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Abstract: The segmentation of crop disease zones is an important task of image processing since
the knowledge of the growth status of crops is critical for agricultural management. Nowadays,
images taken by unmanned aerial vehicles (UAVs) have been widely used in the segmentation of
crop diseases, and almost all current studies use the study paradigm of full supervision, which needs
a large amount of manually labelled data. In this study, a weakly supervised method for disease
segmentation of UAV images is proposed. In this method, auxiliary branch block (ABB) and feature
reuse module (FRM) were developed. The method was tested using UAV images of maize northern
leaf blight (NLB) based on image-level labels only, i.e., only the information as to whether NBL occurs
is given. The quality (intersection over union (IoU) values) of the pseudo-labels in the validation
dataset achieved 43% and the F1 score reached 58%. In addition, the new method took 0.08 s to
generate one pseudo-label, which is highly efficient in generating pseudo-labels. When pseudo-labels
from the train dataset were used in the training of segmentation models, the IoU values of disease in
the test dataset reached 50%. These accuracies outperformed the benchmarks of the ACoL (45.5%),
RCA (36.5%), and MDC (34.0%) models. The segmented NLB zones from the proposed method
were more complete and the boundaries were more clear. The effectiveness of ABB and FRM was
also explored. This study is the first time supervised segmentation of UAV images of maize NLB
using only image-level data was applied, and the above test results confirm the effectiveness of the
proposed method.

Keywords: weakly supervised segmentation; maize northern leaf blight; disease segmentation;
unmanned aerial vehicle; semantic segmentation

1. Introduction

The segmentation of plant disease plays an important role in obtaining the information
regarding as well as further control of the disease. Images taken by unmanned aerial
vehicles (UAVs) could serve as an important data source for non-destructive and efficient
disease monitoring due to their large-scale imaging capability, and the costs of purchasing
and using them has gradually reduced in the recent years [1].

Maize Northern Leaf Blight (NLB) is a serious crop disease which could cause a large
reduction in the yield of maize crops, as this disease is one of the most economically
damaging maize diseases [2]. Diseased areas caused by maize NLB are usually large;
therefore, they can be seen in the images taken by UAVs. In other words, using images from
UAVs compared with traditional manual inspection in the field is an efficient way to monitor
maize NLB. Typical plant disease extraction methods are fully supervised segmentation
methods, which require a lot of manually labeled pixel-wise data. Specifically, pixel-wise
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labeled data are from manually depicting the edges of the disease zone in the label software.
Moreover, it should be noted that labeling for crop disease in one image needs a large
amount of time due to the dispersion and uneven sizes of crop-diseased zones.

To solve the problem of requiring a large amount of labelled sample data for fully
supervised disease segmentation, a weakly supervised segmentation experiment was
carried out in this study using only image-label data, and a weakly supervised segmentation
method was proposed for NLB segmentation. Specifically, only the image-level labels,
i.e., whether the NLB occurred, were used in this study. Therefore, the potential of the
segmentation of plant disease using only image-level labels was explored in this study. To
the best of our knowledge, this is also the first time a weakly supervised paradigm for plant
disease segmentation using UAV images was applied.

In this study, the whole process was divided into two stages: pseudo-labels extraction
and the training of the disease segmentation model using pseudo-labels. An overall
description is given in Figure 1. In the end, the accuracies of the generated pseudo-labels
and segmented diseased areas from the proposed method were better than those of the
compared benchmark of weakly supervised segmentation models.

Figure 1. Overall description of the proposed method.

The main contributions of this study include (1) the first time the potential of applying
weakly supervised segmentation to crop disease segmentation using UAV images was
investigated. (2) The proposal of a weakly supervised method suitable for maize NLB
using UAV remote sensing images, which method only relies on image-level label. High
quality pseudo-labels could be generated through classification activation maps (CAMs),
and the IoU of the pseudo-labels on the validation dataset achieved 43%. (3) The validated
effectiveness of the proposed method in terms of the accuracies of generated pseudo-labels
and segmentation results. The time for generating a pseudo-label was 0.08 s, and the
segmentation accuracy of the proposed method achieved 50% without using any pixel-level
ground truths.

Subsequently, related works on plant disease segmentation and weakly semantic
segmentation are given in Section 1.1. Section 2 illustrates the details of the proposed
method and specific algorithms, which include the proposed auxiliary branch block (ABB)
and feature reuse module (FRM) module. The experimental results and analysis of the
NLB dataset are listed in Section 3. Section 4 discusses the improvements brought about by
the proposed modules and the limitations of the proposed method. Finally, a conclusion is
given in Section 5.

1.1. Related Work
1.1.1. Plant Disease Segmentation

During the early stage of plant disease segmentation studies, researchers used man-
ually designed features templates to extract useful information from original images;
subsequently, the extracted features were classified by various classifiers. Tetila et al. [3]
used the simple linear iterative cluster (SLIC) method to segment the soybean disease in
UAV images. Yue et al. [4] proposed a fast disease monitoring method using UAV images
through the SIFT algorithm and object-oriented information processing to extract the stress
of disease and pest, and the map of plant-stress levels as such were obtained. Yang et al. [5]
classified the tea disease from thermal UAV images, and the correlation score reached
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0.97 when compared with manual observations. However, it takes a large amount of time
and expert knowledge to manually design feature templates, and they are limited for
application scenarios.

Tractor-based systems have also played an increasingly important role in plant stress
detection. Some of them are already in use, for example, the See & Spray Ultimate tractor-
based system detected weeds in a field to reduce weed stress [6]. To detect specific symp-
toms of crop diseases with sub-millimeter ground resolution, Dammer et al. [7] adopted
near-surface images from a tractor combined with UAV images to detect yellow stripe rust
in winter wheat. Gillis et al. [8] used a tractor equipped with global positioning system
(GPS) to control Prunus replant disease in the areas where fumigants are most needed.
Gnyp et al. [9] tested the tractor and UAV sensors to determine the nitrogen status of crops
through the results of spectral reflectance measurement.

Many studies conducted disease segmentation from the aspects of using vegetation
indices (VIs) drawn from multispectral and hyperspectral images [10–12]. Su et al. [13]
performed a temporal–spatial monitoring for stripe rust of winter wheat at the field scale
and presented the results of the sensitive degree of different VIs in the different growth
periods of crops regarding the disease monitoring. Since there are a large number of bands
in hyperspectral images, more VIs can be extracted as features for disease segmentation.
For example, Bohnenkamp et al. [14] selected sensitive feature bands from hyperspectral
UAV images to identify winter wheat yellow rust using three classification algorithms.
In addition, the information transfer probability between the ground level and the UAV
level was discussed. The acquisition of hyperspectral images usually involves significant
efforts and a complicated process; thus, it is difficult to widely use hyperspectral images
at present.

With the increased interest in deep learning, more and more studies have investigated
its potential for disease segmentation due to the advantages of end-to-end learning, strong
feature-extracting capabilities, and the lack of a need to manually design feature templates,
such as using the backpropagation (BP) method to classify wheat Fusarium head blight [15]
and applying an artificial neural network to evaluate remote sensing technologies for
segmenting Ganoderma-infected oil palms [16]. A deep convolutional neural network
(CNN) was used to detect radish wilt disease from images captured by a low-altitude
UAV [17]. With the development of semantic segmentation, many scholars have applied
various semantic segmentation networks (e.g., FCN, UNet, and SegNet) to the study of
disease segmentation. For example, Kerkech et al. [18] proposed a UAV image registration
method to register visible and infrared UAV images, and used SegNet to segment the
registered images into four types: shadow, ground, healthy and diseased zones. In another
example, FCN was applied to segment six types of corn leaf disease, each type of which
contained 125 pictures, and the final mean accuracy was 96% [19]. PSPNet was used to
realize the segmentation of wheat yellow rust, bare land, and healthy wheat, and the
recognition accuracy reached 98% [20]. ResNet-34 was used as the classification network
to determine the occurrence of maize NLB, and the sliding window method was used to
determine the pixel-wise segmentation [21]. To improve the performance of deep learning,
scholars have studied the methods of weight initialization for deep learning models [22].
For example, Wadii et al. [23] studied four weight initialization methods for deep learning
models in remote sensing. Liu et al. proposed an improved weight initialization method
termed GLIT for asymmetric activation function neural networks. Formal methods could
provide strict assurance of correctness for hardware and software systems [24]. As machine
learning and deep learning become more popular, the application of formal methods to
validate systems that incorporate machine learning has recently been considered [25].
Many studies have considered verifiable AI from the perspective of formal methods [26].
For example, Katz et al. [27] proposed a Reluplex method extending the processing of
non-convex ReLU activation function to verify the characteristics of deep neural networks.

According to the scene of agricultural disease segmentation, the typical semantic
networks have been improved from the aspects of architecture design and attention mecha-
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nism fusion. For instance, Zhang et al. [28] proposed Ir-Unet based on the improvements
of UNet to monitor winter wheat. Additionally, a spatial content attention network was
proposed, which was composed of spatial-information-retained modules preserving more
spatial information and content information modules expanding the receptive field to seg-
ment pine wood nematode disease, and the F1 score of the experiment achieved 0.88 [29].
However, the design of the disease segmentation network equipped with the attention
mechanism relies on the analyses of the scene with a certain amount of expert knowledge.
From the perspective of sample augmentations, Hu et al. [30] used the conditional gen-
erative adversarial network to generate more samples whose leaves were segmented by
SVM method, and finally used the VGG-16 network to classify three types of diseases
according to the generated samples. As for the implementation of lightweight models,
Huang et al. [31] proposed a network based on YOLACT++ integrating attention modules
to segment corn NLB, and the accuracy of the segmentation reached 84.91%.

Object detection technique has also been used in disease detection, such as using
YoLoV3 and Faster R-CNN with different backbone networks to detect the occurrence
of pine nematode disease [32] as well as the Mask RCNN model with the ResNet101 to
segment the UAV images of corn NLB [33]. Although accurate pixel-level information
could not be provided by YoLoV3 and the other object detection model, re-segmenting
according to the detected zone were in demand for pixel-level segmentation results. Zhou
et al. [34] proposed an adaptive active location method for Camellia oleifera fruit based
on the YOLOv7 model. Tang et al. [35] developed the YOLO-Oleifera model based on the
YOLOv4-tiny model to find camellia fruits in the complex orchard environment, and the
boundary boxes generated by the YOLO-Oleifera model were used to extract the regions-
of-interest-containing fruits. In summary, Table 1 lists recent studies on plant disease
segmentation using UAV images.

Table 1. Summary of plant disease segmentation with UAV imagery in the last few years.

Ref. Crop Disease Data Type Method Accuracy

[3] Soybean Foliar diseases RGB
UAV images SLIC 98.3% for height between

1 and 2 m

[5] Tea Diseased yellow
leaves

Infrared thermal canopy
UAV Images

HSV transform
and thresholding R2 of 0.97

[10] Potato Vascular wilt Multispectral
UAV images

Generalized linear model and
supervised random forest

classification

Classification accuracy of
73.5–82.5% in Plot 1

[11] Banana Fusarium wilt Multispectral images Binary
logistic regression More than 80%

[12] Pear Fire Blight
Aerial multispectral

imagery of trees
crown

Support vector machine Classification accuracy of 95%

[15] Winter wheat Fusarium head blight Hyperspectral UAV image BP neural network Accuracy of 98%

[16] Oil palms Basal stem rot Infrared UAV images Artificial neural network Classification accuracy
of 97.5%

[17] Radish Fusarium RGB UAV images CNN Accuracy of 93.3%
[20] Winter wheat Yellow rust disease RGB UAV images PSPNet Accuracy of 98%
[21] Maize NLB RGB UAV images CNN Accuracy of 95.1%

[28] Winter wheat Yellow rust disease Red-Edge multispectral
UAV images Ir-Net Accuracy of 97.1%

[30] Tea
Tea red

scab, red leaf spot,
and leaf blight

Hand-held digital
camera images and UAV

images

Generative adversarial
networks Accuracy of 90%

[33] Maize NLB RGB UAV images Mask R-CNN model IoU of 0.73

1.1.2. Weakly Supervised Segmentation

Even though satisfactory accuracies of disease segmentation have been achieved at
present, there are still many difficulties in the acquisition of training samples and pixel-
wise labeling. Therefore, achieving reliable segmentation accuracy with only a small
number of samples has recently received extensive attention and become a hot topic for
research. Nowadays, weakly supervised semantic segmentation has made great progress,
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from the CAM method [36] to the recently salient regions erase [37,38], receptive field
expansion [39,40], and prototype estimation [41], etc.

There are limited studies on weakly supervised segmentation of agricultural disease to
date. Yi et al. [42] applied the weakly supervised training strategy to the encoder–decoder
semantic segmentation network to obtain the seed region, and used the seed region to
train the segmentation network. Although the PlantVillage dataset was used in their
study, those images were captured in a laboratory, and the background was relatively
single. Kim et al. [43] used weakly supervised segmentation to obtain a planting area and
applied it to the automatic driving of a combine harvester, whose data were collected by a
camera installed inside the cabin of the combine harvester. These data were the results of
near-ground measurements, and are different from the UAV data used in this study.

2. Materials and Methods
2.1. Materials

The drone dataset used in the study [44] was selected and the data captured from an
experimental cornfield located at Cornell University’s Musgrave Research Farm in Aurora,
NY, in the summer of 2017. As described in [44], the trials consisted of maize hybrids from
Te Genomes to Fields Initiative, arranged in two-row plots with a length of 5.64 m and
inter-row spacing of 0.76 m, and the trials were rainfed and managed with conventional
maize cultivation practices. The maize was inoculated at the V5–V6 stage with both a liquid
suspension of Setosphaeria turcica (isolate NY001) spores and sorghum grains colonized by
the fungus. The UAV images in the dataset were collected by a DJI Matrice 600 UAV with
an altitude of 6 m and a velocity of 1 m/s, and they were captured with a nadir view every
2 s. The dataset is the largest corn NLB drone image dataset at present.

The diseased zones and healthy zones in the leaves from the UAV image were cut
out in a range from 448 × 448 to 1568 × 1568, and all the samples were uniformly resized
to the size of 448 × 448 pixels. The numbers of samples in the training dataset, valida-
tion dataset, and test dataset were 1700, 500, and 300, respectively. The examples of the
samples in the experiment are given in Figure 2. The training dataset contained only 850
healthy and 850 diseased samples, and the training set was used to train the network for
pseudo-labels generation and a disease segmentation network using diseased samples and
their corresponding pseudo-labels. The validation dataset included 250 healthy samples,
250 diseased samples, and ground truths corresponding to diseased samples. The ground
truths of diseased samples were used to measure the accuracy of pseudo-labels. The test
dataset contained 300 diseased samples and ground truths of diseased samples, which were
used to measure the accuracy of the disease segmentation model. As shown in Figure 1, the
diseased areas were red, and they were labeled by the open-source LabelMe software [45].

2.2. Methods

The whole process was divided into two parts: pseudo-label extraction and segmenta-
tion model training. The overall architecture is given in Figure 3. The capability of feature
learning in the proposed method was enhanced by adding auxiliary branches and feature
reusing to improve the accuracy of weakly supervised segmentation. More details of the
proposed method will be detailed below.
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Figure 2. Examples of samples in the train, validation, and test dataset. The red area represents the
corn blight area shown in the middle row. The black area refers to the background in the images,
containing leaves and soil, etc.

Figure 3. Architecture of the proposed method.
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2.2.1. Pseudo-Label Extraction

The VGG-16 classification network [46] was utilized in this extraction process. The
network was divided into five stages, and the size of the feature maps became 1/2 of its
previous stage after the completion of each stage. To expand the scope of the discriminate
areas, this study removed the maximum pooling operation at the last position of the 4th
and 5th stages to increase the size of the feature maps. As a result, the size of the final
feature maps was 56× 56. The feature dimensions of the 1st stage feature, 2nd stage feature,
3rd stage feature Fs3, the 4th stage feature Fs4, and the 5th stage feature Fs5 were 64, 128,
256, 512, and 512, respectively. In order to improve the ability of discriminating the healthy
and unhealthy leaves, feature reuse module and auxiliary branch module were proposed
in the proposed method. When the network was trained, the pseudo-labels were extracted
from the CAMs.

• Auxiliary Branch Block (ABB)

The scale of disease areas in UAV images varies greatly, and it is not enough to depend
on high-level features to generate pseudo-labels. Features of the early feature extraction
stage are abundant in spatial information, which has a positive effect on the extraction
of the small disease areas. Therefore, an auxiliary branch block was constructed for Fs4
to obtain auxiliary classification scores Ss4, and its computation process was given in
Equation (1). The processes were to use a grouped 3 × 3 convolution ϕ1 and an ordinary
1 × 1 convolution ϕ2, which served as the classifier here. The output channels and group
number of ϕ1 were set to 512 and 512, respectively, due to the efficient properties of group
convolution. The output channel number of ϕ2 was the same as the number of categories,
i.e., 2. The feature maps, processed by ϕ1 and ϕ1, were averagely pooled to obtain the Ss4.
The specific structure of the auxiliary branch block is given in Figure 4.

Ss4 = AvgPool(ϕ2(ϕ1(Fs4))) (1)

ϕ1 is a 3 × 3 group convolution, and ϕ2 is a 1 × 1 convolution, which served as the
classifier here.

Figure 4. Architecture of the proposed ABB.

• Feature Reuse Module (FRM)

Convolution operations have the characteristics of local perception and weight sharing,
and the size of the convolution kernel is much smaller than the size of the image. Therefore,
when a small number of convolutions are carried out, the local spatial information from
the image is still preserved, and the semantic features of the whole image are relatively
few. In other words, low-level features have rich spatial information, while their semantic
information is insufficient. High-level features have sufficient semantic information but
lack spatial information related to boundary description [47]. Both types of features are
complementary. To improve the capability of feature learning of structural and semantic
information from UAV images, FRM was proposed. The abovementioned Fs3, Fs4, and
Fs5 were concatenated along the channel dimensions, and the number of the channels
became 1280 for the fused features Ff usion, as given in Equation (2). Ff usion was enhanced
by applying two 3 × 3 ordinary convolution operations ϕ1 and ϕ2, and the out channel
number of ϕ1 and ϕ2 were 512 and 256, respectively. The enhanced features of Ff usion
were named F′f usion, which can be computed in Equation (3). Another 1 × 1 convolutional
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operation, ϕ3, was used as a classifier to transform the channel number of F′f usion into 2,
which is equal to the category number in the study, and the feature maps of the main branch,
termed as Fmain, were obtained. Equation (4) represents the process of calculating the
Fmain. The main classification score Smain was calculated through a global average pooling
operation on Fmain. Equation (5) describes the generation of Smain, and the architecture
diagram of feature reuse module is illustrated in Figure 5.

Ff usion = Fs3 ⊕ Fs4 ⊕ Fs5 (2)

Figure 5. Structure of the FRM.

⊕ refers to the concatenate operation along with channels of features.

F′f usion = (ϕ2

(
ϕ1

(
Ff usion

))
(3)

Fmain = ϕ3

(
F′f usion

)
(4)

Smain = AvgPool(Fmain) (5)

• Loss Function for Pseudo-Label Extraction

The cross-entropy loss function was selected as the specific loss function for the
classification in the proposed method, and it is given in Equation (6). The term y is 1 if the
classification result of an image that belongs to the true category n; otherwise, it was 0. K is
the total number of categories, which were two in this study. The ŷ are the predicted scores
in each branch, i.e., Smain and Ss4.

Loss = − 1
K ∑K

n=1[ynlogŷ] (6)

A multi-task learning approach was used to construct the total loss function, which
consists of two parts (as shown in Equation (7) below). In Equation (7), Lmain and Ls4 were
the loss values for the main classification branch, and for the ABB, respectively. They were
computed using Equation (6). The weight of λ was empirically set to 0.5.

Ltotal = Lmain + λLs4 (7)

• Pseudo-Label Generation

Referred to [36], the weight values of classifiers in each proposed module, i.e., ϕ3 in
FRM and ϕ2 in ABB, were used to generate CAMs, respectively. The computation equation
of CAM was given in Equation (8).

CAM = ∑k wc
k fk(x, y) (8)

The term wc
k was the weight corresponding to class c for channel k in the classifier; fk

was the feature map for channel k; x and y were the row and column position in fk.
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For each classification branch, Equation (9) was used to generate the normalized CAMs.

CAMc,i
norm =

CAMc,i
value − CAMc

min
CAMc

max − CAMc
min

(9)

where CAMc,i
norm is the normalized CAM for class c in i position; CAMc,i

value is the original
CAM value in the ith pixel of the CAM for class c; CAMc

min and CAMc
max are the minimum

and maximum values in CAM for class c, respectively, in each channel of CAMs, where the
total number of channels is two for background and diseased zones, respectively.

Since two CAMs were generated in this study, the final CAMs were the normalized
summary of the two CAMs, and the formula is the following:

CAM f inal = CAMnorm(CAMmain + CAMstage4) (10)

where CAMstage4 and CAMstage4 are the normalized CAMs from the main classification
branch and ABB branch.

The pseudo-labels were generated under the condition that the threshold value was
set to CAM f inal . Specifically, if the pixel value of CAMnorm in the disease channel is larger
than the threshold and the pixel in the background channel is not larger than the threshold,
the pixel will be assigned to the disease label; otherwise, the pixel will be regarded as the
background label, as shown in Equation (11).

I f CAM1,i
f inal > T and CAM0,i

f inal ≤ T, Labeli
p = 1, otherwise Labeli

p = 0 (11)

where CAMc,i
f inal is the final CAM for class c at position i, specifically; CAM1,i

f inal is the

disease CAM value at position i ; Labeli
p is the pseudo-label for at position i; and T is the

threshold value to confirm pseudo-labels, where it is set to 0.5.

2.2.2. Segmentation Model

UNet [48] was selected as the segmentation network. The reason for utilizing UNet is
based on two factors: being is the disease zones are dispersed and their size varies greatly,
including both small and large disease spots; the other being the effective structure of
UNet. With their encoder and decoder structure and skip connection, features at all levels
could be fused by the UNet; thus, good segmentation performance and generalization
performance can be achieved by the UNet, which has been widely applied in various types
of semantic segmentation tasks such as automatic driving, land cover classification, and
disease segmentation. To compare the segmentation accuracies of using pseudo-labels
generated by different benchmark networks, generated pseudo-labels served as the true
label along with their corresponding original images from the test dataset used to train the
segmentation network. Afterwards, the segmented diseased images from the UNet could be
acquired. The cross-entropy loss function was used for the loss function of the segmentation
model, as shown in Equation (6). It should be note that all pixels were involved in the
segmentation loss function. The loss values were obtained from the predicted pixel-wise
results corresponding to the manual labeled zones.

2.2.3. Evaluation Indicator

Precision, accuracy, F1 score, and the intersection over union (IoU) value were used to
reflect the segmentation quality and measure the segmentation results, whose equations
were given in Equations (12)–(15), respectively.

Preciaion =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)
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F1 = 2
Precision× Recall
Precision + Recall

(14)

IoU =
TP

TP + FP + FN
(15)

True positives (TPs), false positives (FPs), and false negatives (FN) were used to express
the precision, accuracy, and F1-score, respectively. TP represents the number of positive
samples for which the prediction results are positive; FP is the number of negative samples
wrongly classified as positive; TN is the number of negative samples accurately classified;
and FN denotes the number of positive samples erroneously classified as negative.

2.2.4. Three Comparison Methods

The three benchmark models, i.e., ACoL [38], MDC [39], and RCA [41], were selected as
weakly supervised segmentation networks for comparisons with the model proposed in this
study. Each of the three weakly supervised segmentation methods have shown excellent
performance in the publicly available benchmark nature image datasets, i.e., PASCAL VOC
dataset and CoCo2014 dataset.

ACoL, as a representative in weakly supervised segmentation methods, uses the anti-
erasure method. It has two classification branches to process the features extracted from
the backbone networks for generating CAMs. As shown in Figure 6, features extracted by
the VGG-16 network were put into two classification branches, respectively. For the branch
where classifier A was located, the regions with high activation value of category were
filtered. The features of another branch were erased using the abovementioned regions,
and the erased features were classified by classifier B to obtain the classification score. The
two branches optimized the weights of the network together. The final CAMs were the
combination of the CAMs from A and B, respectively.

Figure 6. Main diagram of ACoL network.

MDC employed atrous convolutions to expand the receptive field of the classification
branch network. The features extracted from the VGG-16 backbone were sent into four
3 × 3 convolutions with different sizes of dilation rate, i.e., 1, 3, 6, and 9, respectively. After
the classification scores of the four branches were computed, the parameters of the MDC
model were optimized. Four CAMs are obtained from each branch, and the calculation
formula of the final CAM is shown in Figure 7, which is the sum of CAM from convolution
with dilation rate 1 and the mean value of other CAMs from other branches.
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Figure 7. Structure of MDC network.

RCA uses the prototype estimation method to generate the prototypes of each category.
It stores the estimated prototypes of each picture in each class queue in the memory bank.
The whole process is as follows: with the features extracted by the VGG-16 network,
the rough CAMs were obtained through convolutions. The areas of high value in the
corresponding label from rough CAMs were regarded as rough pseudo-labels, and the
rough pseudo-labels were used to averagely pool the features to obtain the feature vectors
representing disease and health. To improve the distinguishing ability, the feature vectors
of each category were enhanced after the operators were mixed up, and then they were
stored in the memory bank. The compressed features, standing for the class prototypes,
were obtained through K-means clustering of the feature vectors. In the final step, the
refined CAMs and the classification score were computed by enhancing the semantics of
the class prototypes and the input features of the network. Figure 8 gives the simplified
architecture of the RCA model.

Figure 8. Main architecture of RCA network.

2.2.5. Implementation Details

All models were implemented using the open-source deep learning framework Py-
Torch. The VGG-16 network was used as the backbone network in the label extraction
process of the proposed and comparison networks, and the pre-trained weight from Im-
ageNet was used. The SGD and Adam optimizer were selected as the optimizer for the
classification and segmentation models, respectively. The poly learning rate was used as
the learning rate adjustment method, as shown in the equation below.

learning rate = baselr·1−
(

iteration
num_iterations

)0.9
(16)

where baselr is the initial learning rate of the classification model, with a value set to 0.0001;
iteration is the current number of iterations during the training process; and num_iterations
is the total number of iterations in the training process. In addition, a RTX 2080 graphic
processing unit (GPU) was used in the study.
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For the process of pseudo-label extraction, the number of training epochs was 20, and
the batch size was set to 8, while the batch size of 4 and the training epoch of 30 were
assigned to the segmentation model due to the limited capacity of the GPU. Moreover,
random horizon flip, random vertical flip, and random rotation 90 degrees were used as
the sample augmentation method in the study.

3. Results
3.1. Pseudo-Labels Quality Comparison

Good segmentation results depend on pseudo-labels that are of a good quality. To
measure the quality of pseudo-labels generated by different methods, the degrees of fitness
between pseudo-labels obtained by different methods and ground-truth labels in the
validation dataset are illustrated in Table 2. It can be seen in Table 2 that the IoU of disease
from the proposed model is 1.5%, 10.1%, and 14.3% higher than those extracted by ACoL,
RCA, and MDC, respectively. The precision and F1 of the proposed model were the highest
among the four models. The precision of the proposed model was 19.3% higher than that
of the recall. The precision and recall of MDC were close; however, the their overall values
were low. Although the recall of RCA, which reached 60%, was the highest among the four
models, the precision was the lowest among the four models, indicating that the predicted
disease areas were too large, i.e., large amounts of false alarms occurred. The F1-score and
IoU of pseudo-labels from the ACoL model reached 58.7% and 41.6%, respectively, and
both of them ranked second out of the four models. Therefore, it can be said that in the
comparison of the quality of pseudo-labels in the validation dataset, the proposed model
had the best effect, and it was robust even in the data not involved in training.

Table 2. Accuracies of pseudo-labels extracted from different models.

Model Pseudo-Label IoU(%) Precision Recall F1-Score

MDC 28.8 48.5 41.6 44.8
ACoL 41.6 64.7 53.8 58.7
RCA 33.0 42.3 60.0 49.6

Proposed Model 43.1 71.4 52.1 60.2

Figure 9 shows examples of pseudo-labels generated by different models. It can
be observed in Figure 9 that multiple types of disease occurrence were included. The
presence of a single lesion ((a) and (b)), multiple disease areas (c), as well as obvious
illumination interference (d) increases the extraction difficulty of the disease. However,
the results of Figure 9 shows that the pseudo-labels extracted by the proposed model
were close to their corresponding ground-truth labels, even the only image label given.
Moreover, the boundaries of the disease from the proposed method were more clear and
more accurate compared with other methods. As for the performance of RCA, although a
high accuracy in natural image processing was achieved, it has a complex network structure
and may not suit the disease segmentation scenario in UAV images well. The accuracy
of the pseudo-label of ACoL is the second in all the models, indicating that the salient
erasure and random hide played roles in the performance improvements in the methods.
According to the defined threshold, most salient parts of the feature maps were masked
by the salient erasure, and then the erased feature maps were put into another classifier in
sequence. However, there might be some mistakes in the generation of the pseudo-labels
due to the same threshold being used for all data, which might be unreasonable. The
reason for the poorest performance of MDC is likely that the classification results of the
dilated convolution were added together, which acts as an inhibitor. For the characteristic
of the relatively complex background of UAV remote sensing images, simply expanding
the receptive field may have limited effects. It will inevitably introduce noise such as
soil background and leaves with similar colors to disease, which hinder the quality of
pseudo-labels and further segmentation results. The reason for the passable accuracy is
likely to be related to the fact that the features of agricultural remote sensing images used
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to generate the prototype might be confusing, namely there being some noise, e.g., a few
yellow leaves and bare soil potentially being involved. Therefore, the quality of the entry
queues for the generation of the prototype needs to be inspected. In general, the proposed
model had a simple structure and was easy to implement, and the comprehensive use of
different levels of features improves the accuracy of the pseudo-label.

Figure 9. Examples of generated pseudo-labels from four methods. (a–d) are four group results for
images, labels and generated pseudo labels. Black and white represent background and diseased
zones, respectively. The red zones in the labels refer to manually labeled diseased zones. (a).

3.2. Pseudo-Labels’ Generation Time

The time on the generation of pseudo-labels was another indicator used to measure
the performance of the aforementioned five models. The trained classification model was
loaded (one image was loaded at a time) to obtain the total time. The time on generating a
pseudo-label was the average of all the durations of the pseudo-labels from the 250 samples
contained in the validation dataset. Table 3 lists the results of the four models. The
generation time from the proposed model was only 0.06 s longer than that of the shortest
time-consuming model ACoL, but the accuracy of pseudo-labels was nearly 1.5% higher
than that of ACoL.

Table 3. Average time on generating a pseudo-label from each of four models.

Model Name Running Time/s

ACoL 0.02
MDC 1.06
RCA 0.36

Proposed Model 0.08

3.3. Segmentation Results

The accuracies of segmentation model, trained by pseudo-labels extracted from the
training dataset, were tested by using the test dataset, and the segmentation results are
given in Table 4; the proposed method achieved the optimal segmentation accuracy of
disease. It can be observed that the proposed model achieved the best segmentation IoU of
50.8%, while the segmentation accuracies from the other three models ranged from 34% to
45.5%, exhibiting the superior of the proposed method. In addition, the proposed model
had the highest F1 score of 67.4%, while other models had low values ranging from 50.8%
to 62.5%. Therefore, it can be concluded that the segmentation results from the proposed
method significantly outperformed other methods.
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Table 4. Accuracies of segmentation using pseudo-labels from different models.

Model Disease IoU(%) Precision Recall F1-Score

MDC 34.0 43.8 60.4 50.8
ACoL 45.5 81.4 50.7 62.5
RCA 36.5 40.6 78.2 53.5

Proposed Model 50.8 84.5 56.1 67.4

Figure 10 is for a qualitative comparison of the segmentation results. Figure 10a,b had
more than one diseased zone. Figure 10c,d shows the situation where the diseased zones
were easily confused with the leaves. The leaves in Figure 10e,f were influenced by the
shadow and the light, respectively. The segmented disease zones from the proposed model
were more accurate than those from other methods, and the edges of diseased zones from
the proposed model were sharper. These results imply that the segmentation results of
the proposed model can resist noise and background interference, no matter the shape,
number, and light condition of the diseased zones in an image. Good pseudo-labels result
in good segmentation results. For other models, it could be seen from Figure 10 that the
segmentation results of MDC and RCA models were too large because of the noise of
pseudo-labels introduced in the model training. The results of AcoL were close to ground
truths; however, dispersion states existed in the segmentation results (Figure 10f).

Figure 10. Examples of segmentation results from four methods. (a–f) are six example groups for
segmentation results. Black and red represent background and diseased zones, respectively.

3.4. Ablation Studies

In this section, ablation experimental results for the improvements made by each of
the two extra parts—ABB and FRM—used in the proposed model were analyzed. The
accuracies of the segmentation results were used as the performance indicator. The VGG-16
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network without two added blocks was utilized as the baseline to evaluate the component
effectiveness of each proposed block in the model. The detailed results are shown in Table 5.
From Table 5, it is indicated that the overall performance of our network has been greatly
improved. The ABB increased by 11.5% in IoU, and it supported the idea of using another
classification branch to achieve better weakly supervised segmentation. With FRM, the
IoU increased by 30.7% compared with that of baseline, and it showed the powerful ability
of multi-level feature fusion. When the two proposed modules were added, features of
different levels are comprehensively used to make the information complementary, and the
structural texture and semantic information of the disease were enhanced. Therefore, the
proposed method achieved the optimal IoU performance of 50.9% on the test dataset.

Table 5. Accuracies of disease segmentation in ablation studies.

Baseline ABB FRM IoU Precision Recall F1
√

14.2 94.8 14.3 24.9√ √
25.7 89.4 26.5 40.9√ √
44.9 85.3 48.7 62.0√ √ √
50.9 84.6 56.1 67.4

ABB: auxiliary branch block. FRM: feature reuse module.

4. Discussion
4.1. Effect of the Proposed Modules for Label Generation

The proposed model achieved the best results in the generation of pseudo-labels and
the segmentation results of the disease, which showed the effectiveness of the proposed
model. A high-performance segmentation model is the result of good initial labels. To
explain why the proposed model can generate high-quality pseudo-labels, the ablation
experiment models were used to display the features before the main classification in the
form of heat maps. Since the channel number of visualized features is 256, the summation
along the channels was carried out and the summarized feature maps were normalized for
visualization. The visualization results are shown in Figure 11. The red part indicates the
larger value of the normalization feature maps, which represents the region to which the
feature maps paid more attention. Compared with the labels and the original maps, the
proposed model has larger values in the diseased areas, and the range is more closed to
their labels compared with other methods, especially (a) and (c). These results demonstrate
the effectiveness of the proposed method for generating high-quality labels. The heat
maps generated by the original VGG-16 were relatively scattered, and the highlighted
areas occupied less diseased areas compared to those of other models. The highlighted
areas of the heat map were expanded with the addition of ABB module. Furthermore,
the ranges of heat maps with FRM module were more complete than those with only
ABB added, indicating the importance of FRM for the generation of pseudo-labels, and
they also reflected the significance of the comprehensive use of features at all levels in the
segmentation of NLB zones.
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Figure 11. Heat maps from models in ablation studies. (a–d) are four example groups for heat maps
generated by different combinations of proposed modules.

4.2. Analysis of Coefficient in Loss Function

The adjustment coefficient λ was added to the total loss function in the proposed
method. To further analyze the function of λ in the loss function, the proposed method
was trained by different λ, and the segmentation results of the disease are given in Table 6.
It can be observed in Table 6 that when the λ was 0.3 or 0.7, recall in its result was high,
indicating that there were a lot of false alarms in the segmentation results of the disease.
The possible reason is that when the λ was 0.7, the ABB branch played a large role. Since the
features extracted by the ABB branch contained more spatial information, there would be a
certainty of false alarms. As for the λ at 0.3, the effect from the ABB branch and the main
classification branch could not be fused well, so the high recall values occurred. Therefore,
λ was set to 0.5 in the proposed method, and the two branches can be balanced well to
achieve good segmentation effect.

Table 6. Segmentation results from different coefficient in loss function.

Coefficient IoU Precision Recall F1

0.3 36.6 45.2 65.9 53.6
0.5 43.1 71.4 52.1 60.2
0.7 34.3 38.1 77.4 51.1

4.3. Segmentation Results with Part of Full Labels

Totals of 100, 150, 200, and 400 pseudo-labels were randomly replaced with their
corresponding ground truths, respectively, and the accuracies of the disease segmentation
are shown in Table 7. As can be seen from Table 7, the IoU of disease spot segmentation
has been improved with ground truths, especially when nearly half of the pseudo-labels
were replaced with the ground truths, indicating that the quality of pseudo-labels needs
to be further improved to achieve the same effect from the ground truths as supervision
information. Nevertheless, the pseudo-label saves a lot of annotation costs, and the ground
truth needs pixel-level manual delineation. Therefore, how to further make the pseudo-
label close to the ground truth is the next consideration.
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Table 7. Segmentation results with some ground truths as supervision information.

Pseudo-Label No. Ground Truth No. IoU Precision Recall F1

750 100 52.8 86.2 57.7 69.1
700 150 55.2 86.9 60.2 71.1
650 200 56.4 87.4 61.4 72.1
450 400 64.9 87.9 71.3 78.7

4.4. Comparison with Related Studies and Room for Improvements

In related studies on the segmentation of maize NLB, various methods have been
used, e.g., the data augmentation method and the crowded labeling used in [2], as well
as the lightweight segmentation network designed in [31]. All of the mentioned studies
require fine pixel-level labels to optimize the segmentation model. However, this study
is the first attempt to investigate the potential of using weakly supervised segmentation
for maize NLB from UAV images. Our study only requires image-level labels (one label
for one image representing whether NLB occurs), which significantly reduces the cost of
labeling. Although good results were obtained in the proposed method, the accuracy of the
pseudo-label can be further improved. As shown in Figure 12, when the background of
leaf was complex (Subfigure (c) and (d)), the pseudo-labels were not satisfied; therefore,
generating more accurate pseudo-labels of images in a complex background is the next
step. There exist some holes in pseudo-labels (Subfigure (a) and (b)), and a filling method to
generate more complete pseudo-labels could be considered. Although the segmented edges
from the proposed method are relative fine, the boundaries of the disease zones should be
better depicted. In future work, more effort should be made to close the performance gaps
between weakly supervised segmentation and fully supervised segmentation.

Figure 12. Examples of unsatisfied pseudo-labels. (a–d) are four groups of unsatisfied pseudo-labels.

Since the available data belonged to the single type of maize disease, the proposed
method may not be suited for the segmentation of other types of diseases. Furthermore,
although the proposed method could segment maize NLB, the severity degree of the disease
could not be detected. Therefore, the criterion similar to the evaluation index used in [49]
is worth paying attention to.

5. Conclusions

A weakly supervised segmentation method for the segmentation of maize NLB from
UAV images was proposed in this study. This method can effectively overcome the prob-
lems that a large amount of manually labelled data are required in fully supervised meth-
ods. ABB and FRM were developed in the proposed method to improve the quality of
pseudo-labels. The accuracy of the pseudo-labels in the validation dataset achieved 43.1%.
Moreover, the time for generating a pseudo-label using the proposed method was only
0.08 s.

When the UNet was selected as the segmentation model trained by pseudo-labels, the
segmentation accuracy of the NLB in the test dataset reached 50.8%. Compared with three
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typically used weakly supervised segmentation methods in terms of both qualitative effects
and quantitative results of disease segmentation, the proposed method was significantly
better. The shapes and boundaries of the segmented disease were intact, and the IoU
of the disease was nearly 5% higher than the second highest network. In addition, the
effectiveness of ABB and FRM were explored in the study, and the results showed that
the features of the proposed model gradually concentrate on the diseased zones with the
ABB and FRM added. Therefore, more accurate pseudo-labels could be generated based on
precise CAMs.

There is still room for further improvement, e.g., using other types of UAV image
data (multispectral, hyperspectral, etc.), corn NLB images from different growth stages,
integrating multi-source label information, and involving other weakly supervised infor-
mation, e.g., bounding boxes and point annotations. These approaches will be considered
in future work.
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