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Abstract: With unmanned aerial vehicle(s) (UAV), swift responses to urgent needs (such as search and
rescue missions or medical deliveries) can be realized. Simultaneously, legislators are establishing
so-called geographical zones, which restrict UAV operations to mitigate air and ground risks to
third parties. These geographical zones serve particular safety interests but they may also hinder
the efficient usage of UAVs in time-critical missions with range-limiting battery capacities. In this
study, we address a facility location problem for up to two UAV hangars and combine it with a
routing problem of a standard UAV mission to consider geographical zones as restricted areas, battery
constraints, and the impact of wind to increase the robustness of the solution. To this end, water rescue
missions are used exemplary, for which positive and negative location factors for UAV hangars and
areas of increased drowning risk as demand points are derived from open-source georeferenced data.
Optimum UAV mission trajectories are computed with an A* algorithm, considering five different
restriction scenarios. As this pathfinding is very time-consuming, binary occupancy grids and
image-processing algorithms accelerate the computation by identifying either entirely inaccessible
or restriction-free connections beforehand. For the optimum UAV hangar locations, we maximize
accessibility while minimizing the service times to the hotspots, resulting in a decrease from the
average service time of 570.4 s for all facility candidates to 351.1 s for one and 287.2 s for two optimum
UAV hangar locations.

Keywords: optimum UAV hangar location; facility location problem; search & rescue mission
planning; UAS geographical zone; open source georeferenced data

1. Introduction

According to the World Health Organization [1], drowning is the third leading cause
(7%) of unintentional injury-related deaths worldwide. Thus, alerting emergency respon-
ders and localizing victims in the water are particular challenges at the start of the rescue
chain. Autonomous Unmanned Aircraft Systems (UAS) for Search & Rescue (SAR) opera-
tions may detect persons in distress faster than helicopters, boats, or lifeguards. Further-
more, the precise dropping of a flotation device may extend the chance of survival until
conventional rescue services arrive on site. However, such UAS also require safe integra-
tion into the airspace, well-suited operational automation, and ensuring the safety of third
parties on the ground, e.g., according to the UAS geographical zones of the Commission
Implementing Regulation (EU) 2019/947 [2].

This paper uses open-source georeferenced data to solve a Facility Location Problem
(FLP) for decentralized autonomous Unmanned Aerial Vehicle (UAV). The UAV hangar
locations are optimized by minimizing the service times to hotspot areas with increased risk
for accidents, while considering optimum standard SAR missions to incorporate the routing
problem including the avoidance of UAS geographical zones and potentially crowded areas.
As an application, we utilize the model region of the research project RescueFly, which
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studies the prototypical implementation of two non-holonomic UAV at the remote Lusatian
Lake District in the Federal State of Brandenburg and the Free State of Saxony in Germany.
Figure 1 shows the 109 georeferenced layers from open data sources, which we discretize
and merge to determine the solution space for planning optimized safe flight routes and
to derive positive and negative location factors to solve the FLP given two finite sets of
potential hangar locations and hotspots.

A standard SAR mission is defined for the UAV, which includes the planning of a
restriction-free path to and from the hotspot area and a complete search of the hotspot,
limited by the maximum endurance of the UAV. As the used A* algorithm for path planning
is reliable but computationally expensive, we transform the georeferenced data into a binary
occupancy grid image and labeled the solution space using a fast connected-component
algorithm to identify non-permissible connections between potential UAV hangar locations
and hotspots. In addition, direct connections, i.e., paths not affected by restrictive areas, are
identified using a fast ray–occupancy intersection algorithm. The proposed methodology
determines location candidates from open-source data and provides accessibility scores for
these candidates to find the optimum UAV hangar locations. To increase the robustness
of the solution, we consider various UAV geographical zones and different wind cases
affecting the UAV endurance.

Figure 1. Area of interest in the Lusatian Lake District [3], with the 109 different open-source layers,
e.g., bodies of water (blue) [4], flight restriction zones (red), inhabited areas (yellow), and nature
reserves (green) [5].

This section continues with a review of the state of the art, focusing on other SAR
applications for UAS, UAV mission planning, automated detection of persons in distress,
and approaches to the FLP for UAS. The following section then describes the methodology
for solving the FLP with multi-objective optimization, considering positive and negative
location factors and constraints, such as the battery capacity or the external risk for up
to two locations. Subsequently, the results of our work are shown, indicating candidate
locations for the UAV hangars. Finally, we conclude by discussing possible next steps.

1.1. SAR Concepts with UAS

Various SAR concepts have been studied using UAS as a component in the rescue
chain. Ajgaonkar et al. [6] developed a UAV to assist lifeguards at coastal beaches. They
assumed that the lifeguard provides the initial identification of the person in distress
to a UAV operator, who then searches the area to drop a flotation device. Similarly,
Seguin et al. [7] conducted a study with UAV delivering flotation devices to swimmers at
the lifeguard’s remote control, showing that the faster delivery compared to the lifeguard
or a jet ski reduces the submersion time and therefore the risk of drowning significantly.
Dufek and Murphy [8] introduced the concept of combining an UAV with an Unmanned
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Surface Vehicle (USV) for offshore emergencies, which searches the person in distress and
serves as a flotation device. The UAV serves to first guide the USV to the victims and then
to track the drift of the USV for the emergency responders.

Liu et al. [9] presented an operational concept for UAV usage in SAR missions over
rivers, in which they predicted the drift using Monte Carlo simulations to delimit the search
area. For the faster coverage of larger areas, authors, such as Ruetten et al. [10], proposed
swarm networks consisting of many UAVs that organize themselves to reach optimal
search coverage with minimal overlapping. While this approach ensures fast detection over
large areas, it poses an additional external risk to persons and significantly increases the
required infrastructure and equipment. Thus, it is deemed unfeasible for SAR missions at
bathing lakes.

1.2. UAV Flight Path Planning

The most crucial factor in SAR is the time since the early detection of a drowning
person substantially improves the chances of survival. From the technical standpoint, the
battery capacity also limits the flight time of an UAV, which requires efficient path planning
from the UAS hangar to identify, reach and search the target area. Brühl et al. [11] provided
a methodology to estimate energy consumption based on the flight phase for various
large air taxis, including multi-copter designs similar to UAV for SAR. Citroni et al. [12]
developed a model to estimate the energy consumption of very light and small Micro
Air Vehicles, including options for energy harvesting to extend the endurance. While
the concept is promising, it cannot be adapted to larger multi-copter UAV in the ’specific’
category yet. Chu et al. [13] analyzed the impact of wind on the battery capacity of small
quad-copter UAV, considering wind speed, direction, and turbulence in a simulation. They
found wind conditions up to 11 m s−1 suitable for surveying crash areas regarding the ad-
ditional energy consumption, but also emphasized the significant increase in consumption
in higher turbulence.

Lin and Goodrich [14] created a probability distribution map to accelerate wilderness
SAR with a UAV flying 60 m above ground. With this map, they converted the path
search into a discretized combinatorial optimization problem and applied variants of
complete-coverage, local hill climbing, and evolutionary algorithms with and without a
defined destination, finding that the local hill-climbing algorithm with a convolution kernel
performs best. Hayat et al. [15] developed a multi-objective path planning based on a
genetic algorithm that minimizes the search time, which balances the search area coverage
with the network connectivity coverage to ensure communication with the emergency
responders. Wang et al. [16] proposed a vortex search algorithm for multi-objective path
optimization to guide UAV to forest fires, considering obstacles and terrain described with
a cubic interpolation method. Jayaweera and Hanoun [17] studied a path-planning problem
for an UAV to follow a ground-moving target with variable speed and direction. They
used an artificial potential field to correct the wind disturbance, demonstrating a maximum
deviation of the camera aim point of 0.41 m for a vehicle speed of 10 m s−1 and a wind
speed of 8 m s−1.

After reaching the search area, an efficient method for scanning this area is required.
Zuo et al. [18] suggested an extended square search, which expands from the center of the
search area, assuming that positions closer to the center are more likely than distant ones.
Liang et al. [19] developed a heuristic to avoid redundant image coverage and maximize
image quality during a SAR mission with an energy-constrained UAV. Dakulović et al. [20]
developed a complete coverage D* algorithm for a floor-cleaning mobile robot, minimizing
path length and search time in a constrained area with unknown obstacles. Xu et al. [21]
studied a Complete Coverage Neural Network (CCNN) for an unmanned surface vehicle
for complete coverage of a search area and combined it with an improved A* algorithm to
escape deadlock situations efficiently. Sun et al. [22] proposed a two-step auction method
to coordinate multiple UAV to cover a mutual search area, considering the avoidance
of obstacles and the energy constraints of the UAV. Sun and Ma [23] proposed a two-
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phase search for aircraft maintenance. Initially, a high-altitude scan is performed. The
information is then used in a Monte Carlo tree search algorithm to find a safe path for the
inspection afterward. Approaches such as these can accelerate the time-critical search for a
person in distress, but they also raise concerns regarding the air and ground risks for both
multiple UAV and higher altitudes; there is also the risk of missing persons entirely in the
initial scan.

1.3. Automated Detection of a Person in Distress

When covering the search area with the UAV, the person in distress must be detected
swiftly, even when large groups are swimming simultaneously. For this, Qingqing et al. [24]
analyzed different altitudes and camera angles for human detection in marine SAR to find
a trade-off between speed and detection accuracy with the real-time object detection model
of YOLOv3. They found that individuals can be detected from greater distances when the
camera angle is closer to facing straight down (known as nadir). Above 100 m, however,
confidence and accuracy drop significantly since it is a function of the camera lens and
image resolution. Rudol and Doherty [25] presented a method to detect human bodies
lying or sitting on the ground by combining video and thermal sensors. For maritime
SAR, it remains unclear if a thermal sensor can produce similar results, especially for
submerged persons. Bejiga et al. [26] trained a Convolutional Neural Network (CNN) to
assist avalanche SAR with faster detection of victims utilizing optical cameras fitted to
UAV. Lygouras et al. [27] used CNN to detect persons swimming in open water with an au-
tonomous UAV. Feraru et al. [28] proposed a concept to deploy autonomous UAV for man-
overboard incidents using a probabilistic leeway model with a Faster Region-based Con-
volutional Neural Network (R-CNN) to detect a person in the water. Liu and Szirányi [29]
studied a two-stage approach, in which they first detected persons in UAV video footage
and then interpreted basic gestures used by persons in distress using neural networks.
Wang et al. [30] proposed a different two-stage approach. First, persons are located with
simpler features to reduce the search space, and second, a CNN is applied to the previously
selected areas. Liu and Szirányi [31] used UAV to detect main and secondary roads from
image data, and provide an optimum route with an A* algorithm for people in the field.
However, the planning of the mission trajectory for the UAV was rarely considered in
these studies.

1.4. Facility Location Problem

A FLP models the selection and localization of facilities to serve demand at specific
points or areas, such as hospitals, fire stations, or warehouses. The Uncapacitated Facility
Location Problem (UFLP) is one of the most commonly considered combinatorial opti-
mization problems, in which two finite sets of potential facilities and demand points are
considered by assessing the associated costs for the facility construction and the distance
or cost for each combination of demand point and facility location. The objective of the
optimization problem is to select the facility locations to be established and allocate the
demand points by minimizing the total operational costs [32,33]. The k-facility problem is
a UFLP with the additional constraint of k ∈ N facilities being allowed to open. For facility
construction costs equal to zero, k-median clustering can be applied to determine centroids
as optimized facility locations. This approach, however, assumes that all distances are as
the crow flies [34]. Another option is the lower-bounded FLP, e.g., with the algorithm of
Ahmadian and Swamy [35], where each facility must serve a certain minimum amount
of demand.

For the delivery of first-aid products using UAVs, Zhu et al. [36] developed a robust
two-stage FLP optimization that accounts for customer demand uncertainty. They proposed
three models for the problem that outperform a deterministic FLP. Lynskey et al. [37]
studied the distribution of UAV ground facilities. They solved the problem with k-means
clustering while adding the energy consumption of the UAV as costs using a traveling
salesman algorithm to enable UAV to perform multiple tasks with one flight.
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As the review shows, there are various studies dealing with optimal routing for UAV.
However, any flight restrictions, such as the UAS geographical zones according to EU
2019/947 [2] and § 21h Luftverkehrsordnung (LuftVO) [38] (German Federal Regulation
for aircraft operations, which supplements EU 2019/947.), have been rarely considered.
Concerning the FLP for UAV, those restrictions are quite significant, as they will extend the
flight times and may render location candidates inaccessible. Furthermore, methods on
how to obtain suitable information on location candidates, e.g., for positive and negative
location standards, are seldom discussed as well.

2. Materials and Methods
2.1. Overview of the Approach

The RescueFly concept of operations plans to assist SAR missions at Lake Geierswalde
and Lake Partwitz utilizing automated UAS based in decentralized hangars. We use this
opportunity to develop an optimization model to solve the related FLP for UAV hangars,
which shall provide minimum service time to hotspot areas where accidents are expected
more frequently. These hotspots serve as demand for the FLP, so they must be identified
based on their geographic characteristics and nearby amenities. Furthermore, positive and
negative location factors must be determined to identify hangar candidate locations. We
propose to derive the required information from open-source geographical data, so it is
easily transferable to other regions or other FLP.

Furthermore, restricted areas and varying wind conditions affect the service times.
This is considered in the FLP with the development of a standard SAR mission, which is
optimized individually for each combination of hangar candidate and hotspot location in
different scenarios. For the flight time to and from the hotspot area, we consider national
and European regulations as well as external risk factors, such as potentially crowded
areas with an A* algorithm [39] on a binary occupancy grid to determine the shortest
restriction-free flight path. Furthermore, we determine the search time required to find the
person in distress in the derived hotspot area. Finally, the endurance of the UAV is also
considered a constraint to the FLP.

A location candidate must provide solid ground, power supply, and reasonable access
for installing and maintaining the system while being located outside restrictive areas
(e.g., hazard areas, UAS geographical zones, natural reserves). In addition, vegetation
shading must be avoided to permit reliable communication links to the emergency centers.
Furthermore, the location shall grant swift access to designated beaches, recreation sites,
hotel and camping facilities, grasslands, and other facilities where people are engaged
in activities adjacent to lakes e.g., barbecue areas, boat slipways, and boat rentals. When
planning a SAR mission, the risk to third parties, i.e., the air and ground risk, must be
considered. SAR operations are excluded from the remit of Regulation (EU) 2018/1139 [40],
so the competent national authority is responsible for regulating SAR operations. According
to § 21k LuftVO [38], authorities conducting SAR operations are permitted to fly through
UAS geographical zones [2,38]. As the UAV hangar locations shall provide a robust and
optimum solution, complying with or flying through various UAS geographical zones can
be selected operationally, e.g., depending on the urgency or the exposed crowd size. For
this purpose, this paper considers five different scenarios:

1. Restriction-free flight from the hangar to the hotspot by invoking the special rights of
SAR authorities according to § 21k LuftVO [38];

2. Compliance with specified air risk relevant UAS geographical zones according to EU
2019/947 [2] and § 21h LuftVO [38], e.g., required distance to airfields;

3. Compliance with UAS geographical zones relevant to air and ground risk;
4. Compliance with all UAS geographical zones; and
5. Compliance with all UAS geographical zones and avoidance of crowded areas.

Furthermore, the solution should be robust against the wind. Therefore, different
wind cases are considered for each scenario based on the extensive study of Chu et al. [13].
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2.2. Acquisition of Open-Source Data

This section reviews open-source data to retrieve relevant information for identify-
ing UAV hangar location candidates, which are divided into three georeferenced data-
requirement groups, i.e., (1) positive and negative location factors for establishing UAV
hangars. (2) Data are required to identify areas of high intrinsic risks for waterside accidents.
(3) The UAS geographical zones according to EU 2019/947 [2] and § 21h LuftVO [38] must
be identified for the mission planning with incrementally minimized external risks and
environmental impacts according to our scenarios.

The primary source for the former two is the OpenStreetMap (OSM) (Available online:
https://www.openstreetmap.org/ (accessed on 22 November 2022)), a community-driven
database for georeferenced data layers. OSM defines the georeferenced data with nodes,
ways, and relations to describe the geometry, supplemented by tags (key-value principle)
describing the object’s function. Using the Overpass API (Available online: https://
overpass-turbo.eu/ (accessed on 22 November 2022)), it is possible to define queries for
extracting data based on region, layers, and tags. The location factors are based on the
surface and its ability to accommodate UAV hangars. As listed in Table 1, six tags for
areas with grass and minimal vegetation are considered positive. Eight tags for areas with
forests, large groups of trees, or wetlands will require additional construction work or
shade the communication links, leading to negative location factors in Table 2. Furthermore,
each potential UAV hangar location requires road access for maintenance with a maximum
permitted distance of 20 m from the road tags in Table 3. In addition, the UAV hangar cannot
be established on water surfaces, provided as Web Map Service (WMS) (Available online:
https://geoportal.brandenburg.de/de/cms/portal/start (accessed on 22 November 2022)).
Finally, the power supply should be another positive location factor, but the required data
are not public.

Table 1. OSM map features for positive UAV hangar location factors.

Key Values

landuse grass, greenfield
natural grassland, heath, scrub, scree

Table 2. OSM map features for negative UAV hangar location factors.

Key Value(s)

boundary forest, forest_compartment, hazard
landuse forest
natural tree, tree_row, wood, wetland

Table 3. OSM map features for road access to the UAV hangar location with a maximum distance of
20 m.

Key Values

highway
motorway, trunk, primary, secondary, tertiary, unclassified, residential, motor-
way_link, trunk_link, primary_link, secondary_link, living_street, service, pedestrian,
track, bus_guideway, escape, raceway, road, busway, cycleway

tracktype grade1, grade2, grade3

Table 4 lists 34 map features representing hotspot indicators. We assume that these
features increase the probability of an accident on the water. For this purpose, we extrude
the resulting map feature nodes and areas with a radius of 150 m in size, followed by an
intersection with the water surfaces of the investigated lakes. If an area is a subset of the
extruded hotspot indicators and a subset of either of the water areas at the same time,
it is identified as a hotspot area. The radius of 150 m is based on the distance between
buoys and shoreline of approximately 120 m plus an additional 30 m buffer since the OSM

https://www.openstreetmap.org/
https://overpass-turbo.eu/
https://overpass-turbo.eu/
https://geoportal.brandenburg.de/de/cms/portal/start
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features may be georeferenced slightly outside of the shorelines. We assume that most
swimmers tend to stay within the prescribed limits, increasing the risk of accidents in
these areas.

Table 4. OSM map features for hotspot areas.

Key Value(s)

amenity boat_rental, boat_sharing, ferry_terminal, public_bath, parking, parking_space, lounger
building beach_hut
emergency lifeguard, life_ring, phone
landuse grass
leisure marina, slipway, swimming_area, swimming_pool, water_park, beach_resort, park, picnic_table
lifeguard tower
man_made pier
natural beach, shingle, shoal, sand
sport sailing, swimming, surfing, wakeboarding, water_polo, water_ski
tourism camp_site, caravan_site

For the planning of the standard SAR mission, the UAS geographical zones [2,38]
are required. For UAV operations in Germany, the Digital Platform for Unmanned Avi-
ation (dipul) provides a map tool (available online: https://maptool-dpul-prod.dfs.de/
(accessed on 22 November 2022)) and web map service indicating the UAS geographical
zones as separate layers. For data transmission, the availability of a sufficient broad-
band connection should be considered as well. However, the so-called Breitband monitor
(available online: https://www.breitband-monitor.de/mobilfunkmonitoring (accessed on
16 December 2022)) of the German Bundesnetzagentur provides only coverage at the
ground level, so open-source data at cruising and search altitudes cannot be retrieved
thus far.

2.3. Definition of the Standard SAR Mission

As the battery capacity limits the operation duration of the UAV, a restriction-free
flight path between each potential UAV hangar location and each hotspot, and a standard
search mission must be defined to assess the accessibility of the hotspot and feasibility
of the search mission, given varying UAS geographical zones and wind scenarios. Each
standard SAR mission consists of three phases: the approach, the search mission, and the
return to the hangar. For consistency, we assume that the approach and return flights have
the same paths and vertical profiles. Furthermore, as shown in Figure 2, we assume a
vertical climb at the UAV hangar to the approach altitude ha, which is maintained until the
UAV reaches the hotspot area. There, the UAV descends vertically to the search altitude hs,
which depends on the required resolution to detect a person in distress, and continues with
a search pattern at hs. After the search, the UAV climbs to maintain the return altitude hr
until reaching the hangar.

A
lt
it
u

d
e

Distance

ℎ𝑆

ℎ𝑎 ℎ𝑟

Approach Search Return

Figure 2. Vertical profile of the standard SAR mission divided into the approach to the hotspot area,
the search to cover the whole hotspot area and the return to the UAV hangar.

https://maptool-dpul-prod.dfs.de/
https://www.breitband-monitor.de/mobilfunkmonitoring
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A maximum altitude of ha = hr = 100 m above ground is assumed for approach
and return, leaving a safety buffer to the maximum permitted altitude of 120 m for the
‘specific’ category [2]. hs depends on the characteristics and orientation of the camera and
the required resolution for the automated detection of a person in distress. The camera of
our UAV has an aspect ratio of 4:3 with a resolution of R = 12 Mpx, a lateral field of view
α = 56°, a vertical field of view β = 45°, and a 1/2.3′ ′ CMOS sensor.

The camera faces perpendicularly downward (i.e., nadir) to the water surface, guaran-
teeing the best coverage and detection [24]. Furthermore, the larger α is perpendicular to
the search direction so that the UAV is centered above the middle of the covered surface
in a single camera frame, as shown in Figure 3. Then, the achieved pixel density D in
[px m−2] per frame is given with the search width ws and length ls in [m] according to:

D =
R

ws · ls
(1)

Using the tangent of two assumed right-angle triangles, ws and ls can be determined
at given hs with α and β:

ws = 2 · hs · tan(0.5 · α) (2)

ls = 2 · hs · tan(0.5 · β) (3)

DLRK 2022 – Deutscher Luft- und Raumfahrtkongress – 28.09.2022
Institut für Luftfahrt und Logistik, Professur für Technologie und Logistik des Luftverkehrs
Hannes Braßel

Folie 9

Search

direction

ℎ𝑠

𝑤𝑠

𝑙𝑠

𝛼

2

𝛽

2

90°

Figure 3. Covered search surface in one image frame given with search width ws and length ls as a
function of the camera’s lateral and vertical field of view (α and β, respectively) for a defined search
altitude hs.

The required minimum pixel density Dmin significantly drives the optimum hs to detect
persons in distress autonomously. A trade-off is necessary between a high-as-possible hs for
minimum-time coverage of the search area for the fastest SAR, and a sufficiently high pixel
density to solve the detection and recognition task reliably, i.e., to distinguish persons in
distress from all other swimmers. For estimating Dmin, a set of test images of 35 swimming
volunteers has been taken at Lake Partwitz under sunny and clear conditions without
any significant wind. From the set, 96 images of different pixel densities between 5 to
3300 px m−2 were generated, an example set is shown in Figure 4. Those images were
presented to 10 test persons (3 female, 7 male) aged 30 to 40 (µ = 33.4, σ = 3.34), thus
equaling 960 samples. The test person’s tasks are (a) detecting objects in the image and
(b) recognizing and describing the activity of the swimming persons. If all persons per
image are detected, task (a) is classified as positive; if at least one person remains undetected,
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it is considered negative. If the test persons describe all activities of the swimmers correctly
(e.g., breaststroke with drawn legs), task (b) is classified as positive.

DLRK 2022 – Deutscher Luft- und Raumfahrtkongress – 28.09.2022
Institut für Luftfahrt und Logistik, Professur für Technologie und Logistik des Luftverkehrs
Hannes Braßel

Folie 9

Search Height

Resolution

Figure 4. Test images of swimmers at Lake Partwitz for image detection with increasing resolutions
from 5 px m−2 (left), to 250 px m−2 (middle), and 3300 px m−2 (right).

The experiments show an average Dmin,(a) = 9 px m−2 with σ(a) = 8 px m−2, and
Dmin,(b) = 503 px m−2 with σ(b) = 493 px m−2. The task complexity correlates strongly
with the number and types of objects per test image resulting in high standard deviations.
Thus, images containing few volunteers or volunteers on floating objects (e.g., surfboards)
show significantly lower Dmin due to contrast and size. Moreover, their activities are
recognized more reliably than images with many volunteers swimming closely together.
The obtained Dmin from the test persons serve as estimates for the Deep Convolutional
Neural Network (DCNN) intended to automatically detect a person in distress, assuming
it will not perform significantly better or worse than humans. Van Dyck et al. [41] confirm
this hypothesis, in which the DCNNs ResNet18 and vNet achieved 79.05% and 84.76%
accuracy, respectively, compared to 89.96% of human observers. With Dmin, Equations
(1)–(3) are rearranged to solve for hs:

hs ≤
√

R
4 · Dmin · tan(0.5α) · tan(0.5β)

(4)

Since the goal of the search mission is the reliable recognition of the person in distress,
it is assumed that Dmin = Dmin,(b) + 3σ(b) = 1981 px m−2 is required to avoid misdetection,
which is a ground sampling distance of 0.0225 m. With Equation (4), hs ≤ 82.92 m is
determined to fulfill the task (b).

With the standard UAV mission, a set can be generated from the potential UAV
hangar location F (Facility), a hotspot H as the demand, a wind scenario W, and a UAS
geographical zone scenario Z. The corresponding total flight time tm,n

i,j ∈ R+, for i ∈ F,
j ∈ H, m ∈W, n ∈ Z constitutes the evaluation metric. The flight distance dn

i,j results from
the shortest restriction-free flight path from i ∈ F to j ∈ H considering n ∈ Z. For this, the
approach and return flight are assumed identical, i.e., dn

i,j := dn
j,i. Since various shapes of

hotspot areas exist and the search time depends on the coverage algorithm, we simplify
the resulting hotspot areas aj [m2] to rectangles with the identical area and the edge length
ws [m] of Figure 3. Furthermore, an additional search detour factor fs = 1.1 accounts for
different coverage algorithms and shapes, resulting in a search distance sj:

sj =

( aj

ws
− ls

)
· fs (5)
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According to the UAV manufacturer, a reliable cruise speed during approach and
return v1 = 10 m s−1 and a vertical rate v2 = 2.5 m s−1 is achieved. During the search phase,
we assume a slower search speed v3 = 5 m s−1 to provide suitable coverage and reduced
motion blur. The total flight time for successive maneuvers (cf. Figure 2) is:

tm,n
i,j =

(
2

ha

v2
+ 2

dn
i,j

v1
+ 2

ha − hs

v2
+

sj

v3

)
· fm (6)

fm in Equation (6) represents the detour factor per wind scenario m ∈W. The actual
values are derived from Chu et al. [13], using wind speeds below 11 m s−1 as recommended.
We computed fm for seven wind scenarios in Table 5 with the battery use from Table 10 [13],
averaging over all wind directions and normalized on 1 s of flight time. Furthermore, the
wind scenario m = 1 with 0 m s−1 and turbulence index 0 is added as a baseline case with
fm = 1.

Table 5. Wind scenarios with detour factors fm derived from the battery use studied by Chu et al. [13].

Wind Scenario Wind Speed Turbulence Index Detour Factor
m ∈W [m s−1] fm

1 0 0 1.0
2 3.5 0 1.023
3 10.5 0 1.237
4 3.5 10 1.018
5 10.5 10 1.311
6 3.5 20 1.109
7 10.5 20 2.199

Given the flight endurance E = 22 min, each rescue mission from i to j is evaluated, so
tm,n
i,j ≤ E from Equation (6) are only classified as accessible:

Am,n
i,j · (E− tm,n

i,j + ε) ·M ≥ E− tm,n
i,j + ε (7)

Thus, Am,n
i,j ∈ {0, 1} is the binary accessibility variable from i ∈ F to j ∈ H, avoiding

n ∈ Z and considering m ∈W, with the Big-M parameter M and an infinitesimally small
positive quantity ε.

2.4. Optimization Model for UAV Hangar Positions

This section describes the FLP model to determine P ∈ N optimum UAV hangar
locations with maximum accessibility to all hotspots j ∈ H across all wind scenarios n ∈W
and all UAS geographical zone scenarios n ∈ Z while minimizing the respective total
flight time. For that, we consider a finite set H of hotspots and a finite set F of potential
facilities with the binary success variable Am,n

i,j ∈ {0, 1} from Equation (7) and total flight
time tm,n

i,j ∈ R+ from Equation (6), such that:

max ∑
i∈F

∑
j∈H

∑
m∈W

∑
n∈Z

(Am,n
i,j − tm,n

i,j ) (8)

With the binary parameter yj ∈ 0, 1 and P facility locations to be established, while
xn

i,j ∈ 0, 1 ensures that each i is connected to only one j:

∑
i∈F

yi ≤ P ∀i ∈ F (9)

xn
i,j ≤ yi ∀i ∈ F, j ∈ H, n ∈ Z (10)

∑
i∈F

xn
i,j ≤ 1 ∀i ∈ F, j ∈ H, n ∈ Z (11)
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To this end, we process the data of Section 2.2 in a georeferenced 5 m × 5 m grid
inside [51.48°, 51.55°] latitude and [14.04°, 14.20°] longitude. Then, the location factors
from Tables 1 and 2 identify the solution space for candidate locations. To reduce the
computational effort, a spacing of 50 m between the candidates for UAV hangar locations
is chosen, resulting in |F| = 5949 candidate locations. The hotspot areas from Section 2.2
are processed with connected component labeling, resulting in 11 separate hotspot areas of
varying extents across the two lakes. Each hotspot area is represented by hotspot centroids
of a k-means clustering algorithm where k is the quotient of the respective hotspot area and
the smallest hotspot area as an integer, resulting in a total of |H| = 27 hotspot locations.
Consequently, a total of 27 · 5949 · 7 · 5 = 5.622× 106 path computations for one optimum
facility location and 27 · (5949

2 ) · 7 · 5 = 1.672× 1010 calculations for two hangar locations
is required. Since the restriction-free pathfinding with the A* algorithm [39] has a high
computational effort, we reduce the number of paths by applying the two techniques
illustrated in Figure 5.

First, we label the discretized binary occupancy grid using a connected components
algorithm removing all inaccessible candidates due to restrictions. Figure 5a illustrates
the method for n = 5 as an example. All candidate locations labeled ‘yellow’ are valid
connections to the hotspots, removing invalid candidate locations (e.g., ‘purple’) from the
later pathfinding.

Second, a fast ray occupancy intersection algorithm checks if straight paths from j to i
exist that do not infringe on restricted areas. If this is the case, the shortest path is already
found, and the A* pathfinding around restricted areas is not required for this particular
combination. Figure 5b illustrates the procedure using n = 5 as an example. Green-marked
location candidates permit direct paths, given one example hotspot at Lake Geierswalde.
Red borders show interruptions due to the occupancy envelope, respectively, invalid
direct paths.

Restricted area Connected-component labels

Hot spots UAS hangar candidates

Lake Partwitz

Lake
Geierswalde

(a)

Water surface Restricted area Ray-occupancy intersection

Hot spots UAS hangar candidates

Lake Partwitz

Lake
Geierswalde

Unrestricted flight path available

(b)

Figure 5. Techniques to reduce the computational effort of the pathfinding: (a) connected component
labeling of the target area for n = 5 (left), indicating all candidate locations (white dots) with valid
connection in yellow, and invalid connections in other colors. (b) Ray occupancy intersection (right)
for finding candidate locations with direct, hangar candidates with unrestricted flight paths (green)
to one exemplary hotspot (red cross).

With these two steps, all UAV hangar candidates without valid connections were
removed, and the shortest path to all candidates with unrestricted straight connections
were successfully found. Accordingly, only the candidates with the same connected compo-
nent label in Figure 5a and intersecting with the occupancy envelope in Figure 5b require
calculating a restriction-free path with the A* algorithm [39] in the two-dimensional dis-
cretized operation space. Horizontal, vertical, and diagonal movements are allowed. The
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cumulative great circle distance of the georeferenced path nodes along the shortest path
from each source to each sink was subsequently calculated, considering UAS geographical
zones for all n ∈ Z.

3. Results

Using P = 1 and P = 2 planned UAV hangar facilities as examples, we demonstrate
the resulting optimum locations according to Equations (8)–(11), and compare their perfor-
mance with the remaining candidates. For the shortest path calculation, the two methods
described in Section 2.4, cf. Figure 5, predetermine 100% of the distances for n = 1, 79.89%
for n = 2, 73.94% for n = 3, 66.51% for n = 4, and 47.15% for n = 5, resulting in a significant
reduction in the computational time. The remaining shortest paths are calculated with an
A* algorithm [39] to determine dn

i,j for Equation (6).
Figure 6 visualizes the accessibility score Ai ∀ i ∈ F. It is derived from the accessibility

Am,n
i,j according to Equations (8)–(11) but additionally normalized for all scenarios n and

m based on the maximum number of accessible hotspots. Ai = 0 in red indicates hangar
location candidates with the lowest accessibility across all scenarios, while Ai = 1 in green
represents the hangar location candidates with the most accessible hotspots in all scenarios.
Different shades of gray indicate the UAS geographical zones of the scenarios n.

Figure 6. Heat map of the accessibility score Ai for all UAV hangar location candidates, normalized
over all of the hotspots (red crosses), UAS geographical zones (gray-shaded areas), and weather
scenarios, with Ai = 1 for candidates with maximum access to the hotspots in green.

Since some hotspots, e.g., j = 1, are located inside UAS geographical zones, they
cannot be reached from any location candidate in those scenarios containing this particular
UAS geographical zone. For n = 1, all hotspots are located outside UAS geographical zones,
so they can be served as desired. For n = 2, two hotspots are inside a UAS geographical
zone, reducing the maximum accessible hotspots to 25. In this case, the inaccessible hotspots
are removed from the score, resulting in Ai = 1 for the best candidates. Analogously, a
maximum of [27, 25, 23, 22, 22] hotspots is achievable for all n. So for P = 1, five potential
locations exist that cover the most hotspots across all scenarios n ∈W and m ∈ Z. Table 6
shows the resulting number of hotspots covered by them.
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Table 6. Number of hotspots served by the P = 1 optimum UAV hangar locations per wind and UAS
geographical zone scenario.

Geographical Zone Wind Scenarios m ∈W
n ∈ Z 1 2 3 4 5 6 7

1 27 27 27 27 27 27 17
2 25 25 25 25 25 25 17
3 23 23 23 23 23 23 15
4 22 22 22 22 22 22 14
5 22 22 22 22 22 22 14

Figure 7 summarizes Ai per wind scenario m, in which the zero- and low-wind cases
m = {1, 2, 4} provide a high median accessibility of approximately 60% for all location
candidates. Furthermore, the optimum locations for both P = 1 and P = 2 guarantee 100%
accessibility in all wind scenarios except m = 7, where the optimum solution for P = 1
achieves a mean accessibility of approximately 65%. In this high-wind–high-turbulence
case, E is smaller than a subset j of t7,n

i,j , so some hotspots cannot be reached in such
weather conditions.

1 2 3 4 5 6 7
Weather Scenario

0%

20%

40%

60%

80%

100%

A
cc

es
sa

bi
lit

y

One UAV hangar facility
Two UAV hangar facilities

Figure 7. Mean accessibility Ai for all location candidates per weather scenario m, indicating 100%
accessibility for P = 1 and P = 2 optimum locations except for m = 7.

For analyzing the SAR performance, we compute the service time Sm,n
i,j in [s], which is

the duration until the search mission ends and the return to the UAV hangar starts. Thus,
it indicates the worst case until the person in distress will be discovered in the search
area, with:

Sm,n
i,j =

(
ha

v3
+

dn
i,j

v1
+

ha − hs

v3
+

si
v2

)
· fm (12)

Figure 8 summarizes the service times across all n ∈ Z for all i ∈ H as a box plot.
As indicated by the markers, the P = 1 and P = 2 optimized locations provide excellent
service times compared to all other candidates, significantly below the median and close
to the minimum for each hotspot. This results in a decrease in the average service time
from 570.4 s for all facility candidates and weather scenarios to 351.1 s for P = 1 and 287.2 s
for P = 2, respectively. Only hotspots j = 21 to j = 27, located at the farther side of Lake
Partwitz, cf. Figure 9, show slightly worse service times due to the balanced optimization
among all hotspots.
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Figure 8. Service time of all location candidates per hotspot, with markers indicating the optimum
UAV hangar locations for P = 1 and P = 2.

Figure 9. Optimum UAV hangar location for P = 1 (square) and the optimum flight paths for n = 5
(black) to the hotspots (red) with the restricted areas in gray. The heatmap indicates the service time
score for candidates with Ai > 0.9 if the optimum site is not available.

Figure 9 shows the optimum location for P = 1, satisfying Equations (8)–(11), and the
shortest flight paths from the optimum facility to all hotspots j ∈ H while respecting the
UAS geographical zones, using n = 5 as an example. The heatmap indicates the average
service time to all j across all m ∈ W and n ∈ Z as a normalized score for all facility
candidates with Ai > 0.9 indicating near-optimal locations with a slightly inferior result,
which may be used as alternatives if the optimum location is not available for building the
UAV hangar.

For P = 2, 40 possible combinations of candidates achieve the maximum accessibility
score. Figure 10 shows the combination satisfying Equation (8). The plotted paths indicate
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the hotspot assignment according to Equations (9)–(11) for n = 5 as an example. This
assignment is part of the optimization process and represents the shortest service time in
each case. However, for operational reasons, the other facility may also serve as the hotspot
if satisfying Equation (7). Furthermore, the service time Equation (12) is significantly better
compared to P = 1, especially for hotspots j = 21 to j = 27, cf. Figure 8.

Figure 10. Optimum UAV hangar locations for P = 2 (squares) and the optimum flight paths with
the allocation to the hangars for n = 5 (green and orange) to the hotspots (red) with the restricted
areas in gray.

4. Discussion
4.1. Validation of the Hotspots Obtained from Open-Source Data

As described before, the determination of the hotspots is built on public georefer-
enced data. As the RescueFly project also plans to install emergency phones around the
two lakes, an inspection of the shorelines has been conducted. Those observations serve
to validate the hotspots generated from the open-source data to identify possible short-
comings. The inspection found most of the OSM hotspots to be suitable. However, the
northernmost hotspot is a larger beach area, which OSM identifies as a single point (with
tag leisure=beach_resort, see Figure 6), which underestimates the search area at Lake
Partwitz. Furthermore, the inspection found the marinas at both lakes to be less significant
for the aims of RescueFly, as swimmers are not expected in these areas. However, it may
be argued that a marina still induces the risk of water-related incidents according to our
initial assumptions.

For the validation of our open-source approach, we computed the service times from
our optimum UAV hangar locations for P = 1 and P = 2 with the hotspots from the
inspection. For P = 1, the previously determined UAV hangar location performs better
than 94.9% of the candidates. Furthermore, the average service time per hotpot increased
from 400 s to 421 s for P = 1 and from 307 s to 311 s for P = 2. Thus, the determined UAV
hangar locations are close to the optimum even if a few nearby areas are added afterward.

Our methodology is purposely based on open-source data, as it should be transferable
to any similar problem without needing an inspection. For P = 2, an error of 4s in the
average service time is deemed to be very low. Yet, it highlights the need for validation of
the input data, especially on community-drive platforms, such as OSM.
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4.2. Analysis of the Applicability of the Hangar Locations

Using open-source data, we demonstrated a fast and robust method for optimizing
UAV hangar locations considering restrictive areas and wind scenarios. The optimum
locations show significantly greater accessibility and lower service time than the other
hangar location candidates. Furthermore, the rescue times are significantly below the
maximum response time regulated for each federal state in Germany. Typically, rescue
stations shall be established to reach any emergency site along a public road within 15 min
for 95% of all annual cases, e.g., in Brandenburg [42]. Consequently, emergency services
should arrive at the closest public road to the accident site at the lake in about 900 s. Then,
additional time is required to reach the shoreline area, which may be difficult to access,
and the SAR time in the water. With the optimum UAV hangar locations, average service
times over all n ∈ Z for m = 1 of S̄P=1 = 351.1 s and S̄P=2 = 287.2 s, respectively, were
achieved. During this time, the UAV will provide a flotation device to the person in distress.
Thus, it reacts earlier than required, provides measures to increase survivability, and guides
emergency responders to the right location faster. If even faster UAV responses are deemed
necessary, a maximum permissible service time may serve as an additional constraint to
our optimization model.

However, the currently defined standard SAR mission uses a worst-case approach in
which an unfavorable wind delays the arrival of the UAV at the hotspot, and the person
in distress is only detected after the search area has been overflown completely. For the
facility location problem, we deem this assumption effective as the given service times are
guaranteed even in adverse situations. In reality, the person in distress will be detected
earlier in most cases, especially if the distress call specifies the position with sufficient
precision or the wind accelerates the UAV on the approach. Furthermore, the search phase
may be accelerated by surveying the area on approach and selecting an appropriate search
pattern based on the current conditions, e.g., the number of persons in the water, precision
of the emergency call, and wind conditions. Such a refinement from the standard SAR
mission to a case-by-case mission trajectory will be studied further.

The currently used positive and negative location factors are selected according to the
needs of the UAV hangar FLP but also based on data availability. Accordingly, the power
supply and property situation could not be assessed, as the required data are not accessible
to the public. However, if suitable information will be available, our methodology is able to
incorporate it as another data layer in the optimization. Additionally, our work provides a
set of second-best options based on Ai in case the optimum spot is unavailable, as indicated
by the heatmap in Figure 9.

5. Conclusions

Our work demonstrated an approach to determine optimum UAV hangar locations
in an environment with restricting factors both regarding the facility location itself and
the airspace. Thus, it combines a FLP with the mission planning for the proposed UAS.
Since the determination of the UAV hangar candidates, the hotspots as well as the derived
positive and negative location factors rely solely on open-source data, see Section 2.2, they
can be applied to any other area of interest directly. In this study, we used the SAR missions
with P = 2 and P = 1 UAV hangar locations at bathing lakes as one intended application.
However, the proposed methodology can easily transfer to other UAV use cases. Similarly,
the number of locations P may be increased as well, although it will impact the computation
time. As the proposed method computes the accessibility Ai for all location candidates,
second-best solutions can always be determined if the optimum solutions are not available,
e.g., due to land use issues.

The integration of the mission planning in the FLP allowed modeling additional con-
straints beyond the UAV endurance, such as non-direct routing due to airspace restrictions
and the impact of wind on flight time. The considered restricted airspaces, called UAV
geographical zones in the EU legislation [2], are established to reduce ground and air
risk. At the same time, SAR missions are always urgent, so our scenarios n ∈ Z permit
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us to ignore the UAV geographical zones if inevitable. As the A* is flexible in this regard,
restrictions for other use cases, such as time-dependent or altitude restrictions, may be
added to the mission description.

The current standard SAR mission represents a worst-case scenario, as it assumes the
person in distress to be found only after scanning the entire search area. We deem this
assumption suitable for the FLP, as it guarantees a maximum service time. As a next step,
we will study the efficiency and reliability of various search patterns for the hotspot area
to accelerate the service time further. Together with a UAV flight performance model to
estimate the energy consumption, an optimum SAR mission can be determined given the
prevailing weather situation and the size of the exposed crowds (ground risk) on the day
of operation.
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