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Abstract: This paper investigates the multiple unmanned aerial vehicle (multi-UAV) cooperative task
assignment problem. Specifically, we assign different types of UAVs to accomplish the classification,
attack, and verification tasks of targets under resource, precedence, and timing constraints. Due to
complex coupling among these tasks, we decompose the considered problem into two subproblems:
one with continuous and independent tasks and another with continuous and correlative tasks. To
solve them, we first present an adjustable, fully adaptive cross-entropy (AFACE) algorithm based on
the cross-entropy (CE) method, which serves as a stepping stone for developing other algorithms.
Secondly, to overcome task precedence in the first subproblem, we propose a mutually independent
AFACE (MIAFACE) algorithm, which converges faster than the CE method when obtaining the
optimal scheme vectors of these continuous and independent tasks. Thirdly, to deal with task
coupling in the second subproblem, we present a mutually correlative AFACE (MCAFACE) algorithm
to find the optimal scheme vectors of these continuous and correlative tasks, while its computational
complexity is inferior to that of the MIAFACE algorithm. Finally, numerical simulations demonstrate
that the proposed MIAFACE (MCAFACE, respectively) algorithm consumes less time than the existing
algorithms for the continuous and independent (correlative, respectively) task assignment problem.

Keywords: multi-UAVs; task assignment; AFACE algorithm; MIAFACE algorithm; MCAFACE
algorithm

1. Introduction

Due to its rapid deployment and nearly unlimited mobility, an unmanned aerial
vehicle (UAV) has great potential in both military and civilian applications, including
modern warfare, disaster search and rescue, traffic control, celestial exploration, and a
variety of other fields [1–4]. UAVs for these applications have limited capabilities and
require sufficient resources to perform tasks autonomously. As a result, multi-UAVs
can be regarded as a promising method by which to handle complex tasks. As more
attention is focused on them, two problems in multi-UAV collaboration, such as multi-
UAV cooperative path planning and cooperative task assignment, are becoming more
widely recognized. The main consideration of this paper is the multi-UAV cooperative task
assignment problem.

In recent years, many scholars have paid attention to the multi-UAV cooperative task
assignment problem, while the related research of this problem is as follows. Chen et al. [5]
utilized mixed integer linear programming (MILP) to address the problem of multi-UAV
cooperative task assignment and path planning for moving targets on the ground, but it
had low scalability while maintaining global optimality. References [6,7] used a heuristic
approach to produce near-optimal results in real time, which has been widely consid-
ered for large-scale problems and dynamic scenarios. For swarm intelligence algorithms,
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e.g., particle swarm optimization (PSO) [8], ant colony optimization (ACO) [9], and ge-
netic algorithm (GA) [10], when solving the task assignment problem, they had a fast
convergence speed and could effectively obtain optimal assignment schemes, but there is a
possibility of falling into local optimum. Moreover, the auction algorithm, game theory, and
reinforcement learning have also been applied to the multi-UAV task assignment problem.
Duan et al. [11] presented a novel hybrid “two-stage” auction algorithm that combines the
structural advantages of the centralized and distributed auction algorithms, which greatly
facilitates the performance of UAVs in dynamic task assignments. Chen et al. [12] stud-
ied the cooperative reconnaissance and spectrum access (CRSA) problem for task-driven
heterogeneous coalition-based UAV networks, and proposed a joint bandwidth allocation
and coalition formation (JBACF) algorithm to solve the task assignment and bandwidth
allocation. Qie et al. [13] proposed an artificial intelligence method called simultaneous
target assignment and path planning (STAPP) to solve the multi-UAV target assignment
and path planning problem, and the effectiveness of the algorithm was experimentally
verified. In addition, references [14–21] provide a variety of alternative algorithms for the
solution of analogous problems.

Similarly, some novel works on task assignment, e.g., UAV-assisted task assignment,
have been presented. Liu et al. [22] studied a UAV-assisted IoT system while present-
ing a nonconvex age-of-information (AoI) minimization problem, which was solved by
jointly optimizing task assignment, interaction point selection (IPT), and UAV trajectories.
Zhu et al. [23] considered the problem of task loss rate (TLR) fairness among IoTs and
equal energy consumption (EC) fairness among UAVs, and proposed a multiagent deep
deterministic policy gradient (MA-DDPG) method by which to assign UAVs to accomplish
tasks and guarantee the balance between IoT TLR and UAV EC. Seid et al. [24] considered
the assignment of UAVs to perform aerial base station tasks based on a multi-UAV-assisted
IoT network framework, while presenting a joint optimization problem for computational
offloading with energy harvesting (EH) and resource price, and the resource demands
and pricing strategies between IoT devices and UAVs were continuously adjusted by the
Stackelberg game. Hu et al. [25] considered the aging of cache refreshing, computation
offloading, and state updates in UAV-assisted vehicle task awareness, and formulated a
task-assignment energy-minimization problem that was solved by a deep deterministic
policy gradient (DDPG) method. Zhou et al. [26] studied UAV-assisted mobile crowd
sensing (MCS) scenarios and proposed a UAV-assisted multitasking assignment (UMA)
method, while demonstrating the effectiveness of UMA. In addition, compared the UAV-
assisted task assignment with the UAV task assignment, the difference is that UAVs play a
secondary role in the former while serving as the primary reconnaissance and attack objects
in the latter. Furthermore, the simulation scenarios in the paper are not consistent with the
existing works (e.g., references [22–26]).

In the complex stochastic network, the cross-entropy (CE) method [27], a relatively
new technique for dealing with combinatorial optimization problems, was initially utilized
to estimate rare event probabilities. Then, references [28,29] discussed and analysed its
convergence. Additionally, the cross-entropy (CE) method was proved by the authors
in [30] to be particularly meaningful for handling combinatorial optimization problems.
Since then, it has also been proven by many scholars to be a simple and effective tool for
different fields, e.g., vehicle routing [31], buffer allocation [31], and machine learning [32].
In addition, researchers have also considered applying the cross-entropy (CE) method to
the UAV task assignment [33–35]. However, the authors of these papers did not consider
the specific precedence and timing constraints among these tasks.

When it comes to task-assignment schemes in the field of UAVs, some researchers
usually assume that each UAV is assigned to only one target, and they rarely consider the
execution sequence and the time constraints among tasks. On the other hand, multi-UAVs
are sometimes needed to perform some complex combinatorial tasks, such as classifying
the target, attacking it, and then verifying the target’s damage level in a reasonable time
on the battlefield. In addition, such deterministic approaches may not be able to find the
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optimal solution in a reasonable time for large-scale task assignment problems. Under these
circumstances, we present an adjustable fully adaptive cross-entropy (AFACE) algorithm
based on CE method.

Therefore, the purpose of this paper is to study the AFACE algorithm for the multi-
UAV cooperative task assignment problem under resource, precedence, and timing con-
straints. The main contributions are summed up as follows.

• We consider the multi-UAV cooperative task assignment problem in which different
types of UAVs are assigned to perform classification, attack and verification tasks of
targets under resource, and precedence and timing constraints. Considering complex
coupling among these tasks, we decompose the considered problem into two subprob-
lems: one with continuous and independent tasks and another with continuous and
correlative tasks.

• We propose an AFACE algorithm, which changes the random sample and the quantile
at each iteration and adds a parameter to adjust the maximum sample based on the
CE method. Meanwhile, the algorithm serves as a stepping stone for developing other
algorithms.

• To overcome task precedence and task coupling existing in these two problems, re-
spectively, we present a mutually independent AFACE (MIAFACE) algorithm and a
mutually correlative AFACE (MCAFACE) algorithm with polynomial time complexity.
The former algorithm converges faster than the CE method, while the computational
complexity of the latter algorithm is inferior to that of the former algorithm.

• Simulation results demonstrate that both MIAFACE and MCAFACE algorithms con-
sume less time than other existing optimization algorithms for solving the correspond-
ing problem.

The rest of this paper is organized as follows. In Section 2, we introduce the related works
of the CE method and other algorithms for the UAV task assignment. Section 3 depicts the multi-
UAV cooperative task assignment problem with its mathematical formulation. In Section 4, we
decompose the considered problem into two subproblems, and propose an AFACE algorithm,
a MIAFACE algorithm, and a MCAFACE algorithm, and apply the latter two algorithms to
solving the corresponding problem. Section 5 conducts several simulations and comparisons to
verify the feasibility and effectiveness of the proposed algorithms. This paper is concluded in
Section 6.

2. Related Work

This section reviews the related works on CE method and other algorithms used for
UAV task assignment.

2.1. CE Method Used for UAV Task Assignment

Due to CE’s merits, the authors of [33] first proposed using the CE method for tackling
the multi-UAV task assignment problem to tackle the large traveling salesman problem
(TSP), the vehicle routing problem (VRP), and Markov decision process (MDP). In particular,
compared to other algorithms, CE could solve optimization problems efficiently because of
its ability to deal with these problems with nonlinear objective functions. Three separate
multi-UAV task assignment problems were then formulated, including a nonlinear objective
function with distance penalty, a nonlinear objective function with no distance penalty,
and nonlinear constraints. In these problems, the authors considered the distance penalty
and required that each task must be assigned to at least one vehicle. Then, the task scores
were considered as nonlinear functions, and the CE method was used to determine the
optimal schemes for the functions of these problems. Finally, simulation results verified
that the performance of the CE method was superior to other algorithms.

The authors in [34] considered the multi-UAV task assignment problem. Then,
the score function of this problem was determined with the constraint that each UAV
was used for only one task. Subsequently, the CE method was used to find the optimal
scheme of this problem. Finally, simulation results showed that the CE method outper-
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formed the Branch and Bound algorithm in solving the above problem, especially on a
large scale.

Referring to [33,34], the authors in [35] described the multitype UAV task assignment
problem. In this problem, different types of UAVs, or the same type of UAV as well as
resource constraints, were considered. The authors then formulated the problem and
provided a score function under resource constraints. Then, the CE method was used to
determine the optimal scheme of this problem by assigning multitype UAVs to complete
tasks. Finally, numerical simulations of the CE method for task assignment, as well as
comparisons with the exhaust search method, were conducted to verify its merits in solving
the considered problem.

In [36], the authors first analyzed the CE method, then redefined its construct and
applied it to UAV swarms. Subsequently, due to the robustness of this method, it could be
used as an effective measure to control UAV swarms in the face of obstacles and unforeseen
problems. Finally, it was validated to support UAV swarms in achieving mission objectives.

The authors of [37] considered the multi-UAV task assignment problem under resource
constraint and precedence constraint. The fully adaptive cross-entropy (FACE) algorithm
based on the CE method was then applied to solve the considered problem. Then, simu-
lation results verified that the FACE algorithm was better than the CE method and PSO
algorithm in terms of convergence speed.

2.2. Other Algorithms Used for UAV Task Assignment

The authors in [8] improved the PSO algorithm with an inertia weight factor and
applied it to handle the multi-UAV task assignment problem, then conducted several
simulations and comparisons. Then, it was verified that the improved algorithm has a
faster convergence speed and global optimization capability compared with the standard
PSO algorithm.

In [38], the authors presented a novel hierarchical task assignment method to solve
the multi-UAV task assignment problem, and the method was decomposed into two
phases, including the hierarchical decomposition phase and the task assignment phase.
The former phase reduced the computational complexity by using the balance cluster
method to simplify the large-scale UAV model; the latter phase maintained the diversity of
the population by an improved firefly algorithm. Then, simulations showed that compared
with other algorithms, the proposed hierarchical method becomes more efficient in terms
of search ability and convergence speed.

The authors in [39] defined the task assignment problem for cooperative multi-UAV
road network reconnaissance and formulated a multi-UAV road network reconnaissance
traveling salesman problem (MRRTSP) model. Furthermore, a customized genetic algo-
rithm for road network reconnaissance (CGA-RNR) was proposed and used to solve the
considered problem. Then, simulations showed that the algorithm can quickly obtain
feasible solutions and converge to the optimal solution.

3. Problem Description and Formulation

The main parameters of this paper is shown in Table 1.

Problem Description

On the battlefield, multi-UAVs are deployed to perform different tasks, for example,
to classify targets before attacking them, and then to verify them to check whether these
tasks have been accomplished. The problem considered in this paper is the selection of a
mix of the same type of UAV or different types of UAVs from their bases to perform the
classification, attack and verification tasks of targets. As shown in Figure 1, there are Nb
types of UAVs with the same speed, and the related components of this problem can be
defined as a 5-tuple {A,B,G,K, T }. In the 5-tuple, A := {1, 2, . . . , Nm} denotes the set of
task index of targets, B := {1, 2, . . . , Nb} represents the set of Nb bases, G := {1, 2, . . . , Nt}
denotes the set of Nt targets with known positions, K := {K1, K2, . . . , KNm} represents the
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set of Nm tasks of targets, and T := {T1, T2, . . . , TNm} denotes the set of the execution time
of Nm tasks of targets. Note that the time required to allocate tasks is ignored.

Table 1. Simulation parameter settings.

Variables Explanation

Nb The number of bases
Nt The number of targets
j The target index
K The set of tasks of targets

Nm The number of tasks of targets
m The task index of targets
X The set of all possible UAV deployment schemes
L The number of X for each task
z The maximum number of UAVs in each scheme of X
Z The set of all possible UAV deployment scheme indexes
k A UAV deployment scheme index or a UAV formation index

x(m) A feasible UAV deployment scheme vector of task m
xj(m) A feasible UAV deployment scheme or a UAV formation of task m of target j

g(xj(m); k) A 0–1 decision variable
Y The set of all feasible x(m)

Ω(x(m)) The performance of task m
Ω The performance vector of Ω(x(m))
ρ The total objective function

ψ(xj(2)) The reward benefit of the attack task of target j
ϕ(xj(m)) The cost of assigning UAV formation xj(m) to accomplish task m of target j

pj
k The probability of killing target j

pj
s The UAV survival probability of accomplishing tasks of target j

w1, w2 and w3 Weight coefficients
Pc and V The target identification certainty and the constant velocity of each UAV
yj and sj The value and the threat level of target j

dj(m) The farthest distance from the base corresponding to UAV formation xj(m) to target j
Dmax The maximum flying distance

Tm The execution time of task m

Task Assignment

Task 1 Task 2 Task Nm

Target 1

Task 1 Task 2 m

Target 2

Task 1 Task 2 Nm

Target N

Figure 1. Task assignment diagram.
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Moreover, let x(m) = [x1(m), x2(m), . . . , xNt(m)]T denote a feasible UAV deployment
scheme vector, and define Y as the set of all feasible x(m). Let Z := {1, 2, . . . , L} be the set
of all possible UAV deployment scheme indices. Thus, x(m) satisfies

g(xj(m); k) =

{
1, i f φ(xj(m)) = k, j ∈ G, m ∈ A, k ∈ Z
0, i f φ(xj(m)) 6= k, xj(m) ∈ X

, (1)

where j denotes the target index, m designates the task index, xj(m) is a feasible UAV
deployment scheme or a UAV formation of task m of target j, k represents a UAV deploy-
ment scheme index or a UAV formation index, φ(xj(m)) is an index function that serves to
output the subscript corresponding to xj(m) in X , and g(xj(m); k) is a 0–1 decision variable,
i.e., the kth UAV formation is assigned to accomplish task m of target j.

Then, the total objective function ρ based on x(m) is defined as

ρ =
Nm

∑
m=1

Ω(x(m))

=
Nt

∑
j=1

ψ(xj(2))−
Nm

∑
m=1

Nt

∑
j=1

ϕ(xj(m)),

(2)

where Ω(x(m)) is the subobjective function of task m, ψ(xj(2)) and ϕ(xj(m)) denote the
reward benefit of the attack task and the cost of assigning xj(m) to accomplish tasks of
target j, respectively, which are

ψ(xj(2)) = w1 × Pc × pj
k × yj (3)

ϕ(xj(m)) = w2 × pj
s × sj + w3 × (V × Tm + dj(m)), (4)

where Pc is the target identification certainty, yj represents the value of target j, sj denotes
the threat level of target j, V is the constant velocity of each UAV, Tm represents the execution
time of task m, dj(m) denotes the farthest distance from the bases corresponding to UAV
formation xj(m) to target j, w1, w2 and w3 represent weight coefficients, indicating the

information about the relative importance of each subobjective, pj
k denotes the probability

of killing target j, and pj
s is the UAV survival probability of accomplishing task m of target j.

In addition, pj
k and pj

s are defined as

pj
k = ∏

a∈xj(2)
paj (5)

pj
s = 1− ∏

b∈xj(m)

pbj, (6)

where a stands for a UAV in UAV formation xj(2); paj is the probability of killing target
j with UAV a, b represents a UAV in UAV formation xj(m), and pbj is the UAV survival
probability of accomplishing task m of target j with UAV b.

According to Equations (2)–(6), ρ is rewritten as

ρ =
Nt

∑
j=1

w1 × Pc × pj
k × yj −

Nm

∑
m=1

Nt

∑
j=1

[w2 × pj
s × sj

+ w3 × (V × Tm + dj(m))]. (7)
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Then, our objective is to maximize ρ, and the considered problem can be formulated as

P : max
x(m)∈Y

ρ =
Nm

∑
m=1

Ω(x(m)) (8)

s.t. w1 + w2 + w3 = 1, 0 ≤ w1, w2, w3 ≤ 1 (9)

dj(m) + V × Tm ≤ Dmax ∀j, m (10)

K j
1 ≺ K j

2 ≺ K j
3 ∀j. (11)

Constraint (9) represents the range of w1, w2, and w3. Constraint (10) is that, for target
j, the sum of dj(m) and the farthest flying distance performed by the UAV formation xj(m)

does not exceed the maximum flying distance Dmax. Constraint (11) means that K j
1, K j

2, and

K j
3 are the classification, attack, and verification tasks of the target j, which are executed in

a specific order, and ≺ denotes the preceding symbol.
According to Equation (11), the specific precedence and timing constraints are equal to

tj
s1 ≥ s1, e1 ≥ tj

s1 + T1

tj
s2 ≥ s2, e2 ≥ tj

s2 + T2

tj
s3 ≥ s3, e3 ≥ tj

s3 + T3

, (12)

where [s1, e1], [s2, e2], and [s3, e3] represent the classification, attack, and verification time
windows and tj

s1, tj
s2 and tj

s3 denote the start time of classification, attack, and verification
tasks of the target j, respectively.

Moreover, we set a certain value γ, which ensures that the optimal scheme vector
x∗(m) conforms to Ω(x∗(m)) ≥ γ. After that, the maximum ρ∗ is written as

ρ∗ =
Nm

∑
m=1

Ω(x∗(m)) ≥ Nmγ. (13)

Therefore, to obtain x∗(m), we present an AFACE algorithm.

4. Algorithm Analysis

In this section, an AFACE algorithm will be introduced for the considered problem,
and the differences between the algorithm and cross-entropy (CE) method are that the
former changes the random sample Nt

d and the quantile θt at each iteration t, and adds a
parameter to adjust the maximum sample Nmax. For details, please refer to the analysis of
the algorithm below.

4.1. Adjustable Fully Adaptive Cross-Entropy Algorithm

Referring to the principle of CE method in references [30,35] and maximizing the
subobjective function Ω(x(m)) of the considered problem, we have

γ∗ = Ω(x∗(m)) = max
x(m)∈Y

Ω(x(m)), (14)

where γ∗ is the maximum of Ω(x(m)) on Y ; that is, the optimal scheme vector is x∗(m).
After that, transform this problem into a probability estimator problem, which can

be explained by the probability density function (PDF) f (·; u) with respect to u, and the
problem can be written as

`(γ) = Pu(Ω(x(m)) ≥ γ)

= ∑
x(m)

I{Ω(x(m))≥γ} f (x(m); u)

= Eu I{Ω(x(m))≥γ},

(15)
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where γ denotes a value close to γ∗, Pu represents the probability measure under which
the random vector x(m) has the PDF f (·; u), Eu is the corresponding expectation operator,
and I(x(m); γ), i.e., I{Ω(x(m))≥γ}, denotes the indicator function, which is

I(·; γ) =

{
1, i f Ω(x(m)) ≥ γ

0, i f Ω(x(m)) < γ
. (16)

Then, at the tth iteration of AFACE algorithm, we obtain

Ωt,1 ≤ · · ·Ωt,i ≤ · · · ≤ Ωt,Nt
d
, (17)

where Ωt,i (i = 1, 2, . . . , Nt
d) denotes the ith sample performance, and Ω(xi(m))) and Ωt,Nt

d

are defined by Ωt,i and Ω∗t for convenience. Meanwhile, AFACE algorithm parameters Nt
d

and θt satisfy {
Nmin ≤ Nt

d ≤ Nmax

θt = βm/Nt
d

, (18)

where Nt
d denotes the random sample of the tth iteration, varying between Nmin and

Nmax (Nmin = N, Nmax = hN, h ∈ {2, 3, 4, 5}) and θt represents the quantile of the tth
iteration. The reason for presenting h is that by adjusting the size of Nmax, we can obtain the
optimal Nmax that matches the combat scenario, which can be conducted by the following
simulations in Section 5.

For the AFACE algorithm, the main idea is to update Nt
d and θt based on the elite

sample βm (βm = cmN), where cm and N are the elite sample influence coefficient of task m
(usually 0.01 ≤ cm ≤ 0.1) and the fixed random sample, respectively. Therefore, the set of
elite samples εt (εt ∈ Y) are comprised of such βm samples in {x1(m), x2(m), . . . , xNt

d
(m)}

with the highest performances Ωt,1, Ωt,2, . . . , Ωt,Nt
d
.

Next, referring to the formulas for solving γ̂t and v̂t of CE method [30], they are
modified as

γ̂t = Ω(d(1−θt)Nt
de)

(19)

v̂t = arg max
v

∑
xi(m)∈εt

ln f (xi(m); v), (20)

where xi(m) is generated from f (·; u), f (·; v) denotes another PDF with respect to v on Y
via minimizing the Kullback–Leibler distance, γ̂t is equal to the worst sample performance
among the elite performances, while Ω∗t is the best sample performance among the elite
performances, and v̂t converges to the probability density when Ω∗t occurs.

Then, we devise a sampling scheme for each iteration t, ensuring high probability that{
Ω∗t > Ω∗t−1

γ̂t > γ̂t−1
. (21)

Moreover, we simultaneously generate two sequences to validate the correctness
of AFACE algorithm. One is the levels γ̂1, γ̂2, . . . , γ̂t, and the other is the parameters
v̂1, v̂2, . . . , v̂t. After that, the initialization process is set to v̂0 = u, and the quantile (1− θt)
is calculated at the tth iteration according to Equation (18), followed by the next two steps
of Algorithm 1.

In addition, the main steps of AFACE algorithm applied to solving the subobjective
function Ω(x(m)) of the considered problem are given by Algorithm 2.
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Algorithm 1 Adaptive updating of γ̂t and v̂t.

Adaptive updating of γ̂t:
1: Given a fixed v̂t−1 at the tth iteration;
2: Let γt be a (1− θt)-quantile of Ω(x(m)) under v̂t−1, then γt satisfies Pv̂t−1

(Ω(x(m)) ≤ γt) ≥
1− θt, where x(m) ∼ f (·; v̂t−1);

3: Obtain a simple estimator γ̂t of γt by drawing Nt
d random samples x1(m), x2(m), . . . , xNt

d
(m)

from f (·; v̂t−1);
4: Calculate and order all performances of Ω(x(m)) from smallest to biggest: Ωt,1 ≤ · · · ≤ Ωt,Nt

d
;

5: Compute γ̂t according to Equation (19);
Adaptive updating of v̂t:
6: Given a fixed γ̂t and v̂t−1 at the tth iteration, then derive v̂t according to Equation (20).

Algorithm 2 AFACE algorithm.
Input: v̂0, h, N.
Output: Ω∗t .
1: Set t = 1, Nmin = N and Nmax = hN;
2: while at the tth iteration (t ≥ 1) do
3: if t = 1 then
4: Generate Nt

d (Nt
d = Nmin) random samples x1(m), x2(m), . . . , xNt

d
(m) from f (·; v̂0);

5: Calculate γ̂t and v̂t according to Equations (19) and (20);
6: else
7: Draw Nt

d (Nmin ≤ Nt
d ≤ Nmax) random samples x1(m), x2(m), . . . , xNt

d
(m) from f (·; v̂t−1);

8: end if
9: Update γ̂t and v̂t according to Algorithm 1, then calculate Ω∗t ;

10: if Equation (21) occurs then
11: Set t = t + 1 and go to step 2;
12: else
13: Check whether or not Ω∗t = · · · = Ω∗t−d for some t ≥ d, e.g., d = 5;
14: if Ω∗t = · · · = Ω∗t−d then
15: Stop, obtain Ω∗t and return Ω∗t ;
16: else
17: Set t = t + 1, take random integer Nt

d in [Nmin, Nmax] and go to step 2;
18: end if
19: end if
20: end while

4.2. Adjustable Fully Adaptive Cross-Entropy Algorithm for Solving Problem

Considering complex coupling among the three tasks, we decompose the considered
problem P into two subproblems: the problem P1 with continuous and independent tasks
and the problem P2 with continuous and correlative tasks.

Before discussing the algorithm for solving problem P , we have to determine the
number of the available schemes for each task. Please refer to Theorem 1 for the specific
derivation process.

Theorem 1. Assume that z ≥ 1 and Nb = 3, the number of the available schemes for each task
of targets is L. Then, according to the mathematical formulas of permutation and combination,
we can obtain

L = 3z +
z(z− 1)(z + 7)

6
, z ≥ 1. (22)

Proof. Please see Appendix A.

4.2.1. Mutually Independent AFACE Algorithm for Solving Problem P1

In problem P1, assume that there are Nm continuous and mutually independent tasks
for each target. Time continuity among these tasks then needs to be considered. Assume
that there are L available schemes for each task, i.e., the scheme chosen by the previous
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task has no effect on the choice of the scheme for the next task, indicating that the available
schemes among these tasks are independent. Thus, the problem P1 is rewritten as

P1 : max
x(m)∈Y

ρ =
Nm

∑
m=1

Ω(x(m))

s.t. (9)− (12)

l1
m = L ∀m

, (23)

where l1
m is the available schemes when performing the mth task.

Considering time sequence and independence of the available schemes among these tasks,
we present a MIAFACE algorithm, which is a combination of Nm AFACE algorithms. For MI-
AFACE algorithm, we first introduce the probability matrix vector P = [P(1), P(2), . . . , P(Nm)]T

and the performance vector Ω = [Ω(x(1)), Ω(x(2)), . . . , Ω(x(Nm))]T, where P(m) and
Ω(x(m)) are the probability matrix and the performance of task m, respectively. Then,
P(m) is defined as

P(m) =


p(1|1, m) p(2|1, m) · · · p(l1

m|1, m)
p(1|2, m) p(2|2, m) · · · p(l1

m|2, m)
...

...
. . .

...
p(1|Nt, m) p(2|Nt, m) · · · p(l1

m|Nt, m)


Nt×l1

m

,

where p(k|j, m) represents the probability of assigning the kth UAV formation to accomplish

task m of target j and P(m) is subjected to
l1
m
∑

k=1
p(k|j, m) = 1.

Then, for the mth task, we initialize P0(m) = (p0(k|j, m))Nt×l1
m

with a uniform distribu-
tion. Let n1

jm be the number of the feasible schemes of target j, and define p0(k|j, m) := 1
n1

jm

as the element of P0(m). After that, we set v̂0 = P0(m).
At the tth iteration, we assume that the samples x1(m), x2(m), . . . , xNt

d1
(m) are drawn

from f (x(m); v̂t−1(m)). In addition, we calculate the performances Ωt,i (i = 1, 2, . . . , Nt
d1),

and order them from smallest to largest: Ωt,1 ≤ Ωt,2 ≤ · · · ≤ Ωt,Nt
d1

. It is noted that β1
m

is calculated by β1
m = c1

mN, and γ̂t is updated by Equation (20). After that, we compare
Ωt,i with γ̂t, and obtain all eligible performances greater than γ̂t and merge them into a
set S1 := {Ω(t,d(1−θt)Nt

d1e)
, Ω(t,d(1−θt)Nt

d1e+1), . . . , Ωt,Nt
d1
}, where β1

m is the number of the
element of S1, and Ω∗t is the maximum element of S1. Then, pt(k|j, m) is calculated, and the
specific derivation process can be seen in Theorem 2. Thus, Pt(m) is the probability matrix
composed of pt(k|j, m), and v̂t is equal to Pt(m).

Theorem 2. Assume that there are Nm continuous and mutually independent tasks for each target.
After that, Nm tasks correspond to Nm AFACE algorithms, which has an elite sample of β1

m = c1
mN.

In the MIAFACE algorithm, c1 is a combined vector of c1
m, e.g., c1 = [c1

1, c1
2, . . . , c1

Nm
]T . Thus,

when performing the mth task, we can then obtain the updating formula of P(m) as follows:p(k|j, m) =

c1
m N
∑

n=1
g(xn

j (m);k)

c1
m N

k ∈ {1, . . . , L}, n ∈ {1, . . . , c1
mN}, c1

m ∈ c1

. (24)

Proof. Please see Appendix B.

Through the iterative updating of P(m), the optimal probability matrix vector P∗ and
the maximum performance vector Ω∗ are obtained. Then, the main steps of the MIAFACE
algorithm applied to solving problem P1 are described in Algorithm 3, and the convergence
of the MIAFACE algorithm is similar to that of the CE method in [40].
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Algorithm 3 MIAFACE algorithm.

Input: Nm, l1
m, N, h.

Output: P∗, Ω∗.
1: Set Nmin = N and Nmax = hN;
2: for m = 1; m < Nm; m ++ do
3: Initialize P0(m) with a uniform distribution and define v̂0 = P0(m), then set t = 1;
4: while at the tth iteration (t ≥ 1) do
5: if t = 1 then
6: Generate Nt

d1 (Nt
d1 = Nmin) random samples x1(m), x2(m), . . . , xNt

d1
(m) from

f (·; v̂0);
7: else
8: Draw Nt

d1 (Nmin ≤ Nt
d1 ≤ Nmax) random samples x1(m), x2(m), . . . , xNt

d1
(m)

from f (·; v̂t−1);
9: end if

10: Update γ̂t according to Equation (19) and calculate Ω∗t ;
11: Calculate pt(k|j, m) by Equation (A14) in Appendix B;

12: if
l1
m
∑

k=1
pt(k|j, m) = 1 and pt(k|j, m) ∈ {0, 1} then

13: Stop, obtain P∗t (m) and Ω∗t , then P∗(m)← P∗t (m) and Ω(x∗(m))← Ω∗t ;
14: else
15: Calculate Pt(m) and update v̂t by v̂t = Pt(m);
16: Set t = t + 1, take random integer Nt

d1 in [Nmin, Nmax], then go to step 4;
17: end if
18: end while
19: end for
20: Return P∗ and Ω∗.

4.2.2. Mutually Correlative AFACE Algorithm for Solving Problem P2

In problem P2, assume that there are Nm continuous and mutually correlative tasks
for each target. Then, time continuity among these tasks also needs to be considered.
Assume that when performing the mth task, there are only L−m + 1 available schemes
since m− 1 schemes have been deleted before performing the mth task. It means that the
available schemes among these tasks are correlative. Thus, the problem P2 is rewritten as

P2 : max
x(m)∈Y

ρ =
Nm

∑
m=1

Ω(x(m))

s.t. (9)− (12)

l2
m = L−m + 1 ∀m

, (25)

where l2
m is the remaining schemes when performing the mth task.

Considering time sequence and relevance of the available schemes among these
tasks, we present a MCAFACE algorithm, which is also combined by Nm AFACE algo-
rithms. For the MCAFACE algorithm, we first introduce the probability matrix vector
Q = [Q(1), Q(2), . . . , Q(Nm)]T and the performance vector Ω = [Ω(x(1)), Ω(x(2)), . . . ,
Ω(x(Nm))]T , where Q(m) and Ω(x(m)) are the probability matrix and the performance of
task m, respectively. Then, Q(m) is defined as

Q(m) =


q(1|1, m) q(2|1, m) · · · q(l2

m|1, m)
q(1|2, m) q(2|2, m) · · · q(l2

m|2, m)
...

...
. . .

...
q(1|Nt, m) q(2|Nt, m) · · · q(l2

m|Nt, m)


Nt×l2

m

,
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where q(k|j, m) represents the probability of assigning the kth UAV formation to accomplish

task m of target j and Q(m) is subjected to
l2
m
∑

k=1
q(k|j, m) = 1.

Then, for the mth task, we initialize Q0(m) = (q0(k|j, m))Nt×l2
m

with a uniform distri-
bution. Let n2

jm be the number of the feasible schemes of target j and define q0(k|j, m) := 1
n2

jm

as the element of Q0(m). After that, we set v̂0 = Q0(m).
At the tth iteration, we assume that the samples x1(m), x2(m), . . . , xNt

d2
(m) are drawn

from f (x(m); v̂t−1(m)). In addition, we calculate the performances Ωt,i (i = 1, 2, . . . , Nt
d2),

and order them from smallest to largest: Ωt,1 ≤ Ωt,2 ≤ · · · ≤ Ωt,Nt
d2

. It is noted that β2
m

is calculated by β2
m = c2

mN, and γ̂t is updated by (20). After that, we compare Ωt,i with
γ̂t, and obtain all eligible performances greater than γ̂t and merge them into a set S2 :=
{Ω(t,d(1−θt)Nt

d2e)
, Ω(t,d(1−θt)Nt

d2e+1), . . . , Ωt,Nt
d2
}, where β2

m is the number of the element of
S2 and Ω∗t is the maximum element of S2. Then, qt(k|j, m) is calculated and the specific
derivation process can be found in Theorem 3. Thus, Qt(m) is the probability matrix
composed of qt(k|j, m), and v̂t is equivalent to Qt(m).

Theorem 3. Assume that there are Nm continuous and mutually correlative tasks for each target.
After that, the selected scheme is required to be deleted after each task is accomplished. The other
settings are the same as Theorem 2. Thus, when performing the mth task, we can obtain the updating
formula of Q(m), as follows:q(k|j, m) =

c2
m N
∑

n=1
g(xn

j (m);k)

c2
m N

k ∈ {1, . . . , L−m + 1}, n ∈ {1, . . . , c2
mN}, c2

m ∈ c2

. (26)

Proof. Please see Appendix C.

Through the iterative updating of Q(m), the optimal probability matrix vector Q∗ and
the maximum performance vector Ω∗ are obtained. Then, the main steps of the MCAFACE
algorithm for dealing with problem P2 are explained in Algorithm 4, and the convergence
of the MCAFACE algorithm is also close to that of CE method in [40].



Drones 2023, 7, 204 13 of 26

Algorithm 4 MCAFACE algorithm.

Input: Nm, l2
m, N, h.

Output: Q∗, Ω∗.
1: Set Nmin = N and Nmax = hN;
2: for m = 1; m < Nm; m ++ do
3: Initialize Q0(m) with a uniform distribution and define v̂0 = Q0(m), then set t = 1;
4: while at the t-th iteration (t ≥ 1) do
5: if t = 1 then
6: Generate Nt

d2 (Nt
d2 = Nmin) random samples x1(m), x2(m), . . . , xNt

d2
(m) from

f (·; v̂0);
7: else
8: Draw Nt

d2 (Nmin ≤ Nt
d2 ≤ Nmax) random samples x1(m), x2(m), . . . , xNt

d2
(m)

from f (·; v̂t−1);
9: end if

10: Update γ̂t according to Equation (19) and calculate Ω∗t ;
11: Calculate qt(k|j, m) by Equation (A15) in Appendix C;

12: if
l2
m
∑

k=1
qt(k|j, m) = 1 and qt(k|j, m) ∈ {0, 1} then

13: Stop, obtain Q∗t (m) and Ω∗t , then Q∗(m)← Q∗t (m) and Ω(x∗(m))← Ω∗t ;
14: else
15: Calculate Qt(m) and update v̂t by v̂t = Qt(m);
16: Set t = t + 1, take random integer Nt

d2 in [Nmin, Nmax], then go to step 4;
17: end if
18: end while
19: end for
20: Return Q∗ and Ω∗.

4.3. Complexity Analysis of the MIAFACE Algorithm and the MCAFACE Algorithm

Let Nm represent the number of tasks, nd denote the random sample to perform each
task, nf represent the iteration number of AFACE algorithm to perform each task, Ne denote
the elite sample, Nt represent the number of targets, and L denote the number of all possible
UAV deployment schemes. The computational complexity of AFACE algorithm is divided
into four parts: initialization C1, sample C2, sort C3, and update C4. Meanwhile, these parts
can be defined as

C1 = Nt × L (27)

C2 = nf × nd (28)

C3 = nf × nd log nd (29)

C4 = nf × (nd − Ne). (30)

Specifically, the computational complexity of AFACE algorithm can be written as

Cf = C1 + C2 + C3 + C4

= Nt × L + nf × (nd + nd log nd + nd − Ne)
. (31)

Obviously, nf increases with the increment of (Nt × L), i.e., nf ∝ (Nt × L). Then,
Equation (31) is rewritten as

Cf = Nt × L× (1 + nd + nd log nd + nd − Ne)

= Nt × L× (nd log nd + 2nd − Ne + 1)
, (32)

where nd log nd is greater than the other terms in the bracket on the right side of the
equation. Thus, the time complexity of AFACE algorithm can be computed as O(Nt × L×
nd log nd).
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When the proposed algorithms are applied to accomplishing Nm tasks of targets in
problems P1 and P2, respectively, according to Algorithm 3 and Equation (32), the compu-
tational complexity of MIAFACE algorithm is

Cmi = Nm × Cf. (33)

Thus, its time complexity is written as O(Nm × Nt × L× nd log nd). However, based
on Algorithm 4 and Equation (32), the computational complexity of the MCAFACE algo-
rithm is

Cmc =Nt × (L + L− 1 + · · ·+ L− Nm + 1)× (nd log nd + 2nd − Ne + 1)

=Nt × (Nm × L− (1 + 2 + · · ·+ Nm − 1))× (nd log nd + 2nd − Ne + 1)

=Nt × Nm × (L− (Nm − 1)
2

)× (nd log nd + 2nd − Ne + 1). (34)

Since Nm ≥ 3, its time complexity is approximately equal to O(Nm × Nt × (L− 1)×
nd log nd).

5. Simulation and Analysis

In order to verify the effectiveness of the proposed algorithms, we compared these
proposed algorithms with the CE method and other intelligent algorithms by applying
them to the multi-UAV cooperative task assignment problem. The simulations were imple-
mented in Pycharm Community’s 2019.1.1 x64 version of the programming environment
on an Intel Core PC with 8 GB memory. The total cumulative reward that the UAV forma-
tions earn by successfully completing three tasks from all targets are used to measure the
system performance.

On the basis of the above algorithms, various simulations were performed by assigning
three types of UAVs located in the corresponding bases to accomplish three tasks of
20 targets in a 200 m × 200 m combat scenario. The position of each base and these
targets are shown in Figure 2. Bases B1, B2, and B3 are located in (0,0), (0,200), and
(200,0), respectively. The information of three types of UAVs and 20 target are given
in Tables 2 and 3, respectively, where a and b represent two types of resources, for example,
the number of resources a and b needed for different types of UAVs or to accomplish
different tasks, and also they have no units.

Table 2. Information of three types of UAVs.

UAV Base
Uresource (Units)

pk ps
a b

Type A B1 1 2 0.9 0.7
Type B B2 2 2 0.8 0.8
Type C B3 3 3 0.7 0.9
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Figure 2. Initial bases and targets state.

Table 3. Information of 20 targets.

Target Position
Tresource

y s
K1 ([a,b]) K2 ([a,b]) K3 ([a,b])

Target 1 (23,85) [2,3] [2,3] [2,3] 30 2
Target 2 (35,90) [3,3] [3,3] [3,3] 70 6
Target 3 (48,95) [2,3] [2,3] [2,3] 50 4
Target 4 (92,35) [3,2] [3,2] [3,2] 100 10
Target 5 (95,28) [2,2] [2,2] [2,2] 120 8
Target 6 (100,32) [3,2] [3,2] [3,2] 40 5
Target 7 (45,105) [3,3] [3,3] [3,3] 65 3
Target 8 (90,30) [2,2] [2,2] [2,2] 78 7
Target 9 (88,40) [2,2] [2,2] [2,2] 35 9
Target 10 (50,100) [3,2] [3,2] [3,2] 63 5
Target 11 (160,170) [2,3] [5,3] [4,3] 30 2
Target 12 (165,178) [3,3] [5,3] [5,3] 70 6
Target 13 (132,155) [3,3] [5,3] [6,3] 50 4
Target 14 (90,150) [3,3] [3,5] [4,4] 100 10
Target 15 (162,175) [2,2] [4,5] [4,4] 120 8
Target 16 (140,155) [2,3] [6,3] [5,3] 40 5
Target 17 (82,134) [3,3] [4,3] [4,3] 65 3
Target 18 (148,152) [2,3] [4,2] [5,2] 78 7
Target 19 (145,160) [3,2] [3,4] [4,3] 35 9
Target 20 (95,160) [2,2] [3,4] [4,4] 63 5

Referring to Theorem 1, we note that when z exceeds 3, these simulations are com-
plicated. Thus, z is set to be 3, i.e., no more than 3 UAVs are needed to accomplish three
tasks of targets in a specific order, and then the total number of each type of UAV is un-
restricted. Then, each target in the following cases has 19 possible schemes, i.e., A, B,
C, AA, AB, AC, BB, BC, CC, AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, CCC, and
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ABC, respectively, and these schemes correspond to numbers from 1 to 19. After that, we
can use a matching approach to quickly find the feasible schemes. The resources needed
to accomplish three tasks of targets are randomly generated and satisfy the maximum
cooperative number of UAVs.

In the following simulations, the notations used in the tables and the figures are
displayed as

• Uresource represents the initial resources consumed by three types of UAVs;
• Tresource represents the resources consumed by three tasks; and
• Time is CPU time in seconds for each case, and the time of each case is the average

consumption time of running 100 times of each algorithm.

The parameters of the CE method, MIAFACE algorithm, MCAFACE algorithm, PSO
algorithm, ACO algorithm, and GA algorithm are assumed to be set in Table 4, where the
settings of the speed and maximum flying distance of the UAV are referred to [35] and they
have no effect on the simulation results. For more detailed theory and parameter settings
of CE, PSO, ACO, and GA (see [8–10,30,35,41]). For the targets in Table 3, there are two
scenarios in the multi-UAV cooperative task assignment problem.

(1) In scenario 1, we consider the first 10 targets or more similar targets. When per-
forming the three tasks of each target, we obtain the identical optimal scheme vector
of each task. Therefore, the situation in which each target has different tasks but
each task has the same optimal scheme is called the problem with continuous and
independent tasks.

(2) In scenario 2, the last 10 targets or more similar targets are considered. When perform-
ing the three tasks of each target, we obtain the different optimal scheme vector of
each task. Thus, the situation in which each target has different tasks and each task
does not have the same optimal scheme is called the problem with continuous and
correlative tasks.

Table 4. Simulation parameter settings.

Parameter Value

The target identification Pc = 1
Weight coefficients w1 = 0.8, w2 = 0.18, w3 = 0.02
The UAV’s speed V = 40 m/s

The maximum flying distance Dmax = 1000 m
Time window of task K1 (s) [e1, s1] = [3, 10]
Time window of task K2 (s) [e2, s2] = [8, 20]
Time window of task K3 (s) [e3, s3] = [18, 26]

Consumption time of task K1 T1 = 5 s
Consumption time of task K2 T2 = 10 s
Consumption time of task K3 T3 = 5 s

The number of targets Nt ∈ [5, 20]
The fixed random samples N = 1000

The quantile in CE θ = 0.1
Inertial weight in PSO w = 0.75

Learning factors in PSO η1 = η2 = 0.5
The number of ants in ACO Na = 200

Pheromone evaporation coefficient in ACO ε = 0.9
Transfer probability in ACO Pa = 0.2

Mating probability in GA P1 = 0.8
Mutation probability in GA P2 = 0.01

5.1. Scenario 1

In case 1, we used the first 10 targets in Table 3 to perform continuous and independent
tasks of problem P1, and the results are shown in Table 5.

According to Table 5, we note that the optimal scheme vector and the total result
of CE and MIAFACE are identical, while that of MCAFACE is suboptimal to the other
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two algorithms. Moreover, we can obtain some observations. (i) For CE, the number of
iterations and the optimal scheme vector are both 4 and [3,3,3,2,2,2,3,2,2,3], respectively,
and the results of each task are −79.50, 274.90, and −79.50, and the sum of the results of
each task is 115.9. The situations of MIAFACE are similar to CE, except that the number
of iterations is 3. (ii) For MCAFACE, the numbers of iterations and the optimal scheme
vectors are 3, 2, 1 and [3,3,3,2,2,2,3,2,2,3], [9,9,9,7,7,7,9,7,7,9], [18,18,18,15,15,15,18,15,15,18],
respectively, and the results of each task are −79.50, 179.0, and −82.14, and the sum of the
results of each task is 17.36. (iii) The total times of using CE, MIAFACE and MCAFACE are
3.36, 3.29, and 2.17, respectively.

In case 2, we tested the MIAFACE algorithm and MCAFACE algorithm under h and
c1, and their times change with Nt in Figures 3a–c and 4a–c, respectively.

From Figures 3 and 4, the curves of MIAFACE and MCAFACE both show an increasing
trend as Nt grows, and their times increase with the increment of c1 and h. Meanwhile,
the time differences between the curves gradually increase with the growth of Nt in each
figure. In Figure 3a, the curve with h = 2 is at the lowest of the four curves, while the
curve with h = 5 is at the highest of the four curves. The remaining two curves are in the
middle, and the curve with h = 4 is at the top and the other one is at the bottom. Moreover,
the time ranges of the four curves are both approximately in [1,12]. In Figure 3b,c, their
situations are described similarly to Figure 3a, and their time ranges are in [1,14] and [1,15],
respectively. From Figure 4a, the order of the four curves is similar to Figure 3a. Moreover,
their time ranges are both roughly in [0.3,10]. In Figure 4b,c, their situations are analogous
to Figure 4a, and their time ranges are in [0.3,10] and [0.3,12], respectively.

In case 3, the CE method, PSO algorithm, ACO algorithm, and GA algorithm are
both used three times for three tasks continuously. We compared them with MIAFACE
algorithm by obtaining the same optimal score under h = 2 and c1, and their times change
with Nt in Figure 5a–c. Since MCAFACE algorithm obtains suboptimal results in scenario
1, it is not compared to other algorithms.

Table 5. Iterative results of three algorithms in case 1.

Algorithm CE MIAFACE MCAFACE

Task
K1 K1 K1
K2 K2 K2
K3 K3 K3

Iterations 4 3
3
2
1

Optimal scheme vector [3,3,3,2,2,2,3,2,2,3] [3,3,3,2,2,2,3,2,2,3]
[3,3,3,2,2,2,3,2,2,3]
[9,9,9,7,7,7,9,7,7,9]

[18,18,18,15,15,15,18,15,15,18]

Result of each task
−79.50 −79.50 −79.50
274.90 274.90 179.0
−79.50 −79.50 −82.14

Sum of each task’s result 115.9 115.9 17.36

Total time(s) 3.36 3.29 2.17
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Figure 3. Time changing with Nt under MIAFACE algorithm in scenario 1. (a) c1 = [0.01,0.02,0.03].
(b) c1 = [0.02,0.03,0.04]. (c) c1 = [0.03,0.04,0.05].
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Figure 4. Time changing with Nt under MCAFACE algorithm in scenario 1. (a) c1 = [0.01,0.02,0.03].
(b) c1 = [0.02,0.03,0.04]. (c) c1 = [0.03,0.04,0.05].
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Figure 5. Time changing with Nt under h = 2 and different algorithms in scenario 1.
(a) c1 = [0.01,0.02,0.03]. (b) c1 = [0.02,0.03,0.04]. (c) c1 = [0.03,0.04,0.05].

From Figure 5, we note that the curves of CE and MIAFACE grow linearly, while
the curves of PSO, ACO, and GA increase exponentially. In addition, their times increase
gradually with the increment of c1 and Nt. In Figure 5a, when Nt is in [5,20], the time
of MIAFACE is less than that of CE, and the time difference between the two algorithms
grows as Nt increases. Meanwhile, when Nt is below 8, the times of PSO, ACO, and GA are
lower than that of CE and MIAFACE, but when Nt is more than 8, the situation is reversed.
In addition, the time ranges of CE and MIAFACE are both approximately in [1,10], while
the times of other algorithms are over 20 when Nt is larger than 10. From Figure 5b,c,
their situations are similar to Figure 5a, except that the time difference between CE and
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MIAFACE in Figure 5b is lower than that in Figure 5a, and the time difference in Figure 5c
first decreases gradually to intersect at a point where Nt is 10, then increases slowly with
the increment of Nt.

5.2. Scenario 2

In case 4, we utilized the last 10 targets in Table 3 to perform continuous and correlative
tasks of problem P2, and the results are shown in Table 6.

According to Table 6, we note that the optimal scheme vectors and the total results of
CE, MIAFACE, and MCAFACE are the same. The reason for this phenomenon is that for
three tasks of the same 10 targets, the optimal scheme vectors are eventually obtained and
identical by using the three algorithms, which leads to the same score of the total objective
function; however, the consumption time by the different algorithms varies. Moreover,
some observations are available. First, for CE, the number of iterations and the sum of
each task’s result are 5 and 218.72, and the optimal solution vectors are [3,3,3,3,3,3,3,3,3,3],
[9,9,9,7,7,7,9,7,7,9], [18,18,18,15,15,15,18,15,15,18], and the results of each task are −298.65,
819.85, and −302.48, respectively. Secondly, the situations using MIAFACE and MCAFACE
are similar to that of CE, apart from the fact that the number of iterations in MIAFACE is 4
and the numbers of iterations in MCAFACE are 4, 4, and 3. Finally, the total times using
CE, MIAFACE, and MCAFACE are 7.33, 7.11, and 6.9, respectively.

In case 5, we tested the MIAFACE algorithm and MCAFACE algorithm under h and
c2, and their times change with Nt in Figures 6a–c and 7a–c, respectively.

From Figures 6 and 7, the variations of the curves, the times and the time differences
are both similar to Figures 3 and 4, while in Figures 6a and 7a, the time grows rapidly
when Nt is over 10. The reason is that the results of these two figures are suboptimal
to others. In Figure 6a, the order of the curves is the same as that of each figure in
Figures 3 and 4. In addition, the time ranges of these four curves are both approximately
in [1,50]. From Figure 6b,c, the situations are described similarly to that of Figure 6a and
their time ranges are in [2,30] and [2,32], except that their results are the optimal results.
In Figure 7, the situation of each figure is roughly similar to that of the corresponding figure
in Figure 6, apart from the fact that the time range is lower than that in Figure 6.

Table 6. Iterative results of three algorithms in case 4.

Algorithm CE MIAFACE MCAFACE

Task
K1 K1 K1
K2 K2 K2
K3 K3 K3

Iterations 5 4
4
4
3

Optimal scheme vector
[3,3,3,2,2,2,3,2,2,3] [3,3,3,2,2,2,3,2,2,3] [3,3,3,2,2,2,3,2,2,3]
[9,9,9,7,7,7,9,7,7,9] [9,9,9,7,7,7,9,7,7,9] [9,9,9,7,7,7,9,7,7,9]

[18,18,18,15,15,15,18,15,15,18] [18,18,18,15,15,15,18,15,15,18] [18,18,18,15,15,15,18,15,15,18]

Result of each task
−298.65 −298.65 −298.65
819.85 819.85 819.85
−302.48 −302.48 −302.48

Sum of each task’s result 218.72 218.72 218.72

Total time(s) 7.33 7.11 6.9

In case 6, we compared the CE method, MIAFACE algorithm, MCAFACE algorithm,
PSO algorithm, ACO algorithm, and GA algorithm by obtaining the same optimal score
under h = 2 and c2, and their times change with Nt in Figure 8a–c. The CE method,
PSO algorithm, ACO algorithm, and GA algorithm are also used three times for three
tasks continuously.
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From Figure 8, we note that for CE, MIAFACE, MCAFACE, PSO, ACO, and GA,
the variations of the curves and the times are similar to the case in Figure 5. In Figure 8a,
when Nt is below 11, the times of MIAFACE and MCAFACE are relatively close and less
than that of CE; however, when Nt is over 11, the times of MIAFACE and MCAFACE
grow quickly and more than that of CE due to obtaining the suboptimal results. Moreover,
the time ranges of CE, MIAFACE, and MCAFACE are both approximately in [1,30]. Mean-
while, the times of PSO, ACO, and GA are much higher than that of CE, MIAFACE, and
MCAFACE, and their time ranges are over 30 when Nt is more than 6. From Figure 8b,c,
the situations of PSO, ACO, and GA are similar to Figure 8a. In Figure 8b, the time differ-
ences between CE, MIAFACE, and MCAFACE grow as Nt increases. In addition, the time
of MCAFACE is lower than that of CE and MIAFACE, and the curves of CE and MIAFACE
intersect at Nt = 8 and the time of CE is also lower than that of MIAFACE when Nt is
below 8, then the situation is reversed after Nt exceeds 8. Moreover, the time ranges of CE,
MIAFACE, and MCAFACE are both in [2,22]. In Figure 8c, the time differences between
CE, MIAFACE, and MCAFACE decrease, and then increase as Nt grows. Furthermore,
the curves of CE, MIAFACE, and MCAFACE intersect at Nt = 9 and the time of CE is lower
than that of MIAFACE and MCAFACE when Nt is below 9, then the situation is reversed
after Nt exceeds 9.
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Figure 6. Time changing with Nt under MIAFACE algorithm in scenario 2. (a) c2 = [0.01,0.02,0.03].
(b) c2 = [0.02,0.03,0.04]. (c) c2 = [0.03,0.04,0.05].
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Figure 7. Time changing with Nt under MCAFACE algorithm in scenario 2. (a) c2 = [0.01,0.02,0.03].
(b) c2 = [0.02,0.03,0.04]. (c) c2 = [0.03,0.04,0.05].
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Figure 8. Time changing with Nt under h = 2 and different algorithms in scenario 2.
(a) c2 = [0.01,0.02,0.03]. (b) c2 = [0.02,0.03,0.04]. (c) c2 = [0.03,0.04,0.05].

5.3. Analysis

Analysing the results of case 1 and case 4, we note that the optimal scheme vectors
of using MIAFACE and MCAFACE algorithms in problems P1 and P2, respectively, are
obtained by initializing and updating the probability matrices P(m) and Q(m), which con-
forms to Algorithms 3 and 4 described in Section 4.2. In addition, the result of MCAFACE in
case 1 is suboptimal to that of other algorithms due to deleting the corresponding optimal
solution after the end of each task.

Comprehensively considering the situations of case 2 and case 5, we note that the times
of CE, MIAFACE, and MCAFACE increase with the increment of Nt, h, as well as c and
the time complexity of MCAFACE is lower than that of MIAFACE, and these phenomena
comply with the complexity analysis of MIAFACE and MCAFACE in Section 4.3. In
addition, the time of case 5 is superior to that of case 2 because there are more available
solutions for each target in case 5 than in case 2 after each iteration. Meanwhile, in case 5,
using MIAFACE and MCAFACE for solving this problem is easy to fall into local optimum
when c is inferior to a certain vector, e.g., c = [0.01, 0.02, 0.03]. The reason behind this
phenomenon is that when all elements in c are small and more solutions exist after each
iteration, the optimal scheme may not be selected during one of the iterations of MIAFACE
and MCAFACE, leading to a suboptimal result.

Comparing the situations of case 3 and case 6, we note that the times of PSO, ACO,
and GA are only related to the growth of Nt. Meanwhile, CE, MIAFACE, and MCAFACE
are superior to PSO, ACO, and GA for large-scale allocation problems, e.g., more than
8 targets of case 3 and 5 targets of case 6. Moreover, CE is inferior to MIAFACE in scenario
1, e.g., Figure 5, when Nt is over 10. Moreover, e.g., Figure 8c in scenario 2, MCAFACE is
superior to MIAFACE and CE when Nt is over 9.

6. Conclusions

In this paper, the multi-UAV cooperative task assignment problem was described
and formulated, and three types of UAVs were considered, cooperatively accomplishing
the classification, attack, and verification tasks of targets under resource, precedence, and
timing constraints. After that, considering complex coupling among these three tasks,
we decomposed the considered problem into two subproblems. In order to solve them,
we proposed an AFACE algorithm, a MIAFACE algorithm, and a MCAFACE algorithm.
Finally, simulation results verified that both MIAFACE and MCAFACE consume less time
than other intelligent algorithms for solving the corresponding problem.

Nevertheless, there still exist challenges when applying the MIAFACE algorithm and
MCAFACE algorithm to processing optimization problems, e.g., appropriate parameter
settings, falling into local optimum when using lower elements in c, etc. In future work, it
will be meaningful to concentrate on promoting these two algorithms on problems where
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it is vulnerable to local optimum when the number of samples is limited and on task
assignment problems in complex dynamic scenarios.

Author Contributions: Conceptualization, K.W., X.Z. and X.L.; methodology, X.Z.; software, X.Z.;
validation, K.W., X.Z., X.L. and W.C.; formal analysis, K.W. and X.Z.; investigation, X.Z.; resources,
X.Q. and Y.C.; data curation, X.Q., Y.C. and K.L.; writing—original draft preparation, X.Z.; writing—
review and editing, X.Z.; visualization, X.Z.; supervision, K.W.; project administration, Y.C. and K.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China
under Grant 62172313 and 52031009, in part by the Natural Science Foundation of Hunan Province
under Grant 2021JJ20054.

Data Availability Statement: Data sharing is not applied.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

If one of each type of UAVs is selected, i.e., z = 1, the possible schemes are written as

L = C1
Nb

C1
z = 3. (A1)

When z = 2, we can choose no more than three types of UAVs, and then

L = C1
Nb

C1
z + C2

Nb
C2

z = 9. (A2)

Once z ≥ 3, we can choose no more than three types of UAVs; thus

L = C1
Nb

C1
z︸ ︷︷ ︸

1 type

+C2
Nb

C2
z︸ ︷︷ ︸

2 types

+C3
Nb

C3
z︸ ︷︷ ︸

3 types

= 3z +
3z(z− 1)

2
+

z(z− 1)(z− 2)
6

= 3z +
z(z− 1)(z + 7)

6

. (A3)

As a conclusion, the number of the possible schemes for each task of targets can be
defined as

L = 3z +
z(z− 1)(z + 7)

6
, z ≥ 1. (A4)

Thus, we have successfully proven Theorem 1.

Appendix B

Inserting P(m) and Equation (1) into f (x(m); u), we define the problem P1 as

f (x(m); P(m)) =
Nt

∏
j=1

p(xj(m)|j, m)

=
Nt

∏
j=1

l1
m

∏
k=1

p(k|j, m)g(xj(m);k)

, (A5)

where p(k|j, m) represents the coefficient in the column k and the row j of P(m), g(xj(m); k)
is 1 if φ(xj(m)) equals k and 0 otherwise according to Equation (1).

After that, at the tth iteration, we assume that the samples x1(m), x2(m), . . . , xNt
d1
(m) are

drawn from f (x(m); v̂t−1(m)). In addition, we calculate the performances Ωt,i, and order them
from smallest to largest: Ωt,1 ≤ Ωt,2 ≤ · · · ≤ Ωt,Nt

d1
, and then define γ̂t(m) = Ω(Nt

d1−β1
m)

.
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Thus, Equation (A5) can be rewritten as follows:

arg max
P(m)

1
Nt

d1

Nt
d1

∑
i=1

I{Ω(xi(m))≥γ̂t(m)}

× ln f (xi(m); P(m))

. (A6)

In Equation (A6), I(xi(m); γ̂t(m)) is recognized, and when Nt
d1 → ∞, the problem

is equal to

max
P(m)

β1
m

∑
n=1

ln f (x(m); P(m)). (A7)

Putting Equation (A5) into Equation (A7), we have

max
P(m)

β1
m

∑
n=1

ln f (x(m); P(m))

= max
p(k|j,m)

β1
m

∑
n=1

ln

(
Nt
∏
j=1

l1
m

∏
k=1

p(k|j, m)
g(xn

j (m);k)
)

= max
p(k|j,m)

β1
m

∑
n=1

Nt
∑

j=1

l1
m
∑

k=1
g(xn

j (m); k) ln(p(k|j, m)).

(A8)

Then, we assume that rkj(m) = p(k|j, m), an
kj(m) = g(xn

j (m); k), and Equation (A8) is
modeled as

P11 : min
rkj(m)

(−
β1

m

∑
n=1

Nt

∑
j=1

l1
m

∑
k=1

an
kj(m) ln

(
rkj(m)

)
)

s.t.
l1
m

∑
k=1

rkj(m) = 1 ∀j, m

rkj(m) ≥ 0 ∀j, k, m

l1
m = L ∀m.

(A9)

Considering P11 as a convex problem and denoting the convex function by f (rkj(m)),
we can obtain the Lagrangian function

O(rkj(m), λj(m), µkj(m)) = f
(

rkj(m)
)
+

Nt
∑

j=1
λj(m)

(
L
∑

k=1
rkj(m)− 1

)
+

Nt
∑

j=1

L
∑

k=1
µkj(m)

(
−rkj(m)

) , (A10)

where λj(m) and µkj(m) are the relevant restraint coefficients.
Generally, for convex optimization problem, the Karush–Kuhn–Tucker (KKT) con-

dition is required and sufficient [42]. Thus, considering the KKT conditions of problem
in Equation (A10), we have

− akj(m)

rkj(m)
+ λj(m)− µkj(m) = 0

λj(m)

(
L
∑

k=1
rkj(m)− 1

)
= 0

µkj(m)rkj(m) = 0
λj(m) > 0
µkj(m) ≥ 0
rkj(m) ≥ 0

(A11)
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When solving Equation (A11), we obtain
rkj(m) =

an
kj(m)

λj(m)−µkj(m)

λj(m) =
L
∑

k=1
an

kj(m)

µkj(m) = 0

. (A12)

Comparing λj(m) and rkj(m), we acquire the relationship between rkj(m) and an
kj(m), i.e.,

rkj(m) =
an

kj(m)

L
∑

k=1
an

kj(m)

. (A13)

Returning to our problem, the updating formula of P(m) is given by

p(k|j, m) =

β1
m

∑
n=1

g(xn
j (m); k)

β1
m

=

c1
m N
∑

n=1
g(xn

j (m); k)

c1
mN

, (A14)

where k ∈ {1, . . . , L}, n ∈ {1, . . . , c1
mN}, c1

m ∈ c1.
Therefore, we have successfully proven Theorem 2.

Appendix C

Calculating the updating formulas of Nm tasks continuously and correlatively is considered.
For the mth task, if m = 1, its optimal solution is taken from L schemes, and if

1 < m ≤ Nm, its optimal scheme is only taken from the remaining L− m + 1 solutions
since the m− 1 schemes selected before performing the mth task have been deleted.

Thus, referring to the proof process of Theorem 2, the updating formula of Q(m) in
problem P2 is

q(k|j, m) =

β2
m

∑
n=1

g(xn
j (m); k)

β2
m

=

c2
m N
∑

n=1
g(xn

j (m); k)

c2
mN

(A15)

where k ∈ {1, . . . , L−m + 1}, n ∈ {1, . . . , c2
mN}, c2

m ∈ c2.
Hence, we have successfully proven Theorem 3.
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