 22.55% 21.35% 97.54%
NIFGSM 13.96% 13.06% 13.14% 14.47% 13.66% 91.77%

SINIFGSM 15.83% 15.23% 15.34% 19.42% 16.05% 95.79%
VMIFGSM 17.58% 16.34% 17.09% 21.65% 18.46% 99.94%
VNIFGSM 19.43% 17.97% 18.68% 22.87% 19.98% 99.73%

In conclusion, for both non-targeted and targeted attacks, our approach generates
adversarial examples with the strongest transferability. In other words, it performs better
on exploring the common vulnerability of DNN models. We attribute this to the adversarial
training between the generator and attenuator. Figuratively speaking, it is because of the
attenuator constantly creating obstacles for the generator that the attack capability of the
generator is continuously enhanced and completed.
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4.7. Comparison of Real-Time Performance

According to (4), compared to traditional iterative methods, the generator in our
approach is capable of one-step mapping original samples to adversarial examples. It acts
like a function that takes inputs and outputs results based on the mapping relationship.
To evaluate the real-time performance of adversarial attacks, we compared the time cost
of generating a single adversarial example through different attack algorithms. The time
consumption of non-targeted and targeted attacks is shown in Tables 8 and 9, respectively.

As we can see, there is almost no difference in the time cost of crafting a single
adversarial example in non-targeted and targeted attacks. Meanwhile, for all the victim
models, the time cost of generating a single adversarial example through our method is
stable around 2 ms. As for baseline methods, it depends on the complexity of victim models,
the more complex the model, the longer the time cost. However, even for the simplest
victim model, the minimum time cost of baseline methods is about 4.5 ms, consuming twice
as much time as our approach. Thus, there is no doubt that the proposed method achieves
the most superior and stable real-time performance.

Table 8. Time cost of generating a single adversarial example through different attack algorithms in
non-targeted attacks.

Method DenseNet121 GoogLeNet InceptionV3 Mobilenet ResNet50 Shufflenet Mean

TAN 0.002029 s 0.002201 s 0.002039 s 0.002218 s 0.002031 s 0.002045 s 0.002094 s
MIFGSM 0.018285 s 0.006351 s 0.012636 s 0.005093 s 0.013445 s 0.004451 s 0.010044 s
DIFGSM 0.018276 s 0.006363 s 0.012653 s 0.005103 s 0.013468 s 0.004488 s 0.010059 s
NIFGSM 0.018312 s 0.006354 s 0.012646 s 0.005111 s 0.013477 s 0.004456 s 0.010059 s

SINIFGSM 0.091032 s 0.031499 s 0.063015 s 0.024865 s 0.067202 s 0.021676 s 0.049882 s
VMIFGSM 0.109252 s 0.037827 s 0.075580 s 0.029803 s 0.080479 s 0.025968 s 0.059818 s
VNIFGSM 0.109184 s 0.037804 s 0.075483 s 0.029776 s 0.080560 s 0.025907 s 0.059786 s

Table 9. Time cost of generating a single adversarial example through different attack algorithms in
targeted attacks.

Method DenseNet121 GoogLeNet InceptionV3 Mobilenet ResNet50 Shufflenet Mean

TAN 0.002070 s 0.002069 s 0.002036 s 0.002055 s 0.002087 s 0.002097 s 0.002069 s
MIFGSM 0.018281 s 0.006353 s 0.012634 s 0.005088 s 0.013451 s 0.004446 s 0.010042 s
DIFGSM 0.018291 s 0.006369 s 0.012652 s 0.005104 s 0.013490 s 0.004488 s 0.010065 s
NIFGSM 0.018306 s 0.006358 s 0.012661 s 0.005105 s 0.013486 s 0.004460 s 0.010063 s

SINIFGSM 0.091064 s 0.031539 s 0.063066 s 0.024871 s 0.067216 s 0.021664 s 0.049903 s
VMIFGSM 0.109262 s 0.037860 s 0.075579 s 0.029776 s 0.080481 s 0.025984 s 0.059823 s
VNIFGSM 0.109176 s 0.037819 s 0.075502 s 0.029798 s 0.080546 s 0.025923 s 0.059794 s

4.8. Visualization of Adversarial Examples

In this section, we took ResNet50 as the surrogate model and visualized the adversarial
examples crafted by different methods in Figure 9. Obviously, the adversarial perturbations
generated by our method are continuous, and mainly focus on the target region of SAR
images. In contrast, the perturbations produced by baseline methods are quite discrete, and
almost cover the global area of SAR images. First, from the perspective of feature extraction,
since the features that have a greater impact on recognition results are mainly concentrated
in the target region rather than the background clutter area, a focused disruption of key
features is certainly a more efficient attack strategy. Second, from the perspective of physical
feasibility, the fewer pixels modified in adversarial examples, the smaller range perturbed
in reality, so localized perturbations are more feasible than global ones. In summary, the
proposed method improves the efficiency and feasibility of adversarial attacks by focusing
perturbations on the target region of SAR images.
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Figure 9. Visualization of adversarial examples against ResNet50. (a) TAN. (b) MIFGSM. (c) DIFGSM.
(d) NIFGSM. (e) SINIFGSM. (f) VMIFGSM. (g) VNIFGSM. From top to bottom, the corresponding
target classes are None, BMP2, BTR60, D7, T72, and ZSU234, respectively. For each attack, the first
row shows adversarial examples, and the second row shows corresponding adversarial perturbations.

5. Discussions

So far, the proposed method has been proven to be effective for SAR images. Further
studies should verify its effectiveness in other fields, such as optical [40,41], infrared [42,43],
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and synthetic aperture sonar (SAS) [44–47] images, etc. Although different imaging princi-
ples lead to huge differences in the resolution, dimension, and target type of images, we
argue that TAN can be well-suitable to these fields. The reason is that adversarial examples
essentially attack the inherent vulnerability of DNN models, independent of the input data.
However, the non-negligible challenge is how to realize these adversarial examples in the
real world. Specifically, the physical implementation depends on the imaging principle,
e.g., crafting adversarial patches against optical cameras, changing temperature against
infrared devices, and emitting acoustic signals against SAS, etc. This is a worthwhile topic
in the future.

6. Conclusions

This paper proposed a transferable adversarial network (TAN) to attack DNN-based
SAR-ATR models, with the benefit that the transferability and the real-time performance of
adversarial examples is significantly improved, which is of great significance for real-world
black-box attacks. In the proposed method, we simultaneously trained two encoder–
decoder models: a generator that learns the one-step forward mapping from original data
to adversarial examples, and an attenuator that captures the most harmful deformations
to malicious samples. It is motivated by enabling real-time attacks by one-step mapping
original data to adversarial examples, and enhancing the transferability through a two-
player game between the generator and attenuator. Experimental results demonstrated
that our approach achieves state-of-the-art transferability with acceptable adversarial
perturbations and minimum time costs compared to existing attack methods, making
real-time black-box attacks without any prior knowledge a reality. Potential future work
could consider attacking DNN-based SAR-ATR models under small sample conditions. In
addition to improving the performance of attack algorithms, it makes sense to implement
adversarial examples in the real world.
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