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Abstract: This paper presents an architecture for controlling a quadrotor transporting a cable-
suspended load of uncertain mass. A family of trajectories is proposed that is composed by three
phases—lift-off, transit, and landing—and implemented as a hybrid system. The proposed control
system uses an adaptive geometric controller with asymptotic tracking stability. The mass of the
transported load was estimated using an adaptive mechanism, which adjusts the action resorting to a
geometric control method. The resulting system was validated in simulation with a mid-flight mass
reduction of the transported load, and tests were performed using a range of values of load mass and
maximum forward velocity. There is work in the literature that approaches the cable-suspended com-
ponent of the problem, and there are also papers focused on uncertainty in the model, mass included.
This work aimed to solve these two problems simultaneously, having the uncertain component being
the mass of the suspended load.

Keywords: mobile robots; trajectory planning; adaptive control; parameter estimation

1. Introduction

The use of quadrotors for the transportation of loads has been a topic of recent interest.
Both UPS [1] and Amazon [2] have projects to use drones for their deliveries. However,
there is another field of load transportation that has scientific interest, namely the use of
drones for transporting cable-suspended loads. The added complexity posed by the load
not being attached to the quadrotor calls for more complex solutions. Furthermore, it is
reasonable to assume that, in a real-world application, the mass of the load will not be
known a priori. This poses an even more complex problem. An application where such
a scenario is relevant is forest fire suppression using helicopters or multirotors. In this
application, there is an aircraft that has a load that changes (by loading up water or dropping
it). In an autonomous solution, the system would require an adequate trajectory to perform
its task and would have to be capable of adjusting its control to ensure that it can handle
the weight of the load. It is this specific scenario that is explored in this paper.

The topic of trajectory planning for quadrotors has been explored in works such
as [3–8]. By formulating the trajectory generation problem as a quadratic program with
an obstacle-free corridor, Reference [3] proposed a pipeline for path planning, trajectory
generation, and optimization for quadrotor navigation through indoor environments.
In [4], an adaptive nonlinear model predictive horizon method with deep reinforcement
learning was presented. An algorithm was proposed in [5] to solve nonlinear optimal
control problems in UAV path planning. This was achieved through approximating the
non-convex parts of the problem by a series of sequential convex programming problems.
In [6], a deep reinforcement learning method was proposed for UAV autonomous path
planning. Additionally, a method for model explanation based on feature attribution was
proposed to allow for easier interpretation of the behavior of the resulting path planner.
The proposed method in [7] uses a mixture of potential and positioning risk fields to
generate a hybrid directional flow to guide an unmanned vehicle in a safe and efficient path.
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In [8], model predictive control was used to reshape the trajectory of a group of quadrotors
to prevent collisions.

The topic of control methods for quadrotors with cable-suspended loads has been
tackled by other authors. A solution for trajectory generation and control based on the
differentially flatness property of the system was presented in [9] with stability and con-
vergence proofs. Another paper by the same authors [10] proposed a geometric control
method. Additionally, Reference [11] also considered a geometric approach and provided
stability proofs. An adaptive solution for an unknown mass of the load that relies on
classical PID control was considered in [12]. An MPC-based solution was presented in [13],
with performance comparisons to linear–quadratic regulator (LQR) control. An energy-
based nonlinear adaptive controller was delineated in [14], where a stability analysis and
a experimental results were provided, for the use of cables of unknown length. A finite-
time neuro-sliding mode controller design was proposed in [15] to handle parametric
uncertainties and external disturbances in the payload.

The problem of parametric uncertainty has also been explored in other related works.
The use of sliding control was proposed in [16], due to its robustness to the model errors,
parametric uncertainties, and other disturbances. However, the level of input activity
required by sliding control has made it an undesirable solution. The work described in [17]
proposed a geometric adaptive control solution for quadrotor attitude tracking. In this
work, the inertia of the system was unknown and had to be estimated. The work presented
in [18] provided a passivity-based adaptive solution for unknown mass and provided
proofs for stability and convergence. In [19], an adaptive controller was proposed for
loss-of-thrust actuation failures. Additionally, a multi-model height control solution for
uncertain mass was proposed in [20]. An artificial delay adaptive control solution was
proposed in [21] for under-actuated systems with limited structural knowledge and was
tested in simulation and experiments with quadrotors.

This work addresses the problem of defining a trajectory for a quadrotor with a
cable-suspended load of unknown mass. The load was considered to be a point-mass.
The proposed trajectory is based on a hybrid system and provides the reference values
to the control. The use of this trajectory was tested in simulation using an adaptive
geometric controller with asymptotic tracking stability. A mid-flight load mass reduction
was illustrated in the simulation, which emulates the fire-fighting scenario. The mass of the
load was estimated by an adaptive mechanism and was used to adjust the control.

The main contribution of this paper is to provide and validate an architecture for the control
of a quadrotor transporting a cable-suspended load of unknown mass. As shown previously,
there is work by other authors that approaches the cable-suspended component of the problem,
and there are also papers focused on uncertainty in the model, mass included. This work aimed
to solve these two problems simultaneously, having the uncertain component being the mass of
the suspended load and providing a proof that the method proposed has asymptotic stability.
The control action used includes an adaptive mechanism to account for the unknown mass.
The control solution proposed handles uncertainty and the suspended load using geometric
control methods combined with the adaptive mechanism.

This paper is organized as follows: The problem is described in Section 2. The pro-
posed control architecture is presented in Section 3. The hybrid system modeling used
in this paper is explained in Section 4. The reference trajectory generation is detailed in
Section 5. The controller is explained in Section 6. Simulation results are presented and
discussed in Section 7. Finally, some concluding remarks are drawn.

The notation used for scalars, vectors, and matrices is lowercase, bold lowercase,
and bold uppercase, respectively. Additionally, ‖·‖ represents the norm of a vector.

2. Problem Description

Consider a quadrotor attached to a load, assumed to be a point-mass, by a weightless
rigid cable of length l, as illustrated in Figure 1. The inertial reference frames I of the
quadrotor and load are handled with upward z and forward x. The positions of the
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load and quadrotor are denoted as pl and pq, respectively. The rotation matrix from the
body fixed frame B, relative to I, is given by R. The body-fixedframe angular velocities
of the cable and quadrotor are denoted by ωc and ωq, respectively. The direction of
the cable from the load position to the quadrotor position is given by the unit vector
q ∈

{
q ∈ R3|‖q‖ = 1

}
. The relation between the positions of the two bodies can be written

as pq = pl + lq. Additionally, ωc is restricted by q ·ωc = 0. The masses of the load and
quadrotor are ml and mq, respectively. The total mass of the system is mT = ml + mq.
The inertia of the quadrotor in its body-fixedframe is J ∈ R3×3 and is positive definite.

xB

zB

yB

zI

yIxI

q

pl

pq

Figure 1. Quadrotor with cable-suspended load.

The kinematic equations are

q̇ = ωc × q = S(ωc)q (1)

Ṙ = RS
(
ωq
)
. (2)

where S(a) is the skew-symmetric matrix of a vector a ∈ R3. The skew-symmetric matrix
is defined by the property that a× b = S(a)b.

The formulation of the model in this paper follows the Lagrangian method presented
in [11]. Therefore, the Lagrangian of the system is required. The kinetic energy of the
system is

T =
1
2

ml‖ṗl‖2 +
1
2

mq‖ṗl + lq̇‖2 +
1
2

ωq · Jωq, (3)

and the potential energy is

U = ml ge3 · pl + mqge3 · (pl + lq). (4)

The resulting Lagrangian is L = T −U, from which the system equations result:

mT p̈l −mql
(

S(q)ω̇c + ‖ωc‖2q
)
= u−mT ge3 (5)

ω̇c =
1

mql
S(q)

(
u−mqge3 −mq p̈l

)
(6)

Jω̇q + ωq × Jωq = τ, (7)

where u = Re3 f is the control force, f is the thrust, and τ ∈ R3 is the input moment.
The symbol e3 represents the vector e3 = [0 0 1]T . The orthogonal projection of u along q
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is u‖ (a parallel component), and the orthogonal projection to the plane normal to q is u⊥

(a normal component). These projections are defined as

u = u‖ + u⊥ (8)

u‖ = qqTu (9)

u⊥ =
(

I − qqT
)

u. (10)

Rewriting Equations (5) and (6) yields
(

mqqqT + ml I
)
(p̈l + ge3) = u‖ + mql‖ωc‖2q (11)

ω̇c =
1

mql
S(q)

(
u⊥ −mqge3 −mq p̈l

)
. (12)

The objective of this paper was to provide an architecture with a hybrid-system-based
trajectory that will be used for the control of a quadrotor transporting a cable-suspended
load of unknown mass. Two components are used for the architecture: a trajectory generator
and the controller. The architecture must transport the load from one point on the ground to
another point on the ground, while also reaching a sufficient height, and with a mid-flight
change in the load mass.

3. Control Architecture

The proposed architecture is composed of a hybrid-automaton-based trajectory that pro-
vides position, velocity, and acceleration references to an adaptive geometric controller. The fam-
ily of trajectories is designed to reflect the transportation of the load from one point on the
ground to another. The control is responsible for the estimate of the load mass and tracking of
the references provided by the trajectory. The architecture is presented in Figure 2.
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4. Hybrid System Modeling

Hybrid systems [22] can be modeled according to different definitions: as a hybrid
automaton, using hybrid behavior, and using event flow formulas. In this paper, the hybrid
system presented is defined as a hybrid automaton:

Definition 1. A generalized hybrid automaton is described by a six-tuple (L, X, A, W, R, Act),
where the symbols have the following meanings:

• L is a finite set, called the set of discrete states or locations. They are the vertices of a graph;
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• X is the continuous state space of the hybrid automaton in which the continuous state variables
x take their values. For our purposes, X ⊂ Rn or X is an n-dimensional manifold;

• A is a finite set of symbols that serve to label the edges;
• W = Rq is the continuous communication space in which the continuous external variables w

take their values;
• R is a subset of (L× X)× (A×W)× (L× X);
• Act is a mapping that assigns to each location l ∈ L a set of differential algebraic equations

Fl , relating the continuous state variables x to their time-derivatives ẋ and the continuous
external variables w:

Fl(x, ẋ, w) = 0. (13)

The solutions of these differential-algebraic equations are called the activities of the location.

The subset R incorporates the notions of location invariants, guards, and jumps in the
following way. To each location l, we associate the location invariant:

Inv(l) = {(x, a, w) ∈ X× A×W | (l, x, a, w, l, x) ∈ R}. (14)

Furthermore, given two locations l, l′, we obtain the following guard for the transition
from l to l′:

Guardll′ =
{
(x, a, w) ∈ X× A×W | ∃x′ ∈ X, (l, x, a, w, l′, x′) ∈ R

}
, (15)

with the interpretation that the transition from l to l’ can take place if and only if (x, a, w) ∈ Guardll′ .
Finally, the associated jump relation is given by

Jumpll′(x, a, w) =
{

x′ ∈ X | (l, x, a, w, l′, x′) ∈ R
}

. (16)

5. Trajectory

The proposed family of trajectories was chosen to provide references for the desired
load position pld ∈ R3, velocity ṗld ∈ R3, and acceleration p̈ld ∈ R3 of the load. It was
assumed that the quadrotor will maintain its x-vector facing forward. This section details
the proposed family of trajectories and its implementation. The trajectories are divided
into three phases, detailed in their respective subsections. The final subsection details the
implementation. A representation of one of the trajectories is provided in Figure 3.
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Fl(x, ẋ, w) = 0. (13)

The solutions of these differential-algebraic equations are called the activities of the location. 127

The subset R incorporates the notions of location invariants, guards, and jumps in the
following way. To each location l we associate the location invariant

Inv(l) = {(x, a, w) ∈ X × A × W | (l, x, a, w, l, x) ∈ R}. (14)

Furthermore, given two locations l, l′ we obtain the following guard for the transition
from l to l′:

Guardll′ =
{
(x, a, w) ∈ X × A × W | ∃x′ ∈ X, (l, x, a, w, l′, x′) ∈ R

}
, (15)

with the interpretation that the transition from l to l’ can take place if and only if (x, a, w) ∈
Guardll′ . Finally, the associated jump relation is given by

Jumpll′(x, a, w) =
{

x′ ∈ X | (l, x, a, w, l′, x′) ∈ R
}

. (16)

5. Trajectory 128

The proposed family of trajectories is chosen to provide references for the desired 129
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5.1. Phase 1—Lift-Off

During this initial phase, the quadrotor is requested to increase the load height at a
constant rate, until it crosses a height threshold. After crossing the threshold, it switches to
the second phase.

5.2. Phase 2—Transit

During this phase the quadrotor is requested to perform two tasks:

• Decelerate until the vertical velocity crosses the zero threshold and maintain zero
vertical velocity afterwards;

• Accelerate until a specified forward velocity threshold is passed and maintain the
specified forward velocity afterwards.

After a reaching a neighborhood of the desired endpoint, it switches to Phase 3.

5.3. Phase 3—Landing

During this phase, the quadrotor is requested to perform two tasks:

• Descend at a specified velocity until the load height threshold is reached, and, after-
wards, reach zero vertical velocity and height;

• Decelerate until the forward velocity crosses the zero threshold, and then, hover above
the endpoint.

5.4. Hybrid System Implementation

The trajectory is provided by a hybrid model [22], whose diagram is shown in
Figure 4. There are eight locations belonging to the set Q = {LO, R0V − RCF, M0V− RCF,
R0V −MCF, M0V−MCF, L− R0F, L−HLZ, and FA−HLZ} (also numbered in Figure 4
from 1 to 8), composed of the behaviors in Table 1. It was assumed that the viability of the
trajectory is maintained during testing.

Stage LO corresponds to the lift-off phase. Locations R0V − RCF, M0V − RCF,
R0V −MCF, and M0V − MCF correspond to the transit phase. Locations L − R0F,
L − HLZ, and FA − HLZ correspond to the landing phase. The state of the trajectory
generator is the desired position and velocity of the load xt = (pld, ṗld) ∈ R6. The inputs
of the generator are the position and velocity of the load w = (pl , ṗl) ∈ R6.
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a
pl · e3 ≥ β1

b
ṗl · e3 ≤ 0

ṗld · e3 := 0

c
ṗl · e1 ≥ β2

ṗld · e1 := β2

a
ṗl · e3 ≤ 0

ṗld · e3 := 0

b
ṗl · e1 ≥ β2

ṗld · e1 := β2

a
pl · e1 ≥ β3

ṗld · e3 := −β4

a
pl · e1 ≥ β3

ṗld · e3 := −β4

a

p l
· e 1
≥

β 3

ṗ ld
· e 3

:=
−β 4

b
pl · e1 ≥ β3

ṗld · e3 := −β4

a
ṗl · e1 ≤ 0

ṗld · e1 := 0
pld · e1 := β5

a
pl · e3 ≤ β6

pld · e3 := β7

1 2 3

4 5

6 7

8

Figure 4. Trajectory Hybrid System Diagram (e1 = [1 0 0]T).Figure 4. Trajectory hybrid system diagram (e1 = [1 0 0]T).
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Table 1. Location behaviors.

Abbreviation Name Diff. Equation

LO Lift-Off ṗld · e3 = β8
R0V Reach Zero Vertical Velocity p̈ld · e3 = −β9

M0V Maintain Zero Vertical
Velocity ṗld · e3 = 0

RCF Reach Cruise Forward
Velocity p̈ld · e1 = β10

MCF Maintain Cruise Forward
Velocity ṗld · e1 = β2

L Landing ṗld · e3 := −β4
R0F Reach Zero Forward Velocity p̈ld · e1 = −β11
HLZ Hover Landing Zone ṗld · e1 = 0
FA Final Approach ṗld · e3 = 0

The differential equations for the purpose of the desired experiment consist of, de-
pending on the stage, some combination of constant acceleration, velocity, or position.
Unless otherwise specified, the components of the acceleration p̈ld are zero. LO has a
constant upwards velocity and a constant x position; R0V has a downwards acceleration,
M0V has a constant height, RCF has a constant forward acceleration; MCF has a constant
forward velocity; L has a constant downward velocity; R0F has a backwards acceleration;
HLZ has a constant x position; FA has a constant height.

The edges of the system describe the possible transitions from stage l to l′. These are
illustrated in Figure 4. Locations R0V − RCF, M0V − RCF, and R0V −MCF can transition
to L− R0F for situations where the landing zone is very close to the lift-off point.

6. Control

This section details the control solution that will be used to test the trajectory. The con-
trol is first described assuming the load mass is known, providing a purely geometric
controller. The required adjustment to provide an adaptive solution is discussed at the end
of this section. The controller is divided into two components: the load control and the
quadrotor control. The first component handles the desired behavior of the load, generating
the requests to the quadrotor. These requests are sent to the quadrotor control, which han-
dles the behavior of the quadrotor. The overall control is based on [11] (and the references
therein) and [18].

6.1. Load Control

The first controller focuses on the load by ignoring the orientation of the quadrotor.
Effectively, it was assumed that u can be selected instantaneously. Since there are separate
inputs for the position of the load (u‖) and the cable orientation (u⊥), as evidenced by (11)
and (12), different control laws can be set for each component.

The u‖ component needs to adjust the gravitational acceleration of the load
a = p̈l + ge3. Therefore, it is set as

u‖ = µ + mql‖ωc‖2q + mqqqTa, (17)

where µ ∈ R3 is a virtual control input. To ensure that this component remains parallel to
q, µ has to be parallel as well. Replacing (17) in (11) yields

ml(p̈l + ge3) = µ. (18)

The desired value of µ can now be designed. However, to ensure that it is parallel to q,
its desired value µd is first selected as

µd = −k1epl − k2ėpl + ml(p̈ld + ge3), (19)
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where epl = pl − pld is the position error, pld is the desired load position, k1 ∈ R is the
position control gain, and k2 ∈ R is the velocity control gain. A parallel equivalent of µd is
obtained using

µ = qqTµd. (20)

To design the normal component u⊥ of the control, it is necessary to establish what are
the desired values of the direction of the cable qd and its angular velocity ωcd. Allowing
the controller to define these, instead of an external trajectory generator, allows it to select
values that are in agreement with the requests from the parallel component. For the case of
the cable direction, µd holds important information and yields

qd =
µd
‖µd‖

. (21)

The desired angular velocity is selected with the objective of achieving q = qd,
which provides

ωcd = qd × q̇d. (22)

To finish defining the normal input component, definitions of the errors of the direction
of the cable eq and of the cable angular velocity eωc are needed:

eq = qd × q (23)

eωc = ωc + S(q)2ωcd. (24)

Additionally, (12) is rewritten as

ω̇c =
1

mql
S(q)u⊥ − 1

l
S(q)a. (25)

The proposed formulation for u⊥ is

u⊥ = mqlS(q)
(

k3eq + k4eωc + (q ·ωcd)q̇ + S(q)2ω̇cd

)
−mqS(q)2a, (26)

where k3 ∈ R is the cable direction control gain and k4 ∈ R is the cable angular velocity
control gain.

6.2. Quadrotor Control

The quadrotor controller is responsible for providing the desired force defined in the
previous subsection by adjusting the thrust f and angular moments τ. Thus, a desired
matrix for the orientation of the quadrotor Rd is required. First, a value of the desired body
z-axis can be obtained from u:

b3 =
u
‖u‖ . (27)

Using a desired value of the body x-axis b1, which will be provided by the trajectory,
the desired rotation matrix:

Rd =

[
− b̂3

2
b1∥∥∥b̂3

2
b1

∥∥∥
b̂3b1
‖b̂3b1‖ b3

]
. (28)

is obtained. The desired value for the angular velocity ωqd is obtained using the inverse map
of a skew-symmetric matrix (A = S(a)⇔ a = S−1(A), a ∈ R3, A ∈ R3×3) according to

ωqd = S−1(RdṘd
)
. (29)

Having the desired values, the errors for the rotation matrix eR and the angular velocity
eωq can be defined as
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eR =
1
2

S−1
(

RT
d R− RT Rd

)
(30)

eωq = ωq − RT Rdωqd. (31)

The thrust is defined using the virtual control u of the previous controller:

f = u · Re3, (32)

while the moments τ require the newly defined variables:

τ = − k5

ε2 eR −
k6

ε
eωq + ωq × Jωq − J

(
S
(
ωq
)

RT Rdωqd − RT Rdω̇qd

)
, (33)

where k5 ∈ R is the rotation control gain, k6 ∈ R is the quadrotor angular velocity control
gain, and ε ∈ R is and additional control gain.

6.3. Adaptive Mechanism

In order for the presented controller to adapt to differences in the load mass, an adap-
tive mechanism [18] to adjust its outputs is required. Thus, an estimate of the load mass m̂l
is deduced based on the desired gravitational acceleration and the errors of the position
and velocity of the load. This way, the estimate can evolve based on how much the load is
lagging behind the requested trajectory. The proposed mechanism is

˙̂ml = −ν(p̈ld + ge3) ·
(
ėpl + c1epl

)
. (34)

This mechanism was selected because it preserves the tracking stability of the geomet-
ric solution, which will be shown in Appendix A.

Rewriting the relevant control equation from the previous sections, (19), to include the
explicit estimate of the load mass results in

µd = −k1epl − k2ėpl + m̂l(p̈ld + ge3). (35)

7. Simulation Results

Two simulations were prepared to test the proposed solution. The parameters of the
system are shown in Table 2. The control gains are presented in Table 3. The trajectory
parameters are presented in Table 4. Some of these parameters were obtained by fine tuning.
These parameters are provided for the sake of the reproducibility of the results. For plotting
purposes, the locations of the trajectory are attributed an equivalent number: LO = 1,
R0V − RCF = 2, M0V − RCF = 3, R0V − MCF = 4, M0V − MCF = 5, L − R0F = 6,
L− HLZ = 7, FA− HLZ = 8, as highlighted in Figure 4.

Table 2. System parameters.

Parameter Value

mq (kg) 0.42
Jx (kg m2) 2.2383× 10−3

Jy (kg m2) 2.9858× 10−3

Jz (kg m2) 4.8334× 10−3

l (m) 0.75
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Table 3. Control gains.

Gain Value

k1 0.5
k2 0.9
k3 0.125
k4 3
k5 10−4

k6 2× 10−4

ν 0.02
c1 0.5
ε 10−2

Table 4. Trajectory parameters.

Parameter Value

β1 0.5
β2 0.35
β3 8.7
β4 0.11
β5 10
β6 0.03
β7 0
β8 0.15
β9 0.04
β10 0.3
β11 0.08

For the purpose of measuring the errors regarding q and R, the following metrics are
proposed, respectively: Ψq = 0.5‖q− qd‖2 and ΨR = 0.5‖R− Rd‖2.

The first simulation included all phases of the trajectory. In this case, the mass of the
load was tested at different values with a 0.02 kg (up to 4% of the total mass) drop after
pl · e1 = 5. The results of the simulation are presented in Figure 5, where the selected
mass values are shown in the legend. The results were similar for all cases. The quadrotor
was capable of following the trajectory in all locations of the trajectory, except L− R0F,
as evidenced by the rising error in Figure 5e and the delayed response in Figure 5c before
the 34 s mark. The error observed in Figure 5b,d coincides with the mass estimate error at
the start of the simulation and after the mass change. The forward velocity gains oscillation
when there are changes to the requested velocity and to the load mass. This oscillation is
dissipated, but remains for some time. For example, after the four-second mark (change in
location R0V −MCF), it takes approximately four seconds to dissipate. The orientation of
the quadrotor converges quickly to the desired value, as evidenced by the low peaks in the
error measurement in Figure 5f. Lower load mass values lead to higher error measurements
in Figure 5e,f. The thrust in Figure 5g is quick to respond and only presents a large peak
when the mass change occurs. The moment is also quick to respond, only peaking when
there are sudden changes in the requested orientation of the quadrotor. These request
changes coincide with a change of location of the trajectory. The peaks of the moments
are more pronounced for lower load masses. The mass estimate (Figure 5i) is also fast,
converging with a settling time of two seconds to the real value at the start of the simulation
and after the mass change. Additionally, the mass estimate has no overshoot, with sudden
changes resulting from location changes. The largest values of the z velocity error in
Figure 5d coincide with the points of larger mass estimation error.
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ṗ
l
·
e
3
(m

/s
)

ref

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.04

0

0.04

0.08

0.12

0.16

0.2

0.24

Ψ
q

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.01

-0.005

0

0.005

0.01

Ψ
R

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

(b)

0 10 20 30 40

Time (s)

-2

0

2

4

6

8

10

12

p
l
·
e
1
(m

)

ref

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

p
l
·
e
3
(m

)

ref

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.2

0

0.2

0.4

0.6

ṗ
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ṗ
l
·
e
3
(m

/
s)

ref

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.04

0

0.04

0.08

0.12

0.16

0.2

0.24

Ψ
q

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.01

-0.005

0

0.005

0.01

Ψ
R

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

(c)

0 10 20 30 40

Time (s)

-2

0

2

4

6

8

10

12

p
l
·
e
1
(m

)

ref

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

p
l
·
e
3
(m

)

ref

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.2

0

0.2

0.4

0.6

ṗ
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ṗ
l
·
e
3
(m

/
s)

ref

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.04

0

0.04

0.08

0.12

0.16

0.2

0.24

Ψ
q

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.01

-0.005

0

0.005

0.01

Ψ
R

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

(d)

0 10 20 30 40

Time (s)

-2

0

2

4

6

8

10

12

p
l
·
e
1
(m

)

ref

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

p
l
·
e
3
(m

)

ref

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.2

0

0.2

0.4

0.6

ṗ
l
·
e
1
(m

/s
)

ref

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

ṗ
l
·
e
3
(m

/s
)

ref

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.04

0

0.04

0.08

0.12

0.16

0.2

0.24

Ψ
q

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.01

-0.005

0

0.005

0.01

Ψ
R

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

(e)

0 10 20 30 40

Time (s)

-2

0

2

4

6

8

10

12

p
l
·
e
1
(m

)

ref

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

p
l
·
e
3
(m

)

ref

7.5x10−2

8.0x10−2

8.5x10−2

9.0x10−2

9.5x10−2

0 10 20 30 40

Time (s)

-0.2

0

0.2

0.4

0.6

ṗ
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Figure 5. Simulation results for different load masses (e2 = [0 1 0]T). (a) x position. (b) z position.
(c) x velocity. (d) z velocity. (e) q error. (f) R error. (g) thrust. (h) y moment. (i) Mass estimate.
(j) Location number (refer to Figure 4).
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The second simulation only included the first two phases. In this case, different
maximum forward velocities were tested. The starting load mass was 0.085 kg and dropped
0.02 kg after x · e1 = 5. The results of the simulation are presented in Figures 6 and 7, where
the selected maximum forward velocity values are shown in the legend. The quadrotor is
capable of moving at the desired maximum velocities, as evidenced in Figure 6c. Similar
observations can be made for this simulation, when compared with the previous one,
in regard to when the peaks and oscillations occur. Additionally, it was observed that
identical behaviors occurred after the mass drop, even when traveling at different forward
velocities, as highlighted in Figures 6b,d,g and 7a. Very little error is observed in Figure 6e.
The highest peaks after the mass drop in Figure 6f,h are observed for the 0.35 and 0.4 m/s
cases, while the lowest peaks occur for the lowest velocity case.
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Figure 6. Simulation results for different maximum forward velocities (e2 = [0 1 0]T). (a) x position.
(b) z position. (c) x velocity. (d) z velocity. (e) q error. (f) R error. (g) thrust. (h) y moment.
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Figure 7. Simulation results for different maximum forward velocities: continued from Figure 6.
(a) Mass estimate. (b) Location number (refer to Figure 4).

The controller performance was also tested for an increased maximum forward velocity
scenario, away from the conservative nominal value. Figure 8 illustrates this scenario with
a maximum forward velocity of 3.5 m/s (10-times more than the average value previously
used. No discernible change was observed in the behavior of the velocity.
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)

Figure 8. Simulation forward velocity results for increased maximum velocity (3.5 m/s).

8. Conclusions

This paper proposed and validated an architecture for a quadrotor transporting a cable-
suspended load of unknown mass from one point on the ground to another. A trajectory
modeled as a hybrid system was proposed. An adaptive geometric control method with
asymptotic tracking stability was used. The adaptive component of the control handles the
mass uncertainty. The proposed system was tested in simulation with different load masses
(between 0.075 and 0.095 kg) and maximum forward velocities (between 0.25 and 0.45 m/s),
showing low settling times for the mass estimation and good tracking capabilities. The
stability was verified in the simulation. Other effects, such as external disturbances (wind,
rain, air density, among others) were considered as being rejected by the controller. These
disturbances are being added to the model to design a more robust version of this control
method in future work.
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Appendix A. Controller Stability

The stability of the control method hinges on the following theorem:

Theorem A1. The proposed controller provides an asymptotically stable zero equilibrium of track-
ing errors, so long as the selected trajectory ensures that

∥∥(ėpl + c1epl

)
· y
∥∥ ≤ α

ml

(
c1k1

∥∥epl

∥∥2
+ c1k2

∥∥epl

∥∥∥∥ėpl

∥∥+ k2
∥∥ėpl

∥∥2
)

+

{
c1B
∥∥epl

∥∥+
(

k1

ml
epmax + B

)∥∥ėpl

∥∥
}∥∥eq

∥∥
(A1)

y =
1

ml

(
qT

d µd(m̂l)
){(

qTqd

)
q− qd

}
= − 1

ml

(
qT

d µd(m̂l)
)

S(q)eq. (A2)

The proof of Theorem A1 hinges on showing that there is a set of trajectories that can
be requested from the system, for which the system is stable. For this, the error dynamics
have to be examined first. From Equations (18) and (20) results

ml(p̈l + ge3) = qqTµd(m̂l), (A3)

which can be adjusted as follows:

ml(p̈l + ge3) = µd(ml) + qqTµd(m̂l)− µd(ml) (A4)

ëpl = −
k1

ml
epl −

k2

ml
ėpl +

1
ml

qqTµd(m̂l)−
µd(ml)

ml
(A5)

ëpl = −
k1

ml
epl −

k2

ml
ėpl + y +

1
ml

(µd(m̂l)− µd(ml)) (A6)

ëpl = −
k1

ml
epl −

k2

ml
ėpl + y +

1
ml

(m̂l −ml)(p̈ld + ge3). (A7)

In these equations, y ∈ R3 represents the error associated with the difference between
q and qd, and it is given by

y =
1

ml

(
qqT − I

)
µd(m̂l). (A8)

Equation (21) dictates that µd(m̂l) = qdqT
d µd(m̂l), which allows writing y as a function

of eq:

y =
1

ml

(
qT

d µd(m̂l)
){(

qTqd

)
q− qd

}
= − 1

ml

(
qT

d µd(m̂l)
)

S(q)eq. (A9)

An upper bound of y can be obtained as

‖y‖ ≤ 1
ml
‖µd(m̂l)‖

∥∥eq
∥∥ ≤

{
k1

ml

∥∥epl

∥∥+ k2

ml

∥∥ėpl

∥∥+ B
}∥∥eq

∥∥. (A10)

for some positive constant B, which depends on the desired trajectories of the load.
The next step of the proof requires a Lyapunov function to show the tracking stability.

First, a cable configuration error function Ψq that is positive definite around q = qd is
defined as

Ψq = 1− q · qd. (A11)

For positive constants epmax , ψq ∈ R, consider the following open domain containing
the zero equilibrium of tracking error variables:

D =

{(
epl , ėpl , eq, eωc

)
∈
(
R3
)4
|
∥∥epl

∥∥ < epmax , Ψq < ψq < 1
}

. (A12)
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In this domain,
∥∥eq
∥∥ =

√
Ψq
(
2−Ψq

)
≤
√

ψq
(
2− ψq

)
, α < 1. It can be shown that

the cable configuration error is quadratic with respect to the error vectors in the sense that

1
2

∥∥eq
∥∥2 ≤ Ψq ≤

1
2− ψq

∥∥eq
∥∥2, (A13)

where the upper bounds are satisfied only in the domain D.
The Lyapunov function is defined as

V =
1
2

∥∥ėpl

∥∥2
+

k1

2ml

∥∥epl

∥∥2
+ c1epl · ėpl +

1
2νml

∥∥eml

∥∥2
+

1
2
‖eωc‖2 + k3Ψq + c2eq · eωc , (A14)

where c1, c2 are positive constants and eml = m̂l −ml is the mass estimate error. The deriva-
tive of (A14) is

V̇ = −
(

k2

ml
− c1

)∥∥ėpl

∥∥2 − c1k1

ml

∥∥epl

∥∥2 − c1k2

ml
epl · ėpl

+
(
ėpl + c1epl

)
· y− (k4 − c2)‖eωc‖2 − c2k3

∥∥eq
∥∥2 − c2k4eq · eωc .

(A15)

Let zx =
[∥∥epl

∥∥,
∥∥ėpl

∥∥]T , zq =
[∥∥eq

∥∥, ‖eωc‖
]T ∈ R2. The Lyapunov function satisfies

zT
x P

¯ xzx + zt
qP

¯ qzq +
1

2νml

∥∥eml

∥∥2 ≤ V ≤ zT
x P̄xzx + zt

qP̄qzq +
1

2νml

∥∥eml

∥∥2, (A16)

where the matrices P
¯ x, P

¯ q, P̄x, and P̄q ∈ R2×2 are given by

P
¯ x =

1
2

[
k1
ml

−c1

−c1 1

]
, P̄x =

1
2

[
k1
ml

c1

c1 1

]
,

P
¯ q =

1
2

[
2k3 −c2
−c2 1

]
, and P̄q =

1
2

[
2k3

2−ψq
c2

c2 1

]
.

If the constants c1, c2 are sufficiently small, all of the above matrices are positive
definite. It follows that the Lyapunov function is positive definite.

From (A10), an upper-bound of the fourth element of V̇ is given by

∥∥(ėpl + c1epl

)
· y
∥∥ ≤ αc1k1

ml

∥∥epl

∥∥2
+

αk2

ml

∥∥ėpl

∥∥2
+

αc1k2

ml

∥∥epl

∥∥∥∥ėpl

∥∥

+

(
k1

ml
epmax + B

)∥∥ėpl

∥∥∥∥eq
∥∥+ c1B

∥∥epl

∥∥∥∥eq
∥∥.

(A17)

Substituting this into (A15) and rearranging, V̇ is bounded by

V̇ ≤ −zTWz, (A18)

where z =
[
‖zx‖,

∥∥zq
∥∥]T ∈ R2, and the matrix W ∈ R2×2 is defined as

W =

[
λm[W x] − 1

2

∥∥W xq
∥∥

− 1
2

∥∥W xq
∥∥ λm

[
Wq
]
]

, (A19)

where λm[A] is the minimum eigenvalue of A ∈ Rn×n; the sub-matrices are given by:
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W x =

[ c1k1
ml

(1− α) − c1k2
2ml

(1 + α)

− c1k2
2ml

(1 + α) k2
ml
(1− α)− c1

]
, Wq =

[
c2k3 − c2k4

2
− c2k4

2 k4 − c2

]
,

and W xq =

[
c1B 0

k1
ml

epmax + B 0

]
.

If the constants c1, c2, which are independent of the control input, are sufficiently
small, the matrices Wx, Wq are positive definite. Furthermore, if the error in the direction of
the cable is sufficiently small (determined by constant B) relative to the desired trajectory
in Section 5.4, the controller gains can be chosen such that the matrix W is positive definite.
Since V̇ does not include the mass estimate, it is necessary to analyze V̈ to finalize the
stability proof.

From (A18), it is shown that epl , ėpl , eq, eωc , and eml are bounded. The derivative of
(A15) yields

V̈ =
k2

ml

(
2

k2

ml
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)∥∥ėpl

∥∥2
+

c1k1k2

m2
l

∥∥epl

∥∥2

+

[
2k1

ml

(
k2

ml
− 2c1

)
+ c1

(
k2

ml

)2
]

epl · ėpl

− eml

ml

[
2
(

k2

ml
− c1

)
ėpl +

c1k2

ml
epl

]
· (p̈ld + ge3)

−
[

1
ml

(k1 + c1k2)epl + 3
(

k2

ml
− c1

)
ėpl −

eml

ml
(p̈ld + ge3)

]
· y

+ ‖y‖2 +
(
ėpl + c1epl

)
· ẏ + k4(2k4 − 3c2)‖eωc‖2 + c2k3k4

∥∥eq
∥∥2

+
[
2k3(k4 − 2c2) + c2k2

4

]
eq · eωc .

(A20)

y is bounded, as shown in (A10). Its derivative ẏ is also bounded. p̈ld is provided by
the proposed trajectory, which ensures it is bounded. Therefore, V̈ is bounded, and V̇ is
uniformly continuous in t ∈ [0, ∞) and negative definite. From Barbalat’s lemma, it follows
that the zero equilibrium of tracking errors is asymptotically stable.

The proof of the stability of the controller in Section 6.2 is provided in Annex C. of [23],
therefore proving that Theorem A1 is correct.
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