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Abstract: The demand for autonomous UAV swarm operations has been on the rise following the
success of UAVs in various challenging tasks. Yet conventional swarm control approaches are inade-
quate for coping with swarm scalability, computational requirements, and real-time performance. In
this paper, we demonstrate the capability of emerging multi-agent reinforcement learning (MARL)
approaches to successfully and efficiently make sequential decisions during UAV swarm collaborative
tasks. We propose a scalable, real-time, MARL approach for UAV collaborative navigation where
members of the swarm have to arrive at target locations at the same time. Centralized training and
decentralized execution (CTDE) are used to achieve this, where a combination of negative and posi-
tive reinforcement is employed in the reward function. Curriculum learning is used to facilitate the
sought performance, especially due to the high complexity of the problem which requires extensive
exploration. A UAV model that highly resembles the respective physical platform is used for training
the proposed framework to make training and testing realistic. The scalability of the platform to
various swarm sizes, speeds, goal positions, environment dimensions, and UAV masses has been
showcased in (1) a load drop-off scenario, and (2) UAV swarm formation without requiring any
re-training or fine-tuning of the agents. The obtained simulation results have proven the effectiveness
and generalizability of our proposed MARL framework for cooperative UAV navigation.

Keywords: UAV cooperative navigation; multi-agent reinforcement learning; autonomous decision
making; centralized training and decentralized execution; curriculum learning

1. Introduction

A UAV swarm is a cyber-physical system consisting of multiple, possibly heteroge-
neous, UAVs that cooperate to execute a particular mission. A significant amount of swarm
applications involve making decisions on how the swarm members will maneuver to
cooperatively achieve their objective, such as load delivery [1,2], area coverage [3], search
and rescue [4], formation [5], path planning [6], and collision avoidance [7], among others.
There are various benefits of deploying swarms of UAVs to carry out cooperative tasks as
compared to a single agent, such as fault tolerance, task distribution, execution efficiency
and effectiveness, and flexibility, to name a few. This has paved the way for further devel-
opments of swarms, particularly through artificial intelligence. As opposed to conventional
approaches, learning-based decision-making involves less complex computations, requires
neither prior nor global knowledge of the environment, and exhibits better scalability.

Deep reinforcement learning (DRL) [8] is a cutting-edge learning paradigm that accom-
modates sequential decision-making capabilities and has proved effective in a plethora of
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robotic applications. By interacting with the environment, a DRL agent controlling a robotic
platform is able to learn a certain behavior through incentives and penalties provided by
the environment as a result of certain actions decided by the agent. DRL can be extended
to multiple agents through varying levels of centralization [9]. Centralized training and
centralized execution (CTCE) is the most direct extension, where a single DRL agent is
trained to control multiple platforms simultaneously. Although this approach exhibits high
efficiency, it is computationally expensive, susceptible to failure upon communication loss,
and hence is not robust. The second variant is the decentralized training and decentralized
execution approach which is definitely more scalable and robust to a communication fail-
ure. This is attributed to the fact that a separate agent is trained to control every entity in
the swarm which makes the approach less efficient and more computationally expensive.
An alternative approach that combines the advantages of both levels of centralization is
centralized training and decentralized execution (CTDE). In CTDE, agents are trained in a
centralized manner and hence they exhibit collaborative behavior while maintaining the
flexibility and scalability of the swarm. Various works in the literature have been carried
out to employ multi-agent reinforcement learning (MARL) in various formulations to solve
concurrent challenges concerning cooperative UAV applications. In the following section, a
synopsis of the most recent related work on MARL-based UAV applications is presented.

1.1. Related Work

In reference [10], reinforcement learning-based path planning of muli-UAV systems is
proposed using CTDE. A long short-term memory (LSTM) layer is used within a proximal
policy optimization (PPO) agent, to facilitate making decisions based on current and past
observations of the environment. Their reward function was designed as a weighted sum
of the objectives that the agent is expected to achieve. Model validation was carried out in
a simulated environment with three UAVs. By visualizing the reported results, the planned
paths for the UAVs are not very smooth. This behavior may result due to various factors,
such as oscillations in subsequent actions.

The work presented in [11] addresses the problem of flocking control of UAVs using a
CTDE approach based on PPO. The approach aimed at maintaining a flocking behavior
following the model suggested by Reynolds [12] and training was done using a simplified
UAV model. The task was defined in such a way that the UAV swarm safely travels as
fast as possible towards the goal with minimal distance to the swarm’s spatial center. The
reward formulation was in terms of the Euclidean distances to the goal, the obstacles, and
the swarm center. The UAVs in this work are assumed to fly at different altitudes and fixed
speeds. The former condition simplifies exploration by excluding swarm collisions from
the experiences, and the latter limits the control of the agent to the heading of the UAV.
Controlling the speed or the position of the UAV using the reinforcement learning agent
allows for more flexibility and efficiency, yet makes exploration much more challenging.
This approach also requires communication between the UAVs in the swarm members,
which makes the approach susceptible to communication failure. Simulation results were
demonstrated with swarms including up to ten UAVs.

In reference [13], a multi-agent UAV navigation approach was developed using an
extension of the original multi-agent deep deterministic policy gradient (MADDPG) [14].
The experiences collected by the agent during training are assigned priorities. Based on
these priorities, the experiences are sampled out of the buffer to update the trainable
parameters of the neural networks that constitute the MADDPG agent. This means that
better experiences have a higher chance of being selected to update the network. However,
it is also important for the agent to learn about undesired behaviors since it is highly likely
that the agent will encounter previously unseen experiences during real-time deployment.

Another CTDE multi-agent reinforcement learning approach was presented in [15] for
the application of collision avoidance of homogeneous UAVs. A PPO agent was adopted
to decide on the acceleration of the UAVs in the swarm to maintain safety by avoiding
collisions. Every UAV is aware of the positions and velocities of all other UAVs in the
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environment. This condition might be challenging to achieve in real-world scenarios and
may require strong communication if some UAVs are out of the observation range of others
in the environment. To circumvent the scalability issue, the algorithm uses an LSTM that
encodes the states of all the agents in the swarm into a fixed-size vector. Quantitative results
report a high success rate, however, the smoothness of the generated UAV trajectories could
be improved. In reference [16], a hierarchy of reinforcement learning agents was used to
achieve a multi-objective UAV swarm suppression of an enemy air-defense (SEAD) mission.
The top-level agent is concerned about pinpointing the target location to be attacked, while
the lower-level agent makes decisions on how the swarm will cooperatively attack the
target. Training the agents was done in a decentralized manner, without any experience
sharing between the two agent levels.

The work proposed in [17] addresses fixed-wing UAV formation using a leader–
follower approach through deep reinforcement learning. The leader UAV makes decisions
on how to maneuver, while the others (the followers) try to maintain a certain formation by
executing the control commands specified by the leader and communicating the resulting
states back. The swarm is rewarded based on defined relative positions between the UAVs
respective to a certain formation. The proposed algorithm requires communication between
the swarm members and for that, the authors proposed a communication protocol to ensure
every UAV has a communication link with at least one member in the swarm. However,
any loss of communication would result in undesired formation since the followers rely
completely on the leader. An improvement to the original PPO algorithm was proposed to
encourage better exploration.

A MARL-based multi-UAV decision making approach was proposed in [18]. A simple
UAV model was used to train a multi-agent UAV system for an air-combat mission. A
gated recurrent unit and an attention mechanism were used in the decentralized actor and
centralized critic networks, respectively, to train a policy that is robust to environmental
complexities. The action space combined continuous and discrete actions to make decisions
concerning the UAV motion and the combat activity, respectively.

Several other multi-UAV flocking and navigation approaches were proposed using
centralized reinforcement learning, such as [19,20]. However, such approaches require
communication between the UAVs, rely on global information about the environment, and
may not be flexible in terms of the size of the swarm.

An interesting research direction in MARL is credit assignment. When a reinforce-
ment learning agent interacts with the environment, it receives a single scalar value as a
reward/penalty for its action(s). In the case of cooperative tasks, multiple agents perform
the learning task by taking actions to optimize a single reward that represents them all. This
setting introduces a new challenge to MARL, in which agents become “lazy” [21]. In other
words, some agents may not perform well as everyone else in the team, and yet receive
the same reward collectively. Researchers have proposed several learning [21,22] and
non-learning [23–25] approaches to tackle this issue by assigning credit to each agent based
on their contribution to the success of the collaborative task. The learning-based methods
rely on training agent-specific critic networks in addition to the global critic network to
assist with factorizing the global reward into values that reflect the actual contribution of
each agent in the team. The other non-learning methods use no additional networks; rather,
they employ a difference-reward of various formulations to compute the advantage of each
agent’s contribution to the collaborative outcome. For instance, the advantage function
reflects the value of an agent’s actions [23,24] or the agent’s actions and observations [25].
Specifically, the approach in [25] implements a multi-agent collision avoidance approach
using CTDE. Upon updating the network parameters, the advantage of each agent in the
swarm is computed based on the contribution of their action and observation to the global
state. The objects used to represent the UAVs in the swarm were defined using primitive
kinematic equations, which are very simplistic and hard to transfer to reality. Furthermore,
the action space is the heading of the UAV, where UAVs are assumed to fly at a fixed
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speed. This simplifies exploration, since the action space is bounded and varies along a
single dimension.

1.2. Contributions

In this paper, a multi-agent reinforcement learning (MARL)-based cooperative naviga-
tion of a swarm of UAVs (as depicted in Figure 1) is developed through centralized training
and decentralized execution (CTDE). Curriculum learning is used to facilitate and expedite
convergence, in presence of various task complexities arising from partial environment
observability, multi-agent training, and exploration in continuous state and action space
scenarios. A reward function, combining positive and negative reinforcement, is formu-
lated to encourage cooperative behavior and to ensure that agents achieve their individual
goals simultaneously, although executed in a decentralized manner. The cooperative nav-
igation approach is scaled-up to work with a large number of agents without requiring
re-training or varying the number of agents during training, as opposed to the approaches
in the literature, such as [25], where changing the swarm size requires retraining the agent
since the observation space and hence the dimensions of the neural network inputs will
differ. Scalability of the proposed approach was also achieved in terms of the swarm
speed, and the size of the task environment. The generalizability of the proposed approach
was demonstrated through a load delivery application, where the mass of the platform
changes during the cooperative navigation task after the swarm drops off payloads (of
variable mass per UAV). The swarm was shown to continue the task, and arrive at the final
navigation goal (which is set during the task) at the same time, without fine-tuning the
parameters of the MARL agent. Extensive testing of the proposed approach was carried
out in simulations with varying swarm speeds, navigation goals, and environment sizes.
Sample UAV swarm formation scenarios are also showcased and the convergence of the
proposed approach is demonstrated.

Figure 1. UAV swarm cooperative navigation.

In summary, the contributions of this paper are listed below:

• The development of a scalable, real-time, autonomous MARL-based collaborative
navigation approach for a swarm of UAVs using centralized training and decentral-
ized execution.

• The training of the proposed collaborative navigation approach based on a combi-
nation of curriculum learning and early stopping using a reward formulation that
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encourages cooperative behavior during decentralized execution by means of posi-
tive reinforcement.

• Demonstration of the proposed collaborative navigation approach in a load delivery
scenario and in swarm formation.

• Extensive testing of the proposed approach across various initial conditions, swarm
sizes, UAV speeds, UAV loads, and environment sizes.

2. Methods
2.1. Task Description

The proposed MARL approach is designed for a cooperative navigation task in which
a set of agents, in this case, UAVs, are expected to navigate to a set of locations in the task
environment. Starting from an initial position, every UAV safely maneuvers to a specific
target, within a certain period of time. UAVs are expected to simultaneously arrive at
their target locations while operating independently in a decentralized manner. During
execution, each agent will only obtain access to local observations within a certain range
around the corresponding UAV. Cooperative behavior during decentralized execution is
achievable because policies are obtained through centralized training, based on a reward
formulation that encourages goal achievement at the individual and collaborative levels.
Particularly, training is done with access to global observations collected by all members
of the swarm and the parameters of the involved neural networks are updated based
on the rewards pertaining to the collective swarm behavior. Collaborative navigation
could be deployed in environments with various sizes, and consequently, the maximum
allowable speeds may need to be adjusted based on the available space. In addition, the
number of UAVs participating in the collaborative task varies based on the application.
Flexibility and scalability of the swarm are essential and need to be accounted for in any
swarm application.

2.2. Centralized Training and Decentralized Execution

Centralized training and decentralized execution (CTDE) [14] is an approach to MARL
where the computational complexity is offloaded onto the training process rather than
execution. A popular implementation of this approach is the centralized critic training
and decentralized actor execution (as illustrated in Figure 2), which is an extension of
the policy–gradient actor–critic model. Particularly, the critic network is trained offline,
without constraints on real-time performance. The main purpose is to facilitate obtaining
decentralized policies that could accomplish the cooperative multi-agent task through
access to global information obtained by multiple agents during training, but not execution.
In such a setting, every agent partially observes the environment and hence the problem
could be modeled using an extension of Markov decision processes for multiple agents.
This extension is referred to as a decentralized partially observable Markov decision process
(Dec-POMDP) and is formulated as a five-tuple (S ,O,A, R, T ) encapsulating:

• State space (S): the global setting of the environment including all the agents.
• Observation space (O): the set of individual observations that agents perceive from

the environment.
• Action space (A): a set of actions that the agents execute in the environment.
• Reward (R): the incentives that agents receive upon acting in the environment.
• Transition function (T ): defines how agents transition from one state to another.

While operating, each agent attempts to maximize its expected return R from the
ongoing task, as defined in (1).

R =
T

∑
t=0

γtRt+1 (1)

where T is the time horizon, and γ is a discount factor that determines the importance of
future rewards and falls in the range [0, 1).
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Figure 2. Overall centralized training and decentralized execution (CTDE) multi-agent reinforcement
learning (MARL) framework for collaborative UAV swarm navigation.

In a policy gradient method where neural networks are used as policy estimators, the
trainable parameters of the network are directly updated to maximize the objective of the
optimization which in this case is the agent’s total return. The update is carried out by
taking steps in the direction of the gradient of the objective function. The objective function
and its gradient for a deterministic policy are formulated in (2) and (3).

J(θ) = Es∼pµ [R(s, a)] (2)

∇θ J(θ) = Es∼D [∇θµθ(a|s)∇aQµ(s, a)|a=µθ(s)] (3)

where s ∈ S , pµ is the state distribution, a ∈ A is an action,D is a set of transitions collected
through experiences and stored in the experience buffer, and Qµ(s, a) is the action-value
function associated with the deterministic policy µ.

For the case of CTDE-based MARL, the policy gradient algorithm could be extended
to perform centralized critic training based on global observation (x) of N agents, each
following a policy µi with a set of trainable parameters θi, where i ∈ 1, ..., N. The updated
formulation of the policy gradient is shown in (4).

∇θi J(θi) = Ex,a∼D [∇θi µi(ai|oi)∇aiQ
µ
i (x, a1, ..., aN)|ai=µi(oi)

] (4)

where oi ∈ O is the observation of agent i. Every transition in the experience buffer D in
the multi-agent setting contains the current global state, the next global state, the individual
actions per agent, and the corresponding rewards. In the current work, the deterministic
policy and the corresponding value function and computed using neural networks, referred
to as the actor and critic, respectively.

2.3. Proposed Model
2.3.1. Actor and Critic Architecture

An actor–critic agent is adopted to perform the cooperative navigation task. The
critic is centralized and hence receives global input from the swarm, while the actor is
decentralized where it processes local observations. Figure 3 shows a detailed description
of the architecture of both the critic and actor. The critic consists of two input paths, one for
the global state and the other for the swarm actions. The states are passed through seven



Drones 2023, 7, 193 7 of 19

hidden dense layers, activated using the rectified linear unit (ReLU), while the actions are
passed through a single ReLU activated dense layer.

Figure 3. Architecture of the proposed actor and critic networks.

ReLU(x) = max(0, x) (5)

The outputs of the two paths are then concatenated and passed into two ReLU acti-
vated dense layers. Finally, a single-neuron layer outputs the value of an action (a) taken in
the state (s).

The actor-network, on the other hand, consists of four hidden dense layers activated
using ReLU, followed by a two-neuron layer activated using hyperbolic-tan (tanh) to output
actions in the range [−1, 1].

tanh(x) =
ex − e−x

ex + e−x (6)

However, since it is sometimes desired to fly UAVs at higher speeds, particularly when
the target locations are far apart, a scaling layer was used to set the maximum UAV speed
per task.

It is worth noting that the actor-critic agent contains duplicate networks of the actor
and critic, referred to as target actor and target critic, respectively. These networks are
initialized to the same parameters as the actor and critic but are updated less frequently to
achieve learning stability.

2.3.2. State Space and Action Space

At time step t, an agent i observes ot
i ∈ O which represents its local surrounding;

namely the relative distance to any other agent within the observation range, the speed of
the observed neighbor, and the relative distance to the target location. It is worth noting
that each agent is able to observe the environment up to certain spatial limits, and anything
outside this range is not perceived by the agent and hence does not affect its decisions.

The action space used in the proposed approach is continuous and two-dimensional.
More particularly, the actor-network outputs the reference velocities that will be passed to
the UAV’s low-level controller to guide each UAV in the swarm from its initial position to
its target location. At the time t, the action generated for agent i is denoted as ai

t ∈ A.
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2.3.3. Reward Formulation

Rewards are incentives that guide agent training to achieve a particular task, by
praising actions taken towards the goal achievement and penalizing actions that hinder
the completion of the task, such as collisions. For the cooperative navigation task, a major
component of the reward function is concerned with reducing the Euclidean distance to
the target location. This component was chosen to be continuous to ease exploration and
facilitate convergence as defined in (7).

reuclidean = −
√
(xtargeti − xuavi )

2 + (ytargeti − yuavi )
2 (7)

where (xuavi , yuavi ) is the position of the UAV controlled by the ith agent, and (xtargeti , ytargeti )
is the 2D target location set for this agent in the environment. It is assumed that UAVs fly
at a fixed altitude.

To achieve cooperative behavior, a large positive reward (rswarm_goal = 100) was
granted to the UAV swarm if all agents arrived at the goal position at the same time. During
training, it was observed that reaching the goal position was frequently achievable by the
agents individually at different time instances during the episode. However, staying at the
target location was challenging. To that end, positive reinforcement was used to reward
individual agents that arrive at the goal position (rindividual_goal = 10). To maximize its own
return, an agent will try to remain within the target area to collect as many rewards as
possible. This component of the reward facilitated achieving the sought swarm objective,
where all agents have to be at the target location at the same time. More specifically,
the agent generates actions to reduce the speed of the UAV around the goal position. In
case an action causes an agent to collide with other agents, a sparse negative penalty
(rcollision = −100) is used to discourage this behavior.

The global reward associated with a set of actions taken in a certain state at time t is a
weighted sum of these four components as indicated in (8).

Rt = ω
N

∑
i=1

ri
euclidean +

N

∑
i=1

ri
individual_goal +

N

∑
i=1

ri
collision + rswarm_goal (8)

where N is the number of agents, and ω was set to 0.01 to scale down the value of the
Euclidean distance since training was done in a 100 × 100 m2 environment.

2.4. Curriculum Learning

Curriculum learning is a training strategy in which a neural network is gradually
exposed to task complexity as originally proposed in [26]. The concept behind this strategy
is inspired by nature, where humans progressively learn the skills they need over their
lifespan. Curriculum learning has two major advantages: (1) it facilitates fast convergence,
and (2) it helps achieve better local minima when solving non-convex optimization. In the
context of neural networks, curriculum learning guides training toward convergence in a
timely manner.

In this work, training the proposed MARL framework was carried out in stages, in a
way that supports exploration. UAVs were placed in an environment and were expected
to navigate to a target position that required them to maneuver along a single dimension.
Given the decentralized nature of the actor training/execution, each UAV receives an action
based on its current local observation. Consequently, in every training step, every member
in the swarm contributes a different experience towards achieving a common goal. In view
of the fact that the action space is continuous, this has expedited the exploration of the
action space and has facilitated convergence towards the required cooperative goal. The
UAVs are considered to have achieved the goal if they arrive in the vicinity of the target
location up to a certain radius. This spatial threshold was set to a large value in the first
training stage (50 m) then gradually reduced to 2 m in the following stages.
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The complexity of the task was then increased to require UAV control in two dimen-
sions in order to arrive at the goal position. Instead of starting the training over, the neural
networks were initialized using the weights from the previous stage. This has significantly
accelerated convergence toward achieving the swarm goal. Due to the high variance of the
training process, early stopping was also adopted to terminate training after the model had
converged for a few hundred episodes.

2.5. UAV Dynamics

The UAV multirotor model that is used to train the proposed approach highly resem-
bles the dynamics of a physical multicoptor to facilitate transferability to real experiments at
later stages of this work. The model encapsulates various nonlinear dynamics [27], namely,
(1) nonlinear drag dynamics for which a linearized drag model [28] was used, as verified
in [29,30], (2) nonlinear propulsion dynamics for which electronic speed controllers (ESCs)
are used to linearly map ESC inputs to corresponding thrust, (3) nonlinearities arising
from motor saturation which are avoided through operation strictly in the non-saturation
regime, and (4) nonlinear kinematics caused by under actuation and gravity, which are
linearized using a geometric tracking controller [31] and hence a feedback linearization
controller is obtained.

The adopted altitude and attitude dynamics are shown in (9)–(11) and a summary of
the used transfer functions and symbols is provided in Table 1.

Gprop(s) =
Kprope−τacts

Tprops + 1
(9)

Gatt,alt(s) =
Kp

s(T1s + 1)
(10)

Gin(s) =
Keqe−τins

s(Tprops + 1)(T1s + 1)
(11)

Table 1. Linearized altitude and attitude dynamics.

Transfer
Function Type Purpose Symbols

(9) First order plus
time delay

Maps ESC inputs
to force/torque

output

Kprop: propulsion static gain
τact: propulsion system delay
Tprop: propulsion time constant

(10)
First order

system with an
integrator

Models attitude
and altitude

dynamics

T1: time constant - drag dynamics
Kp: system inertia

(11)
Gatt,alt(s)

cascaded with
Gprop(s)

Maps ESC
commands to
UAV attitude
and altitude

Keq = KpKprop
τin: total inner dynamics’ delay

The work presented in [27] demonstrates the high resemblance of the UAV behavior
in simulations and experiments using this model. The lateral motion dynamics of the UAV
are adopted from [32] to describe the change in attitude in the direction of motion. The
equations are listed below (12)–(13) and explained in Table 2.

Gout(s) =
Keqe−τouts

s(T2s + 1)
(12)

Glat(s) =
Keq,le−(τin+τout)s

s2(Tprops + 1)(T1s + 1)(T2s + 1)
(13)
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Table 2. Linearized lateral motion dynamics.

Transfer Function Purpose Symbols

(12) Maps the multirotor’s tilt
angle to its lateral position

Keq,l : overall lateral dynamics gain
τout: lateral motion sensor delay

T2: lateral motion drag.

(13) Maps ESC commands to
UAV lateral position -

The deep neural network and the modified relay feedback test (DNN-MRFT) identifi-
cation approach [32] is used to experimentally identify the presented model parameters.
First, a domain for the unknown time parameters is chosen for both the inner and lateral
dynamic parameters as in [30,32], respectively. The selected domains are discretized to
guarantee up to 10% performance sub-optimality. MRFT is then performed and the results
are passed to the DNN which will select the best-suited model parameters. The correspond-
ing controller parameters may then be obtained using the derivative-free Nelder–Mead
simplex algorithm.

3. Results and Discussion
3.1. Model Training

The proposed model structure was developed using the TensorFlow [33] library on a
Dell desktop, with Intel Xeon(R) W-2145 CPU @ 3.70 GHz × 16. The initial stage of training
extended for 10,000 episodes, each consisting of a maximum of 3000 steps. Every step runs
for 0.1 s, i.e., a new action is generated at the beginning of each step and the agent executes
the action for the remaining time in that step. It is worth noting that during execution on a
physical platform, the actor is capable of generating actions at 100 Hz by means of an Intel
NUC onboard computer. The episode was selected to be long enough to allow sufficient
exploration with various speeds in the task environment which spans 100 × 100 m2. It is
worth noting that the motion of the UAV swarm was restricted to the defined environment
boundaries, where actions that lead to exiting the environment were ignored. In case the
swarm goal is achieved or a collision occurs between the UAVs, the training episode is
terminated. In subsequent training stages where the complexity of the task was increased,
training was conducted with less exploration noise and a lower learning rate, and was
suspended when convergence was observed. The training was repeated many times to
ensure that the results are not affected by the initial random seed.

The plots depicted in Figure 4 show the cooperative navigation scenario on which the
agent was trained. Three UAVs were guided through a 100 × 100 m2 environment to stop
at the same time at set locations. The maximum speed of the swarm in this scenario was
1 m/s which is extremely slow for the total traveled distance per UAV. Hence, the swarm
arrived at their goal positions, which are 80 m away from the initial position in 2600 steps.

One of the common problems in the reinforcement learning literature is the oscillatory
behavior in consecutive actions generated by a trained agent [34]. Such oscillations may
result in undesired behavior and may lead to damaging the platform in case of aggressive
maneuvers. While testing the trained model, this behavior was not encountered in any
of the scenarios across various speeds, various locations, and initial conditions, as will be
shown in the next sections. Consecutive reference velocities generated by the MARL agent
gradually decrease upon approaching the goal. This has resulted in smooth flights for all
the members of the swarm.

The behavior exhibited by the agents upon approaching the goal is essential to achiev-
ing the swarm goal, particularly with decentralized execution, since agents are required to
be at the target locations at the same time. The sparse positive reward used to incentivize in-
dividual agents for reaching their goal locations has contributed to this behavior, especially
when agents have to traverse variable distances, as will be seen in the following sections.
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Figure 4. Result: cooperative navigation training scenario.

3.2. Testing with Variable Swarm Speeds

In this section, the same scenario presented in the previous section is used, however,
the swarm speed was much higher than in the training scenario. The maximum speed per
UAV was 12 m/s which is 12 times the speed in the previous section. The decentralized
policies were still able to successfully achieve the swarm goal and the three UAVs arrived
at their target locations at the same time, after gradually and smoothly slowing down near
the set locations. The swarm was at the target locations in less than 150 steps, which is
equivalent to 15 s. The trajectories and the corresponding UAV speeds at each time step are
shown in Figure 5.

Figure 5. Result: cooperative navigation with high swarm speed.

3.3. Testing with Different Goal Positions

In this example, the agents were assigned target locations at variable distances from
the UAVs’ initial locations, in both dimensions (x, y). Figure 6 shows the scenario and
the obtained results using the proposed approach. UAV1 (in orange) has to travel the
longest distance, followed by UAV2 (in green), and lastly UAV3 whose target location is
the closest. Because of the centralized training nature, the decentralized policies exhibit
collaborative behavior and are able to effectively achieve the goal of the swarm. In order
for the three UAVs to arrive at their goal locations at the same time, the agents generated
reference velocities based on each UAV’s distance from its target. Obviously, UAV1 was the
fastest, followed by UAV3, and then UAV2. In the y dimension, the generated reference
velocities were also different since the target locations were above, below, and along the
initial location for UAV 1, 3, and 2 respectively. The maximum swarm speed was 8 m/s
and the swarm goal was achieved after approximately 270 steps. The speed of each UAV
was drastically reduced near the goal position.
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Figure 6. Result: cooperative navigation with different goal Positions.

3.4. Load Drop-Off Scenario in a Large Environment

In this section, we demonstrate a load drop-off scenario using the proposed MARL-
based cooperative navigation framework. The scenario is demonstrated in a larger envi-
ronment than that used for training, involves changing the goal position during operation,
and requires the ability to handle the change in the platform mass to achieve successful
cooperative navigation, as depicted in Figure 7.

Starting from their initial positions, every UAV is assumed to carry loads weighing
10%, 20%, and 30% of the platform mass, respectively. The three UAVs are expected to
drop the load off simultaneously at locations 50 m, 70 m, and 90 m away from the initial
positions. To achieve that, UAV3 commanded the highest reference velocity (approximately
8 m/s), while UAV1 traveled at the lowest speed among the other agents (approximately
5 m/s). The agents were able to drop their loads off simultaneously after about 28 s. Right
then, the UAVs (with their reduced masses) were assigned updated target locations that are
120 m, 100 m, and 80 m apart from the drop-off locations of UAV 1, 2, and 3, respectively. It
is worth noting that the UAVs were not completely stopped at the drop-off location. To
arrive at the new target locations at the same time, the maximum speed for UAV1 was
10 m/s, while UAV2 and UAV3 traveled at lower speeds. All three UAVs arrived at the
new target locations simultaneously and gradually slowed down in the target vicinity.

The results obtained in this test have proven the scalability of the proposed approach
to a larger environment, its ability to handle changes in the platform mass in-flight, and its
ability to cope with dynamic target locations during the mission.

Figure 7. Result: load drop-off scenario in a large environment.
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3.5. Testing with Variable Swarm Sizes

The scenarios presented here show how the developed MARL cooperative navigation
framework can be used for any number of UAVs in the swarm, given that it was trained
to work for three only. In its original design, every agent observes its own distance to the
goal, its own speed, and its relative distance to the other members of the swarm and their
velocities if they fall within the observation range. Since the input to dense neural networks
has to be of fixed size, the size of the observation vector of each agent was set to always
fit the states of the two neighboring members of the swarm. In case they were out of the
observation range, the corresponding values in the observation vector are set to zero. To
make that work for a large swarm, we have added a function to check for the closest two
neighbors to every agent in the swarm during operation then included their states in the
observation vector of that agent. This has added flexibility to the number of allowable
UAVs in the swarm and facilitated testing with larger numbers of UAVs without requiring
retraining of the MARL agent. All agents demonstrated collaborative behavior and were
able to achieve the swarm goal collectively.

The results illustrated in Figure 8 show an example scenario where six UAVs have
maneuvered into a triangular formation starting from their initial positions where they
were lined up at y = 10. The target locations were set at various distances in x and y
dimensions. At any time instance, every UAV may observe the closest two members in the
swarm. The velocity plots in the same figure show how each decentralized agent generated
different reference velocities depending on the relative distance between the UAV and its
corresponding target, to allow all UAVs to achieve their goals at the same time.

Figure 8. Result: swarm formation example.

Figure 9 demonstrates another formation scenario where ten UAVs were assigned
colinear target locations starting from opposite sides in the environment. In this example,
the MARL agent was responsible for generating the magnitudes of the reference velocities
and an external function was used to decide the direction of the velocity based on each
agent’s relative position to its target. All ten UAVs were able to be within 2 m of the set
target locations at the same time and all the flights show a high level of smoothness. The
cooperative task was completed in 34 s.

3.6. Action Smoothness

In this section, a test with a swarm of 50 UAVs was conducted to demonstrate the
ability of the proposed approach to generate smooth actions across consecutive steps. Every
UAV started from a different position in the environment and was assigned a target location
at a different distance than the other members in the swarm. This test shows the flexibility
and the generalizability of the proposed approach and proves that oscillatory behavior is
not encountered over a large range of states and actions. The trajectories followed by the
UAVs are depicted in Figure 10 and the corresponding actions in the x direction are shown
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in Figure 11. The same test was repeated with much lower velocities and oscillations were
not encountered at all.

Figure 9. Result: swarm formation in two directions.

Figure 10. Result: collaborative navigation of a swarm of 50 UAVs.

Figure 11. Result: action smoothness with a swarm of 50 UAVs.

3.7. Training Convergence

Training the proposed approach was carried out in various stages starting from simple
tasks to more difficult ones. During training, the performance of the model was evaluated
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based on the episodic reward, as well as the performance of the agents in the environment.
Once the desired behavior was achieved by the proposed framework, training the model
in that stage was halted (a training strategy referred to as early stopping). Afterward,
the complexity of the problem was increased and the model retrained, where the neural
networks were initialized into the values obtained in the previous stage. In later training
stages, the learning rates of both the actor and critic are reduced to benefit more from what
the model has already learned earlier. Figure 12 demonstrates the convergence of the model
in the final training stages.

Figure 12. Proposed MARL training convergence in final stages of curriculum learning.

The adopted training strategy has expedited converge to a policy that exhibits coop-
erative behavior although is executed in a decentralized manner. In addition, the actions
generated by the policy resulted in smooth maneuvers as demonstrated in all the test results.

Without curriculum learning and early stopping, the convergence of the model is
much more challenging due to the large environment size, continuous action and state
spaces, multi-agent setting, limited observability, and the instability of the environment
in presence of multiple dynamic entities at the same time. Figure 13a,b show examples
of unstable training of the same model if exploration is performed in one shot. It is
worth noting that positive rewards were achieved in these cases because of the positive
component of the reward formulation that an agent receives when it arrives at its target
location. Larger positive episodic rewards mean that one or two agents were at their
target locations accumulating the positive rewards while waiting for the remaining two
or one agent, respectively, to arrive at their target location. The latter agents in such cases
would be exploring a different area in the environment and hence the episode was not
terminated, until the specified number of steps ended. Furthermore, Figure 13c shows the
episodic rewards of the same model with credit assignment as proposed in [25], where
decentralized agents do not use the global reward to update their parameters, but rather a
reward value that reflects their contribution to the success of the task. Every episode may
extend to 3000 steps if no collisions between the UAVs happened. It is worth noting that
the highest reward values, in this case, were achieved due to the early termination of the
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training episode, and hence the negative penalty corresponding to the Euclidean distance
to the target location was not accumulated for a long time. A sample testing scenario
with credit assignment where the collaborative navigation task was not achieved is shown
in Figure 14. These examples demonstrate the importance of curriculum learning to the
training convergence and task achievement.

Figure 13. (a,b): Sample learning curves by training the model without curriculum learning or early
stopping, (c) Episodic reward with credit assignment as proposed in [25] without curriculum learning
or early stopping.

Figure 14. Result: collaborative navigation with credit assignment.

In the future, the proposed MARL-based cooperative navigation approach will be
tested in real-world experiments. It is anticipated that the policy will transfer well to the
physical platforms in real environments. This was demonstrated in our previous work [35],
in which a single agent was trained to perform a goal oriented task and the transferability
to reality was seamless without any model retraining or finetuning. The same UAV model
was used for training the current approach, and hence we conjecture that no additional
tuning is required for simulation to reality transfer.

3.8. Centralized Collaborative Navigation

In this section, a centralized DDPG agent was trained to perform collaborative naviga-
tion in exactly the same settings as our proposed approach. The architecture of the actor and
critic networks and the reward formulation were not altered. However, in the centralized
approach, one actor network is used to generate the actions for all the UAVs in the swarm at
the same time. The centralized agent was trained for more than 2 M steps but convergence
was not achieved. The resulting behavior of the swarm after training is shown in Figure 15.
One of the UAVs left the environment, while the other two collided. In addition, the actions
demonstrate variations throughout the episode as opposed to the actions generated by our
proposed approach which demonstrate much higher smoothness. Extensive exploration is
yet needed for the centralized agent to achieve the sought performance. It is also worth
noting that changes to the size of the swarm would require retraining the actor since the
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size of the output vector will change. Our proposed approach is more flexible since the
decentralized nature of execution circumvents this problem.

Figure 15. Result: centralized collaborative navigation.

4. Conclusions

In this paper, a multi-agent reinforcement learning-based swarm cooperative navi-
gation framework was proposed. The centralized training and decentralized execution
approach was adopted with a reward formulation combining negative and positive re-
inforcement. The training was carried out using a high-fidelity UAV model to facilitate
simulation to reality transfer. In order to achieve the desired behavior and reduce the
complexity of exploration, training was performed in multiple stages where the difficulty
of the swarm goal was gradually increased. The proposed framework was extensively
tested in simulated scenarios which vary from the one used for training, and demonstrated
remarkable performance. It generalized well to larger environment sizes, a large number
of UAVs in the swarm, high speeds, various UAV masses, variable goal positions, and
changes to the target locations in flight. The effectiveness and scalability of the multi-agent
reinforcement-based UAV collaborative navigation were demonstrated through load drop-
off and UAV formation scenarios. The training convergence of the proposed framework
was demonstrated and the importance of curriculum learning was highlighted by analyzing
the stability of the learning-in-one-shot of the same framework and another variant that
uses credit assignment.

In the future, the proposed framework will be tested in real experiments and the
complexity of the swarm goal will be increased to make the environment more challenging.
In addition, navigation in 3D will be investigated to improve collision avoidance flexibility
in presence of obstacles that could be avoided by flying at varying altitudes.
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