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Abstract: The use of drones for package delivery, commonly known as drone delivery or unmanned
aerial vehicle (UAV) delivery, has gained significant attention from academia and industries. Com-
pared to traditional delivery methods, it provides greater flexibility, improved accessibility, increased
speed and efficiency, enhanced safety, and even some environmental benefits. With the increasing
interest in this technology, it is crucial for researchers and practitioners to understand the current
state of the art in drone delivery. This paper aims to review the current literature on drone delivery
and identify research trends, challenges, and future research directions. Specifically, the relevant
literature is identified and selected using a systematic literature review approach. We then categorize
the literature according to the characteristics and objectives of the problems and thoroughly analyze
them based on mathematical formulations and solution techniques. We summarize key challenges
and limitations associated with drone delivery from technological, safety, societal, and environmental
aspects. Finally, potential research directions are identified.

Keywords: drones; unmanned aerial vehicle; last mile logistics; parcel delivery; mathematical
programming

1. Introduction

The advancement of Industry 4.0 has significantly increased the capabilities of drones,
which have found broad applications in defense, SAR (Search and Rescue), agriculture,
industry, and logistics [1,2]. Most recently, drone application has observed a rapid surge
during the global COVID-19 outbreak [3–6]. Due to the implementation of restrictive social
measures for COVID-19, large retail chains and package delivery firms were compelled
to seek improvements in their logistic operations [7,8]. Further, several online businesses
started offering same-day delivery that further enhanced customer expectations for quick
delivery [9,10]. That is why companies such as Amazon, DHL, and FedEx are trying to
adopt drones for last mile delivery (LMD) for faster and more effective delivery and to
generate profits [11,12].

Drones are not just limited to delivery services; they have a wide range of applications
in various fields, including military, construction, security, health, precision farming, disas-
ter management, and surveillance [13]. In the past, drones were primarily used for military
operations to track enemy movements and for target killing. Nowadays, they are also
used for traffic surveillance, image and video mapping, and exploring hard-to-reach areas.
In agriculture, drones collect real-time data that helps farmers make informed decisions
about adjusting their farming inputs to achieve better yields [14]. In healthcare, drones
are used to deliver emergency medical supplies to remote areas quickly, reducing the
risk of complications and fatalities. Additionally, drones are valuable tools for disaster
management, enabling the efficient delivery of aid to affected areas.

Besides the interest from industries, drones have also recently gained much literary
attention from academia. Mohsan et al. [13] provided a comprehensive review of drone

Drones 2023, 7, 191. https://doi.org/10.3390/drones7030191 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7030191
https://doi.org/10.3390/drones7030191
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-1990-0159
https://orcid.org/0000-0001-7334-8444
https://orcid.org/0000-0002-2285-845X
https://orcid.org/0000-0001-7334-9500
https://doi.org/10.3390/drones7030191
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7030191?type=check_update&version=2


Drones 2023, 7, 191 2 of 26

classification, characteristics, and various applications. Hassanalian and Abdelkefi [15]
classified drones into six categories on the basis of their configuration and discussed their
applications under three types: mission, flight zone, and environment. Further, the study
surveyed drone design challenges, as well as manufacturing methods to overcome those
challenges. Several other pieces of literature have focused on the current and potential
future applications of drones [14,16,17]. Rejeb et al. [2] explored capabilities, challenges, and
potential outcomes of drones particularly employed in humanitarian logistics and manage-
ment. Benarbia and Kyamakya [18] provided an extensive survey on the development of
drone delivery systems, along with feasibility and performance, while suggesting some
future research directions. Büyüközkan and Ilıcak [19] reviewed smart urban logistics and
identified the most common technologies explored as well as the related technologies with
the potential to be implemented. Mohd Noor et al. [20] explored the challenges of drone
application in urban settings, emphasizing the efficiency of drones in solving urban issues
while ensuring a sustainable and efficient environment. Kellermann et al. [21] analyzed
possible barriers and problems that can impede the acceptance of drones as a medium for
transporting parcels and passengers. It also discussed the expected societal benefits of drone
usage and emphasized evidence-based promises to gain a social acceptance of drones as a
transportation medium. Khoufi et al. [22] investigated the existing literature on drone path
optimization, focusing specifically on the Traveling Salesman Problem (TSP) and Vehicle
Routing Problem (VRP). However, fewer mathematical modeling details of these problems
were provided. Chung et al. [23] reviewed the literature on various optimization issues re-
lated to drone-only and drone-truck combined operations in depth, including drone routing,
drone scheduling, task assignment, area coverage, and communication. The study discussed
various mathematical modeling techniques, drone truck synchronization, and ways to over-
come its barriers in detail. Rojas Viloria et al. [24] focused on the challenges with drone
routing and classified the literature based on application, objectives, solution approaches,
and constraints considered. They grouped the literature into five sections: internal logistics,
entertainment, parcel delivery, military, and surveillance and data collection. Moshref-Javadi
and Winkenbach [25] also classified the drone logistics literature on the basis of applications,
the same as Rojas Viloria et al. [24], but they explicitly focused on e-commerce, healthcare,
postal services, food delivery, and emergency services. Further, the authors divided the
logistics models of drones into four broad sections: drone-based pure-play, unsynchronized,
synchronized, and resupply multi-modal models. Rejeb et al. [26] discussed the possible
benefits of drone deployment in supply chain management and identified the challenges
in the real world. Macrina et al. [27] reviewed drone-aided routing with a focus on parcel
delivery. They classified the delivery routing problems into four parts: drone-based TSP,
drone-based VRP, drone delivery problem, and carrier vehicle problem with drones, with
literature from 2015 to 2020.

In this review, we focus on the most recent development of drone-aided delivery
research and cover the papers published between 2015 and 2022, from a methodological
aspect that could benefit both researchers and practitioners. Specifically, to the best of our
knowledge, no existent reviews concentrated on drone-aided parcel delivery problems
with a focus on urban area challenges. Thus, this paper provides a centered and updated
review that classifies and thoroughly analyzes drone delivery problems covering various
mathematical algorithms as well as potential challenges.

The remainder of the paper is structured as follows: Section 2 discusses the approach
implemented for this systematic review. Section 3 provides a detailed examination of
the drone delivery literature, which is divided into five sections. Section 4 examines the
limitations of deploying drones for distribution in urban environments. Finally, Section 5
concludes the paper.

2. Review Methodology

The increasing popularity of consumerism has led to a growing interest in drone-
assisted delivery, particularly in urban areas. However, there is a lack of research specif-
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ically analyzing the use of drones in delivery operations and the challenges they face in
urban environments. The goal of this review is to fill this gap by providing a compre-
hensive examination of drone-aided delivery, highlighting current issues, and identifying
potential areas for future research. To achieve this, a systematic approach is adopted,
which is commonly used in medical, management, and supply chain literature [26,28].
This approach involves several structured steps [29], such as identifying research gaps,
conducting a thorough literature review using specific criteria and keywords, selecting
relevant literature, classifying the literature for a better understanding, synthesizing the
information, and ultimately providing findings and recommendations for future research.
A detailed overview of the research methodology is demonstrated in Figure 1.

Define the review questions

Initialize the paper collection by defin-
ing criteria and keywords for search

Finalize the literature identification
by full text reading and snowballing

Classify the literature

Analyze the literature

Provide directions for future studies

Figure 1. Detailed research methodology.

2.1. Research Question Formulation

Three main research questions are formulated for this study on the basis of the gaps
identified in the existing literature. The formulated questions are as follows:

i. What are the research methods used for drone-aided delivery in the existing literature?
ii. What are the problems or challenges in drone-aided delivery in urban areas and what

solutions have been implemented so far?
iii. What are the possible future research directions for advancing drone-aided delivery?

2.2. Literature Collection

The search process is initiated by locating and identifying all relevant studies that
align with the stated review agenda. The Scopus database is utilized to perform a relevant
literature search on the basis of the selected keywords in September 2022. Scopus is well-
recognized for being effective, accurate, and comprehensive, and it covers wide-ranging
and diverse literature areas in technology, science, medicine, art, humanities, and social
sciences [30]. To accumulate the relevant literature for review, the following string (set of
keywords) was developed and utilized for the database search:

(Drone*) OR (“Unmanned aerial vehicle*”) OR (UAV*) AND (“last mile delivery*”)
OR (“parcel delivery*”) OR (delivery*) OR (logistics) OR (routing) AND (urban*).

The search compiled the literature consisting of these keywords in the title, abstract,
and keywords fields. Different acronyms or terms were used in this string for addressing
drones to include all the literature relevant to our questions, regardless of what the existing
literature has chosen to define as drones. To account for the multidisciplinary nature of the
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research regarding drones, the search was not restricted by any filter, as it could limit the
results. The search result comprises all international English language publications that
appeared in the Scopus database from the year 2015 to September 2022, yielding 165 articles,
conference papers, or book chapters. A spreadsheet was created for the ease of article
tabulation, facilitating their systematic inspection. Figures 2 and 3 represent a distribution
of papers based on the year and country, accordingly.

Figure 2. Year-wise distribution of retrieved publications.

Figure 3. Country-wise distribution of retrieved publications.

2.3. Literature Selection and Classification

The assessment and selection of articles were executed by screening and scrutinizing
the articles in three steps. In the first screening, the title and abstract of the articles were
given a full read. It was found that although the keywords were present in some of the
articles, they were not the main topic of the article, or the article did not explicitly focus
on drone delivery or urban drone delivery, or both; thus, they were eliminated. Articles
that did not have the full text available online were also excluded: 77 articles out of 165
were selected in this step. In the next round, the potential articles were screened by the
full-text reading and were excluded if not relevant to the scope of our review. In this round,
13 articles were excluded. Finally, additional relevant articles were identified through a
snowball sampling of references of the selected articles. Backward snowballing was utilized
to find which references the start set of the articles cited to build their case. The papers were
assessed on the basis of the title, keyword, abstract, and how and where they were cited.
This three-step process ensured the alignment of the scope between the final articles and our
research agenda. Following this process, a final data set of publications for the review and
analysis consisting of 73 articles were obtained, including the articles from the snowballing
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method. Further, the extant literature is classified into five groups, namely: the traveling
salesman problem, vehicle routing problem, drone delivery scheduling problems, drone
optimization problems, and urban last mile problems.

3. Literature Analysis
3.1. Traveling Salesman Problem (TSP)

TSP is a mathematical problem that attempts to determine the shortest path, given
that a certain node is only covered once. Figure 4 illustrates the problem in which the top
50 most populous US continental cities are the customers, and the salesman visits each
customer only once and returns to the depot (the city of Memphis). This is one of the most
popular problems in the existing drone delivery literature. Publications addressing TSP
problems are divided into two main categories: collaboration and parallel work. Then, they
are grouped by the applied method and explored in detail.

Figure 4. Traveling Salesman Problem—an illustration. A truck traverses the top 50 most populous
US cities starting from Memphis.

3.1.1. Exact Method-Based Approach

Exact methods aim at obtaining an optimal solution and do not rely on heuristics.
In this section, a cooperative technique underpins the operation of the last mile delivery
employing drones and vehicles. Yurek and Ozmutlu [31] formulated the problem based
on the concept proposed by Murray and Chu [32] to build a two-level decomposition
to systematically tackle a tandem delivery. In this study, 12 instances were solved in
15 min. The decomposition method involved covering the drone’s path after the truck
tour is defined. The optimization tasks followed a sequence based on node satisfaction,
rendezvous point, and tandem or parallel travel. Cavani et al. [33] constructed a mixed
integer linear program (MILP) formulation to reckon a tandem-based single-truck and
multiple drones. A branch-and-cut implementation addressed the formulation via an exact
decomposition and a compact method leading to an optimally proven solution during a
two-hour computing time employing three drones. Boccia et al. [34] further expanded the
challenge presented by Murray and Chu [32], except for allowing the vehicle to wait at the
launch node. The suggested approach is based on a sub-tour split based on the max-flow
min-cut (MFMC) approach and an integer linear programming (ILP) formulation. This
allowed an optimal solution for up to 20 tested instances. Similarly, the proposed method
by Boccia et al. [34] benefits from the removal of the big-M constraints for vehicle synchro-
nization and carries a procedure of a sequential selective introduction of path variables that
generate an improvement of 4.10% over the base model. Kim and Moon [35] used a mixed
ILP (MILP) formulation that is comparable to Cavani et al. [33] with the inclusion of drone
stations, which serves to store, charge, and relaunch. The formulation is decomposed into
an independent TSP and a parallel scheduling issue. In this sense, it is specified that the
vehicle station supplier operates independently of the tandem delivery. This formulation is
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operated as both a TSP and a parallel identical scheduling issue. Finally, Bouman et al. [36]
discussed a strategy based on dynamic programming; specifically, it is an exact technique
known as the Bellman–Held–Karp dynamic programming algorithm. The method enu-
merates the shortest paths and identifies the least expensive travels, allowing one to solve
numerous node instances.

3.1.2. Heuristics

Heuristic methods run fast and can produce feasible and near-optimal solutions if con-
structed properly. In such a regard, heuristics meet real-world industry needs by providing
deployable fast solutions. A MILP-based heuristic method is proposed by Murray and Chu [32],
in which only a node or vehicle is designated as the drone’s landing location. As the authors
pointed out that the MILP formulation is NP-hard, the Clarke–Wright savings heuristics are
employed. Common parameters, such as the number of customers, feasible drone-delivered
consumers, and speed restrictions for trucks and drones, are established in this study. The
findings demonstrated that even with the inclusion of a large battery capacity, the slow
travel speed restricted the number of drone-delivered packages. Additionally, Ha et al. [37]
used a similar strategy to Murray and Chu [32]. However, it attempted to minimize op-
erational expenditures. The best results are obtained through a local search and a greedy
randomized adaptive search Procedure (GRASP), and the use of algorithms such as K-
nearest neighbor, k-nearest insertion, and random insertion. The proposed procedure
begins at the depot and visits the nearest nodes before inserting the non-visited nodes
repeatedly, utilizing a sample of nodes. Each iteration is based on a two-step procedure that
examines every client in order to select the best candidate for relocation. Upon a solution
improvement, the truck route and sub-route are adjusted, and the client is eliminated.
The GRASP algorithm is found to be better than the local search method. A comparable
method is adopted by Almuhaideb et al. [4] that included two local search choices and a
self-adaptive neighborhood. Marinelli et al. [38] presented a modified version of the TSP
drone tandem delivery that maximized drone endurance and utilization. This heuristic is
based on the GRASP method and focused on the truck-drone activities that must occur
at customer nodes. While the Lin–Kernighan (LKH) heuristic is used to locate all viable
truck–drone operations with reduced costs, the results demonstrate that the along-the-arc
operations outperform the greedy heuristic. Hence, the higher drone speed en-route-alone
benefits become less meaningful. de Freitas and Penna [39] addressed the usage of a
single truck and a drone, offering a hybrid heuristic neighborhood search (HGVNS) to
select truck and drone paths. It incorporated a precise, three-step technique, which is
based on a TSP solution created to determine the truck delivery route to every customer.
Next, truck customers are eliminated and replaced with drone customers while using a
greedy technique for finalizing the HGVNS update and improving the current solution.
The results yielded a 9% to 12% improvement from the base model, and the delivery
time was reduced as the drone speed increased. Ha et al. [40] constructed a method that
is comparable to Murray and Chu [32]. The dynamic population management and hybrid
genetic search include new search operators, a penalty mechanism, and a technique for
converting the TSP problem into a chromosome. The method can be summarized as the
first spring generation, whose offspring are then schooled for a general update of the “tour”
chromosome. It included a penalization cost to achieve a balance between intensification
and diversity while avoiding early convergence. After that, the education stage is carried
out using a local search approach. Then, the massive tour is updated. The suggested
strategy increased the number of instances and outperformed the similar strategies covered.
Lin et al. [3] addressed a similar issue with the goal of increasing the UAV profitability
using the model of upcoming requests. Penalty variables for delay, early arrival, and
capacity inclusion are the main focus of the authors’ evolutionary algorithms. On the
other hand, Kitjacharoenchai et al. [41] built a mixed integer program (MIP) formulation
to reduce the arrival of drones that can land in any adjacent truck. In addition, an adaptive
insertion heuristic (ADI) handled up to 100 nodes, reducing the last delivery time com-
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pletion. The algorithm required drones to only combine with trucks at a client site, and
only one drone could be released and collected at a time. The heuristic is based on the
greedy node insertion strategy and builds an initial multiple TSP truck-only delivery in
two stages. Raj and Murray [42] addressed the multiple flying sidekicks’ TSP with variable
drone speeds, in which a three-step heuristic, tour partitions, scheduled activities, and
timings power a local search method with speed and range trade-offs present. Finally, a
contribution that extended the variation of the single truck and the work of multiple drones
is presented by Baniasadi et al. [43]. It is based on an Integer Programming (IP) formula-
tion and a clustered and generalized TSP, where the LKH heuristic and cross-entropy (CE)
meta-heuristic algorithms are employed.

A second stream of problems using heuristics is the parallel work collaboration be-
tween a truck and a drone. Murray and Chu [32] presented a new concept known as parallel
drone scheduling. It is based on a single delivery vehicle and a number of drones that
depart and return from the distribution center, which evaluates clients in close proximity
to the distribution site. Plus, operations are held without any coordination between the
involved vehicles; the truck serves the TSP route, and the drones serve customers in the
vicinity of the distribution center. To handle the suggested minimization/maximization
mission time among the vehicles, an MILP formulation, a savings-based heuristic, and the
nearest neighbor algorithm are applied. Dell’Amico et al. [44] also evaluated the use of
heuristics to tackle this novel problem. A “Fast heuristic” applied the LKH algorithm to
generate a tour for a specific consumer in a series of nodes. Moreover, an iterative variant
is covered in which the initial tour is computed before applying a classic 2-opt topological
exchange in orderto finalize with a random restart local search (RRLS) updating the MILP.
The fast heuristic performed faster than RRLS. The multiple warehouse delivery problem
(MWDP) is covered by Mathew et al. [45]. Two methods in the book rely on enumeration
and a reduction to a TSP formulation where a single drone and several static warehouses
are used. First, it is built on an algorithm that converts an MWDP into a TSP and can be
solved using either the LKH heuristic or exact approaches. Second, the kernel sequence
enumeration (KSE) is based on enumerating a transitional delivery location between two
warehouses and an ordered subset of warehouses. The approaches depicted by the MWDP
produced results that were competitive; however, the KSE method’s superiority over the
TSP LKH proposal is decreased by the presence of more warehouses. Saleu et al. [46] ex-
tended the work in the study of a parallel drone truck delivery. The proposed method built
a giant tour and then split it to determine the set of vehicles to employ. This formulation
is based on a MILP. Then, hybrid meta-heuristics are adapted from an iterative two-step
heuristic that visited all customers and used dynamic programming for efficient customer
partitioning. Constraints’ relaxation and a local search are also applied to improve the solu-
tion. Over time, the formulations have evolved significantly. Initially, they only included
basic factors such as the sidekick approach. However, the formulations have become more
complex and now take into account factors such as the flying capacity from the fly tandem,
truck–drone meet-up operation, clustered delivery, and the inclusion of supplier stations.
These additions have resulted in some constraints being updated accordingly.

A summary of the reviewed papers related to TSP can be found in Table 1.
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Table 1. Summary of TSP-related papers.

Author Approach Future Directions

Yurek and Ozmutlu [31]
• Iterative decomposition approach based on
MIP formulation and three synchronizations’
constraints

• Clustered and hybrid algorithms

Dell’Amico et al. [44] • No truck sync and VRP generalization • Larger instances of heuristics

Marinelli et al. [38] • Lin Kernighan heuristic, the inclusion of
en-route operations

• Dynamic simulation with en route and
congested arcs

Saleu et al. [46] • Giant initial tour and hybrid meta-heuristics
• Improvement steps and MILP formulation

• Exact solution branch-and-price
• Constraint Programming framework

Kitjacharoenchai et al. [41]

• Two-phase heuristic and adaptive insertion
algorithm, initial multiple TSP
• Genetic algorithm, combined k-means/nearest
neighbor, random cluster/tour

• Adaptive large neighborhood search
• Simulated annealing mimetic algorithm

Baniasadi et al. [43]
• IP formulation of clustered generalized TSP
(CGTSP), transformed CGTSP and heuristics
LKH and CE

• Fine tuning TSP heuristics
• Delivery nodes clustering

de Freitas and Penna [39]
• Optimal TSP solution through a MIP solution,
implementation of the general variable
neighborhood search (meta-heuristic)

• MILP formulation
• Multiple delivery trucks and drones

Ha et al. [37] • Implementation of a min-cost TSP objective
• MILP model; GRASP and split-based TSP

• Meta-heuristics
• Multiple vehicles and multiple drones

Mathew et al. [45]
• TSP: LKH suboptimal solutions, noon-bean
transformation
• LKH heuristic

• Simultaneous deliveries and drone capacity
greater than 1

Boccia et al. [34] • MILP and ILP formulation
• Path-based formulation for vehicle sync

• Operational constraints and algorithmic
refinements

Murray and Chu [32]

• Flying Sidekick TSP (IP, Heuristic: savings,
nearest neighbor, sweep)
• Parallel Drone TSP: (IP, Heuristic: savings,
nearest neighbor)

• Sophisticated local search, simulated
annealing, and Tabu search

Raj and Murray [42]
• Tour partition
• UAVs’ sorties, scheduled activities, and local
search algorithm

• Heuristics, multi-track problems, and en-route
operations

Lin et al. [3] • GA for the global optimal solution • Multiple rush requests and volume costs

Kim and Moon [35] • TSP drone station and MIP model separation
in TSP multiple stations • Multiple drones’ station

Cavani et al. [33] • MILP formulation, decomposition approach,
and branch-and-cut algorithm

• Multiple trucks, en-route operations, and
uncertainty

Ha et al. [40]
• Hybrid genetic algorithm with dynamic
population management and adaptive diversity
control based on a split algorithm

• Multiple trucks and drones

Almuhaideb et al. [4]
• Greedy randomized adaptive search, two local
search alternatives, and a self-adaptive
neighborhood

• Neighborhood search alternatives

Bouman et al. [36] • Bellman–Held–Karp dynamic programming
and shortest path enumeration

• Multi-drone operations and any point
departure

3.2. Vehicle Routing Problem (VRP)

VRP can be considered as a generalization of TSP with multiple routes to visit all the
nodes with the same starting point. Figure 5 illustrates the optimal route for a VRP problem
with one depot with a fleet of capacitated vehicles and several target nodes that should be
visited exactly once. Each route starts at the depot, visits a subset of nodes, and then returns
to the depot. Variations of VRP have been studied in the last few years, considering drones as
part of the fleet [47–57] or the unique fleet [51,58–62] to be assigned in the delivery process.

Sixteen articles from the searched results were classified in this category, with reference to
the corresponding research methods and results obtained. Particularly, the relevance of these
optimization methods relies on the techniques developed by the researchers considering the
complexity of the VRP with drone problems, which are, in many cases, considered NP-hard
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problems, as [47,52] mentioned. The most common research method found in the literature
regarding the consideration of a fleet of drones in the VRP is the Graph Theory [50–52,54,59–61],
followed by MIP [47–49,58]. On the other hand, the less common ones were MILP [57], IP [56],
Worst-case Analysis [55], Statistical Techniques [53], and Stage-wise Modeling [62].

Figure 5. An illustration of the Vehicle Routing Problem.

Regarding Graph Theory, Daknama and Kraus [50] centered their research on the
minimization of the delivery time, specifically, the average delivery time of the packages,
whilst Othman et al. [52] formulated four different truck-drone scenarios related to the
truck waiting time with the objective function established to find the minimum cost path.
In the case of [50], the delivery is performed by any of the two vehicles, contrary to [52],
where the last mile is performed exclusively by drones. To solve the problem, a heuristic
approach was developed by Daknama and Kraus [50]. They used a two-nested local search
by starting from a pre-initial solution (treating the problem as a TSP), then adding the
drones to each truck, and finally evaluating the exchange of the packages between the
trucks. Not only did Daknama and Kraus [50] apply heuristics, Othman et al. [52] also
adopted this strategy but from a theoretical perspective, first demonstrating the complexity
of the problem as NP-hard and proposing a polynomial-time approximation algorithm
to solve it. As for Pugliese et al. [51], a comparative analysis of three transportation
systems (only drones, only trucks, and a truck–drone pair) was conducted considering the
constraints related to time windows and synchronization, as well as CO2 emissions. The
results associated with their study highlighted the efficiency of the truck-drone system over
the other two systems in terms of cost, amount of customers served, and CO2 emissions.

Other contributions related to Graph Theory were made by Thibbotuwawa et al. [59]
and Zhu et al. [60]. The study conducted by [59] had a narrow focus on the fulfillment of the
customer’s demand with consideration of the time window, weather conditions, drone en-
ergy consumption, and collision avoidance. To solve the problem, Thibbotuwawa et al. [59]
employed a decomposition technique to break the problem down into five smaller compo-
nents, which helped them discover relationships between wind speed and drone battery
capacity in order to fulfill a certain amount of customers. Like Thibbotuwawa et al. [59],
Zhu et al. [60] concentrated their research on potential outside influences on drone delivery.
In their specific situation, they assessed the effects of random shock in the drone’s route
while pursuing the goal of minimizing the overall cost influenced by the drone’s destruc-
tion, package destruction, and unattended consumers. To solve the proposed problem,
they first calculated an approximation of the damaged packages through a Monte Carlo
Simulation and then applied a Tabu search algorithm.

In the case of Cheng et al. [61], a 2-index formulation was applied with constraints
related to the drone’s capacity, customer’s time windows, and drone battery capacity,
whereas a nonlinear model was used to examine the drone’s energy usage. To solve
this formulation, Cheng et al. [61] developed a branch-and-cut algorithm. Additionally,
Chang and Lee [54] attempted to cluster the delivering points to define a path for a truck
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within the middle point of the clusters and drone paths within each cluster. Their approach
was structured in three steps, starting with the clustering through the K-means clustering
technique. Then, they used TSP for the truck routing throughout the cluster’s center. Finally,
a nonlinear programming model is adapted to shift the cluster center closer to minimize
the truck route, and, considering that the drone speed is higher, widening the drone flight
range will lead to the minimization of the total delivery time.

In terms of the problem formulation, within the MIP, Sacramento et al. [47] expanded
the model developed by Murray and Chu [32], which was originally for the TSP, including
constraints related to the capacity and time completion, while the cost minimization was
settled as the objective function. A similar idea was followed by Huang et al. [48], while Xia
et al. [58] focused on a multi-drone problem, which includes multi-customers’ delivery
through the establishment of collaboration between the operators, a blockchain-enabled
fleet sharing approach.

Even though the mathematical model is rooted in the MIP and some similarities were
found in the constraints used, the algorithms developed by the researchers vary while
tackling the complexity of the VRP with the drone problem. In that direction, heuristics
were used by Sacramento et al. [47], Huang et al. [48], Lin et al. [49], while Xia et al. [58]
were more inclined to an exact approach. Sacramento et al. [47] proposed the Adaptative
Large Neighborhood Search (ALNS), a meta-heuristic algorithm, while Huang et al. [48]
exploited an Ant Colony Optimization (ACO) algorithm. Both were tested with random in-
stances resulting in significant cost savings for the drones’ fleet incorporation by comparing
them with the VRP. To solve a multi-drone and one truck routing problem, Lin et al. [49]
decomposed the problem formulation to be solved through an h-GA and a hybrid particle
swarm optimization (h-PSO). In relation to the exact algorithm method, Xia et al. [58]
developed a branch-and-price-based algorithm to solve the MIP formulation. In the case
of Tamke and Buscher [57], two MILP models were developed. One of them pursued a
min-sum approach while the other resulted in a min-max, with the objective of minimizing
the maximum fleet’s completion time while the former seeks the minimization of the total
fleet’s completion time. Both were solved by a branch-and-cut algorithm.

In the research by Wang et al. [55], the formulation considered that the drones keep
the same truck’s assignment during the delivery process while pursuing the minimiza-
tion of the fleet completion time through a Worst-case Analysis. The cases involved the
assessment of configurations regarding the number of drones, the drone’s speed in contrast
with trucks, and the assignment of customers, all of them from a theoretical standpoint,
the same as Othman et al. [52]. The results established that the completion time can be
improved up to four times with the use of drones or up to 75% in other cases. A similar
problem was studied by Luo et al. [56]. Their attention was focused on defining a routing
strategy for the truck–drone pair, where the former maintains the road network while the
drone makes the delivery to customers beyond the road that cannot be reached by truck. In
this case, the truck acts as a mobile depot for the drone. Both vehicles concur at some points
of the road with the aim to change or charge the drone’s battery. Considering all of this, the
research objective was to find a feasible solution due to the minimization of the drone’s
route, including its energy capacity. They developed and tested two constructive heuristic
algorithms to solve the MIP formulation proposed as well. This algorithm resulted in a
better computational time to achieve a feasible solution.

The research of Ulmer and Thomas [53] included a time window constraint to the
problem, commonly known as the same-day delivery (SDD), as well. The overall objective
was to maximize the amount of served customers while the delivery costs were minimized.
Consequently, they used a Parametric Policy Function Approximation (PFA), using a
vehicle’s time limit from the depot as a parameter. The research’s results indicated the
benefits of the combination of both vehicles in the fleet versus the use of only one so
as to geographically divide the delivery area in order to improve the “overall number
of potential services significantly” ([53], p. 476). The drones’ travel range limitations
during the delivery process were interestingly explored by Choudhury et al. [62], in
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which the authors presented an algorithm developed through a stage-wise approach.
The aim of their approach was to take advantage of the existing ground transit network
to shorten the drone’s flight. This approach included an upper and lower layer: one
involved the task allocation of drones and depots, while the other stood for the use of the
existing urban transit network. In the same direction, they developed an approximately
optimal polynomial for the upper layer and a multi-agent path-finding algorithm for the
lower layer.

A summary of the reviewed papers related to VRP can be found in Table 2.

Table 2. Summary of VRP-Related Papers.

Author Approach Future Directions

Daknama and Kraus [50]
• Graph theory
• Two nested local search algorithms
• Local search and outer local search

• Consider adding to the model packing time, time windows,
charging the battery, and other constraints
• Consider a variation of the model with drone landing in moving
vehicles

Othman et al. [52]
• Graph theory
• Theoretical
• Polynomial-time approximation algorithm

• Improve the approximation ratio of the algorithm
• Evaluate the impact of a different metric
• Include the delivery by both vehicles

Pugliese et al. [51] • Graph theory • Consider uncertainties regarding delivery resources’ utilization

Thibbotuwawa et al. [59]
• Graph theory
• Decomposition method and depth-first
search strategy

• Take multi-depots and battery recharging stations into account
• Examine options for increasing the flight’s range
• Assess the minimization of energy consumption in the model

Zhu et al. [60]
• Graph theory
• Monte Carlo simulation
• Tabu search algorithm

• Calculate the drone’s optimal initial freight

Cheng et al. [61]
• Graph theory
• Two nested local search algorithms
• Local search and outer local search

• Consider adding to the model packing time, time windows,
charging the battery, and other constraints
• Consider the landing of drones on vehicles in motion

Chang and Lee [54]

• Graph theory
• K-means clustering technique
• TSP
• Nonlinear programming and shift-weights
• Simulation

• Consider constraints regarding the time window required for each
delivery

Sacramento et al. [47]
• MIP
• Meta-heuristic
• Adaptive Large Neighborhood Search

• Include other logistics costs
• Consider a routing dynamic approximation caused by demand and
time windows
• Take into account multi-drones and their interactions with trucks
• Examine optimal solution approaches (e.g., Dantzig–Wolfe
decomposition)

Huang et al. [48]
• MIP
• ACO
• Neighborhood Search

• Evaluate costs’ differences within VRPD and VRP for small instances
• Consider variability caused by demand and drone technology
• Consider the problem with multi-drones and multi-trucks, as well as
the assignation’s exchange

Lin et al. [49]
• MIP
• h-GA
• h-PSO

• Include time windows constraints
• Include uncertain conditions
• Evaluate other algorithms and involve a simulation approach for the
synergistic dist path prob

Xia et al. [58] • MIP
• Branch-and-price algorithm

• Consider the payload effect in the blockchain-enabled fleet-sharing
platform
• Acknowledge demand uncertainty to include empty drones’
repositioning

Tamke and Buscher [57] • MILP
• Consider drone’s specifications as new constraints
• Consider alternating the objective function to a total cost
minimization to try other algorithms

Wang et al. [55] • Worst case analysis
• Theoretical

• Evaluate other heuristics and exact algorithm approaches to solving
the formulation
• Recognize how the algorithm performs in real-life settings

Luo et al. [56] • IP
• Heuristic through GA

• Consider time windows’ constraints
• Evaluate the performance of heuristics and exact algorithms within
the problem

Ulmer and Thomas [53] • Stochastic modeling
• Approximate dynamic programming

• Consider the replacement of the global parameter for
state-dependent parameters

Choudhury et al. [62] • Stochastic modeling
• Approximate dynamic programming

• Estimation of the operational costs
• Consider uncertainties caused by the ground vehicle network
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3.3. Drone Delivery Scheduling Problem (DDSP)

Scheduling problems aim to efficiently organize the delivery times for a fleet of
vehicles, ensuring that commodities are delivered to their destinations on time. The
problem involves assigning vehicles to predetermined routes with fixed start and finish
times while minimizing costs, time, distance, or a combination of these factors. The flight
range, weight capacity, and other specifications of drones vary depending on the make
and model. However, generally speaking, consumer-level drones have a flight range of
around 3–5 km (1.8–3.1 miles) and a weight capacity of up to 2–5 kg (4.4–11 pounds).
Professional-level drones can have a longer flight range of up to 10 km (6.2 miles) or
more, and a weight capacity of up to 20–30 kg (44–66 pounds) or more. However, it is
important to note that drone technology is constantly evolving, and newer models with
improved specifications are being introduced regularly. For drone delivery operations,
scheduling decisions must be made regarding the task assignment, drone recharging, and
maintenance to ensure persistent and reliable operations based on the drone’s operating
parameters. These problems typically consider multiple drones that can be homogeneous
or heterogeneous in nature. DDSPs are generally formulated as MILP [58,63–66].

Yuan et al. [63] formulated a MILP to schedule tasks to multiple heterogeneous drones
with the objective to reduce the maximum time to complete parcel delivery tasks. The
problem is solved using the GA framework with three different loading methods. GA
with a weight-based loading method is found to be best-suited to solve the problem, as
it has a better local search performance as well as optimizes the single-flight package
loading of drones while preparing for the subsequent loading. Similarly, Hazama et al.
[67] and Peng et al. [68] utilized GA to solve DDSP. Hazama et al. [67] developed a model
considering a drone to carry only one parcel, while Peng et al. [68] considered a drone to
carry multiple parcels. Li et al. [64] developed a MILP for scheduling drone logistics but
considered multi objectives: minimization of completion time while maximizing customer
satisfaction. This study presented an extension of the Variable Neighborhood Search (VNS)
algorithm to search for the approximate optimal solution. Lei and Chen [69] proposed an
improved VNS to solve for parallel DDSP, where the procedure started with a primary
solution and then continuously improved the solution using the shaking method along
with an adaptive and reduced VNS.

Kim et al. [65] proposed a model that maximized the number of parcels delivered and
solved the MILP model with a block-stacking-based heuristic that generated an effective
solution (0% gap) very quickly for all sizes of problems. This study suggested utilizing
the city building rooftops to plan an optimal operation for drone-based parcel delivery.
Boysen et al. [70] identified which option is better to adopt between multiple drones or a
single drone for placing on a truck. The study also investigated whether takeoff and landing
stops should be identical. This study presented a MIP with the objective of minimizing the
total duration of delivery tours considering an inter-modal delivery structure consisting
of drones and trucks. Tavana et al. [66] modeled the DDSP as a multi-objective mixed
integer mathematical programming problem and adapted the epsilon-constraint method to
solve it. The model was optimized with conflicting objectives of cost and time concurrently.
Torabbeigi et al. [71] proposed a two-stage stochastic scheduling approach for drones
that considers drone reliability and copes with delivery failure due to mechanical or
environmental reasons. The study considered two different objective functions to minimize
the expected loss of the demand (ELOD) and travel time. The results demonstrated that the
latter yielded a scheduling network that was around 25% more reliable. Huang et al. [72]
explored the idea of scheduling a package delivery system consisting of drones and public
transport via two schemes: drone-direct and drone–vehicle schemes. The study formulated
a time-dependent scheduling model including the trip time, power consumption, and
battery recharging.

There are several studies addressing the problem of drone charging scheduling to
ensure the efficient operation of drones. Hassija et al. [73] focused on increasing the drone
flight time by providing a cost-optimal drone recharging scheduling algorithm using a
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game-theoretic approach. The study proposed an iterative auction-based algorithm consid-
ering both task deadline and criticality. Betti Sorbelli et al. [74] introduced the scheduling
of the conflictual deliveries problem with the objective of scheduling drones while max-
imizing benefits subject to the battery capacity of drones. Shin et al. [75] developed an
auction-based mechanism that relies on deep learning algorithms, where charging for time
intervals is auctioned and assisted through a bidding process to control the charging sched-
ule of drones. Torabbeigi et al. [76] proposed a reliable drone delivery schedule that ensures
the safe drone return considering the battery charge levels while providing a minimum
number of drones and delivery paths used for delivery. The study results indicate that
without the battery charge rate consideration, 60% of the delivery paths become infeasible.

A summary of the reviewed DDSP papers is shown in Table 3.

Table 3. Summary of DDSP-Related Papers.

Author Approach Future Directions

Yuan et al. [63]
• MILP
• GA with weight line-based loading
method

• Consider objectives other than task completion time for
evaluating the scheduling algorithm

Hazama et al. [67] • MILP
• GA considering single parcel • Extend the problem from one drone to multiple drones

Peng et al. [68] • MILP
• GA considering multiple parcels

• Adapt the model to similar planning and scheduling
problems

Li et al. [64] • MILP
• Extended VNS algorithm

• Incorporate more multivariate heuristic algorithms,
edge computing scenarios, practical drone volume, and
energy consumption models

Lei and Chen [69]
• MILP
• Adaptive reduced VNS algorithm with
shaking method

• Consider environmental implications
• Extend the problem by adding multiple trucks and/or
drones

Kim et al. [65] • MILP
• Block-stacking-based heuristic

• Consider uncertainties, i.e., weather conditions, and
battery consumption
• Apply other metaheuristics

Boysen et al. [70] • MIP
• Simulated Annealing • Solve the problem holistically to determine truck routes

Tavana et al. [66] • MIP
• Epsilon-constraint method

• Add criteria like earliness shipping
• Consider multi-periods, dynamic situations, and
allocation–scheduling–routing altogether
• Use meta-heuristic methods

Torabbeigi et al. [71] • Two-stage stochastic model
• ELOD calculation algorithm

• Introduce uncertainty in the travel time
• Apply other probability distributions for drone failure
function

Torabbeigi et al. [76] • MILP
• Variable pre-possessing algorithm

• Include factors such as flight speed and environmental
conditions

Huang et al. [72] • Dynamic programming based
• Exact algorithm

• Introduce more complex public transportation network
• Expand the delivery area
• Incorporate uncertainty

Hassija et al. [73]
• Double Auctioning model
• Iterative auction-based and hash graph
consensus algorithm

• Apply different algorithms to solve the problem

Betti Sorbelli et al. [74]
• Integer Linear Programming (ILP) model
• Pseudo-polynomial time optimal
algorithm and approximation algorithm

• Extend the problem to multi-depot multi-truck
multi-delivery scenario
• Incorporate late and canceled deliveries, and
rescheduling deliveries during flight time

Shin et al. [75] • Auction-based model
• Deep learning algorithm

• Formulate the problem with a multi-item auction
• Consider advanced auction mechanism design

3.4. Drone Optimization Problem (DOP)

Optimization problem aims to find the best possible solution considering single or
multiple objectives subject to certain constraints. Salama and Srinivas [77] presented a
mathematical programming model that integrated the clustering and routing decisions
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with the objective of minimizing the total costs and delivery time simultaneously. The
study first solved the model considering a single objective; later, it considered both and
obtained the best trade-off solutions. Dukkanci et al. [78] presented a nonlinear model
that minimizes the overall cost and energy, both depending on speed, for drone deliveries
with limited range and time-bound. Afterward, a second-order cone programming was
utilized to reformulate the model, followed by the usage of perspective cuts to strengthen
the model. This allowed the implementation of the off-the-shelf optimization software for
solving the model.

Shavarani et al. [79] addressed both the cost and drone delivery logistics considering
fuel as well as launch stations with an assumption of a uniformly distributed demand. The
study proposed a mixed integer nonlinear programming (MINLP) model with the aim
of minimizing the overall costs of the system. The model was solved by implementing
two meta-heuristic algorithms: GA and hybrid GA, and it was found that the hybrid GA
performed better than GA as a solution heuristic. Similarly, Chiang et al. [80] also used
GA to solve a vehicle-drone green routing model for last-mile deliveries that investigates
drone usage to save on cost and fuel consumption. The study proposed a bi-objective
mixed-integer green model for minimizing the total cost and CO2 emissions. The results
of the research reveal that the implementation of drones for last-mile delivery is both
cost-effective and environmentally friendly.

Shi et al. [81] introduced a bi-objective MIP model that optimizes both the cost and
time for a multi-trip drone location routing problem, allowing pickup and delivery at
the same time. The research applied a modified Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) to solve the model, which includes double-layer coding. Khoufi et al.
[82] also applied NSGA-II to solve the pickup and delivery problem for an intermittent
connectivity drone network. However, it introduced an algorithm for verifying the refu-
eling constraints that can be transformed arbitrarily without changing other parts of the
algorithm. Zhang et al. [83] utilized an extended NSGA-II and adopted a local search strat-
egy that is multi-dimensional and integrates new encoding and decoding methods as well
as several operators for the crossover and mutation to optimize the economic (minimizing
delivery cost and time) and environmental (minimizing energy consumption) objectives
simultaneously.

Dorling et al. [84] derived a model for energy consumption and proposed a cost func-
tion that considers drone reuse for identifying sub-optimal solutions in real-life scenarios.
The research developed a MILP that minimized the overall cost and delivery time and
solved it by using the Simulated Annealing (SA) heuristic. The obtained results indi-
cated that with battery weight optimization and drone reuse, over 10% of improvements
could be achieved in comparison with the scenario of each drone having identical battery
weight. Sajid et al. [85] proposed a joint-optimization MILP framework to solve routing
and scheduling problems for drone delivery systems by implementing a combination of
GA and SA with the aim of minimizing travel time. In this hybrid approach, GA utilizes
stochastic crossover, as well as mutation operators to explore the search space, and at the
same time, SA utilizes local search operators in this already searched space to avoid the
local optima. Through result analysis, it was demonstrated that this approach outperforms
all the peer approaches.

Xia et al. [58] formulated a nonlinear MIP with an objective to optimize homogeneous
drone operations, which minimized the cost considering the battery wear and disposal
effects. A tailored branch-and-price algorithm is implemented to solve the problem, which
solved instances of up to 100 customers optimally within the allowed time limit, offering
practical applications. Sawadsitang et al. [86] introduced a three-stage stochastic IP model
that explicitly incorporates the uncertainty of takeoff and breakdown conditions with an aim
to minimize the total delivery cost while being within the traveling distance limit. An L-shape
decomposition method is adopted to handle the high complexity of the optimization problem.

A summary of the reviewed DOP papers is shown in Table 4.
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Table 4. Summary of DOP-Related Papers.

Author Approach Future Directions

Salama and Srinivas [77]
• MILP
• Epsilon constraint method
• Iterative k-means algorithm

• Consider solving large instances using other heuristics or
meta-heuristics

Dukkanci et al. [78] • Second-order cone programming
• Exact methods

• Account truck speeds
• Extend the model to humanitarian applications

Shavarani et al. [79]
• Mixed integer non-linear
programming model
• GA and hybrid GA

• Consider improved drone payload in capacitated models
• Address uncertainties by fuzzy programming approaches
• Assess environmental sustainability

Chiang et al. [80] • MIP
• GA • Consider other power sources such as fuel cells

Shi et al. [81] • MIP
• Modified NSGA-II

• Combine underground logistics system with ground
transportation

Khoufi et al. [82] • MIP
• NSGA-II

• Optimize the refueling operations management
• Make the refueling time proportional to required energy of
drone

Zhang et al. [83] • Mixed-integer model
• Bi- and tri- evel heuristics

• Incorporate time windows and theory of multi-level
heuristic algorithms

Dorling et al. [84] • MILP
• Simulated annealing heuristic

• Consider the impact of weather
• Add time windows to locations
• Include maintenance cost in case of drone reuse
determination

Xia et al. [58] • MILP
• Tailored branch-and-price algorithm

• Consider the effects of different drone payloads
• Incorporate empty drone repositioning with fleet sharing

Sawadsitang et al. [86] • Three-stage stochastic IP model
• Decomposition method

• Consider the uncertainty in customers’ demand and
traveling time
• Incorporate multiple-stage scenarios

3.5. Urban Last Mile Problem

The ULM problem involves analyzing the final stage of drone delivery logistics in an
urban environment, illustrated in Figure 6. Drones are becoming more popular in urban
areas for delivery compared to traditional delivery methods due to the advantages they
offer in terms of resources, such as time and money [87]. Nevertheless, there exist negative
consequences of drone delivery as well, and they are a concern for the research commu-
nity. With this in mind, sixteen articles were selected and classified as ULM problems.
These studies addressed the positive and negative impacts of ULM and utilized a variety
of techniques, including conceptual [87,88], statistical [89–92], visual, and mathematical
modeling [93–102].

Figure 6. Urban Last Mile Problem—An illustration. It refers to the final leg of the delivery journey,
typically from a distribution depot or hub to the end customers. Companies and transportation
providers are exploring new approaches to urban delivery, such as using electric bikes, drones, and
other innovative solutions, to address the urban last mile problem.
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Tadic et al. [87] focused on UAV in the context of city logistics (CL). They tested
and compared four CL concepts or configurations which included cooperation and flow
consolidation within urban logistics. Those concepts were contrasted with one traditional
concept through the generation of 10 instances, as well as the measurement of CL per-
formances such as delivery costs, distance traveled, emissions of CO2, overall delivery
completion times, amount of vehicles’ trips, and the loading space utilization in ground
vehicles, obtaining better results within the concepts that involved a greater display of the
drones, especially the last two, which were developed based on the micro-consolidation,
two-echelon, and three-echelon concept. Gabani et al. [88] focused on determining where
the drones’ charging stations would be placed, even though a conceptual approach was
also taken. They developed two frameworks; the first one consists of a truck–drone pair
with the charging station for the drones placed on the upper part of the truck, while in the
second one the delivery is made only by drones, and different configurations of charging
stations were accommodated to fulfill the possible demand.

In relation to the statistical approach, Serrano-Hernandez et al. [89] focused on de-
veloping an Analytical Hierarchy Process (AHP) to select the transportation mode and
route for a saturated city. To accomplish this, social perceptions of citizens regarding urban
freight and residents’ preferences were gathered and analyzed through economic, social,
and environmental criteria. The results pointed out that for the residents in the city center,
the drone transportation mode was the best among the rest of the alternatives (traditional
van and cargo bike). Similar to the work of [89], Doole et al. [92] developed a framework
to estimate the traffic density of drone-based delivery for five countries. Following that
line of thought, a comparison of various forms of transportation in metropolitan areas was
also made. When E-bikes (battery-assisted bicycles) were compared to drone deliveries
in this instance, the cost of the E-bikes was found to be twice that of the drone deliver-
ies. Borghetti et al. [91] concentrated on recognizing how inclined the consumers were
to use the drone-based service for the last mile delivery versus other options such as a
van, bicycle, and scooter using a Stated Preference (SP) Analysis with a multinomial logit
model. This model was applied to a case study in a city and resulted in a high inclination
to the drone’s use for the customers and a profit generation after just one year of operation.
Finally, Çetin et al. [90] studied society’s concerns regarding the use of drones in urban
areas, where problems with the environment, safety, justice, and the economy were highly
mentioned. They proposed a list of mitigation measures to help overcome the concerns
and improve the public’s acceptance, recognizing that safety stood out as a major concern.

As mentioned before, the operations of drone delivery in an urban setting require
drones to perform in highly dense areas, where it is important for society to ensure safety
overall. In order to address this, studies in both visual and mathematical modeling are
developed to overcome this barrier. Doole et al. [94] attempted to avoid flight conflicts and
intrusions between drones while performing a delivery using time-space diagrams as a
visual engine, followed by two merging strategies and algorithms that are speed-based
and delay-based, both with the aim of providing a safe space for the drone to merge in the
already existing traffic flow. Ren and Cheng [93] developed a model that contemplated
casualties caused by low-altitude flights, as well as drone noise risks and privacy risks
for third parties or a population that is not involved in the drone’s flight activity. The
model generated a three-dimensional grid using an image regression technique and three
risk index calculations. When taking into account the flying altitude and the surrounding
region, the risk index produced significant insights into the acceptability of drones as a
delivery method.

Ariante et al. [96] developed a ground control system to efficiently observe and manage
the UAV position for safe landing–take-off maneuvers. The implementation consists of a
LiDAR system, sensor board, and wireless connectivity. Brunner et al. [99] determined the
exact landing location through visual navigation. In this instance, a prototype system was
developed that starts with the customer’s location provided by the GPS, and then through
the visual–inertial localization algorithm, the drones navigate. An extension of the work of
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[99] was followed by Bahabry et al. [100]. In this case, a MIP mathematical formulation was
applied with the aim to avoid drone collision and obtain optimal navigation of the multi-
drone fleet, whereas the total travel time was minimized. To solve the MIP, two heuristic
iterative algorithms were developed; the first one was required to define a drone’s path
influenced by its peer’s route, whilst the second one made the path trajectories for all the
drones overall. A similar problem was addressed by Mayalu et al. [101] regarding collision
avoidance. Nevertheless, a different approach was used to navigate in latitudes below the
urban airspace; the navigable region was decomposed into hyper-local navigation cells and
used to generate 3D mappings that enhanced the trajectory planning. In the case of Li et al.
[102], the flight scheduling and conflict resolution were discussed through a deterministic
clustering-based single path planning, which results in four traffic management models.
Each model represents a different aggregate configuration regarding the flight priority and
possible path defined for the drone. For the most complex, an MILP is used to formulate
the overall problem with the objective of minimizing the system’s total cost conformed by
the mission’s delay cost and path cost.

Zang et al. [97] presented a ULM delivery problem with drones and trucks where
three mathematical models—mixed integer, bi-level, and three-level programming—were
formulated. The study developed two heuristics: bi- and tri-level heuristics that take
significantly less computation time in comparison with CPLEX to solve the problems.Resat
[98] proposed a hybrid solution methodology including a multi-criteria decision-making
(MCDM) system and a MILP optimization model for ensuring a sustainable last-mile
delivery in urban areas. The MCDM system identified the best logistics providers based on
various performance parameters, and the MILP minimized transportation costs and total
carbon dioxide emissions by using the epsilon constraint method. An interesting approach
was proposed by Kuru [103] on the matter of fully automated UAVs (FAUAVs) in urban
areas, especially within the concept of smart cities (SCs). They developed a framework that
follows the requirements and controls in real-time, along with all the resource limitations
regarding the FAUAVs in a mission. The framework was based on a decentralized agent-
based control architecture to integrate both concepts, FAUVs, and SCs. To fulfill this, the
FAUVs are conformed of cameras, LIDAR, radar, sensors, inertial measurement units,
inertial navigation systems, and communication systems that are able to interact with the
SCs’ technology.

Table 5 provides an overview of the reviewed papers under the context of ULM.

Table 5. Summary of ULM Papers.

Author Approach Future Directions

Tadic et al. [87]
• CL conceptual models
• Performance evaluation through test
instance generation

• Develop a financial risk assessment for the parts
involved
• Consider the CL concepts in a dynamic and
stochastic environment
• Consider other CL concepts and combinations
• Generate new models oriented to the implementation
of more complex CL concepts with drones

Gabani et al. [88] • Conceptual models
• Case scenarios

• Consider stakeholders’ impact on the framework
implementation
• Expand the framework to the computational
simulation
• Consider implementation feasibility and profitability

Serrano-Hernandez et al. [89]
• Statistical
• Survey and multi-criteria analysis
(AHP)

• Include more stakeholders in the analysis (carriers,
owners, and local authorities)

Doole et al. [92]

• Statistical
• Estimation framework and
forecasting
• Case study

• Expand financial assessment, including factors such
as drone’s landing area and charging station
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Table 5. Cont.

Author Approach Future Directions

Borghetti et al. [91]

• Statistical
• Stated Preference (SP) survey
• Multinomial logit model Numerical
case study, financial feasibility analysis

• Consider legal regulations and limitations in the
drone’s route planning
• Explore landing strategies for dense urban areas
• Include battery performance and its impact in the
drone’s performance
• Explore end-user recognition
• Use of multi-criteria analysis to recognize the
environmental impact of drone’s use

Çetin et al. [90]
• Statistical
• Survey, brainstorming, and safety
operational risk assessment

• Implement the proposed mitigations
• Expand the techniques to measure and recollect data
for the list’s improvement

Doole et al. [94]
• Time–space diagram
• Speed-based and delay-based
algorithms Simulation

• Include other real factors such as meteorological
events
• Consider drone’s flight information to avoid false
recognition
• Enhance the street network to be non-orthogonal

Ren and Cheng [93] • Pixel regression mode
• Risk assessment index model

• Explore verification techniques for real-life
applications of the model
• Include other drones’ internal (endurance) and
external factors (weather and airspace)

Ariante et al. [96] • 2D LiDAR-based Ground System • Enhance the mechanical structure
• Improve the calibration strategy

Zang et al. [97] • MIP
• Bi-level and three-level programming

• Include time window
• Consider multi-level heuristic algorithm to solve the
problem

Resat [98] • MILP
• MCDM

• Include drone’s characteristics as models’ constraints
• Consider sensitivity analysis to recognize the
parameters that influence the sustainability scores

Bahabry et al. [100] • MILP
• Two heuristics algorithms

• Consider research approaches that can enhance
solutions for real-time cases (e.g., artificial intelligence)
• Consider the inclusion of a ground transit network to
help the drone’s energy endurance

Mayalu et al. [101]
• 3D-Mapping
• 3D-Tiles navigation format
• Robot Operating System (ROS)

• Expand trajectory planning for drone traffic
management applications

Li et al. [102]

• Deterministic clustering-based path
planning
• Saturated Fast-Marching Square
(Saturated FM2) algorithm
• MILP, linearization
• Batch optimization algorithm

• Expand the use of other heuristics approaches to
solve the model formulation
• Incorporate stochastic factors
• Recognize the effect of population density, building
concentration, and terrain types on the model’s
performance

Brunner et al. [99]

• GPS-based navigation
• ROS, PX4, Ardupilot
• Vision-based localization algorithms
and simulation

• Include collision avoidance in the model with data
retrieval
• Add building scan detection to detect the landing
field
• Expand the study to incorporate package handling

Kuru [103]
• Decentralized agent-based control
architecture
• Simulation

• Develop regulations to frame the FAUAVs operations
in SCs
• Improve the communication technology with the
FAUAVs and SCs
• Consider other options for interference management
and jamming avoidance techniques
• Include sky pollution reduction within the UAV
route planning
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4. Challenges
4.1. Technological

The battery and flight-time duration limit the range of drones. As explained by
Kirschstein [104], one challenging problem is reducing the power usage and minimizing
the impact of wind direction, trip speed, and customer density, which ends up affecting the
efficiency of drone-delivery systems. Moreover, how to correctly aim at the greater density
locations needs to be further discussed, as it may offer cost-saving potential in comparison
to drone implementations for rural settings. In this regard, the number of customers,
traffic circumstances, and even battery deterioration have to be addressed. Another issue
connected to battery duration is determining the right size of the required facilities, which
is addressed by Aiello et al. [105]. Further, Torabbeigi et al. [76] mentioned the need for
tackling the impact of the payload on the battery consumption rate (BCR) and flying time.
Multiple charging stations will expand the last mileage delivery coverage, which can be a
factor to consider for a further impact analysis [59]. Moreover, the location of the charging
station must be taken into account in the analysis [35]. Hong et al. [106] identified the
need to construct a location model for a spatially dispersed charging station. Additionally,
the drone charging time is a factor to consider since it will influence the time constraint
in the mathematical formulation. In this case, Daknama and Kraus [50] suggested that
factors, e.g., partial charge and charging speed, should be considered for the drone charging
process in order to further adjust it to real scenarios.

4.2. Social Perception

According to a Poland-based study, 43% of the population was skeptical about the
implementation of drones, which implies the existence of social barriers to the adoption
of drone parcel delivery services [107]. Another study conducted in the urban areas of
Australia found that traditional postal services are preferred to drone deliveries despite the
recent advancement in e-commerce and technology [17]. Social anxiety about automation
contributes to the skepticism about drones [108]. People are concerned that the usage
of drones will make traditional retail disappear to a great extent, which will eventually
lead to job losses, increased stress levels, decreased social interactions, and the creation of
an elite mobility regime [21]. Social equity is considered to be another significant barrier
to the implementation of drone delivery. It is feared that drones will only be limited to
rich households, as there remains uncertainty regarding their affordability [109]. Public
knowledge about drone technology and operations can help consumers better understand
the possible benefits of adopting drones as a delivery mode. Mass media channels can be
used as a tool to educate the public about drones, considering that media have a positive
effect on the public attitude [110].

4.3. Privacy and Safety

The biggest challenges of drone implementation for delivery are the possible privacy
violations, safety, and ethical issues. Drones are exposed to various security attacks while
communicating with ground facilities via open channels [111]. Delivery drones are sus-
ceptible to privacy infringement, as they have information about consumers and are also
equipped with cameras. Drones might be hacked for stealing personal information and
scamming people [112]. Another concern is safety, as drones carrying a parcel can fall into
unintended destinations, causing severe harm to people. The primary causes for ground
impact drone accidents are a shortage of battery power and partial failure of the rotor or
battery [113]. Drones can collide with each other for a loss of communication or power
and hardware or software malfunctions [114]. Moreover, there is a potential threat of
drones being weaponized for terrorism or smuggling [21]. A possible intrusion into privacy
and safety risks negatively impacts peoples’ attitudes toward drone-aided delivery. This
situation takes a higher relevance in the case of the marginalized population [115]. To tackle
this, advanced technologies utilized in drone design should be highlighted to minimize
their anxiety regarding security risks [110]. Privacy and safety challenges can be addressed
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by establishing no-fly zones for drones, using advanced encryption to restrict cyber-attacks,
limiting camera usage, implementing a no-access rule to any recordings during a drone
flight, limiting minimum altitudes, and hovering drone flights [90]. The zoning approach
can be implemented as a systematic solution for drone deployment on a large scale [116].

4.4. Environmental Concerns

Environmental concerns affect the user’s attitude toward drone delivery. Hence, it
must be ensured that environmentally conscious best practices are adopted for drone oper-
ations [117]. It is found that employing drones on a large scale is likely to reduce pollution
more effectively in rural areas than urban areas [118]. Drones also cause noise pollution,
CO2 emission and visual pollution [103,119–121]. A study evaluated soundscapes of differ-
ent locations, considering the effect of drone noise on traffic. In areas that were adjacent
to busy roads, the noise generated by drones was masked by the traffic noise, causing a
sound annoyance only 1.13 times more than without any drone noise, in comparison to
other areas with less busy roads where the sound annoyance created by drones was 6.4
times higher. This indicates that planning drone operation routes near busy roads can
significantly diminish the noise pollution it causes [122]. Concerning visual pollution, a
challenge for operators is improving the drone’s route planning [103]. Adverse weather
conditions (i.e., windstorms, snowstorms, poor visibility, and thunderstorm) pose a big
challenge to smooth drone delivery [108,117]. Furthermore, drones can collide with birds
and harm other animals [90,109]. To mitigate these challenges, the adoption of renewable
energy sources for charging drone batteries and designing eco-friendly or hybrid drones by
implementing recycling needs to be encouraged [90].

5. Concluding Discussions and Limitations
5.1. Concluding Discussions

This study reviewed the main contributions in the literature related to drone-aided
delivery between 2015 and 2022. The volume of literature published during this period
confirms this topic’s potential and researchers’ interest in drone deliveries. We classified the
literature into four sections and analyzed each section based on methodologies, objectives,
and future research potential. We also summarized all the literature of a section in a table,
which is helpful for quickly comparing different studies and detecting the unexplored areas
of each of them.

Future studies should consider the remaining battery capacity after a flight, speed
variations, and battery swapping schedules to make the models more relevant to real-
world scenarios. As the speed of drones increases, flight time, battery life, and cost will
be impacted, and these factors need to be studied. To make the models more adaptable to
possible technological advancements, some constraints could be relaxed. For instance, the
drone flight range or capacity constraints could be relaxed to observe how they affect the
optimal solutions of a model.

Since drone operations are susceptible to uncertainties such as weather variability and
man-made disasters, the models should incorporate them. Researchers should address
questions such as what a drone should do if it encounters such uncertainties during the
delivery flight. Should it return to the base or the nearest charging station, or identify the
nearest safe place to land? By answering such questions, the models can be improved to
better reflect real-world scenarios.

The reviewed literature exhibited an interesting trend, as a majority of studies relied
on randomly generated data to validate their formulated models and techniques. Such data
was often collected from small-scale drone tests, which limits its reliability in predicting the
performance of large-scale operations. Consequently, managerial conclusions drawn from
these studies may not hold significant value for real-life drone operations on a larger scale.
To ensure robustness, the studies should perform a sensitivity analysis using a wide range
of values. Furthermore, most studies assumed a small fleet of drones and a limited number
of customers, highlighting the need for research that addresses larger-scale operations.
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As of now, the operational capabilities of drones are restricted by their capacity, battery
life, and sensitivity to weather conditions, as well as the maximum payload they can carry.
However, with ongoing technological advancements, it is reasonable to anticipate that
drones will soon overcome these limitations and be readily available for commercial long-
range operations. This will necessitate having drones that are durable enough to fly for
extended periods of time and serve a larger customer base, which in turn will heighten the
need for more frequent maintenance and increased safety standards. In the future, safety
can be integrated into the modeling of drone operations. The evolution of drone technology
may also make current challenges outdated, and with commercialization, profitability is
likely to become an essential factor to consider.

As drone delivery becomes more widespread, it is important to consider customer
preferences, satisfaction, and dissatisfaction in the existing system. Researchers should
explore how to incorporate these factors into operational models. For example, what if a
customer prefers to be present during the delivery, has a preferred time of delivery, or fails
to show up for the delivery? Additionally, if a high demand prevents some delivery orders
from being fulfilled, researchers should examine ways to reflect this in the models.

Further questions that should be explored include how to determine the order of
serving customers when multiple requests need to be fulfilled by one drone, whether
drones should wait until the next request if there are no immediate customers to serve, and
how many drones should be used to meet the demands. Overall, incorporating customer
preferences and satisfaction into drone delivery models will be critical for ensuring the
success of this emerging technology.

The challenges of drone delivery in urban environments have been identified and
classified into four parts, with possible ways to overcome them discussed. This will enable
practitioners to address the challenges and overcome barriers to implementing drone-
aided deliveries. As drone delivery becomes more prevalent in urban areas, airspace
will become more congested, increasing the risk of collisions. Incorporating this factor
into the model and objective functions could be useful. Another significant challenge in
drone operation that needs to be modeled is noise. The navigation system of drones may
encounter unknown barriers in urban areas. To address this challenge and improve drone
recognition systems, new approaches in artificial intelligence need to be introduced.

5.2. Limitations

This study has certain limitations. The literature review may not have been exhaustive,
as the search was conducted using specific keywords and databases. However, we intention-
ally curated recent literature on drone-aided delivery under the context of urban logistics.
Future studies could benefit from expanding their search by using broader databases and
incorporating additional relevant keywords. Additionally, future research on drone-aided
delivery should consider integrating drones with existing urban transportation systems
and addressing the potential challenges to increase the acceptance and implementation of
drone delivery.
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