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Abstract: Small UAV target detection plays an important role in maintaining the security of cities and
citizens. UAV targets have the characteristics of low-altitude flights, slow speeds, and miniaturization.
Taking these characteristics into account, we present a real-time UAV target detection algorithm
called Fast-YOLOv4 based on edge computing. By adopting Fast-YOLOv4 in the edge computing
platform NVIDIA Jetson Nano, intelligent analysis can be performed on the video to realize the fast
detection of UAV targets. However, the current iteration of the edge-embedded detection algorithm
has low accuracy and poor real-time performance. To solve these problems, this paper introduces
the lightweight networks MobileNetV3, Multiscale-PANet, and soft-merge to improve YOLOv4,
thus obtaining the Fast-YOLOv4 model. The backbone of the model uses depth-wise separable
convolution and an inverse residual structure to simplify the network’s structure and to improve its
detection speed. The neck of the model adds a scale fusion branch to improve the feature extraction
ability and strengthen small-scale target detection. Then, the predicted boxes filtering algorithm
uses the soft-merge function to replace the traditionally used NMS (non-maximum suppression).
Soft-merge can improve the model’s detection accuracy by fusing the information of predicted boxes.
Finally, the experimental results show that the mAP (mean average precision) and FPS (frames per
second) of Fast-YOLOv4 reach 90.62% and 54 f/s, respectively, in the workstation. In the NVIDIA
Jetson Nano platform, the FPS of Fast-YOLOv4 is 2.5 times that of YOLOv4. This improved model
performance meets the requirements for real-time detection and thus has theoretical significance and
application value.

Keywords: unmanned aerial vehicle (UAV); object detection; non-maximum suppression (NMS);
weighted boxes fusion (WBF); lightweight network; multiscale

1. Introduction

In recent years, the rapid development of drone technology has resulted in increased
convenience in people’s daily lives. However, invasive and disorderly flying of UAVs are
increasing, posing a serious threat to public safety [1]. UAV targets have the characteristics
of low flying altitudes, slow speeds, and miniaturization [2]. This makes their detection
by traditional radar and radio methods difficult and costly [3,4]. Detecting UAVs based
on sound is greatly disturbed by noise, so their detection is not obvious [5]. In addition
to the above methods, the deep learning method based on two-dimensional image data is
gradually being applied to UAV detection and has achieved good results [6,7]. Therefore, it
is promising to study a new object detection method based on UAV images to address the
lack of suitable detection methods.

With the development of deep learning and updates to graphics computing devices,
image-based target detection methods have become a hotspot in the field of target de-
tection [8]. An increasing number of engineering practices are being applied to facial
recognition, pedestrian target detection, and autonomous driving. The representative
algorithms in these technologies include R-CNN and Faster R-CNN based on two-stage
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detection [9], as well as SSD (single-shot multi-box detector) and YOLO (you only look
once) series algorithms based on one-stage detection [10]. The former methods are called
two-stage algorithms because the target candidate regions are generated separately from
the classification localization. The latter are called one-stage algorithms because the extrac-
tion of features and classification localization are carried out continuously. As the fourth
version of the YOLO series of algorithms, YOLOv4 is the first to use CSPDarkNet-53 as
the backbone network to extract image features [11], PANet (path aggregation network) as
the feature fusion structure, and SPP (spatial pyramid pooling) to enhance feature extrac-
tion [12], which greatly improves the performance of the one-stage detection algorithm in
model accuracy and reasoning speed.

At present, object detection applications are mostly divided into cloud computing and
edge computing. Cloud computing is a mode of unifying the data collected on the edge
side to the central processor for operation and then making decisions. This model has high
latency, network instability, and low bandwidth problems, making it unsuitable for UAV
detection tasks that require fast responses and have high error costs. On the contrary, edge
computing can solve these problems well. Edge computing is a technology that provides
cloud services and IT environment services for developers and service providers at the edge
side of the network [13]. By integrating detection algorithms, edge computing platforms
can partially replace the data processing functions of cloud devices and servers and directly
store or detect the target data. This edge-side data processing method not only reduces the
data transmission and communication time between devices but also saves on network
bandwidth and energy consumption. Moreover, this method also frees target detection
from its dependence on large servers and GPU devices and enables users to flexibly arrange
edge computing devices to meet the needs of various detection tasks.

In target detection, accuracy and speed are the two most important metrics to measure
a model’s performance. Many scholars have also improved the detection algorithm based
on these two points. In terms of accuracy, the proposed feature pyramid network and
the application of various box-filtering algorithms enhance the detection capability of
the model for multiscale targets. In terms of speed, various lightweight networks are
proposed to greatly reduce the model parameters and accelerate the detection speed, so
that the detection algorithm can be carried to the edge computing platform to complete
the task. Aiming at the problems of slow detection speed and poor effect of multiscale
target detection, we propose a UAV target detection algorithm Fast-YOLOv4 based on
edge computing, which combines the lightweight network MobileNetV3, the improved
Multiscale-PANet, and the soft-merge algorithm. To summarize, the innovations of the
algorithm are as follows:

• Using the lightweight network MobileNetV3 to improve the backbone of YOLOv4 and
introduce depth-wise separable convolution and inverse residual structures. These
improvements can greatly reduce the number of model parameters and improve the
detection speed.

• Adding the fourth feature fusion scale in the neck structure, PANet, of YOLOv4
and enhancing the flow superposition of high-dimensional image features and low-
dimensional location features, improving the classification and localization accuracy
of multiscale targets.

• Replacing NMS with the improved soft-merge algorithm. It is a predicted box-filtering
algorithm and can fuse the predicted box information to obtain better-predicted boxes.
The problems of missing detection and false detection are also reduced, enhancing the
recognition effect.

• Combined with the edge-embedded platform NVIDIA Jetson Nano, the fast target
detection algorithm is equipped to reduce the response time and energy consumption,
and realize the real-time multi-scene accurate detection of UAV targets.

Through those improvements, Fast-YOLOv4 achieves high precision and fast detection
of UAV targets on an edge computing platform, which provides a solution for research on
UAV target detection.
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2. Related Work

In this section, we mainly introduce work to four parts of our model: multiscale
detection, box-filtering algorithms, lightweight networks, and edge computing about UAVs,
as well as their related methods and applications. For a long time, multiscale detection has
presented a major problem in target detection. From the initial image pyramid network
and feature pyramid network method to the most commonly used Res2Net and PANet
methods [12,14,15], multiscale detection is gradually maturing. For example, aiming at the
significant differences in the scales of drone targets, Zeng et al. proposed a UAV detection
network combining Res2net and a mixed feature pyramid structure, which achieved a
more than 93% mAP in a self-built dataset [16]. However, the model is a little bloated and
difficult to carry over to the edge platform. For mask target detection, Zhu et al. introduced
a path aggregation network into the input feature layer of YOLOv4-Tiny, which improves
the mAP of mask detection by 4.3% [17]. However, the method does not propose innovative
improvements to the multiscale structure in that paper, which is slightly inadequate.

Another way to improve the model accuracy is to improve the box-filtering algorithm.
Because the traditional NMS method is not effective in detecting occluded targets, many
scholars have tried to study and improve it. To solve the problem of poor detection of oc-
cluded targets, Zhang et al. introduced position information into the NMS to adjust the final
score of the box and proposed a distance-based intersection ratio loss function. The method
was tested using classical datasets, and the accuracy was improved by 2% [18]. Ning et al.
proposed an improved non-maximum suppression method called I-SSD (Inception-SSD)
that can obtain weighted averages of the coordinates of the predicted boxes and improve
the ability of the model’s filtering results [19]. The proposed I-SSD algorithm achieves
a 78.6% mAP on the Pascal VOC 2007 test. Roman et al. also proposed a weighted box
fusion method by fusing predicted boxes of different detection models to obtain integration
results. The method significantly improves the quality of the fused predicted rectangles for
an ensemble and achieves the best results in dataset challenge competitions [20].

In addition to the detection accuracy of multiscale targets, the speed improvement in
the detection model and the deployment of an edge platform are also current hot issues.
To solve these problems, most scholars use lightweight networks to improve the target
detection model. Zhou et al. proposed a lightweight YOLOv4 ship detection algorithm
combined with MobileNetv2 to solve the problem that the large model could not run on
the micro-platform and realized the high-precision and rapid detection of ship targets [21].
Liu et al. proposed a pruned-YOLOv4 model to overcome the problem of low detection
speed and poor detection effect of small targets. The model achieves 90.5% mAP, and
its processing speed is increased by 60.4%, which accomplishes the real-time detection of
drones well [22]. However, the accuracy performance of the model is slightly inadequate.
It can be seen from these papers that lightweight networks are very effective at improving
target detection, which suggests ideas for their application to target detection in more ways.

Because of the broad application prospects of object detection combined with edge
computing, many researchers try to carry the object detection algorithm onto the embedded
platform to complete the detection task. Daniel et al. achieve an accurate detection of UAV
targets by building YOLOv3 on the edge platform of NVIDIA Jetson TX2, with an average
accuracy of 88.9% on the self-built dataset [23]. To solve the problem of dynamic obstacle
avoidance in safe drone navigation, Adrian et al. propose a novel method of performing
onboard drone detection and localization using depth maps. This method is integrated into
a small quadrotor and reduces the maximum obstacle avoidance error distance to 10% [24].
In terms of expanding the extent of applicable mission scenarios of UAVs and coordinating
the flight formations of fleets of UAVs, Roberto et al. proposed a YOLO object detection
system integrated into an original processing architecture. This approach achieves a high
level of accuracy and is robust against challenging conditions in terms of illumination,
background, and target-range variability [25].

Combined with the ideas for improvement presented by related papers, the proposed
Fast-YOLOv4 algorithm in this paper improves the detection accuracy in a multiscale
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structure and predicted box algorithm and improves the speed of the lightweight network.
In the following experiments, the proposed algorithm shows higher accuracy and faster
speed than other algorithms on the edge computing platform and realizes a highly accurate
and fast detection of multiscale UAV targets.

3. System Model

This section mainly introduces the design idea of the system model. Figure 1 shows the
system architecture of target detection using the edge computing platform and workstation.
The target detection system consists of three parts: a high-speed intelligent camera, an
edge computing platform NVIDIA Jetson Nano, and a workstation. Firstly, the system will
set up a high-speed intelligent camera in a detection scene or on a mobile platform such
as a robot. Then, the camera will monitor the surrounding environment and transmit the
collected image data to the Jetson Nano. The Jetson Nano integrates the target detection
algorithm Fast-YOLOv4, which can analyze the image data in real time. If there are UAV
targets in the image, the algorithm will identify and locate the UAV targets. Finally, the
Jetson Nano will send the abnormal results detected in real time to the workstation through
a wireless connection. Administrators at the workstation can alert and respond to abnormal
results. These are the process of real-time UAV target detection by the system.

Figure 1. The object detection system model based on edge computing.

4. Algorithm Design
4.1. Fast-YOLOv4 Algorithm

This section mainly introduces the model architecture of Fast-YOLOv4, which is an
improved algorithm based on YOLOv4. Figure 2 shows the architecture of Fast-YOLOv4
model and the structure of each module. The input image size of the model is 416 × 416 × 3.
The model architecture is mainly composed of MobileNet16, Multiscale-PANet, and YOLO-
Head, including CBH module, MBN module, CBL module, and SPP module. CBH module
is used as the initial layer of the backbone to process images, which is composed of a
convolution block, normalization layer, and h-swish activation function. MBN module
is a linear bottleneck inverted residual structure, which is mainly composed of a 1 × 1
convolution block, a 3 × 3 DW convolution block, and an h-swish activation function.
When the input channel and output channel have the same number, the residual connection
will be carried out to deepen the network. The CBL module is the basic module used for
the detection and classification tasks, which is mainly composed of the convolution layer,
normalization layer, and leaky ReLU activation function. The SPP module consists of the
MaxPool layer and the full connection layer, which form a spatial pyramid pooling structure.
This structure can obtain the same size feature vectors for any size of the input feature map,
which can enhance the adaptability of the network to multiscale targets. MobileNet16 is
stacked with CBH modules and MBN modules, with a total of 16 layers. Its function is to
extract image features and output feature maps of different scales. Multiscale-PANet is
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mainly built by the CBL module and SPP module. Its function is to fuse and superposition
the input feature map and enrich the feature map information. YOLO-Head is mainly built
by a CBL module and a convolution layer. Its function is to detect the location and class of
the target and input it into the soft-merge algorithm to filter out the final result.

Figure 2. The architecture of the Fast-YOLOv4 model.

4.2. Lightweight Improvement of Backbone Network

The model inference speed determines the model detection speed. Therefore, reducing
the number of model parameters and simplifying the network structure is the simplest way
to speed up detection. Reducing the number of model parameters facilitates the integration
of the algorithm into the edge computing platform and reduces energy consumption.
Among the low-parameter models, the lightweight MobileNetV3 is a model with speed
and accuracy advantages. MobileNetV3 is the third version of the lightweight network
published by Google scientists such as Andrew Howard in 2019 [26]. It combines the
deep separable convolution structure of V1 and the linear bottleneck inverse residual
structure of V2 and introduces a new nonlinear activation function, h-swish, to save
computational costs [27,28]. As a result, MobileNetV3 is a new lightweight network with
higher performance.

Fast-YOLOv4 combines the lightweight structure of MobileNetV3 to transform the
backbone network of YOLOv4. The backbone network uses the pruned MobileNetV3 as
the starting part of the model, performs convolution operations on the input image, and
extracts feature maps at four scales for feature fusion. The sizes of these feature maps
are 104 × 104, 52 × 52, 26 × 26, and 13 × 13. These feature maps take into account the
global and local features of various scale targets and provide sufficient information for
subsequent classification and localization. The following Table 1 describes the backbone
structure information of Fast-YOLOv4. In Table 1, the term “Operator” represents the
module used at this layer and the size of the convolution kernel. The term “Exp size”
represents the number of channels to be added to the MBN module. The term “Out size”
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represents the number of output channels. The term “SE” represents whether to add an SE
(squeeze-and-excite) structure to the depth-wise separable convolution block. The term “s”
stands for step size.

Table 1. Table of the Fast-YOLOv4 backbone.

Floor Input Operator Exp Size Out Size SE s

1 4162 × 3 CBH, 3 × 3 - 16 - 2
2 2082 × 16 MBN, 3 × 3 16 16 - 1
3 2082 × 16 MBN, 3 × 3 64 24 - 2
4 1042 × 24 MBN, 3 × 3 72 24 - 1
5 1042 × 24 MBN, 5 × 5 72 40 X 2
6 522 × 40 MBN, 5 × 5 120 40 X 1
7 522 × 40 MBN, 5 × 5 120 40 X 1
8 522 × 40 MBN, 3 × 3 240 80 - 2
9 262 × 80 MBN, 3 × 3 200 80 - 1

10 262 × 80 MBN, 3 × 3 184 80 - 1
11 262 × 80 MBN, 3 × 3 184 80 - 1
12 262 × 80 MBN, 3 × 3 480 112 X 1
13 262 × 112 MBN, 3 × 3 672 112 X 1
14 262 × 112 MBN, 5 × 5 672 160 X 2
15 132 × 160 MBN, 5 × 5 960 160 X 1
16 132 × 160 MBN, 5 × 5 960 160 X 1

The convolution layer used in the YOLOv4 structure is the standard 3× 3 convolution,
which will increase the number of model parameters and the computation time in the
operation process. Therefore, Fast-YOLOv4 uses depth-wise separable convolution instead
of the standard convolution. Depth-wise convolution is a convolution block proposed
in MobileNetV1 to replace traditional convolution [27]. Its structure consists of a light
depth-wise layer for spatial filtering and a heavy 1 × 1 point-wise layer for feature gen-
eration. Separating spatial filtering and feature generation greatly reduces the number of
convolution operations and saves on computational costs. Figure 3 shows the structure of
the standard convolution and depth-wise separable convolution.

Figure 3. The structure of convolution.

The h-swish activation function is an approximate version of the swish activation
function, which has a lower bound, no upper bound, and is not monotone, among other
characteristics. The h-swish activation can make the neural network layer more expressive.
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In order to adapt it to lightweight network use, the h-swish function is composed of com-
mon operators with small computational costs and is, thus, applicable to most frameworks.
As a result, we use this function to improve the backbone network. The formula of the
h-swish function can be written as:

h-swish[x] = x
ReLU6(x + 3)

6
(1)

In Formula (1), x represents the value of the input activation function.

4.3. Multiscale Improvement of Neck Network

PANet is a path aggregation network applied to instance segmentation proposed by
Shu [12]. Based on the top-down feature extraction of the FPN (feature pyramid network),
PANet introduces a bottom-up path structure. Through feature fusion, the model can
make full use of the local features of the shallow network and enrich the feature output
of the deep network. An adaptive feature pooling layer is also added to the network to
extract more features from the ROI (region of interest). Finally, the network uses the fully
connected fusion layer to fuse the output of the convolution layer and the fully connected
layer to obtain more accurate results.

The neck network of YOLOv4 adopts a PANet structure and extracts feature maps
at three scales for fusion. This method enhances the network’s ability of image feature
extraction and integration but also results in losses of some features of small-scale targets.
To strengthen the localization and feature extraction of small-scale targets, Fast-YOLOv4
improves the feature fusion structure of the neck network. Adding a feature output branch
enriches the target feature extracted in the shallow network. By adding a feature output
branch, the neck network can extract more target features from the shallow layer. Figure 4
shows the structure of the improved PANet.

Figure 4. The diagram of the improved PANet structure.

4.4. Soft-Merge Algorithm

At present, NMS (non-maximum suppression) and Soft-NMS are commonly used in
detection algorithms to filter predicted boxes [29]. These methods work well with a single
model, but they can only filter relatively suitable predicted boxes and cannot effectively
use the information of most predicted boxes. Different from NMS, Merge-NMS uses the
confidence score and coordinate information of all predicted boxes to construct the fused
predicted box, which is relatively closer to the real target boxes [21]. Figure 5 shows the
difference in the results of Merge-NMS and NMS.

The operation of the traditional NMS is simple. In the filtering process, a predicted
box larger than an IoU (intersection over union) threshold will be forcibly deleted, which
may lead to missing detection or false detection in multi-UAV target scenarios. The IoU
represents the area of the intersection ratio between two predicted bounding boxes, which
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can be used to measure the degree of overlap between bounding boxes. Our improved
soft-merge algorithm combines the idea of Soft-NMS weight assignment, can weight and
fuse all predicted boxes. This approach can make full use of the coordinate and confidence
information of the predicted boxes and reduce problems such as missing detection and
false detection. The algorithm process of soft-merge can be outlined as Algorithm 1.

Figure 5. Comparison of Merge-NMS and NMS.

Algorithm 1: The algorithm process of soft-merge in Fast-YOLOv4
Input: Arrays a1, a2, . . ., am, m represents the number of predicted boxes, a

represents the information of predicted boxes, a[con f idence, X1, X2, Y1, Y2]
Output: Array F[ f1, f2, . . ., fn], n represents the number of fusion boxes, and each

f represents a fusion box result.
Assume that there are m predicted boxes in an image, and use soft-merge

algorithm to obtain the fusion predicted box results. According to the confidence
value of predicted box array a, all predicted boxes are sorted in descending order
and added to array B to obtain B[b1, b2, . . ., bm].;

for i = 1 to m do
for j = 1 to n do

if IoU(ai, f j) >= Thre then
Use the confidence update function for ai and add it to the array Lj. Lj
is the array corresponding to each fusion box in F, which is used to
store the box to be fused;

else
t ← t + 1, t is used for counting, and the initial value is 0;

end
end
if t = n then

F[n + 1] ← ai;
n ← n + 1;

end
for k = 1 to n do

Use the weighted box fusion function to calculate the array Lk to obtain fk;
F[k] ← fk;

end
end
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The formula of the confidence-updating function is:

si =

{
si, IoU < Thre

sie−
iou(M,bi)

2

σ , IoU > Thre
(2)

In Formula (2), si represents the score of the prediction box i, Thre represents the
threshold, M represents the selected predicted box, and bi represents other predicted boxes.

The formula of weighted box fusion is:

X1, 2=
∑T

i=1 si × X1, 2i

∑T
i=1 si

, (3)

Y1, 2=
∑T

i=1 si ×Y1, 2i

∑T
i=1 si

(4)

In Formulas (3) and (4), si represents the score of the prediction frame i, T represents
the number of predicted boxes participating in the fusion, X1, 2 and Y1, 2 represent the
coordinates of the fused box, and X1, 2i and Y1, 2i represent the coordinates of the predicted
box i. During the soft-merge calculation, the confidence scores of other boxes will be
suppressed according to the IoU of the selected box. Boxes with high confidence are given
a higher weight in the fusion formula, and the influence of the low-confidence boxes will
be reduced in the final result.

5. Dataset and Experimental Preparation
5.1. Dataset Information

The datasets used in the experiment include the PASCAL VOC 07+12 dataset and UAV
dataset. Firstly, the algorithm is trained on the VOC 07+12 dataset, and then the algorithm
is trained and tested on the UAV dataset via transfer learning. The PASCAL VOC 07+12
dataset is a public competition dataset used by the PASCAL VOC Competition in 2007
and 2012. The dataset contains 20 classes of targets with a total of 21,504 images, of which
16,551 are training set images and 4952 are test set images for target detection. UAV dataset
is constructed by combining the public dataset [30] and autonomously taking images of
UAV targets. It includes three scales of large, medium, and small UAV targets, with 3698
images and 3719 targets. The division of the experimental dataset first randomly selects
20% of the images as the test set and then selects 90% of the remaining 80% of images as
the training set and the rest as the validation set. Table 2 shows detailed information on the
UAV dataset.

Table 2. The table of UAV dataset information.

Class Number Large Medium Small

train 2662 1621 547 509
validation 296 176 60 63

test 740 434 171 138
total 3698 2231 778 710

5.2. Experimental Environment and Hyperparameter

The experimental environment includes the workstation and the edge computing
platform NVIDIA Jetson Nano. The workstation is used to train and validate the algorithm,
and Jetson Nano is used to test the final performance of the algorithm. The configuration
of the workstation is Intel (R) Core(TM) I9-10900F CPU @ 2.80 GHz 2.81 GHz 64 G memory
based on Windows 10 operating system. The GPU is an NVIDIA Quadro P4000 with 8 G of
video memory. The configuration of NVIDIA Jetson Nano is a 128-core CUDA Maxwell
GPU, a quad-core ARM A57 1.43 GHz CPU with 4 GB LPDDR4 memory and 472 GFLOPS
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of processing power. The deep learning framework used in the experiment is PyTorch 1.8.1,
and the GPU acceleration library is CUDA10.2.

Hyperparameters are a set of parameters related to model training. They are also
related to the length of training time and training effect. Table 3 shows the hyperparameter
information of model training.

Table 3. The table of model training hyperparameter setting.

Type Parameter Note

Image size 416 × 416 Image input size
Epoch 200 Total training times

Batch size 16 Number of images per iteration
Learning rate1 0.01 Initial learning rate
Learning rate2 0.0001 Minimum learning rate

Momentum 0.937 Momentum of optimizer
Weight decay 0.0005 Decay of weights

5.3. Evaluation Metrics

The evaluation metrics of the experiment include object detection accuracy AP (av-
erage precision), mAP (mean average precision), IoU, detection speed FPS (frames per
second), model parameters, and model volume size.

The mAP can comprehensively evaluate the localization and classification effect of
the model for multi-class and multi-target tasks. Calculating the mAP requires calculating
the AP for each class in the recognition task and then taking its average. The formula is
as follows:

mAP =
∑C

i=1 APi

C
, (5)

In Formula (5), C represents the number of total classes, and APi represents the AP
value of class i.

Calculating AP requires knowing the values of P (precision) and R (recall). The
formulas for these three metrics are as follows:

P =
TP

TP + FP
, (6)

R =
TP

TP + FN
, (7)

AP =
∫ 1

0
P(R)dR, (8)

In Formulas (6)–(8), TP (true positive) means that the input is a positive sample and
the predicted result is also a positive sample; FP (false positive) means that the input is a
negative sample and the predicted result is a positive sample; FN (false negative) means
that the input is a positive sample and the prediction result is a negative sample; and TN
(true negative) means that the input is a negative sample and the prediction result is a
negative sample.

The IoU metric is used to calculate the ratio of the intersection and union of two
bounding boxes. In essence, it converts the accuracy of object detection division into a
comparison of the area between detection results and the true values. Under different IoU
conditions, we can calculate different detection accuracies to comprehensively measure the
accuracy of the model. Assuming that the areas of the two bounding boxes are A and B,
the formula of the IoU metric can be written as:

IoU =
Area of Overlap
Area of Union

=
A ∩ B
A ∪ B

(9)
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The FPS metric is the time that a model takes to detect a picture or the number of
pictures detected in one second. The larger the FPS, the faster the model is detecting, which
can be used to measure the detection speed of the model. The model parameters and model
volume size are both metrics of model complexity. They all represent the size of the model,
which can directly reflect the model size.

6. Experimental Results and Analysis
6.1. Performance Experiment on PASCAL VOC 07+12

To investigate the improvements of Fast-YOLOv4, we performed a comparative ex-
periment on the PASCAL VOC 07+12 dataset. This dataset contains 20 categories of large-,
medium-, and small-scale targets, which can comprehensively reflect the detection per-
formance of the algorithm. The comparative algorithms used in the experiment include
Faster R-CNN, YOLOv4, YOLOv3, SSD, YOLOv4-MobileNetV3, and Fast-YOLOv4. All
algorithms will be trained and validated in the workstation. In addition, the metrics used
in this experiment are mAP (IoU = 0.5), FPS, parameter, and volume. Table 4 shows the
detection results of each algorithm on PASCAL VOC 07+12.

Table 4. The performance comparison of algorithms on PASCAL VOC 07+12 (in the workstation).

Model Backbone Input Size mAP (%) FPS (f/s) Parameter (×106) Volume (MB)

Faster R-CNN ResNet50 416 × 416 77.02 12 137.10 522.99
YOLOv4 CSPDarkNet53 416 × 416 84.29 29 63.94 243.90
YOLOv3 DarkNet53 416 × 416 80.24 35 61.63 235.08

SSD VggNet16 300 × 300 78.27 43 26.29 100.27
YOLOv4-MobileNetV3 MobileNetV3 416 × 416 79.75 60 11.30 43.51

Fast-YOLOv4 MobileNetV3 416 × 416 81.45 54 13.47 51.39

As can be seen from Table 4, in terms of detection accuracy, our approach has good
performance compared with the other algorithms. Its mAP reaches 81.45%, second only to
YOLOv4. Compared with YOLOv4-MobileNetV3 and YOLOv3, Fast-YOLOv4’s accuracy
increased by 1.7% and 1.21%, respectively. In terms of the detection speed, FPS, and
model parameters, the performance of Fast-YOLOv4 is slightly worse than YOLOv4-
MobileNetV3, but better than the other algorithms. The FPS metric reaches 55 f/s, and the
model parameters and volume are only 13.47 M and 51.39 MB, which are better than the
other models. In addition, compared with the low detection speed and the large number
of parameters in YOLOv4 and Faster R-CNN, the proposed Fast-YOLOv4 has greater
real-time detection performance and more lightweight parameters.

To illustrate the detection performance of the proposed algorithm on different categories
of targets, we select Fast-YOLOv4 and YOLOv4 to compare their AP scores in six categories
of targets in the PASCAL VOC 07+12 dataset. Figure 6 shows the comparison results.

It can be seen from Figure 6 that compared with YOLOv4, Fast-YOLOv4 improved
the detection accuracy in most categories, especially for small-scale targets, such as potted
plants, boats, and birds. The mAP has improved in these categories by 20%, 15%, and
7%, respectively. There are also some improvements in categories of medium-scale targets,
such as dog, sheep, and cow, with increased mAPs of 8%, 5%, and 4%, respectively. This
indicates that the proposed algorithm has enhanced the detection ability of small targets
after adding scale fusion branches from shallow feature maps.

To sum up, Fast-YOLOv4 combines MobileNetV3’s lightweight network, the improved
Multiscale-PANet structure, and the soft-merge box fused algorithm. This combination
greatly reduces the number of parameters in the model, speeds up the detection, and
obtains good detection results on the PASCAL VOC 07+12 dataset, especially for small-
scale targets. Compared with common one-stage and two-stage detection algorithms, such
as YOLOv3, YOLOv4, SSD, and Faster R-CNN, Fast-YOLOv4 achieves better performance,
reflecting the feasibility of the algorithm and its effectiveness in small-scale target detection.
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Figure 6. The comparison of AP of different categories.

6.2. Performance Experiment on the UAV Dataset

To demonstrate the effectiveness of Fast-YOLOv4 in UAV target detection, we con-
duct an experiment on the UAV dataset using Faster R-CNN, SSD, YOLOv3, YOLOv4,
YOLOv4-MobileNetV3, and Fast-YOLOv4. All algorithms are trained and validated in
the workstation. The metrics used in this experiment are mAP (IoU = 0.5), APS, APM, and
APL (IoU = 0.5:0.95), where APS, APM, and APL are the average accuracies of the three
scales of the targets. Table 5 shows the detection results of each algorithm on the UAV
dataset. Figure 7 shows the comparison of the partial detection results of YOLOv4 and
Fast-YOLOv4.

Table 5. The performance comparison of algorithms on the UAV dataset (in the workstation).

Model mAP APS APM APL

Faster R-CNN 88.12 12.89 38.06 61.68
YOLOv4 90.18 20.70 39.03 57.28
YOLOv3 88.92 17.93 33.18 53.41

SSD 86.88 8.36 38.82 65.50
YOLOv4-MobileNetV3 88.81 16.73 34.92 55.33

Fast-YOLOv4 90.62 23.88 37.53 59.71

From the experimental results in Table 5, the mAP (IOU = 0.5) of the proposed approach
reaches 90.62%, which is superior to the other algorithms. Meanwhile, Fast-YOLOv4
performs well on the AP accuracy metrics of three scales, with the accuracy of small-scale
targets to large-scale targets being 23.88%, 37.53%, and 59.71%, respectively. In particular,
compared with YOLOv4 and YOLOv4-MobileNetV3, the APs of small-scale targets have
increased by 3.18% and 7.15%, respectively, reflecting improvements in the multiscale
structure and soft-merge brought to small target detection. Furthermore, our approach
performs fairly well in medium-scale target detection. Compared with YOLOv3 and
YOLOv4-MobileNetV3, Fast-YOLOv4 has a certain improvement. However, due to model
size limitations, the AP is slightly inferior to YOLOv4, SSD, and Faster R-CNN. In large-
scale target detection, our approach performs slightly worse than SSD and Faster R-CNN.
The main reason is that Fast-YOLOv4 has a big gap in model volume compared with the
other algorithms, and the large-scale model has more advantages in feature extraction and
feature fusion, so it performs better in large-scale target detection.
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Moreover, it can be seen from Figure 7 that Fast-YOLOv4 detected more small-scale
UAV targets than the other models. It also reduces the number of missing detection and
false detection, which shows that our approach has better detection performance than
the original YOLOv4. In view of all performance metrics, the proposed Fast-YOLOv4
model combines the advantages of high accuracy, fast speed, and fewer model parameters,
making it very suitable for integration with edge computing platforms for improving UAV
target detection.

Figure 7. The partial detection results comparison of YOLOv4 and Fast-YOLOv4.

6.3. Ablation Experiment

To directly observe the improvement of Fast-YOLOv4, we conduct an ablation experiment
in the workstation platform. The experimental method will train and validate each improved
part of Fast-YOLOv4 on the UAV dataset and record its mAP (IoU = 0.5), APS, APM, APL
(IoU = 0.5:0.95), FPS, and model parameters to check the improvement effect. Table 6 shows
the performance results of the original YOLOv4 and Fast-YOLOv4 improvements.

From the experimental results in Table 6, improvement can be seen in each step of
Fast-YOLOv4. Among all improvements, the lightweight network based on the backbone
has significantly improved the performance of the model. Compared with YOLOv4, the
YOLOv4-MobileNetV3 model improves the FPS to 60 f/s and reduces the number of
parameters to 11.30M at the cost of only a 1.37% reduction in mAP. Multiscale-PANet
improves the mAP and APS of the model by 1.37% and 4.05%, respectively, but the FPS
decreases by 3 f/s, and the number of parameters increases by 3.64M. The soft-merge
method improves the mAP of the YOLOv4 model by 0.86%, and other AP metrics are
improved to varying degrees; however, the FPS decreases by 2 f/s. Finally, the proposed
approach, Fast-YOLOv4, which combines these three methods, achieves an mAP of 90.62%,
an APS of 23.88%, an FPS of 54 f/s, and 11.54M parameters. Compared with YOLOv4, this
is an overall improvement and reflects the success of the improved method in UAV target
detection tasks.
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Table 6. The performance comparison of YOLOv4 and Fast-YOLOv4’s improvements based on the
UAV dataset (in the workstation).

Model mAP APSmall APMedium APLarge FPS Parameter

YOLOv4 90.18 20.70 39.03 57.28 29 63.94
YOLOv4-MobileNetV3 88.81 16.73 34.92 55.33 60 11.30

YOLOv4-Multiscale 91.55 24.75 39.40 56.19 26 64.89
YOLOv4-Soft-Merge 90.73 20.94 39.66 59.76 27 63.94

Fast-YOLOv4 90.62 23.88 37.53 59.71 54 11.54

6.4. Edge Computing Application

To investigate the real-time detection performance of Fast-YOLOv4 in the edge com-
puting platform, all detection models are trained in the Quadro P4000 GPU and integrated
into the Jetson Nano edge platform for target detection of UAVs in a video. The experiment
tests the real-time detection effect of the model by comparing the speed and confidence of
detection of each model in the edge platform. Meanwhile, we monitor the CPU temperature
and memory footprint of the embedded platform to observe their changes when running
different algorithms. Figure 8 shows the running results of different algorithms in the Jetson
Nano. Figure 9 shows the comparison of Fast-YOLOv4’s and YOLOv4’s performances in
detecting UAV targets in the videos.

Figure 8. The comparison of running results of different algorithms (in the Jetson Nano). (a) The first
panel is the average FPS. (b) The second panel is the standard deviation of FPS. (c) The third panel is
CPU temperature. (d) The fourth panel is memory footprint.

In Figure 8, we select the average FPS, the standard deviation of FPS, CPU temperature,
and memory footprint metrics to compare the algorithms. It can be seen that the average FPS
of Fast-YOLOv4 is 3.98 f/s, which is the best result in all algorithms. In CPU temperature
and memory footprint metrics, Fast-YOLOv4 shows lower heat dissipation requirements
and memory usage. Although Fast-YOLOv4’s FPS stability is slightly inadequate, its
performance in Jetson nano is better than other algorithms on the whole. In addition,
Figure 9 also shows the detection effect of YOLOv4 and Fast-YOLOv4 on UAV videos. In
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Figure 9, the FPS of the improved model is 2.5 times higher than that of YOLOv4, and
the confidence is comparable. Compared with other algorithms, our approach greatly
improves the detection speed and accuracy. In terms of the results, the application results
show that Fast-YOLOv4 has good performance in the edge computing platform and can
achieve high-precision detection in real time.

Figure 9. The comparison of YOLOv4 and Fast-YOLOv4 detection results (in the Jetson Nano).

7. Conclusions

Aiming to address the problems in the detection of the multiscale UAV target, we
present a novel real-time target detection algorithm called Fast-YOLOv4 based on edge
computing. The proposed algorithm is based on YOLOv4 and uses the lightweight network
MobileNetV3 to improve the backbone, which can reduce structural complexity and model
parameters to speed up detection. Then, our approach combines the Multiscale-PANet to
enhance the use and extraction of shallow features, strengthen the detection of small-scale
targets, and improve the model’s accuracy. In view of missing detection and false detection
of multiscale targets, the proposed approach adopts an improved weighted boxes fusion
algorithm, called soft-merge, to perform the weighted fusion of the predicted boxes instead
of the traditional NMS. Finally, Fast-YOLOv4 achieves the best results in the fast detection
of UAV targets in the edge computing platform Jetson Nano. To summarize, Fast-YOLOv4
provides a practical and feasible research method for real-time UAV target detection based
on edge computing, which is worthy of further research.
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