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Abstract: Image-based unmanned aircraft systems (UASs) are used in a variety of geodetic appli-
cations. Precise 3D terrain surface mapping requires ground control points (GCPs) for scaling and
(indirect) georeferencing. In image analysis software (e.g., Agisoft Metashape), the images can be
generated to a 3D point cloud using Structure-from-Motion (SfM). In general, the conventional
GCP design for UAS flights is a checkerboard pattern, which is provided in the software and used
for automatic marker detection in each image. When changing the pattern, manual work would
be required by picking the GCP individually by hand. To increase the level of automation in the
evaluation, this article aims to present a workflow that automatically detects a new edge-based GCP
design pattern in the images, calculates their center points, and provides this information to the
SfM software. Using the proposed workflow based on deep learning (DL) and image processing,
the quality of the resulting 3D model can be equated to the result with GCP center points picked by
human evaluator. Consequently, the workload can be accelerated with this approach.

Keywords: unmanned aircraft system; ground control point; deep learning; object detection

1. Introduction

Today, unmanned aircraft systems (UASs) [1,2] are used in a wide range of applica-
tions [2,3]. In 2019, a market study by the unmanned aerial vehicle (UAV) association
conducted a survey on the industrial use of UASs in Germany. According to the survey,
the systems are primarily used in the geodetic context. Applications include surveying
(79%), inspection (53%), and mapping and monitoring (33%) [4]. From a technological
point of view, the compactness and accuracy of data acquisition systems are rapidly increas-
ing [2,5]. Usually, UAVs are equipped with lightweight and high-resolution cameras. The
flight area is captured photogrammetrically and reconstructed to a 3D point cloud using
Structure-from-Motion (SfM) in a postprocess [6].

Ground control points (GCPs) with fixed geodetic coordinates are essential for high-
accuracy sensing of the environment. The inclusion of these measurements as additional ob-
servations results in a more stable, scaled, and (indirectly) georeferenced 3D SfM model [1].
To increase the quality of the resulting 3D point cloud and to achieve more flexibility, e.g., by
reducing the number of GCPs [7], real-time kinematic (RTK) dual-frequency GNSS receivers
become inevitable and enable direct georeferencing [8,9]. However, it is not recommended
to avoid GCPs completely but to stabilize the triangulation (bundle block adjustment)
by at least one observation to obtain accurate results in the end [10]. Furthermore, if the
navigation system (direct georeferencing) cannot be used due to the localities because the
signal is severely limited (building shadowing in inner cities, valley or forest areas, etc.)
or cannot be received at all (e.g., indoor flight), the image-based approach must rely on
GCPs with local or global coordinates in the orientation phase [1]. With the increasing use
of different acquisition technologies, the demand for sensor combinations is also growing.
The use of GCPs as identical points in environmental acquisition can be useful for both
fusion and stabilization of point clouds.
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In geodesy, terrestrial laser scanning (TLS) has been used for decades to capture the
environment with a rotating laser beam. Compared to the more recent UAS-based SfM
technology, TLS achieves more detailed results but is insufficient in some aspects, such
as facades and reconstruction of roofs. For this reason, several studies aim to combine
TLS- and UAS-based point clouds [11–13] with appropriate approaches [14]. The idea is
to use uniform control points to merge the resulting point clouds, improve the results,
and increase the information context. Currently, there is no standardized point design
pattern that can be used for both techniques. For this reason, we decided to use a design
pattern from the TLS domain, which is being tested for UAS applications. The Institute of
Geodesy and Geoinformation at the University of Bonn (IGG) has developed a new TLS
target design [15] for the precise registration of single scans and accurate georeferencing.
Based on the new IGG TLS target, we developed a new GCP design pattern for the UAS
domain. The 2D target is square and contains eight straight lines running from the outside
to the inside. The areas between the lines are alternately colored black and white, like
a star pattern. The classic checkerboard pattern or specially coded markers are used as
reference points and are implemented in the software Agisoft Metashape (1.8.0) so that
the recognition during the marker search is automated. Since other appearances or newly
developed GCP patterns are not provided from scratch, more manual time is involved in
picking the center points. In this article, we intend to increase the automation level of GCP
detection in UAS images by using a workflow that incorporates statistical and deterministic
methods such as deep learning (DL) and image processing operators. Using DL, the GCPs
are localized in the images. After the detection pipeline, digital image processing is used
to calculate the GCP center points automatically. Optical text recognition is integrated to
assign a unique ID to each recognized GCP. Finally, the calculated results are embedded in
the Agisoft Metashape routine.

To locate the GCPs in the images, we used the object detection approach based on
DL [16] by recognizing the repeating pattern in the UAS images. Convolutional neural
networks (CNNs) or deep neural networks (DNNs) [17] represent state-of-the-art methods
to learn complex features without manual intervention in an end-to-end learning based
on deep architectures. Since the proposal of regions with CNN features (R-CNN) [18], a
series of extended and improved models have been researched. The concept of R-CNNs
based on two-stage detectors that first generate the region proposals and second perform
refinements for each region. Among them, the Faster R-CNN represents a fast model for
real-time object detection, which aims to jointly optimizes the classification and bounding
box regression tasks [19]. You only look once (YOLO) is also a state-of-the-art CNN but
based on a one-stage detector that performs object detection using fixed-grid regression [20].
At least, YOLO is more recent and faster than Faster R-CNN [21]. In addition, the single-
shot detector (SSD) [22] is used for multireference and multiresolution, which improve
the detection accuracy for smaller objects [23]. Basically, one-stage detectors are faster
and simpler, but in most cases have less accurate performance than the two-stage regional
proposal detectors. To overcome this problem, the class imbalance was identified as the
main obstacle for one-stage object detectors, and RetinaNet was proposed [24], which
is also applied in this study. When RetinaNet is trained with focal loss, it achieves the
same speed as existing one-stage detectors while outperforming the accuracy of existing
two-stage detectors [24]. The design is characterized by many similarities with previous
dense detectors and, in particular the use of feature pyramids as in SSDs [22] and Feature
Pyramid Networks (FPNs) [25]. A simple network architecture is built with an FPN
backbone (multilevel features) linked to a feedforward ResNet architecture [26] to generate
a rich, multiscale convolutional feature pyramid. Two subnets are added to the backbone,
one for classifying anchor boxes and one for regressing anchor boxes on ground truth
object boxes [24]. Since we did not train a CNN RetinaNet from scratch, we employed
transfer learning to use a pretrained network to initialize the feature extractor kernels. In
this process, knowledge is transferred from one domain to another. TensorFlow is used as
the backend for object detection.
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The results are evaluated by an independent UAS flight using the new GCP design
pattern. This article does not discuss the specifications of the UAS, flight constellations,
acquisition setup, recording configuration, distribution of GCP, camera calibration, or the
basic settings of the SfM process in Agisoft Metashape. Instead, it presents a proof of
concept for detecting individually designed edge-based GCP patterns in UAS images using
DL and image processing operators.

2. Materials and Methods

In this chapter, we present a new GCP design pattern and the study area where the UAS
flight will be conducted. Additionally, we explain the workflow from image acquisition
to evaluation. The methodologies of object detection and digital image processing are
integrated into the workflow. For object detection, the data involved in both the training
and evaluation phase are outlined, and the model configuration is described.

2.1. GCP Design and Study Area

In UAS flights, GCPs for indirect georeferencing are usually represented as a black-and-
white square checkerboard pattern or a circular disk. Based on the recently developed TLS
target from IGG [15], called BOTA8, we printed the new GCP pattern for the UAS domain
on 25 cm × 25 cm plates of low thermal expansion coefficient aluminum composite. The
identification of the GCP center is significant in UAS imagery because the model receives
global information for postprocessing. The high contrast to the background makes it clearly
recognizable. The eight-fold division of the GCP character ensures precise determination
of the center point. The results of the presented workflow for automatic GCP detection
and evaluation are demonstrated using a small UAS flight. For this purpose, a fixed point
field of 20 m × 25 m is set up on a model airfield. Five GCPs are placed in the four corners
and one in the center for appropriate distribution. In the center, the GCP is mounted on a
tripod to vary the height, while the other ones are placed on the ground. In addition, each
GCP is assigned a unique number (ID) that allows for later identification. In this study, the
numbers 2, 3, 5, 6, and 8 are used. Figure 1 shows the study area and the GCP design both
schematically and during the UAS flight at a flight altitude of 30 m.
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Figure 1. (Left) Study area with five placed GCP numbered 2, 3, 5, 6, and 8. (Top right) Image section
of GCP from nadir flight 30 m above the ground with 4.2 mm GSD. (Bottom right) Eight-fold GCP
design pattern.

The UAV is a self-developed system on which cameras can be mounted modularly. The
take-off weight is limited to 4.9 kg. Automated flight planning is prepared and executed
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using the Mission Planner software (1.3.70). The image flight arrangement at 30 m height is
extended with a cross flight with 20% height difference (36 m). During the whole flight, the
speed of 2 m/s is maintained. The image acquisition is realized with the Sony Alpha 7R
camera. The resolution is 7360 × 4912 pixels, and the size of a pixel is 4.9 µm. The camera
constant is specified as 35.0 mm. The camera settings used on the study area are shown
in Table 1.

Table 1. Sony Alpha 7R settings for the study area.

Setting Value

Exposure time 1/1000 s
ISO value 200

Hyperfocal distance 6 m
Aperture 7.1

At 30 m altitude, a ground sample distance (GSD) of 4.2 mm is achieved. Longitudinal
and transverse overlap is selected as 80% and 60% to provide stable bundle block adjust-
ment in the postprocess. A total of eleven images (JPG format) in nadir view are used. The
specifications of the UAS are not described in detail. The focus in this study is the detection
of the pattern in the captured nongeoreferenced images and is considered independent
of the equipment and flight conditions. Only the camera settings and image qualities are
relevant for the precise calculations.

2.2. Methodology

We developed a workflow for GCP detection using DL and image processing to
increase the automation level in the SfM routine (Figure 2). In the beginning, the UAS
images are captured (step 1). After preparing the data (step 2), the DL-based detector
predicts the object localization (step 3). The detected bounding boxes are used in image
processing to calculate the center point of each GCP (step 4), which are then provided for
evaluation in Agisoft Metashape (step 5). In the following, we describe the methodology of
data preparation, object detection, and image processing.
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Figure 2. Workflow of automatic GCP detection. The process chain starts from UAS-based image
acquisition, data processing, object recognition, and GCP center point calculation in Python 3.8 to
evaluation and 3D point cloud generation in Agisoft Metashape 1.8.0.

2.2.1. Dataset Preparation, Augmentation, and Split

DL-driven object detection requires a large amount of data for the training, validation,
and test phases. For this reason, we conducted additional flights using the UAS dataset
described above. Thereby, we used the same UAS, the same camera, and approximately
the same camera settings. The image datasets are characterized by nadir flights, different
environments, and various flight altitudes between 20 m and 35 m. To reliably detect the
pattern on different backgrounds, the GCPs are placed in the field, in forested, and in urban
environments. In addition, shadow and brightly exposed areas are considered different
lighting conditions and are thus included. The number of GCPs can also vary in the images,
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so the datasets differ in the frequency of occurrence of the patterns. The captured UAS
images that do not contain at least one GCP are excluded, essentially reducing the original
size of the datasets. Under these conditions, we collected the UAS datasets from different
flights. Figure 3 shows an example of the datasets for each flight, where the GCPs are
highlighted by red bounding boxes.
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Figure 3. Examples of six different UAS datasets with GCP locations highlighted in red. A total of
246 images were captured.

Three main tasks are addressed in the data preparation step. First, the images are
manually annotated using the YOLO BBox Annotation Tool (Ybat) [27] and saved in the
commonly known PASCAL (pattern analysis, statistical modeling, and computational learn-
ing) VOC (visual object classes) format [28]. Each image is linked to an extensible markup
language (XML) file that contains the annotations (ground-truth). Second, the image reso-
lution is resized to 25% relative to the original image size, resulting in 1840 × 1228 pixels.
This task has a massive impact on the data volume and is necessary for graphics processing
unit (GPU) training for object detection. Third, to increase the amount of training data, we
used data augmentation. It is important to maintain the shape of the GCP pattern. The
augmentation operations are presented in Table 2. The number of images in the augmented
dataset is 3 × 246 = 984, which are used for the training and validation phase.

Table 2. Augmentation operations.

Operation Value Description

Flip horizontally - Flip the image horizontally
Flip vertically - Flip the image vertically

Rotation 180◦ Rotate the image

Finally, the augmented dataset is split into two subsets: training and validation, with
a ratio of 80:20. The training subset is used for optimizing the weights, while the validation
subset is used for optimizing the hyperparameter to prevent overfitting. The test subset is
utilized to evaluate the model after training independently. At this point, the dataset of the
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UAS flight from the study field (a total of eleven images) is used. For the object detection
pipeline, we converted the subsets into three disjunct TFRecord files (data format) and
created a label map, which maps the class (GCP) to an integer value.

2.2.2. Object Detection Using RetinaNet50

The DL model selected in this work is SSD ResNet50 V1 FPN 1024 × 1024 (RetinaNet50)
with an initial mAP (mean average precision) of almost 40% (Table 3). The SSD-based DL
model was collected from the TensorFlow 2 detection model zoo [29] and trained using the
open-source framework TensorFlow Object Detection Application Programming Interface
(API) [30,31]. We applied transfer learning to accelerate performance improvement due
to pretrained weights based on the Microsoft Common Objects in Context (MS COCO)
dataset [32].

Table 3. RetinaNet50 from TensorFlow 2 detection model zoo [29].

Model Name Speed (ms) COCO mAP Output

SSD ResNet50 V1 FPN 1024 × 1024
(RetinaNet50) 87 38.3 Boxes

We implemented object detection with TensorFlow 2.9.2 on Python 3.8. To accelerate
the training phase, we used high-performance computing (HPC) resources called “El-
wetritsch” at the University of Kaiserslautern-Landau (RPTU) in Germany. Specifically, we
allocated an NVIDIA Tesla V100 GPU with 128 GB of memory. Based on the predefined
pipeline of the used model [29], the hyperparameter setting was chosen as follows: The
batch size was set to two. For the learning rate, 0.04 was used, and the warm-up learning
rate was given as 0.0133. The weight of the L2 regularization was 0.0004. The training
process stopped when the loss curve no longer converged. In this study, 40,000 steps
seemed to be sufficient.

For characterizing the performance of a model, object detection evaluation metrics
are used. The commonly used metrics were based on confusion matrix elements such as
True Positives (TP), i.e., correctly recognized objects, false positives (FP), i.e., incorrectly
recognized objects, and false negatives (FN), i.e., incorrectly unrecognized objects. To
indicate what were true and false objects, the intersection of union (IoU, also known as
Jaccard Index [33]) was used to measure the overlap between two bounding boxes. In
object detection, the area of the labeled bounding boxes (ground-truth) is intersected with
the predicted bounding boxes. From these concepts, two metrics called precision (P) and
recall (R) can be used for the final model evaluation of object detection tasks [34]. Precision
(1) indicates the accuracy of the predictions by determining the percentage of positive
identifications that were correct. Recall (2) is a measure of success rate and represents the
percentage of correct positive predictions that were correctly detected.

P =
TP

TP + FP
=

TP
all detections

(1)

R =
TP

TP + FN
=

TP
all ground truths

(2)

To present the result for the RetinaNet50 model we used multiple metrics from the MS
COCO, such as the average precision (AP, AP50, AP75) and the average recall (AR1, AR10),
which is determined using multiple IoU values over all images [32]. AP was averaged
over multiple IoU values (ten IoU thresholds) from 50% to 95% with a step size of 5%
(0.50:0.05:0.95). AP50 and AP75 were calculated for single IoU at 50% and 75%. The AR1
and AR10 scores were the average recalls across all images with one and ten detections per
image over all classes and IoU thresholds.
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2.2.3. Image Processing

Image processing means the extraction of information from image data using con-
ventional operators. After the GCPs have been localized and highlighted by the detected
bounding boxes as a paired coordinate tuple [y_min, x_min, y_max, x_max] (step 3), the
center points can be deterministically determined using common image operations. The
aim is to detect significant edges between the black and white areas and to describe these
edges parametrically. Based on the edges, the center of the GCP is calculated via line
intersection. For the SfM approach, the GCP must be uniquely identified. For this reason,
we placed numbers close to the GCPs. Figure 4 shows the image processing steps based on
a bounding box section. In this process, only the images of the test dataset (study area) were
used in their original size. The calculation of the center point is conducted individually for
each bounding box.
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Figure 4. Steps of image processing for center point calculation and number recognition.

The region of a bounding box is enlarged by 150 pixels to ensure the recognition of the
GCP numbers. Using an iterative template matching approach, the GCP design is found
within the image section limited by the enlarged bounding box. For the match with a given
pattern template (synthetically created image), a correlation of 80% is predefined. In the
first step, the template is shifted natively at 0◦ rotation angle over the image section. If no
correlation reaches the threshold, the template is rotated 10◦, and the process is repeated for
a total of eight times. For a better interpretation of the image information, the GCP sections
are cropped and converted based on gray values. A linear smoothing filter (Gaussian filter)
is applied to reduce the noise. The Canny edge detection algorithm [35] is used to detect
significant gray value gradients. For the recognition of objects which consist predominantly
of straight lines, the Hough transform [36] is particularly suitable [37]. The lines are
constructed using the edge pixels based on the Hough line transform. The operations of the
smoothing filter, Canny algorithm, and Hough transform are implemented using OpenCV.
The GCP center point is calculated using straight line intersections.

To identify the GCP ID in the images, optical character recognition is used. For this
purpose, EasyOCR (easy optical character recognition) is integrated into the workflow.
If the OCR method fails, the GCP section is rotated with the corresponding template
orientation, and the operation is run again. In case the number is still missing, the image is
rotated in 90◦ steps up to 360◦, and OCR is applied each time.
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For the Agisoft Metashape routine, the GCP center points (pixel coordinates) and ID
information are structurally stored in a text format and then automatically read in via the
Agisoft Metashape Python API.

3. Results and Discussion

To validate the workflow and the final result in Agisoft Metashape (Section 3.3), we
present the intermediate results of object detection (Section 3.1) and digital image processing
(Section 3.2). In object detection, the performance of the RetinaNet 50 model is evaluated
using the test dataset. The detected bounding boxes are provided as an image section for
further image processing. Template matching is applied to locate the GCPs in the image
section, and image operators are employed to determine the center points. The evaluation
of the UAS flight of the study area is performed in Agisoft Metashape.

3.1. Object Detection

The hyperparameter optimization of the RetinaNet50 model is based on the validation
dataset. For each step carried out in the training, the performance is determined by using
the metrics below. Training and validation losses converged uniformly while 40,000 weight
adaptations were performed. Table 4 shows the result of the validation and test dataset at
the last checkpoint.

Table 4. Performance of the trained RetinaNet50 model for validation and test dataset.

COCO (%) AP AP50 AP75 AR1 AR10

Validation dataset 76.2 98.0 89.3 53.2 83.6
Test dataset 40.1 78.1 42.7 26.0 61.5

The result of the test dataset (AP = 40.1% and AR10 = 61.5%) shows worse results
compared to the validation dataset (AP = 76.2% and AR10 = 83.6%). One reason is the
number that were placed out during the UAS flights of the training and validation dataset.
The similarities between the GCP design and the ID plate (black number on a white
background) are partly too great for correct separation. If the numbers are very close
to the GCPs, the algorithm has fewer complications. In the case of the elevated GCPs
placed on the tripod, the positions of the GCP and the ID plate differ, resulting in two
detected objects. To increase the model performance, the aspect of the number plates must
be considered in future studies. Another reason is that part of a bright table and bench is
found as a GCP in an image. This falsely detected GCP (FP) also affects the performance.
The results of object recognition are shown in four examples in Figure 5. In total, all GCPs
were found with adequate probabilities. Compared to the other points, GCP number five
has the disadvantage that the nearby tree obstructs the view in some images. In general,
image-based evaluations require that sufficient visibility exists. Due to the absence of
leaves in the tree, it is possible to identify the pattern in its basic structure. For this reason,
the datasets with tree objects should be enlarged so that the GCP pattern is trained even
with visual obstructions. The GCPs located in the shaded areas (numbers three and five)
show significantly lower scores (69% and 44%). The percentage of shaded areas can also be
expanded in the training and validation dataset so that GCP is found more reliably in dark
areas. In addition, it is recommended to add different contrast settings to the augmentation
operations so that the dark areas are better represented. Finally, the performance of the
RetinaNet50 model trained on non-UAS datasets such as MS COCO [32] is satisfactory for
GCP detection on the existing datasets with the help of data augmentation. If the training
success of the GCP is increased with extended datasets from different environments and
further augmentation operations, the scope of detected objects can be raised so that the
nonrelevant objects drop below the predefined threshold.
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Figure 5. Results of the test dataset of four images with correctly detected GCP (green, TP) and
incorrectly detected GCP (orange, FP).

In addition, other object detection models can be tried to find out which model
performs best for GCP detection. The results obtained with the RetinaNet50 model are
sufficient for this study.

For the further step in image processing, the bounding boxes of the FP detections are
not critical, because number plates or other objects, such as a table or a bench, are ignored
during the template matching process. When multiple predicted bounding boxes of a GCP
are found within an image, nonmaximal suppression (NMS) is applied to select the main
entity from many overlapping entities. Bounding boxes with a score above 40% are carried
over to the next step.

3.2. Calculation of the GCP Center Point and Recognition of the ID

In this step, the GCP center points are calculated. The previously detected bounding
boxes on the test dataset and the template of the GCP design pattern are used as data basis.
The duration of the Python script runs approximately 5:55 min without using GPU on a
standard notebook (Intel i7 4 × 2.50 GHz with 16 GB of memory). The EasyOCR method
takes the most time to complete the process. Optionally, GCP center points can also be
indicated without finding the numbers and reduce the processing time to 1:54 min. On
average, the process takes about 45 s for one image with two GCPs including ID search.

To evaluate the results, we compare the calculated center points with manually de-
termined integer pixel values (picked GCP). Figure 6 shows for comparison the man-
ually picked pixel coordinate in the original image and the calculated point from the
image processing.
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Figure 6. Example of the GCP center point (x- and y-axis in pixels) of number six in image
DSC04416.jpg. (Left) Manually picked GCP with 2300% zoom. (Right) Calculated GCP from straight
line intersections of image processing.

The numerical comparison of the coordinates and the result of the number recognition
are presented in Table 5. Using template matching, all center points of the 20 GCPs can be
calculated. The mean differences between the picked and calculated GCPs are −0.06 px
in the x- and 0.18 px in the y-axis of the image. Based on the manual picking of integer
pixel values, an uncertainty due to rounding errors of at least 0.5 px was expected. Most
of the differences are less than 0.5 pixel. At points three and eight, some values are above
1.0 px. The maximum value of 1.06 px is at point eight in image DSC04422.jpg. Due to
the vegetation state of the tree, the basic structure of the pattern can be recognized, as
already mentioned in the previous section, so that the center point calculation is possible.
For oblique images, it is necessary to check the applicability of the template matching. If
the given section deviates geometrically from the reference, the method can no longer be
performed reliably with high correlation [37].

Table 5. Results of the pixel differences in the x- and y-axis between manually picked and calculated
GCP center points and success of number identification (noN = no detected number).

Image Name Detected
Number Target Number ∆x, ∆y (px)

DSC04416.jpg 6|noN 6|8 −0.41, 0.59|−0.15, 0.16
DSC04417.jpg noN|noN 2|8 0.00, −0.57|0.09, 0.2
DSC04418.jpg 2|noN 2|8 −0.17, 0.23|−0.32, 0.04
DSC04419.jpg 3 3 0.27, 0.39
DSC04420.jpg 2|3 2|3 −0.16, −0.46|−0.82, −0.16
DSC04421.jpg noN|noN 2|8 0.24, −0.23|−0.3, 0.32
DSC04422.jpg noN|noN 5|8 0.02, 0.30|−0.26, 1.06
DSC04423.jpg 6 5 −0.2, 0.41
DSC04426.jpg noN|noN 3|8 0.75, −0.14|−0.49, 0.96
DSC04427.jpg 3 3 −0.35, 0.46
DSC04434.jpg 3|5|noN 3|5|8 0.29, 0.21|0.29, 0.15|0.49, −0.35

Total 9 20

The numbers belonging to the corresponding GCP represent an unsatisfactory result.
Nine numbers can be recognized; the others are classified with no detected number (noN).
In addition to the numbers, probabilities can be specified. On average, the values for
the correctly found numbers are between 80–100%. Point eight has a bad condition for
number recognition due to the tripod shadow. The view of the number at point five is
complicated by the tree, and not every image due to the change of perspective is favored.
In image DSC04423.jpg, the number five is mistakenly recognized as six (probability 50%).
Another problem for the weak results of the number recognition could be the heavy objects
on the edge of the number plates, which were used for fixing. The objects may be too
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close to the numbers so that the unambiguous number recognition is disturbed. In the
future, the number plates will be fixed in the ground with long needles so that this factor is
eliminated. To increase the hit rate, the image rotation can be divided into several smaller
rotation angles so that the algorithm recognizes the number in the approximately correct
orientation. However, this leads to a significantly longer processing time. For the test
dataset, the runtime of about five minutes seems manageable. However, this would scale
up exorbitantly for a UAS flight of several 100 images with GCPs. ID recognition should
be improved. Another approach could be the integration of another DL pipeline at this
point [38,39]. Alternatively, the MNIST dataset [40], which contains handwritten numbers,
can be used to train a number-based model that is used for ID recognition of the GCPs [41].

The name of the images, the detected GCPs with calculated pixel coordinates, and
the GCP numbers are stored and transferred to Agisoft Metashape via the Python plugin
(“Run Python Script”).

3.3. Evaluation in Agisoft Metashape

For the evaluation of the final result at the end of the workflow, two projects were
created in Agisoft Metashape, where the images of the study area were added. In the first
project, every single GCP is hand-picked as a marker. In the second project, the calculated
center points are provided as markers within a few seconds with the plugin. Since some
GCPs are not numbered (noN), the markers with the name “no GCP number” must be
manually replaced with the existing numbers and deleted (Figure 7). The duration of the
process is about two minutes.
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In the project based on manually picked markers, the process takes about five minutes.
After the images are aligned with the setting “high”, global coordinates are added to the
GCPs with an accuracy of 1.0 cm. This value is also used as a weighting in the bundle block
adjustment, which adjusts the preresult of the alignment. The results in both projects are
shown in Table 6.

Table 6. SfM-Results of the image-based (px) and absolute error (cm) in Agisoft Metashape for the
two projects (manually picked GCP and calculated GCP).

GCP Projections Picked GCP
(px)

Picked GCP
(cm)

Calculated
GCP (px)

Calculated
GCP (cm)

2 4 0.608 1.44 0.592 1.47
3 5 1.333 0.72 1.359 0.70
5 3 0.451 1.23 0.460 1.25
6 1 0.146 1.65 0.143 1.61
8 7 0.899 2.41 0.754 2.49

Total error 0.912 1.59 0.874 1.61

In the first project, the center points are selected manually in the images (2D), and in
the second project, the calculated GCP are loaded. For this reason, the error in pixels is most
important. We listed the absolute error (cm) to show the effect from the image plane to the
3D global point. The image-based and the absolute error after triangulation are similarly
accurate for both methods and do not differ significantly. The comparison between the
image-based error before and after importing the global coordinates varies marginally. The
GCPs of number three are mostly at the edges of the images, which means that the image
quality suffers, and the point cannot be determined as accurately as the others. Therefore,
the image-based errors have larger values at these points. When the outliers of the GCPs of
number three are excluded in both projects, the accuracy of the SfM result on the image
plane increases to about 0.6 px. GCP number six can generally be neglected because the
point has no redundancy. In summary, the same SfM results are achieved with the loaded
calculated GCP center points as with the manually picked GCPs determined by a human
evaluator.

Another comparison can be carried out using the point clouds of both projects. For
this purpose, the dense point cloud with accuracy level “high” was generated in Agisoft
Metashape. Using GCP eight as an example, the global coordinates were hand-picked
from the point cloud depending on the point density and distribution and compared to the
reference coordinate (Figure 8). The differences are similar for both approaches and are
significantly better in the location than in the height component.
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Figure 8. Results of the coordinates of GCP 8 from the generated point clouds from both projects
(visualized in CloudCompare (2.12.2)) and difference determination to the reference coordinate (top
left in the table).

4. Conclusions and Future Work

In this paper, we presented a proof-of-concept study focusing on image-based detec-
tion of a new GCP design pattern in UAS image data using DL specifically object detection
with the RetinaNet50 model and image processing operators. Based on the result of a UAS
flight in Agisoft Metashape, we can show that the degree of automation in the evaluation
phase of marker identification is increased and the SfM results between the projects with
calculated and manually picked GCP center points have equal accuracies. When evaluating
additional flights, the workflow is shortened by skipping data preparation and object
detection. The trained network can be applied to subsequent image data to locate the
bounding boxes around the GCPs and calculate their center points.

In the future, further studies could be carried out. The accuracy comparison between
the new GCP pattern and, e.g., the conventional checkerboard pattern for UAS flights,
should be conducted to determine quality differences. In addition, the application of this
pattern could be adapted to other technologies, such as investigating the use of calibration
processes, and the possibility of combining different technologies could be tested to increase
the potential and synergies. It would be interesting to evaluate the application of point
cloud fusion between TLS, including scanning technology on a flying platform (ALS,
airborne laser scanning) and image-based UAS, which we did not investigate in this article.
To apply the workflow to the full range of UAS applications, studies based on UAS flights
with oblique imagery and various altitudes are necessary.
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Abbreviations

The following abbreviations are used in this manuscript:

ALS Airborne laser scanning
AP Average precision
API Application programming interface
AR Average recall
CNN Convolutional neural network
DL Deep learning
DNN Deep neural network
FN False negative
FP False positive
FPN Feature pyramid network
GCP Ground control point
GPU Graphics processing unit
GSD Ground sample distance
HPC High-performance computing
IoU Intersection of union
NMS Nonmaximal suppression
noN No detected number
mAP Mean average precision
MS COCO Microsoft Common Objects in Context
OCR Optical character recognition
P Precision
R Recall
R-CNN Region-based convolutional neural network
RTK Real-time kinematic
SfM Structure-from-Motion
SSD Single-shot detector
TLS Terrestrial laser scanning
TP True positive
UAS Unmanned aircraft system
UAV Unmanned aerial vehicle
XML Extensible markup language
YOLO You only look once
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