
Citation: Jin, Q.; Hu, Q.; Zhao, P.;

Wang, S.; Ai, M. An Improved

Probabilistic Roadmap Planning

Method for Safe Indoor Flights of

Unmanned Aerial Vehicles. Drones

2023, 7, 92. https://doi.org/

10.3390/drones7020092

Academic Editors: Nadjim Horri,

Samir Khan, Vaios Lappas and Shiva

Raj Pokhrel

Received: 9 November 2022

Revised: 7 January 2023

Accepted: 26 January 2023

Published: 28 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

An Improved Probabilistic Roadmap Planning Method for Safe
Indoor Flights of Unmanned Aerial Vehicles
Qingeng Jin , Qingwu Hu * , Pengcheng Zhao , Shaohua Wang * and Mingyao Ai

School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
* Correspondence: huqw@whu.edu.cn (Q.H.); shwang@whu.edu.cn (S.W.)

Abstract: Unmanned aerial vehicles (UAVs) have been widely used in industry and daily life, where
safety is the primary consideration, resulting in their use in open outdoor environments, which
are wider than complex indoor environments. However, the demand is growing for deploying
UAVs indoors for specific tasks such as inspection, supervision, transportation, and management. To
broaden indoor applications while ensuring safety, the quadrotor is notable for its motion flexibility,
particularly in the vertical direction. In this study, we developed an improved probabilistic roadmap
(PRM) planning method for safe indoor flights based on the assumption of a quadrotor model UAV.
First, to represent and model a 3D environment, we generated a reduced-dimensional map using
a point cloud projection method. Second, to deploy UAV indoor missions and ensure safety, we
improved the PRM planning method and obtained a collision-free flight path for the UAV. Lastly,
to optimize the overall mission, we performed postprocessing optimization on the path, avoiding
redundant flights. We conducted experiments to validate the effectiveness and efficiency of the
proposed method on both desktop and onboard PC, in terms of path-finding success rate, planning
time, and path length. The results showed that our method ensures safe indoor UAV flights while
significantly improving computational efficiency.

Keywords: indoor environment; point cloud; unmanned aerial vehicle; path planning and optimization;
probabilistic roadmap

1. Introduction

Small unmanned aerial vehicles (UAVs) have considerably evolved and are increas-
ingly applied in many fields, such as agriculture [1,2], monitoring [3,4], transportation [5,6],
delivery [7,8], and rescue [9,10], necessitating additional research on the use of UAVs for
mobile robotics, photogrammetry, and monitoring, to name but a few. The core advantage
of using UAVs is that they can operate and execute missions in hazardous and dangerous
situations. However, certain safety challenges must be considered when integrating UAVs,
including attention cost, psychological impact, and physical risks [11]. As such, safety
is the most-debated topic of designing and using UAVs [12]. The reason why UAVs are
not yet safe, especially indoors, is that they still have flaws such as poor environmental
perception and low strain capacity, which means that during autonomous UAV flight in
complex environments, safety hazards cannot be completely avoided, posing potential
threats to life and property.

Different UAV models, each with their own unique traits, are appropriate for different
application scenarios. Among the different models of the UAV, the quadrotor has been ex-
tensively developed, researched, and applied over time. The notable quadrotor advantages
are its flexibility, adaptivity, and ease of construction [13]. The quadrotor is an aircraft with
four rotors with associated propellers, which is capable of hovering, jerking, vertical takeoff
and landing, and horizontal flight. Numerous quadrotors are being fabricated for academic
research or commercial use, e.g., Pixhawk [14], DraganFlyer X4 [15], and DJI M300 [16],
and the boundaries of modeling theories [17–20] and control methods [21–24] are being

Drones 2023, 7, 92. https://doi.org/10.3390/drones7020092 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7020092
https://doi.org/10.3390/drones7020092
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-7687-3340
https://orcid.org/0000-0003-0866-6678
https://orcid.org/0000-0002-1581-634X
https://doi.org/10.3390/drones7020092
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7020092?type=check_update&version=2

Drones 2023, 7, 92 2 of 32

advanced. Given that we mainly focused on UAV path planning rather than UAV control
in this study, we did not consider the aspect of UAV control. However, several autopilot
products or software [25–27] cover the underlying control of UAVs, allowing researchers to
perform and evaluate the designed planning methods on supported platforms.

Despite most UAVs being used in open and spacious outdoor situations rather than
cramped and unpredictable indoor situations, demand has been growing for deploying
UAVs indoors for specific missions, including manufacturing, inspection, and service [28].
Unlike executing a flight outdoors, UAVs cannot use the global navigation satellite system
(GNSS) as a location mechanism when indoors. As a result, indoor UAV localization
systems typically use a visual camera [29], laser [30], wireless communication [31], or
motion capture systems [32] as alternative techniques to assist with indoor tasks. Recently,
systems based on new technology such as the Internet of Things (IoT) [33], deep-learning-
based monocular cameras [34], and optimal mass flow sensors [35] have been proposed.
Additionally, some advanced systems have been developed using more conventional
sensors providing solutions for indoor UAV applications, including camera-based tracking
systems [36], light detection and ranging (LiDAR)-based systems [37], and multisensor
fusion systems [38].

To ensure the safety of UAV mission planning and autonomous flight, especially in
indoor environments, UAV systems need to combine local environment awareness with
global cognition. By creating a map of the indoor environment, the UAV can realize
global cognition of the environment in which it is located, also providing the basis for a
series of subsequent operations such as UAV path planning, mission configuration, and
autonomous flight. Conversely, when relying solely on the UAV forming local perception of
the surrounding environment, only emergency operations can be executed, such as obstacle
avoidance, thus passively rather than actively ensuring safe UAV flights at the planning
level. To allow UAVs to better understand indoor environments, a commonly used option
is the application of payload sensors, where LiDAR provides benefits in illumination
tolerance and object structure description. With a point cloud of the scenario as the only
output, subsequent processes, such as environment modeling and path planning, can be
performed. Based on this, numerous indoor UAV tasks can be accomplished, e.g., non-GPS
navigation, interior inspection, and autonomous delivery.

The environmental awareness and cognition of a UAV enable UAV control at the
planning level. To complete a UAV flight mission, the first step is deciding where to
travel and stop, followed by controls to maintain proper movement during these tasks.
Additionally, the UAV needs to be resilient to unforeseen circumstances, especially dynamic
obstacles. The latter tasks were outside our scope in this study: our focus was on the process
of creating a global traversal path for a UAV in an environment, i.e., path or route planning.

Environment modeling and path search are two major components of path planning.
Many methods have been proposed by scholars in these fields, the most important of
which are geometric, topological, and cell decomposition methods. The geometric method
abstracts the elements of the environment using geometric shapes, such as a convex region
combined with polynomial forms [39]. Although these methods can intuitively describe
the surroundings, their computational volume noticeably increases when the obstacles
are dense and the layout is complicated; additionally, dealing with irregularly shaped
obstacles is challenging. With the topological methods, the environment is abstracted as a
graph structure, which considerably simplifies the environment and increases path search
efficiency, but creating a topological graph is complicated and time-consuming. The core
idea behind the cell decomposition method is to divide a large environment into small cells
using a simple environment discretization method, which is easy to compute and applies
well to situations with many obstacles and complex morphology, reducing the complexity
of the environment model and increasing planning efficiency. The grid map [40] is a typical
cell decomposition method used in environment modeling.

The purpose of path search is to use specific algorithms to find a path in the environ-
ment so that the predetermined performance function returns an optimal value. According

Drones 2023, 7, 92 3 of 32

to the basic principle, path search algorithms can be divided into three types: traditional,
sample-based, and simulation bionic methods.

Traditional methods were first proposed, but have since been enhanced. Dijkstra’s
algorithm [41], Floyd–Warshall algorithm [42], A* [43], D* [44], and artificial potential
field [45] are a few examples. They are typically simple to calculate and easy to implement,
which laid the foundation for resolving the path planning problem. Li et al. [46] proposed
a universal path planning method for UAVs that can solve the shortest safe path and a
safe least-cost path. González et al. [47] proposed an indoor path-planning algorithm for
UAV-based contact inspection that can calculate a path in a few milliseconds. Xu et al. [48]
designed a resilient, enhanced algorithm for UAV 3D route planning based on the A* and
artificial potential fields algorithms, overcoming the insufficient anti-disturbance ability of
the traditional route planning algorithm.

Simulation bionic methods are inspired by natural entities or events, and they achieve
their goal by simulating and grouping individual behaviors and interactions, providing
a new possibility for solving complex problems. Typical methods include the genetic
algorithm [49], ant colony algorithm [50], memetic algorithm [51], etc. The simulation
bionic methods are practical for UAV path planning. For example, Liu et al. [52] designed a
modified sparrow search algorithm and increased the efficiency in solving the UAV route
planning problem. Wang et al. [53] introduced a modified mayfly algorithm, which per-
formed well in the UAV route planning problem. Li et al. [54] combined cellular automata
with the spanning tree algorithm to construct a route network in low-altitude airspace,
providing a solution for the distribution of logistics UAV. However, although the concept
of the simulation bionic methods can be intuitively understood, it has disadvantages in
terms of the complexity of description and difficulty in modeling, which do not meet the
time requirement and resource limitations of the onboard system.

Sample-based methods involve sampling subgoals in the configuration space to extend
the search until the final goal is reached. Rapidly exploring random tree (RRT) [55] and
probabilistic roadmap (PRM) [56] are two typical sample-based methods. RRT employs
spatial sampling to determine the expansion direction of the search tree. This method
can perform fast searches and is adaptable in high-dimensional space; however, it is not
well-suited for environments with narrow spaces, and it does not guarantee an optimal
path result. PRM, on the contrary, samples available spatial positions serving as nodes in a
route network, from which a path search algorithm is used to solve an optimal path from
beginning to end. This method converts the path search problem from an entire continuous
space to a discrete graph with nodes and edges, making it applicable to path planning
problems with high-dimensional and complex constraints. However, because this method
is only probabilistically complete, the path result may not be optimal among all possible
sample networks.

RRT is more suitable for exploring environments without prior information, whereas
PRM is more suitable for selecting a better path in an environment with prior informa-
tion, so is more suitable for applications that consider the safety of UAV flight. In 2004,
Pettersson et al. [57] used the PRM algorithm for an autonomous UAV. Methods based
on PRM have been continuously proposed and tend to be combined with other meth-
ods. Chen et al. [58] proposed an improved probabilistic roadmap with a potential field
function for a quadrotor UAV. Mohanta et al. [59] proposed a knowledge-based fuzzy-
probabilistic roadmap for mobile robot navigation. Combining PRM with the A* algorithm
is feasible [60], and it works well with the ant colony algorithm [61].

With the development of path planning methods, we have been constantly striving
to increase operational effectiveness, reduce computing time, and maintain an optimal
path result, to better meet the requirements of safe UAV flight. The sample-based method
for path planning achieves an appropriate balance between effectiveness and efficiency.
First, this method is well-suited for cell decomposition modeling, where the grid map is a
common, mature, and easily used form to describe the environment. Second, as long as
any interrelationship exists between cells in the map, it is capable of further simplifying the

Drones 2023, 7, 92 4 of 32

map by abstracting it into a graph composed of nodes and edges. Lastly, its path search
shows high-quality performance in terms of computational efficiency and path result.

In this study, we focused on improving the computational efficiency of path plan-
ning, because it determines whether a UAV can complete the planning and execute an
autonomous flight in real-time, i.e., in a few seconds. Due to the fact that indoor environ-
ments may be compact and complex, as well as sometimes dynamic and unpredictable,
a UAV should be able to finish planning as quickly as possible to handle emergency
situations. Based on a typical quadrotor model, we designed an indoor environment
reduced-dimensional modeling method that employs point cloud projection to create a
downscaled raster map of an indoor environment, reducing the indoor space from 3D to 2D
while retaining necessary environmental information such as boundaries and obstacles. We
used an adjacency relationship of the grids in a raster map to represent the spatial location
relationship in 3D indoor space, thus markedly simplifying the environment. We combined
several 2D maps into a multilayer map to produce an improved path-solving result in a
complex environment where a single 2D map is not enough to effectively describe the
actual situation. Furthermore, we developed an improved PRM planning method, which is
an exploratory path search method that converts the path search in indoor environments
into a graph search based on sampled nodes. Although the obtained paths may not be the
shortest in length due to the sampling randomness, the search capability of the algorithm
is remarkably improved, and solving for feasible paths in complex indoor environments is
easier. The results of experiments showed that the proposed method substantially reduces
the planning time compared with that of the basic PRM algorithm, and it performs well
even on a resource-limited computing platform, whereas the postprocessing optimization
of the generated paths further improves path quality to meet real-world requirements
regarding the timely generation of autonomous UAV flight paths, thereby ensuring UAV
flight safety.

2. Generation of Reduced-Dimensional Raster Map Based on Point Cloud Projection

A quadrotor UAV has flexible 3D mobility, i.e., loose constraints on vertical and
horizonal motions, which considerably facilitates describing, representing, and modeling
an environment. Therefore, we modeled an indoor environment by a point cloud projection
method; then, we generated reduced-dimensional raster maps to represent various altitude
ranges of the environment, based on which we designed and implemented an improved
probabilistic roadmap planning method to obtain mission paths for the UAV. Additionally,
we optimized the path by post-process to account for the efficiency and UAV flight safety.
An overview of the method workflow is shown in Figure 1.

Drones 2022, 6, x FOR PEER REVIEW 5 of 32

Figure 1. Overview of method workflow.

2.1. Kinematic and Dynamic UAV Model Assumptions
A quadrotor UAV is composed of four rotors attached to the ends of four arms by a

symmetric frame. As the direct power source of flight, the rotors can adjust each spinning
speed to change the lift force generated by the attached propellers, allowing for flexible
horizontal and vertical movements, constant motion, or relative stillness. The control sys-
tem of a quadrotor is an underactuated system, with six degrees of freedom outputs (three
translational motions and three rotational motions) controlled by only four inputs (the
spinning speed of four rotors).

In this study, we selected the quadrotor as the assumed type of UAV in the modeling
and planning. However, the actual type of the UAV was not our main concern as the cur-
rent autopilot products and software provide good encapsulation and integration of un-
derlying executions of the UAV, which do not require complex user control. The main
reason why we used the quadrotor as the kinematic and dynamic model is that it is capa-
ble of flexible mobility in both the vertical and horizontal directions, especially hovering
and jerking, which is highly automated by the autopilot.

Some assumptions are required to properly introduce the kinematic model of a quad-
rotor UAV. We assume that it has a symmetric and rigid structure, with propellers of
equal height on the rotors, and the mass center is the same as the space center of the UAV.

We first define two coordinate systems: body inertial frame 𝑂 𝑋 𝑌 𝑍 and fix iner-
tial frame 𝑂 𝑋 𝑌 𝑍 . The center 𝑂 is defined the same as the mass center of the UAV,
with the forward and upward directions of the UAV being the x-direction and z-direction,
respectively; the y-direction is determined by the right-hand rule. For simplicity, the fixed
inertial frame has the same definition as the first body inertial frame of the UAV, and it
does not change once determined.

As such, the UAV state 𝑞 in the environment can be described as 𝑞 = {𝑥, 𝑦, 𝑧, 𝜓, 𝜃, 𝜙}, (1)

where (𝑥, 𝑦, 𝑧) denotes the position of the center of the quadrotor in a fixed frame, and (𝜓, 𝜃, 𝜙) denotes the orientation of the quadrotor in the body frame represented in Euler
angles (yaw, pitch, and roll), which can be further transformed to the fixed frame by

𝑅 = c(𝜓)c(𝜃) c(𝜓)s(𝜃)s(𝜙) − s(𝜓)c(𝜙) c(𝜓)s(𝜃)c(𝜙) + s(𝜓)s(𝜙)s(𝜓)c(𝜃) s(𝜓)s(𝜃)s(𝜙) + c(𝜓)c(𝜙) s(𝜓)s(𝜃)c(𝜙) − c(𝜓)s(𝜙)−s(𝜃) c(𝜃)s(𝜙) c(𝜃)c(𝜙) , (2)

where c() and s() denote cos and sin operators, respectively.
To further simplify the dynamic model for ease of implementation, we overlook pitch

and roll controls for now, because they strongly impact the flight stability of the UAV, and

Figure 1. Overview of method workflow.

Drones 2023, 7, 92 5 of 32

2.1. Kinematic and Dynamic UAV Model Assumptions

A quadrotor UAV is composed of four rotors attached to the ends of four arms by a
symmetric frame. As the direct power source of flight, the rotors can adjust each spinning
speed to change the lift force generated by the attached propellers, allowing for flexible
horizontal and vertical movements, constant motion, or relative stillness. The control
system of a quadrotor is an underactuated system, with six degrees of freedom outputs
(three translational motions and three rotational motions) controlled by only four inputs
(the spinning speed of four rotors).

In this study, we selected the quadrotor as the assumed type of UAV in the modeling
and planning. However, the actual type of the UAV was not our main concern as the
current autopilot products and software provide good encapsulation and integration of
underlying executions of the UAV, which do not require complex user control. The main
reason why we used the quadrotor as the kinematic and dynamic model is that it is capable
of flexible mobility in both the vertical and horizontal directions, especially hovering and
jerking, which is highly automated by the autopilot.

Some assumptions are required to properly introduce the kinematic model of a quadro-
tor UAV. We assume that it has a symmetric and rigid structure, with propellers of equal
height on the rotors, and the mass center is the same as the space center of the UAV.

We first define two coordinate systems: body inertial frame ObXbYbZb and fix inertial
frame O f X f Yf Z f . The center Ob is defined the same as the mass center of the UAV, with
the forward and upward directions of the UAV being the x-direction and z-direction,
respectively; the y-direction is determined by the right-hand rule. For simplicity, the fixed
inertial frame has the same definition as the first body inertial frame of the UAV, and it
does not change once determined.

As such, the UAV state qT in the environment can be described as

qT = {x, y, z, ψ, θ, φ}, (1)

where (x, y, z) denotes the position of the center of the quadrotor in a fixed frame, and
(ψ, θ, φ) denotes the orientation of the quadrotor in the body frame represented in Euler
angles (yaw, pitch, and roll), which can be further transformed to the fixed frame by

R f
b =

c(ψ)c(θ) c(ψ)s(θ)s(φ)− s(ψ)c(φ) c(ψ)s(θ)c(φ) + s(ψ)s(φ)
s(ψ)c(θ) s(ψ)s(θ)s(φ) + c(ψ)c(φ) s(ψ)s(θ)c(φ)− c(ψ)s(φ)
−s(θ) c(θ)s(φ) c(θ)c(φ)

, (2)

where c() and s() denote cos and sin operators, respectively.
To further simplify the dynamic model for ease of implementation, we overlook pitch

and roll controls for now, because they strongly impact the flight stability of the UAV,
and delegating these controls to the autopilot would be preferable. Translational and yaw
controls are necessary, as the former is used to change the spatial position of the UAV, while
the latter is used to adjust the heading direction. Thus, the following control states remain:

.
qT

=
{ .

x,
.
y,

.
z,

.
ψ
}

, (3)

where
{ .

x,
.
y,

.
z
}

denotes the respective speeds with reference to the fixed frame, and
.
ψ

denotes the change rate of the yaw angle in the body frame.
These speed control parameters are inputs to the UAV kinematic model to keep

the UAV on the resulting path solved at the planning level; they are also outputs of
the UAV dynamic model, where traction and torque are inputs. However, because the
implementation of dynamic modeling can be delegated to the autopilot and we focused
more on planning methods than control methods for the UAV, we do not provide further
discussion on this topic.

Drones 2023, 7, 92 6 of 32

2.2. Indoor Environment Rasterization

In simple indoor environments, describing the inter-relationships of boundary surfaces
and obstacle shapes is relatively simple, facilitating the vectorization of environmental
elements. However, for complex indoor environments, the traditional vectorization method
has limitations. For example, when a room is irregularly shaped, an increase in the
number of walls causes the constraints of the boundary to become more complex, and more
parameters must be added to the model to completely describe the entire environment,
which also substantially affects the efficiency of modeling.

We implemented a downscaling modeling method for indoor environments based on
point cloud projection that avoids the vectorization of environment elements and generates
a reduced-dimensional raster map based on point cloud coordinate values. The method
converts the original three-dimensional space to two-dimensional space and transforms
the spatial location relationship between environment elements into the adjacency relation-
ship between elements in the raster map, which considerably reduces the complexity of
modeling, improves efficiency, and is more compatible.

The reduced-dimensional raster map consists of small elements called grids, each of
which represents a specific size in space. They can be classified based on their values to
distinguish boundaries, obstacles, and free space in the environment. Due to the fact that
both the boundaries and obstacles are impassable on a map, they can be represented and
grouped together as obstacle grids. In addition to obstacle grids, free grids exist in the map,
which composes the entire set of map grids.

If we add an attribute and set a value of the free grid value f ree = class0 and the obstacle
grid valueobstacle = class1, we obtain a simple environment reduced-dimensional raster
map, as shown in Figure 2, which is essentially a binary image with a size of height ∗ width.

Drones 2022, 6, x FOR PEER REVIEW 6 of 32

delegating these controls to the autopilot would be preferable. Translational and yaw con-
trols are necessary, as the former is used to change the spatial position of the UAV, while
the latter is used to adjust the heading direction. Thus, the following control states remain: 𝑞 = 𝑥, 𝑦, 𝑧, 𝜓 , (3)

where {𝑥, 𝑦, 𝑧} denotes the respective speeds with reference to the fixed frame, and 𝜓
denotes the change rate of the yaw angle in the body frame.

These speed control parameters are inputs to the UAV kinematic model to keep the
UAV on the resulting path solved at the planning level; they are also outputs of the UAV
dynamic model, where traction and torque are inputs. However, because the implemen-
tation of dynamic modeling can be delegated to the autopilot and we focused more on
planning methods than control methods for the UAV, we do not provide further discus-
sion on this topic.

2.2. Indoor Environment Rasterization
In simple indoor environments, describing the inter-relationships of boundary sur-

faces and obstacle shapes is relatively simple, facilitating the vectorization of environmen-
tal elements. However, for complex indoor environments, the traditional vectorization
method has limitations. For example, when a room is irregularly shaped, an increase in
the number of walls causes the constraints of the boundary to become more complex, and
more parameters must be added to the model to completely describe the entire environ-
ment, which also substantially affects the efficiency of modeling.

We implemented a downscaling modeling method for indoor environments based
on point cloud projection that avoids the vectorization of environment elements and gen-
erates a reduced-dimensional raster map based on point cloud coordinate values. The
method converts the original three-dimensional space to two-dimensional space and
transforms the spatial location relationship between environment elements into the adja-
cency relationship between elements in the raster map, which considerably reduces the
complexity of modeling, improves efficiency, and is more compatible.

The reduced-dimensional raster map consists of small elements called grids, each of
which represents a specific size in space. They can be classified based on their values to
distinguish boundaries, obstacles, and free space in the environment. Due to the fact that
both the boundaries and obstacles are impassable on a map, they can be represented and
grouped together as obstacle grids. In addition to obstacle grids, free grids exist in the
map, which composes the entire set of map grids.

If we add an attribute and set a value of the free grid 𝑣𝑎𝑙𝑢𝑒 = 𝑐𝑙𝑎𝑠𝑠0 and the
obstacle grid 𝑣𝑎𝑙𝑢𝑒 = 𝑐𝑙𝑎𝑠𝑠1, we obtain a simple environment reduced-dimen-
sional raster map, as shown in Figure 2, which is essentially a binary image with a size of ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑤𝑖𝑑𝑡ℎ.

Figure 2. Environment reduced-dimensional raster map.

2.3. Indoor Environment Point Cloud Projection

To preserve the relationship between obstacles and free space as much as possible
throughout the conversion of a 3D point cloud to a 2D map, we adopt the indoor envi-
ronment point cloud projection method, which projects the target 3D point cloud onto a
parametric model. In this study, we projected the 3D point cloud of the indoor environment
onto a horizontal plane along the vertical direction to provide a vertical view that serves as
a reduced-dimensional raster map model of this indoor environment.

In addition, because the UAV has a limited field of vision and concentrates on a
specific region rather than a global one, only the points within a range close to the UAV are
projected. Thus, we further determine the range for projection according to the detection
distance of the UAV:

Drones 2023, 7, 92 7 of 32

xmin = xUAV − dUAV , xmax = xUAV + dUAV ,
ymin = yUAV − dUAV , ymax = yUAV + dUAV ,

zmin = zUAV − h/2, zmax = zUAV + h/2,
(4)

where xmin, xmax, ymin, ymax, zmin, and zmax denote the projection range; (xUAV , yUAV , zUAV)
denotes the UAV position (or another specified center position of the focused point cloud);
dUAV denotes the detection range of the UAV and h denotes the specified range for altitude.
All the variables are in the same local coordinates as the point cloud.

Any 3D point p(x, y, z) in the point cloud satisfies

xmin < x < xmax,
ymin < y < ymax,
zmin < z < zmax.

(5)

The conversion from 3D point p to 2D map grid p′ is as follows:

p′ =
[

x′

y′

]
=

[
round(x− xmin)
round(y− ymin)

]
∗ s, (6)

where round() denotes the rounding sign to resample the 3D point to a 2D point and s
denotes the map resolution scaling factor.

The reason why we chose a vertical projection is that indoor objects, in most cases,
are vertically placed on the floor, and the free space also extends in the vertical direction.
The vertical view is the most widely used map form in robot mapping and navigation
applications, reflecting its usefulness, effectiveness, and representativeness.

However, the projection method may disregard the vertical structure of obstacles,
particularly in complex environments. To overcome this issue, we further vary the zmin and
zmax in the projection and construct grid maps representing the free space and obstacles at
various altitudes. For example, a multilayer grid map M

{
m1, m2, . . . , mn} consists of grid

maps at various altitudes, and the ith map mi is formed by the projection of point cloud Pi:

∀pi(xi, yi, zi) ∈ Pi,
xmin < xi < xmax,
ymin < yi < ymax,
zi

min < zi < zi
max,

(7)

where zi
min varies from (zUAV − nh/2) to (zUAV + nh/2) with a step size of h.

As a result, the UAV can search for a path not only in one single map but also by
merging maps at various altitudes if necessary. In simple cases, a grid map of the near
range of the UAV altitude is sufficient to solve a feasible path; in more complex cases, we
first search for a path at the current altitudes, and if it is not feasible, we continue searching
for subsequent paths in adjacent maps from where the initial search ended. As such, we
achieve an appropriate balance between effectiveness and efficiency.

2.4. Indoor Environment Reduced-Dimensional Raster Map Generation

In the reduced-dimensional raster map of indoor environments, the map grid is
divided into two categories: obstacle and free grids. The obstacle grids represent two
types of environmental elements: boundaries and obstacles. Before constructing a map, the
original point cloud of the indoor environment must be preprocessed to generate a usable
map of the indoor environment.

Preprocessing commonly comprises the segmentation of floor and ceiling points,
denoising, and other processes. Removal of the floor and ceiling points is necessary;
otherwise, they obscure the location of the free space and cover the entire projection surface.
We used random sample consensus (RANSAC) [62] to segment and extract the floor
and ceiling points. RANSAC not only satisfied our segmentation requirements, but also
provided us with the parameters of the extracted planes that could be used to determine the

Drones 2023, 7, 92 8 of 32

UAV altitude in the environment. Based on this, we divide the space into varying altitudes
and generate a map at each altitude.

The process of generating the reduced-dimensional raster map is shown in Figure 3.
More specifically, the procedure entails the following steps:

1. Extract the floor and ceiling points using point cloud segmentation, and remove them
from the original point cloud. Segmentation range and height can be specified.

2. Calculate the maximum and minimum values of the remaining point clouds on the X
and Y axes for the height and width of the map image, respectively. Scaling up of the
image is optional to increase model accuracy.

3. Iteratively read the 3D position values of each point, and convert them into map grid
coordinates by projection.

4. Repeat step 3 until all points have been traversed and obtain a binary image of the
raster map.

5. Vary the specified height of projection to generate raster maps at various altitudes.

Drones 2022, 6, x FOR PEER REVIEW 8 of 32

range of the UAV altitude is sufficient to solve a feasible path; in more complex cases, we
first search for a path at the current altitudes, and if it is not feasible, we continue searching
for subsequent paths in adjacent maps from where the initial search ended. As such, we
achieve an appropriate balance between effectiveness and efficiency.

2.4. Indoor Environment Reduced-Dimensional Raster Map Generation
In the reduced-dimensional raster map of indoor environments, the map grid is di-

vided into two categories: obstacle and free grids. The obstacle grids represent two types
of environmental elements: boundaries and obstacles. Before constructing a map, the orig-
inal point cloud of the indoor environment must be preprocessed to generate a usable
map of the indoor environment.

Preprocessing commonly comprises the segmentation of floor and ceiling points, de-
noising, and other processes. Removal of the floor and ceiling points is necessary; other-
wise, they obscure the location of the free space and cover the entire projection surface.
We used random sample consensus (RANSAC) [62] to segment and extract the floor and
ceiling points. RANSAC not only satisfied our segmentation requirements, but also pro-
vided us with the parameters of the extracted planes that could be used to determine the
UAV altitude in the environment. Based on this, we divide the space into varying altitudes
and generate a map at each altitude.

The process of generating the reduced-dimensional raster map is shown in Figure 3.
More specifically, the procedure entails the following steps:
1. Extract the floor and ceiling points using point cloud segmentation, and remove them

from the original point cloud. Segmentation range and height can be specified.
2. Calculate the maximum and minimum values of the remaining point clouds on the

X and Y axes for the height and width of the map image, respectively. Scaling up of
the image is optional to increase model accuracy.

Figure 3. Workflow of the method used to generate reduced-dimensional raster map of indoor en-
vironment based on point cloud projection.

Figure 3. Workflow of the method used to generate reduced-dimensional raster map of indoor
environment based on point cloud projection.

3. Improved Probabilistic Roadmap Planning for Safe UAV Flight
3.1. Basic PRM Algorithm

The PRM algorithm, which is essentially a graph-based path search method, is based
on the fundamental concept of randomly generating sampling points in free space that serve
as graph nodes. After verifying the connectivity of nodes and constructing a connection
network, the PRM algorithm conducts a search and then solves a path from the source to
the goal.

The PRM algorithm considerably simplifies the environment by discretizing the space
into a graph, and is applicable to high-dimensional spaces with complex constraints.
However, it is time-consuming and inefficient in network initialization. Additionally, its
stability is restricted by the number of sampling nodes and their random locations. The
algorithm is therefore probabilistically complete.

Drones 2023, 7, 92 9 of 32

The workflow of the basic PRM algorithm mainly includes three parts: spatial sam-
pling, edge generation, and path search. The pseudo-code for the basic PRM is shown in
Figure 4. More specifically, the procedure entails the following steps:

(1) Define a node set N; add the source node nsrc and the goal node ngoal .
(2) Generate a node nrand by random sampling in the entire map.
(3) Perform a collision check on nrand. If it passes, add nrand to N; otherwise, return to

step 2.
(4) Repeat steps 2 and 3 until M nodes in total have been generated, completing spatial sampling.
(5) Define an edge set E.
(6) Traverse nm in N and select other nodes nk to generate edge em,k; perform a collision

check on it. If it passes, add it to E.
(7) Repeat step 6 until all M nodes have been traversed, completing edge generation.
(8) Define a graph G(N, E) and deploy a path search algorithm to solve the shortest path

P from nsrc to ngoal , completing the path search.

Drones 2022, 6, x FOR PEER REVIEW 9 of 32

Algorithm 1 Basic Probabilistic Roadmap. It takes two set of node coordinates deter-
mining source 𝒏𝒔𝒓𝒄 and goal 𝒏𝒈𝒐𝒂𝒍 positions and number of sampling nodes 𝑴. The

algorithm process includes three processes, SAMPLE(), CREATE_EDGES() and
FIND_PATH().

SAMPLE(𝒏𝒔𝒓𝒄, 𝒏𝒈𝒐𝒂𝒍, 𝑴):
 Input: Node coordinates of source 𝑛 and goal 𝑛 , number of sampling node 𝑀.

1: 𝑁.add(𝑛 , 𝑛);
2: 𝑁.add(𝑛);
3: while 𝑁.size() < 𝑀 do
4: 𝑛 ← RANDOM_STATE();
5: if CHECK_COLLISION(𝑛) == COLLISION_FREE
6: 𝑁.add_node(𝑛);
 return 𝑁

CREATE_EDGES(𝑁):
 Input: A set of sampling nodes 𝑁.

1: for 𝑚 = 1 to 𝑁.size() do
2: for 𝑘 = 1 to 𝑁.size() do
3: if 𝑛 != 𝑛
4: 𝑒 , ← EDGE(𝑛 , 𝑛);
5: if CHECK_COLLISION (𝑒 ,) == COLLISION_FREE
6: 𝐸.add_edge(𝑒 ,);
 return 𝐸

FIND_PATH(𝑁, 𝐸, 𝑛 , 𝑛):

 Input: A set of sampling nodes 𝑁 and a set of connection edges 𝐸, Node coordinates
of source 𝑛 and goal 𝑛 .

1: 𝐺.init(𝑁, 𝐸);
2: 𝑃 ← PATH_SOLVE(𝐺, 𝑛 , 𝑛);
 return 𝑃

Figure 4. Pseudocode of basic PRM.

3.2. Improvement Strategies for PRM Algorithm
The basic PRM algorithm has disadvantages in terms of stability and efficiency.
Its insufficient stability is caused by its reliance on the number of sampling nodes

and their random locations. When the number of randomly generated nodes in the space
is small, or the distribution is unfavorably located, as shown in Figure 5(a) and 5(c), it may
fail to form a network connecting the source and goal, instead generating several discon-
nected local networks. Nevertheless, the PRM algorithm is probabilistically complete,
which means that as long as the random nodes are distributed throughout the space, a
feasible path must be found. Therefore, the stability issue can be mitigated by appropri-
ately increasing the number of nodes according to the complexity of the actual indoor
environment.

Figure 4. Pseudocode of basic PRM.

3.2. Improvement Strategies for PRM Algorithm

The basic PRM algorithm has disadvantages in terms of stability and efficiency.

Drones 2023, 7, 92 10 of 32

Its insufficient stability is caused by its reliance on the number of sampling nodes and
their random locations. When the number of randomly generated nodes in the space is
small, or the distribution is unfavorably located, as shown in Figure 5a,c, it may fail to form
a network connecting the source and goal, instead generating several disconnected local
networks. Nevertheless, the PRM algorithm is probabilistically complete, which means
that as long as the random nodes are distributed throughout the space, a feasible path must
be found. Therefore, the stability issue can be mitigated by appropriately increasing the
number of nodes according to the complexity of the actual indoor environment.

Drones 2022, 6, x FOR PEER REVIEW 10 of 32

(a) (b) (c) (d)

Figure 5. Node distribution under different node numbers (𝑛): (a) 𝑛 = 30, undesirable distribution;
(b) 𝑛 = 30, desirable distribution; (c) 𝑛 = 40, undesirable distribution; (d) 𝑛 = 40, desirable distri-
bution.

The inefficiency is that some steps in the algorithm, particularly edge generation, are
time-consuming. Each edge necessitates a collision check during generation to ensure a
collision-free network. Furthermore, as the distance between nodes increases, the likeli-
hood of obstacles between them increases, and generating a collision-free edge becomes
more difficult. An effective solution is to reduce the number of collision checks and edge
generations between distant nodes to improve the efficiency of the algorithm while hav-
ing less impact on network connectivity.

To further reduce edge collision checks, we can adopt a strategy of constructing first
and checking later, i.e., we do not perform the collision check on every pair of nodes in
the process of edge generation after spatial sampling, but perform the collision check after
solving a candidate path. Moreover, we eliminate the infeasible edges in the candidate
path and find a new path that can reconnect the remaining edges. This strategy restricts
the collision check of all edges to only the candidate path and its neighboring nodes and
edges, therefore substantially lowering the number of collision checks and improving the
efficiency of the algorithm.

3.3. Network Construction Based on Connection Distance
As the distance between nodes increases, the likelihood of obstacles between them

increases, resulting in their invisibility and the impossibility of constructing collision-free
edges. On the basis of this insight, we developed a method of network construction based
on connection distance.

First, we set a “connection distance” parameter to determine whether to generate a
connection edge between two nodes. During the edge generation process, the distance
between each node is calculated when traversing each node to the other nodes. If it is
above the threshold, the edge is not connected, and the subsequent collision check is
skipped; otherwise, the collision check of the edge is performed again, and if it passes, a
connected edge is generated between them.

The moderate connection distance is important. If the connection distance is too
large, many colliding edges are still unnecessarily checked; however, if the connection
distance is too small, network connectivity may be reduced or the network may become
disconnected, which will affect the subsequent path search results, as shown in Figure 6.

This method improves the efficiency of the algorithm with little impact on the net-
work connectivity by reducing the connection of nodes whose distance exceeds an ac-
ceptable threshold. Comparative networks with different connection distances 𝑐𝑑𝑖𝑠 are
shown in Figure 6, where the number of collision-free edges 𝑒 and the number of col-
liding edges 𝑒𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑑 are counted. As the connection distance increases, the number of col-
liding edges rapidly increases, while the number of collision-free edges slowly increases.
This demonstrates that a proper connection distance can effectively reduce invalid checks
for the colliding edges while assuring minimal disruption of network connectivity.

Figure 5. Node distribution under different node numbers (n): (a) n = 30, undesirable distribution;
(b) n = 30, desirable distribution; (c) n = 40, undesirable distribution; (d) n = 40, desirable distribution.

The inefficiency is that some steps in the algorithm, particularly edge generation, are
time-consuming. Each edge necessitates a collision check during generation to ensure a
collision-free network. Furthermore, as the distance between nodes increases, the likelihood
of obstacles between them increases, and generating a collision-free edge becomes more
difficult. An effective solution is to reduce the number of collision checks and edge
generations between distant nodes to improve the efficiency of the algorithm while having
less impact on network connectivity.

To further reduce edge collision checks, we can adopt a strategy of constructing first
and checking later, i.e., we do not perform the collision check on every pair of nodes in
the process of edge generation after spatial sampling, but perform the collision check after
solving a candidate path. Moreover, we eliminate the infeasible edges in the candidate
path and find a new path that can reconnect the remaining edges. This strategy restricts
the collision check of all edges to only the candidate path and its neighboring nodes and
edges, therefore substantially lowering the number of collision checks and improving the
efficiency of the algorithm.

3.3. Network Construction Based on Connection Distance

As the distance between nodes increases, the likelihood of obstacles between them
increases, resulting in their invisibility and the impossibility of constructing collision-free
edges. On the basis of this insight, we developed a method of network construction based
on connection distance.

First, we set a “connection distance” parameter to determine whether to generate a
connection edge between two nodes. During the edge generation process, the distance
between each node is calculated when traversing each node to the other nodes. If it is above
the threshold, the edge is not connected, and the subsequent collision check is skipped;
otherwise, the collision check of the edge is performed again, and if it passes, a connected
edge is generated between them.

The moderate connection distance is important. If the connection distance is too large,
many colliding edges are still unnecessarily checked; however, if the connection distance is
too small, network connectivity may be reduced or the network may become disconnected,
which will affect the subsequent path search results, as shown in Figure 6.

Drones 2023, 7, 92 11 of 32

This method improves the efficiency of the algorithm with little impact on the network
connectivity by reducing the connection of nodes whose distance exceeds an acceptable
threshold. Comparative networks with different connection distances cdis are shown
in Figure 6, where the number of collision-free edges e f ree and the number of colliding
edges ecollided are counted. As the connection distance increases, the number of colliding
edges rapidly increases, while the number of collision-free edges slowly increases. This
demonstrates that a proper connection distance can effectively reduce invalid checks for
the colliding edges while assuring minimal disruption of network connectivity.

Drones 2022, 6, x FOR PEER REVIEW 11 of 32

(a) 𝑒 = 13, 𝑒𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑑 = 0.

(b) 𝑒 = 36, 𝑒𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑑 = 4.
(c) 𝑒 = 82, 𝑒𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑑 = 69.

(d) 𝑒 = 92, 𝑒𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑑 = 139.

Figure 6. Networks with connection distances of 0.1 (a), 0.2 (b), 0.5 (c), and 1 (d), consisting of colli-
sion-free edges (𝑒) indicated by blue lines and colliding edges (𝑒) by red lines. With in-
creasing connection distance, the number of colliding edges rapidly increases, while the number of
collision-free edges slowly increases.

3.4. Path Local Check and Incremental Update
Based on the strategy of constructing first and checking later, we propose a method

for path local checking and incremental updating.
After spatial sampling of the nodes, a network is constructed based on the connection

distance, but no edge check is conducted at this stage. Hence, colliding edges may exist
between the invisible nodes in the network, for which we then conduct a path search from
the source to the goal for an initial path. On this path, we execute a minimum number of
collision checks by incremental update. If an edge is collided, preventing direct passage
between two nodes on the edge, we remove it from the network and search for a new path
connecting the two nodes. These steps are repeated until all edges on the path pass the
collision check, i.e., the entire path satisfies the no-collision requirement.

The workflow of the improved PRM algorithm mainly includes two parts: network
initialization and path update. The pseudocode of the improved PRM is shown in Figure
7. More specifically, the procedure entails the following steps:
1) Define a node set 𝑁; add the source node 𝑛 and the goal node 𝑛 .
2) Generate a node 𝑛 by random sampling in the entire map.
3) Perform a collision check on 𝑛 . If it passes, add 𝑛 to 𝑁; otherwise, return to

step 2.
4) Repeat steps 2 and 3 until 𝑀 nodes in total have been generated.
5) Define an edge set 𝐸.
6) Traverse 𝑛 in 𝑁 and select other nodes 𝑛 to generate edge 𝑒 , ; add it to 𝐸

without performing collision checking.
7) Repeat step 6 until all 𝑀 nodes have been traversed, completing network initializa-

tion.
8) Define a graph 𝐺(𝑁, 𝐸), and traverse a current node 𝑛 starting from 𝑛 .
9) Find the nearest neighbor 𝑛 of 𝑛 and perform a collision check on 𝑒 , . If it

passes, add 𝑛 to result path 𝑃 and move 𝑛 backward to 𝑛; otherwise, remove 𝑛 from 𝐺 and update the network.
10) Repeat step 9 until reaching 𝑛 , completing path update.

Figure 6. Networks with connection distances of 0.1 (a), 0.2 (b), 0.5 (c), and 1 (d), consisting of
collision-free edges (e f ree) indicated by blue lines and colliding edges (ecollided) by red lines. With
increasing connection distance, the number of colliding edges rapidly increases, while the number of
collision-free edges slowly increases.

3.4. Path Local Check and Incremental Update

Based on the strategy of constructing first and checking later, we propose a method
for path local checking and incremental updating.

After spatial sampling of the nodes, a network is constructed based on the connection
distance, but no edge check is conducted at this stage. Hence, colliding edges may exist
between the invisible nodes in the network, for which we then conduct a path search from
the source to the goal for an initial path. On this path, we execute a minimum number of
collision checks by incremental update. If an edge is collided, preventing direct passage
between two nodes on the edge, we remove it from the network and search for a new path
connecting the two nodes. These steps are repeated until all edges on the path pass the
collision check, i.e., the entire path satisfies the no-collision requirement.

The workflow of the improved PRM algorithm mainly includes two parts: network
initialization and path update. The pseudocode of the improved PRM is shown in Figure 7.
More specifically, the procedure entails the following steps:

(1) Define a node set N; add the source node nsrc and the goal node ngoal .
(2) Generate a node nrand by random sampling in the entire map.
(3) Perform a collision check on nrand. If it passes, add nrand to N; otherwise, return to

step 2.
(4) Repeat steps 2 and 3 until M nodes in total have been generated.
(5) Define an edge set E.
(6) Traverse nm in N and select other nodes nk to generate edge em,k; add it to E without

performing collision checking.
(7) Repeat step 6 until all M nodes have been traversed, completing network initialization.
(8) Define a graph G(N, E), and traverse a current node ncur starting from nsrc.
(9) Find the nearest neighbor n of ncur and perform a collision check on encur ,n. If it passes,

add n to result path P and move ncur backward to n; otherwise, remove n from G and
update the network.

(10) Repeat step 9 until reaching ngoal , completing path update.

Drones 2023, 7, 92 12 of 32

The methods of local path check and incremental update essentially comprise a path
search strategy that reduces ineffective collision checks on edges, decreasing the time
required and increasing algorithm efficiency. The method has strong applicability in
environments that are not extremely complex, and a feasible path can be quickly solved
with minimal redundancy in simple environments. The procedure of local check and
incremental update is shown in Figure 8. For colliding edges (red line) in the initial path,
a new path (yellow lines) connecting two segments of the initial path is searched, which
serves as a newly available local path for a final collision-free path (green lines).

Drones 2022, 6, x FOR PEER REVIEW 12 of 32

Algorithm 2 Improved Probabilistic Roadmap. Similarly to the Basic Probabilistic
Roadmap, it takes two sets of node coordinates determining source 𝑛 and goal 𝑛
positions and number of sampling nodes 𝑀. The algorithm process includes INITIAL-

IZE_NETWORK() and UPDATE_PATH().
INITIALIZE_NETWORK(𝑛 , 𝑛 , 𝑀):

 Input: Node coordinates of source 𝑛 and goal 𝑛 , number of sampling node 𝑀.
1: 𝑁.add(𝑛 , 𝑛);
2: 𝑁.add(𝑛);
3: while 𝑁.size() < 𝑀 do
4: 𝑛 ← RANDOM_STATE();
5: if CHECK_COLLISION(𝑛) == COLLISION_FREE
6: 𝑁.add_node(𝑛);
7: for 𝑚 = 1 to 𝑁.size() do
8: for 𝑘 = 1 to 𝑁.size() do
9: if 𝑛 != 𝑛

10: 𝑒 , ← EDGE(𝑛 , 𝑛);
11: 𝐸.add_edge(𝑒 ,);

 return 𝑁, 𝐸
UPDATE_PATH(𝑁, 𝐸, 𝑛 , 𝑛):

 Input: A set of sampling nodes 𝑁 and a set of connection edges 𝐸, Node coordi-
nates of source 𝑛 and goal 𝑛 .

1: 𝐺.init(𝑁, 𝐸);
2: 𝑛 ← 𝑛 ;
3: while 𝑛 != 𝑛 do
4: 𝑛 ← NEAREST_NEIGHBOR(𝐺, 𝑛);
5: 𝑒 , ← EDGE(𝑛 , 𝑛);
6: if CHECK_COLLISION (𝑒 ,) != COLLISION_FREE
7: 𝐺.remove_edge(𝑒 ,);
8: else
9: 𝑃.add_node(𝑛);

10: 𝑛 ← 𝑛;
 return 𝑃

Figure 7. Pseudocode of improved PRM.

(a) Initial path (b) Check and update (c) Collision-free path

Figure 8. Path local check and incremental update: (a) an initial path contains collision-free edges
(green lines) and a colliding edge (red line); (b) a new path (yellow lines) connecting two segments
of the initial path is searched and updated; (c) a collision-free path is finally completed by adding
the newly available local path.

Figure 7. Pseudocode of improved PRM.

3.5. Path Planning in Multilayer Grid Map

In more complex cases, a single map at a certain altitude might not be appropriate
for solving a feasible path if obstacles are blocking the map and dividing it into several
disconnected areas. Although areas in a single map may not be connected at the same

Drones 2023, 7, 92 13 of 32

altitude, they may be connected via another area at a different altitude. Therefore, we use a
multilayer grid map for path planning.

Path search and update strategies in the multilayer map are quite similar to those in a
single map; however, the essential distinction lies in how the transfer areas (overlapping
areas of adjacent layers) are determined for the UAV to adjust its altitude.

To detect available transfer areas, we first use an image region-growing algorithm to
identify and segment the disconnected areas in each single map. Due to the fact that the
total number of the areas is uncertain, we randomly sample the growth seeds on the map.
If the growing region contains a sufficient number of grids, we record it as a valid area and
then continue to sample a new seed and search other areas until all valid areas have been
segmented. Furthermore, we examine the connectivity between areas in each layer and
those in the adjacent layers. If two areas have grids with the same X and Y coordinates,
they are regarded as connected, and the overlapping area formed by the grids is considered
to be a transfer area.

Drones 2022, 6, x FOR PEER REVIEW 12 of 32

Algorithm 2 Improved Probabilistic Roadmap. Similarly to the Basic Probabilistic
Roadmap, it takes two sets of node coordinates determining source 𝑛 and goal 𝑛
positions and number of sampling nodes 𝑀. The algorithm process includes INITIAL-

IZE_NETWORK() and UPDATE_PATH().
INITIALIZE_NETWORK(𝑛 , 𝑛 , 𝑀):

 Input: Node coordinates of source 𝑛 and goal 𝑛 , number of sampling node 𝑀.
1: 𝑁.add(𝑛 , 𝑛);
2: 𝑁.add(𝑛);
3: while 𝑁.size() < 𝑀 do
4: 𝑛 ← RANDOM_STATE();
5: if CHECK_COLLISION(𝑛) == COLLISION_FREE
6: 𝑁.add_node(𝑛);
7: for 𝑚 = 1 to 𝑁.size() do
8: for 𝑘 = 1 to 𝑁.size() do
9: if 𝑛 != 𝑛

10: 𝑒 , ← EDGE(𝑛 , 𝑛);
11: 𝐸.add_edge(𝑒 ,);

 return 𝑁, 𝐸
UPDATE_PATH(𝑁, 𝐸, 𝑛 , 𝑛):

 Input: A set of sampling nodes 𝑁 and a set of connection edges 𝐸, Node coordi-
nates of source 𝑛 and goal 𝑛 .

1: 𝐺.init(𝑁, 𝐸);
2: 𝑛 ← 𝑛 ;
3: while 𝑛 != 𝑛 do
4: 𝑛 ← NEAREST_NEIGHBOR(𝐺, 𝑛);
5: 𝑒 , ← EDGE(𝑛 , 𝑛);
6: if CHECK_COLLISION (𝑒 ,) != COLLISION_FREE
7: 𝐺.remove_edge(𝑒 ,);
8: else
9: 𝑃.add_node(𝑛);

10: 𝑛 ← 𝑛;
 return 𝑃

Figure 7. Pseudocode of improved PRM.

(a) Initial path (b) Check and update (c) Collision-free path

Figure 8. Path local check and incremental update: (a) an initial path contains collision-free edges
(green lines) and a colliding edge (red line); (b) a new path (yellow lines) connecting two segments
of the initial path is searched and updated; (c) a collision-free path is finally completed by adding
the newly available local path.

Figure 8. Path local check and incremental update: (a) an initial path contains collision-free edges
(green lines) and a colliding edge (red line); (b) a new path (yellow lines) connecting two segments of
the initial path is searched and updated; (c) a collision-free path is finally completed by adding the
newly available local path.

For the path search process, we attempt to find a path from the source to the goal in a
single map at the default altitude. If the path search fails, meaning that impassible obstacles
may be located at this altitude, we search in its adjacent layers for any area that overlaps
the current search area. If several overlapping areas exist, we use a greedy strategy to select
the area with the smallest horizontal distance from the goal as the next search area. In the
selected overlapping area, we additionally sample a transfer node for the UAV adjusting
its altitude, which also serves as a temporary goal node of the current search area and the
source node of the next search area. Thus, we accomplish the cross-layer path search for
UAVs in complex indoor environments.

The pseudo-code of path planning in the multilayer map is shown in Figure 9. More
specifically, the procedure entails the following steps:

Define Mapcurrent as the currently used map (at altitude hstart by default) and nsub_src
and nsub_goal as the source and goal for the current search, respectively; they are initialized
in nsrc and ngoal at first.

(1) Define and initialize node set N as the network nodes in Mapcurrent.
(2) Start the search for a path from nsub_src to nsub_goal on network N.
(3) If the search fails, find another map Mapnext that has the smallest distance with

nsub_goal as the next map. Search the transfer area of the two maps and sample
a transfer node ntrans f er in it, and set nsub_goal to ntrans f er. Start a new search in
this configuration.

(4) If the search succeeds, record the path result in P, switch the map to Mapnext and
nsub_src to ntrans f er, and reset nsub_goal to ngoal .

(5) Repeat steps 4 to 5 until P contains nsrc and ngoal .

Because our method is based on the pre-captured point cloud of the environment, the
proposed method of map area detection considers a global perspective, i.e., with a priori

Drones 2023, 7, 92 14 of 32

knowledge of the environment. Possible enhancements for UAV discovery in an unknown
environment were beyond the scope of this study.

Drones 2022, 6, x FOR PEER REVIEW 14 of 32

Algorithm 3 Path Planning in Multi-Layer Grid Map. In transfer area identification, it
takes each layer in the multi-layer grid map 𝑀𝑎𝑝𝑠 and split it into several disconnected

areas, based on which it extracts overlapping areas. In path search, it takes two set of
node coordinates determining source 𝑛_𝑠𝑟𝑐 and goal 𝑛_𝑔𝑜𝑎𝑙 positions, number of sam-

pling nodes 𝑀 and UAV altitude ℎ . The algorithm process includes SEG-
MENT_AREAS(), EXTRACT_OVERLAPS() and PATH_SEARCH_MULTI_LAYERS().

SEGMENT_AREAS(𝑀𝑎𝑝𝑠):
 Input: Multi-layer map 𝑀𝑎𝑝𝑠.

1: for 𝑚𝑎𝑝 in 𝑀𝑎𝑝𝑠 do
2: while 𝑠𝑒𝑒𝑑 != NULL
3: 𝑠𝑒𝑒𝑑 ← RANDOM_FREE_GRID();
4: 𝑎 ← REGION_GROWING(𝑠𝑒𝑒𝑑);
5: 𝐴𝑟𝑒𝑎𝑠{𝑚𝑎𝑝, 𝑖}.add_area(𝑎);
6: 𝑖++;
 return 𝐴 ← 𝐴𝑟𝑒𝑎𝑠

EXTRACT_OVERLAPS(𝐴):
 Input: Segmented areas 𝐴 in Multi-layer map.

1: for 𝑚𝑎𝑝1 = 1 to 𝐴.size() do
2: for 𝑚𝑎𝑝2 = 𝑚𝑎𝑝1. 𝑙𝑜𝑤𝑒𝑟_𝑙𝑎𝑦𝑒𝑟() to 𝑚𝑎𝑝1. 𝑢𝑝𝑝𝑒𝑟_𝑙𝑎𝑦𝑒𝑟() do
3: 𝑓𝑟𝑒𝑒𝐺𝑟𝑖𝑑𝑠 ← AND(𝑚𝑎𝑝1.free_grids(), 𝑚𝑎𝑝2.free_grids());
4: 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐴𝑟𝑒𝑎𝑠{𝑚𝑎𝑝1, 𝑚𝑎𝑝2} ← INTERSECT(𝑓𝑟𝑒𝑒𝐺𝑟𝑖𝑑𝑠, 𝑚𝑎𝑝1);
 return 𝑇 ← 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐴𝑟𝑒𝑎𝑠

PATH_SEARCH_MULTI_LAYERS(𝑀𝑎𝑝𝑠, 𝑇, 𝑀, 𝑛 , 𝑛 , ℎ):

Input: The multi-layer map 𝑀𝑎𝑝𝑠, a set of transfer areas 𝑇, node coordinates of

source 𝑛 and goal 𝑛 , number of sampling node 𝑀 and default UAV altitude ℎ .
1: 𝑀𝑎𝑝 ← 𝑀𝑎𝑝𝑠.get_map(ℎ);
2: 𝑛 _ ← 𝑛 ;
3: 𝑛 _ ← 𝑛 ;
4: while !(𝑃.contain(𝑛) && 𝑃.contain(𝑛)) do
5: 𝑁 ← INITIALIZE_NETWORK(𝑀𝑎𝑝 , 𝑛 _ ,𝑛 _ , 𝑀);
6: if PATH_SOLVE(𝑀𝑎𝑝 , 𝑁, 𝑛 _ ,𝑛 _) != SUCCESS
7: 𝑀𝑎𝑝 ← MIN_DISTANCE(𝑇{𝑀𝑎𝑝 },𝑛 _);
8: 𝑛 ← SAMPLE(𝑇{𝑀𝑎𝑝 , 𝑀𝑎𝑝 });
9: 𝑁.add_node(𝑛);
10: 𝑛 _ ← 𝑛 ;
11: else
12: 𝑃 ← PATH_SOLVE_RESULT(𝑀𝑎𝑝 , 𝑁, 𝑛 _ ,𝑛 _);
13: 𝑀𝑎𝑝 ← 𝑀𝑎𝑝 ;
14: 𝑛 _ ← 𝑛 ;
15: 𝑛 _ ← 𝑛 ;

 return 𝑃

Figure 9. Pseudocode of path planning in multi-layer grid map.

4. Path Postprocessing Optimization
The randomness in the sampling nodes of the PRM algorithm may result in redun-

dant nodes in the path, which manifests as unnatural distortions in path morphology, as
well as multiple visits to nodes during path checking and updating, thus increasing the

Figure 9. Pseudocode of path planning in multi-layer grid map.

Drones 2023, 7, 92 15 of 32

4. Path Postprocessing Optimization

The randomness in the sampling nodes of the PRM algorithm may result in redundant
nodes in the path, which manifests as unnatural distortions in path morphology, as well as
multiple visits to nodes during path checking and updating, thus increasing the final path
length. In this regard, the initial path obtained from the path search should be optimized by
postprocessing to remove redundant nodes and avoid unnecessary visits to the same node,
thereby improving path quality and increasing the safety of UAV flight along the path.

In this study, we developed a two-step postprocessing method for path optimization,
consisting of a backward and a forward path connection check. The core concept of the
method is to search in the initially solved path for a set of “key nodes”, forming an optimal
path that is collision-free with obstacles and as short a length as possible.

4.1. Backward Path Connection Check

To reduce redundant nodes, the backward connection check method starts from the
source node as the first determined node and searches backward, node by node, to the
farthest visible node as its direct connection node, which is also the newly determined node.
To avoid multiple visits to the same node, each time the node is determined, the initial path
is queried to discover if other nodes are visible. If so, it jumps to the last visible node and
removes any other nodes in between.

The pseudocode of the backward path connection check is shown in Figure 10. More
specifically, the procedure entails the following steps:

(1) Initialize the optimal path P′ by adding nsrc.
(2) Read the initially solved path P, starting from nsrc as determined node n, with the

neighboring node behind as the displacement node nm.
(3) Check if P contains more than one n, i.e., multiple visits occur to n. If so, jump to

the last occurrence of n on P, set it as the newly determined node n, and update the
displacement node nm; otherwise, continue to the next step.

(4) Perform collision check on the edge en,m. If it passes, let nm move backward; otherwise,
add nm−1 to P′ and update n to nm−1 and nm to n + 1.

(5) Repeat steps 3 and 4 until ngoal is reached, then add it to P′.

Drones 2022, 6, x FOR PEER REVIEW 15 of 32

final path length. In this regard, the initial path obtained from the path search should be
optimized by postprocessing to remove redundant nodes and avoid unnecessary visits to
the same node, thereby improving path quality and increasing the safety of UAV flight
along the path.

In this study, we developed a two-step postprocessing method for path optimization,
consisting of a backward and a forward path connection check. The core concept of the
method is to search in the initially solved path for a set of “key nodes”, forming an optimal
path that is collision-free with obstacles and as short a length as possible.

4.1. Backward Path Connection Check
To reduce redundant nodes, the backward connection check method starts from the

source node as the first determined node and searches backward, node by node, to the
farthest visible node as its direct connection node, which is also the newly determined
node. To avoid multiple visits to the same node, each time the node is determined, the
initial path is queried to discover if other nodes are visible. If so, it jumps to the last visible
node and removes any other nodes in between.

The pseudocode of the backward path connection check is shown in Figure 10. More
specifically, the procedure entails the following steps:
1) Initialize the optimal path 𝑃 by adding 𝑛 .
2) Read the initially solved path 𝑃, starting from 𝑛 as determined node 𝑛, with the

neighboring node behind as the displacement node 𝑛 .
3) Check if 𝑃 contains more than one 𝑛, i.e., multiple visits occur to 𝑛. If so, jump to

the last occurrence of 𝑛 on 𝑃, set it as the newly determined node 𝑛, and update the
displacement node 𝑛 ; otherwise, continue to the next step.

4) Perform collision check on the edge 𝑒 , . If it passes, let 𝑛 move backward; other-
wise, add 𝑛 to 𝑃 and update 𝑛 to 𝑛 and 𝑛 to 𝑛 + 1.

5) Repeat steps 3 and 4 until 𝑛 is reached, then add it to 𝑃 .

Algorithm 4 Backward optimization method. It takes the solved path 𝑃 after search,
and results in a path 𝑃 which has less nodes than 𝑃.

 Input: Solved path 𝑃 in which is a set of nodes includes source 𝑛 and goal 𝑛 .
1: 𝑃 .add(𝑛);
2: 𝑛 ← 𝑛 ;
3: 𝑛 ← 𝑛 + 1;
4: while 𝑛 != 𝑛 do
5: if 𝑃.find(𝑛) > 1
6: 𝑛 ← get_final_index(𝑛);
7: 𝑛 ← 𝑛 + 1;
8: else
9: 𝑒 , ← EDGE(𝑛, 𝑛);
10: if CHECK_COLLISION (𝑒 ,) == COLLISION_FREE
11: 𝑛 ← 𝑛 ;
12: else
13: 𝑃 .add_node(𝑛);
14: 𝑛 ← 𝑛 ;
15: 𝑛 ← 𝑛 + 1;

 return 𝑃

Figure 10. Pseudocode of backward path connection check.

4.2. Forward Path Connection Check

Figure 10. Pseudocode of backward path connection check.

Drones 2023, 7, 92 16 of 32

4.2. Forward Path Connection Check

The forward connection check method also starts from the source node as the first
determined node but differs from the backward connection check, in that it checks the
visibility starting from the goal node and searching forward node by node to the determined
node. The aim of the forward connection check is to cope with the backward connection
check in the case where two distant visible nodes exist with invisible nodes in between.
As shown in Figure 11b, the path (cyan lines) obtained by the backward connection check
returns to have the path extended around the upper, right, and lower sides of the obstacle
area at the top of the map. However, in reality, the path can be directly connected down
the left side of the obstacle area. At this point, the original path can be optimized by the
forward connection check; as shown in Figure 11c, the resulting path (blue lines) after the
forward connection check can directly connect the two nodes on the left side of the above
obstacle area, avoiding the redundant path nodes.

Drones 2022, 6, x FOR PEER REVIEW 16 of 32

The forward connection check method also starts from the source node as the first
determined node but differs from the backward connection check, in that it checks the
visibility starting from the goal node and searching forward node by node to the deter-
mined node. The aim of the forward connection check is to cope with the backward con-
nection check in the case where two distant visible nodes exist with invisible nodes in
between. As shown in Figure 11(b), the path (cyan lines) obtained by the backward con-
nection check returns to have the path extended around the upper, right, and lower sides
of the obstacle area at the top of the map. However, in reality, the path can be directly
connected down the left side of the obstacle area. At this point, the original path can be
optimized by the forward connection check; as shown in Figure 11(c), the resulting path
(blue lines) after the forward connection check can directly connect the two nodes on the
left side of the above obstacle area, avoiding the redundant path nodes.

(a) Collision-free path be-
fore optimization

(b) Backward connection
checked path

(c) Forward connection
checked path

Figure 11. Path postprocessing optimization: (a) an collision-free path (green lines) is obtained as
an initially output of path planning; (b) backward connection checked path (cyan lines) firstly
reduces unnecessary visits to the same nodes; (c) forward connection checked path (blue lines)
further reduces redundant nodes.

The pseudocode of the forward path connection check is shown in Figure 12. More
specifically, the procedure entails the following steps:
1) Initialize the optimal path 𝑃 by adding 𝑛 .
2) Input the backward optimal path 𝑃 , starting from 𝑛 as the determined node 𝑛

and 𝑛 as the displacement node 𝑛 .
3) Perform collision check on edge 𝑒 , . If it passes, add 𝑛 to 𝑃 , update 𝑛 to 𝑛 ,

and reset 𝑛 ; otherwise, let 𝑛 move forward.
4) Repeat steps 3 and 4 until 𝑛 is reached, then add it to 𝑃 .

Figure 11. Path postprocessing optimization: (a) an collision-free path (green lines) is obtained as an
initially output of path planning; (b) backward connection checked path (cyan lines) firstly reduces
unnecessary visits to the same nodes; (c) forward connection checked path (blue lines) further reduces
redundant nodes.

The pseudocode of the forward path connection check is shown in Figure 12. More
specifically, the procedure entails the following steps:

(1) Initialize the optimal path P′′ by adding nsrc.
(2) Input the backward optimal path P′, starting from nsrc as the determined node n and

ngoal as the displacement node nm.
(3) Perform collision check on edge en,m. If it passes, add nm to P′′ , update n to nm, and

reset nm; otherwise, let nm move forward.
(4) Repeat steps 3 and 4 until ngoal is reached, then add it to P′′ .

The path postprocessing optimization combines the backward and forward connection
checks to combine their respective benefits. First, considering the decreasing possibility
of node visibility as their distance increases, the backward connection check from a fixed
node is more efficient than the forward connection check from the end of the path, allowing
for a faster traversal of the initial path. Second, the backward connection check, in the
first step, cannot handle the situation where two distant visible nodes have invisible
nodes in between, whereas the forward connection check, in the second step, can remedy
this deficiency, because it checks the visibility from the other direction. Furthermore,
the forward connection check, on the basis of the backward connection checked path,

Drones 2023, 7, 92 17 of 32

can further improve the path quality, avoiding the efficiency issues caused by directly
performing it on the initial solved path after the path search.

The path postprocessing optimization method avoids multiple visits to the same node,
minimizes unnecessary visits to redundant nodes, creates a straightening effect in the path
shape, and reduces the final path length.

Drones 2022, 6, x FOR PEER REVIEW 17 of 32

Algorithm 5 Forward optimization method. It takes the backward optimal path 𝑃 and
results in a path 𝑃 .

 Input: Backward optimal path 𝑃 including source 𝑛 and goal 𝑛 .
1: 𝑃 .add(𝑛);
2: 𝑛 ← 𝑛 ;
3: 𝑛 ← 𝑛 ;
4: while 𝑛 != 𝑛 do
5: while 𝑛 > 𝑛 do
6: 𝑒 , ← EDGE(𝑛, 𝑛);
7: if CHECK_COLLISION(𝑒 ,) == COLLISION_FREE
8: 𝑃 .add_node(𝑛);
9: 𝑛 ← 𝑛 ;
10: 𝑛 ← 𝑛 ;
11: else
12: 𝑛 ← 𝑛 ;

 return 𝑃

Figure 12. Pseudocode of path forward connection check.

The path postprocessing optimization combines the backward and forward connec-
tion checks to combine their respective benefits. First, considering the decreasing possi-
bility of node visibility as their distance increases, the backward connection check from a
fixed node is more efficient than the forward connection check from the end of the path,
allowing for a faster traversal of the initial path. Second, the backward connection check,
in the first step, cannot handle the situation where two distant visible nodes have invisible
nodes in between, whereas the forward connection check, in the second step, can remedy
this deficiency, because it checks the visibility from the other direction. Furthermore, the
forward connection check, on the basis of the backward connection checked path, can fur-
ther improve the path quality, avoiding the efficiency issues caused by directly perform-
ing it on the initial solved path after the path search.

The path postprocessing optimization method avoids multiple visits to the same
node, minimizes unnecessary visits to redundant nodes, creates a straightening effect in
the path shape, and reduces the final path length.

5. Experimental Results
5.1. Source Data and Environment

The source data for the experiments in this study were 3D point cloud data of an
indoor environment acquired using light detection and ranging (LiDAR) scanning equip-
ment, including two indoor scenes whose details are listed in Table 1.

Table 1. Source data of indoor environment.

Name Description No. points Data quality Overview

Scene 1 Wuhan University library
east reading room, 2nd Floor

2,848,055 locally vacant Figure
13(a)

Scene 2 Underground parking lot 6,794,787 locally vacant Figure
13(b)

Figure 12. Pseudocode of path forward connection check.

5. Experimental Results
5.1. Source Data and Environment

The source data for the experiments in this study were 3D point cloud data of an indoor
environment acquired using light detection and ranging (LiDAR) scanning equipment,
including two indoor scenes whose details are listed in Table 1.

Table 1. Source data of indoor environment.

Name Description No. Points Data Quality Overview

Scene 1 Wuhan University library
east reading room, 2nd Floor 2,848,055 locally vacant Figure 14a

Scene 2 Underground parking lot 6,794,787 locally vacant Figure 14b

The map data we used in the path planning experiments included two reduced-
dimensional raster maps of the aforementioned indoor environment and two virtual binary
image maps [63] used for comparison. The original point cloud data were missing some
scans, which necessitated manual completion of the vacant areas to ensure the integrity of
the maps before the subsequent operations. The details of the four indoor environment
maps are listed in Table 2, and Figure 13 provides overviews.

The proposed indoor environment modeling method involves the processing of point
clouds, and we implemented the associated experiments using C/C++ programming with
the Point Cloud Library (PCL) [64]. We also used the image processing library OpenCV to
generate a reduced-dimensional raster map of the indoor environment.

The experimental simulation platform was MatLab, with an Intel® CoreTM i7-7700HQ
2.80GHz CPU and 8GB RAM. We interpreted a reduced-dimensional raster map of the
indoor environment as a two-dimensional simulation space and then implemented the
path planning algorithm in the same space.

Drones 2023, 7, 92 18 of 32

Table 2. Map data of the indoor environment.

Name Description Map Size Data Quality

Map1 1 Binary image of simple obstacles 500 × 500 (px) good
Map2 Binary image of a complex maze 500 × 500 (px) good

Map_lib 2 Reduced-dimensional raster map
of Scene 1 575 × 773 (px) locally vacant

Map_pkl Reduced-dimensional raster map
of Scene 2 682 × 625 (px) locally vacant

1 Binary images of Map1 and Map2 were obtained from web resources; 2 Map_lib and Map_pkl are reduced-
dimensional raster maps generated using the method proposed in this study, where vacant areas in original data
were filled, and external areas were set to black.

Drones 2022, 6, x FOR PEER REVIEW 18 of 32

(a) Scene 1 (b) Scene 2

Figure 13. Point cloud overviews of indoor environment. We removed ceiling points from the point
clouds for better observation. (a), (b)

The map data we used in the path planning experiments included two reduced-di-
mensional raster maps of the aforementioned indoor environment and two virtual binary
image maps [63] used for comparison. The original point cloud data were missing some
scans, which necessitated manual completion of the vacant areas to ensure the integrity
of the maps before the subsequent operations. The details of the four indoor environment
maps are listed in Table 2, and Figure 14 provides overviews.

Table 2. Map data of the indoor environment.

Name Description Map size Data quality
Map1 1 Binary image of simple obstacles 500 × 500 (px) good
Map2 Binary image of a complex maze 500 × 500 (px) good

Map_lib 2 Reduced-dimensional raster map
of Scene 1

575 × 773 (px) locally vacant

Map_pkl
Reduced-dimensional raster map

of Scene 2 682 × 625 (px) locally vacant

1 Binary images of Map1 and Map2 were obtained from web resources; 2 Map_lib and Map_pkl are
reduced-dimensional raster maps generated using the method proposed in this study, where vacant
areas in original data were filled, and external areas were set to black.

(a) Map1 (b) Map2 (c) Map_lib (d) Map_pkl

Figure 14. Indoor environment map for path planning(a-d).

The proposed indoor environment modeling method involves the processing of
point clouds, and we implemented the associated experiments using C/C++ programming
with the Point Cloud Library (PCL) [64]. We also used the image processing library
OpenCV to generate a reduced-dimensional raster map of the indoor environment.

Figure 13. Indoor environment map for path planning (a–d).

To further simulate the condition of a typical UAV onboard system with limited
resources, we validated and evaluated the performance of our methods using Manifold2-C,
an onboard PC specially designed by DJI for their UAV products. The configuration was
an Intel® CoreTM i7-8550U 1.80GHz CPU with 8G RAM. We manually limited its CPU
usage down to 30%; otherwise, we found that it had a faster computation speed than in
the previous experimental environment, as the CPU and RAM on Manifold2-C are more
up-to-date and offer better performance under the same input power.

5.2. Evaluation Metrics

We evaluated the proposed methods using three metrics: pathfinding success rate,
planning time, and path length.

Pathfinding success rate is the basic metric as it indicates the practicability of the path-
planning method. If the improvement in the path-planning method results in a significant
decrease in the pathfinding success rate compared with the original method, even if it
achieves a considerable improvement in other aspects, such changes are meaningless
because the algorithm no longer satisfies the most fundamental requirement of solving a
path from the source to the goal.

We focused on planning time as a metric as some UAV autonomous flight applications
involve collaboration between various onboard systems. If the path planning procedure is
too slow, a series of subsequent operations will need to wait and will stagnate, which not
only does not meet the real-time UAV positioning and planning requirements but is also
detrimental to the safety of autonomous UAV flight.

Path length reflects the quality of the path as determined by the path planning method.
The shorter the path length, the shorter the flight time, which can reduce unnecessary power

Drones 2023, 7, 92 19 of 32

consumption and help the UAV avoid energy shortages when performing autonomous
flight missions, thereby enhancing flight safety.

Drones 2022, 6, x FOR PEER REVIEW 18 of 32

(a) Scene 1 (b) Scene 2

Figure 13. Point cloud overviews of indoor environment. We removed ceiling points from the point
clouds for better observation. (a), (b)

The map data we used in the path planning experiments included two reduced-di-
mensional raster maps of the aforementioned indoor environment and two virtual binary
image maps [63] used for comparison. The original point cloud data were missing some
scans, which necessitated manual completion of the vacant areas to ensure the integrity
of the maps before the subsequent operations. The details of the four indoor environment
maps are listed in Table 2, and Figure 14 provides overviews.

Table 2. Map data of the indoor environment.

Name Description Map size Data quality
Map1 1 Binary image of simple obstacles 500 × 500 (px) good
Map2 Binary image of a complex maze 500 × 500 (px) good

Map_lib 2 Reduced-dimensional raster map
of Scene 1

575 × 773 (px) locally vacant

Map_pkl
Reduced-dimensional raster map

of Scene 2 682 × 625 (px) locally vacant

1 Binary images of Map1 and Map2 were obtained from web resources; 2 Map_lib and Map_pkl are
reduced-dimensional raster maps generated using the method proposed in this study, where vacant
areas in original data were filled, and external areas were set to black.

(a) Map1 (b) Map2 (c) Map_lib (d) Map_pkl

Figure 14. Indoor environment map for path planning(a-d).

The proposed indoor environment modeling method involves the processing of
point clouds, and we implemented the associated experiments using C/C++ programming
with the Point Cloud Library (PCL) [64]. We also used the image processing library
OpenCV to generate a reduced-dimensional raster map of the indoor environment.

Figure 14. Point cloud overviews of indoor environment. We removed ceiling points from the point
clouds for better observation (a,b).

Because our focus in this study was reducing the path planning time, it is worth
noting that the algorithm tends to reach a solution faster when determining the path
than when identifying the shortest path between the source and goal. On this basis, path
postprocessing optimization is conducted to account for a non-shortest path length. As a
result, the final path may be longer than the basic methods, but this is acceptable as long as
the deviation is not excessive.

5.3. Experiments on Reduced-Dimensional Rasterization of Indoor Environment

In this study, we conducted experiments with real-world indoor scenes, including a
library reading room and an underground parking lot. We performed the rasterization
of the indoor environment based on the reduced-dimensional raster map generated by
point cloud projection. The black grids represent impassable areas in the indoor environ-
ment, such as obstacles and boundaries, whereas the white grids represent passable and
occupiable free space.

For simple environments, we projected the point cloud at the altitude midway between
the floor and ceiling of the scene, within a 1 m height range. Moreover, we created a
multilayer grid map to test our planning method in a more complex scenario where the
distribution of obstacles varied among the different altitudes of the environment. We had
no existing source data that met our needs, so we manually created a multilayer map by
editing obstacles in the map that divided the maps into several areas. Different layers of
the multilayer grid map are shown in Figure 15, representing the reduced-dimensional
maps of the environment at different altitudes. We assumed that the altitude of Layer 1
was lower than that of Layer 2. On this particular map, if a UAV wanted to move from
Area 1 to Area 2, it had to execute the following flight:

(1) Start from somewhere in Area 1 at the altitude of Layer 1.
(2) Move to the overlapping area of Areas 1 and 3.
(3) Ascend to the altitude of Layer 2.
(4) Move to the overlapping area of Areas 3 and 2.
(5) Descend to the altitude of Layer 1.
(6) Continue the flight in Area 2 at the altitude of Layer 1.

The map of the library reading room in Figure 13c shows that a portion of the obstacle
areas representing the library cabinets was broken. This was due to missing scans in the
original point cloud data, which we resolved by recollecting higher-quality indoor space
point cloud data. The obstacles near the wall were the projections of desks and chairs.
Although some space between them and the ceiling in the actual indoor space was free,
this kind of space accounted for a small portion of the total space and had no substantial
impact on the connectivity of the free space, so the waste of this portion of the space was
still acceptable.

Drones 2023, 7, 92 20 of 32

Drones 2022, 6, x FOR PEER REVIEW 20 of 32

was lower than that of Layer 2. On this particular map, if a UAV wanted to move from
Area 1 to Area 2, it had to execute the following flight:
1) Start from somewhere in Area 1 at the altitude of Layer 1.
2) Move to the overlapping area of Areas 1 and 3.
3) Ascend to the altitude of Layer 2.
4) Move to the overlapping area of Areas 3 and 2.
5) Descend to the altitude of Layer 1.
6) Continue the flight in Area 2 at the altitude of Layer 1.

(a) Original. (b) Layer 1. (c) Layer 2.

Figure 15. Multilayer grid maps. Based on original Map_lib (a), we manually added an obstacle wall
in the middle of Layer 1 (b), and divided the map into Areas 1 and 2; two obstacle walls in Layer 2
(c) near the aforementioned wall and enclosed Area 3.

The map of the library reading room in Figure 14(c) shows that a portion of the ob-
stacle areas representing the library cabinets was broken. This was due to missing scans
in the original point cloud data, which we resolved by recollecting higher-quality indoor
space point cloud data. The obstacles near the wall were the projections of desks and
chairs. Although some space between them and the ceiling in the actual indoor space was
free, this kind of space accounted for a small portion of the total space and had no sub-
stantial impact on the connectivity of the free space, so the waste of this portion of the
space was still acceptable.

The map of the underground parking lot in Figure 14(d) shows that vehicles in the
parking lot did not notably interfere with the point cloud projection because we specified
the projection method that extracts the height of the upper middle region of the parking
lot.

Using the reduced-dimensional rasterization of the indoor environment considerably
simplified the environment and met the data requirements of the subsequent path-plan-
ning experiments. Table 3 lists a comparison of the data before and after modeling of the
two indoor scenes in this experiment, demonstrating that the reduced-dimensional mod-
eling substantially reduced the data volume. The final maps generated by the method
proposed in this study were essentially images, and their spatial accuracy was freely ad-
justable, and the corresponding data size changed with the image resolution.

Table 3. Data comparison before and after modeling.

Scene Description Format Resolution Size

Library read-
ing room

Before Point cloud .pcd 2,848,055 (pts) 119 MB

After
Small

Raster map .bmp
575 × 773 (px) 435 KB

Medium 1150 × 1546 (px) 1.74 MB
Large 2300 × 3092 (px) 6.96 MB

Under-
ground park-

ing lot

Before Point cloud .pcd 6,794,787 (pts) 155 MB

After
Small

Raster map .bmp
682 × 625 (px) 418 KB

Medium 1363 × 1250 (px) 1.62 MB

Figure 15. Multilayer grid maps. Based on original Map_lib (a), we manually added an obstacle wall
in the middle of Layer 1 (b), and divided the map into Areas 1 and 2; two obstacle walls in Layer 2
(c) near the aforementioned wall and enclosed Area 3.

The map of the underground parking lot in Figure 13d shows that vehicles in the
parking lot did not notably interfere with the point cloud projection because we specified
the projection method that extracts the height of the upper middle region of the parking lot.

Using the reduced-dimensional rasterization of the indoor environment considerably
simplified the environment and met the data requirements of the subsequent path-planning
experiments. Table 3 lists a comparison of the data before and after modeling of the two
indoor scenes in this experiment, demonstrating that the reduced-dimensional modeling
substantially reduced the data volume. The final maps generated by the method proposed
in this study were essentially images, and their spatial accuracy was freely adjustable, and
the corresponding data size changed with the image resolution.

Table 3. Data comparison before and after modeling.

Scene Description Format Resolution Size

Library reading room

Before Point cloud .pcd 2,848,055 (pts) 119 MB

After
Small

Raster map .bmp
575 × 773 (px) 435 KB

Medium 1150 × 1546 (px) 1.74 MB
Large 2300 × 3092 (px) 6.96 MB

Under-ground parking lot

Before Point cloud .pcd 6,794,787 (pts) 155 MB

After
Small

Raster map .bmp
682 × 625 (px) 418 KB

Medium 1363 × 1250 (px) 1.62 MB
Large 2724 × 2498 (px) 6.49 MB

5.4. Experiments on Network Construction Based on Connection Distance

The purpose of setting the connection distance parameter in network construction is
to avoid collision checks between distant nodes, because connections that span a larger
area are more likely to intersect with obstacles in the environment.

In the experiment, we defined the connection distance c_dis as follows:

c_dis = wcd ∗
√

width2
map + height2

map, (8)

where widthmap and heightmap denote the size of the grid map, and wcd denotes the scale
factor, i.e., connection distance weight.

Using Map_lib and Map_pkl data, we separately set wcd to 0.25, 0.5, 0.75, and 1, i.e.,
the connection distance was 1/4, 1/2, 3/4, and 1 times the length of the map diagonal,
respectively. For different numbers of nodes, we recorded the number of connected edges
and network construction time, as well as the path length obtained by path search based
on this network. The experimental results are listed in Table A1.

Drones 2023, 7, 92 21 of 32

The network construction time and path length for the connection distance experi-
ments are shown in Figure 16. With smaller connection distances (wcd = 0.25), the number
of constructed network edges was smaller and the construction time was shorter, but this
resulted in a less successful path search and a longer path.

Drones 2022, 6, x FOR PEER REVIEW 21 of 32

Large 2724 × 2498 (px) 6.49 MB

5.4. Experiments on Network Construction Based on Connection Distance
The purpose of setting the connection distance parameter in network construction is

to avoid collision checks between distant nodes, because connections that span a larger
area are more likely to intersect with obstacles in the environment.

In the experiment, we defined the connection distance 𝑐_𝑑𝑖𝑠 as follows: 𝑐_𝑑𝑖𝑠 = 𝑤 ∗ 𝑤𝑖𝑑𝑡ℎ + ℎ𝑒𝑖𝑔ℎ𝑡 , (8)

where 𝑤𝑖𝑑𝑡ℎ and ℎ𝑒𝑖𝑔ℎ𝑡 denote the size of the grid map, and 𝑤 denotes the
scale factor, i.e., connection distance weight.

Using Map_lib and Map_pkl data, we separately set 𝑤 to 0.25, 0.5, 0.75, and 1, i.e.,
the connection distance was 1/4, 1/2, 3/4, and 1 times the length of the map diagonal, re-
spectively. For different numbers of nodes, we recorded the number of connected edges
and network construction time, as well as the path length obtained by path search based
on this network. The experimental results are listed in Table A1.

The network construction time and path length for the connection distance experi-
ments are shown in Figure 16. With smaller connection distances (𝑤 = 0.25), the number
of constructed network edges was smaller and the construction time was shorter, but this
resulted in a less successful path search and a longer path.

(a) Map_lib (b) Map_pkl

Figure 16. Construction time and path length of Map_lib (a) and Map_pkl (b).

As the connection distance weight increased, the network construction time accord-
ingly increased, and the path length obtained from the path search tended to be shorter
as a result of the increased number of possible connecting edges. However, the growth in
the number of collision-free edges and the decrease in path length tended to be flat, and
the number of colliding edges markedly increased. These redundant checks also resulted
in a larger waste of network construction time, confirming the hypothesis that increasing
distance decreases the possibility of collision-free edges. In the process of network con-
struction, the algorithm performance could be enhanced by selecting a moderate connec-
tion distance.

5.5. Experiments on Improved Probabilistic Roadmap Planning
In this study, we used the four raster maps shown in Figure 14 to conduct probabil-

istic roadmap planning experiments. For each map, we positioned the source and goal
near the diagonal position of the map, varied the number of nodes and connection dis-
tance, and repeated the experiment to record the pathfinding success rate, planning time,
and path length of the basic and improved PRM methods.

The path planning results of the four maps are shown in Figure 17, where blue dots
represent network nodes; blue and red lines represent visible and nonvisible edges, re-
spectively; yellow lines represent updated edges during path search; cyan lines represent

Figure 16. Construction time and path length of Map_lib (a) and Map_pkl (b).

As the connection distance weight increased, the network construction time accord-
ingly increased, and the path length obtained from the path search tended to be shorter
as a result of the increased number of possible connecting edges. However, the growth
in the number of collision-free edges and the decrease in path length tended to be flat,
and the number of colliding edges markedly increased. These redundant checks also
resulted in a larger waste of network construction time, confirming the hypothesis that
increasing distance decreases the possibility of collision-free edges. In the process of net-
work construction, the algorithm performance could be enhanced by selecting a moderate
connection distance.

5.5. Experiments on Improved Probabilistic Roadmap Planning

In this study, we used the four raster maps shown in Figure 13 to conduct probabilistic
roadmap planning experiments. For each map, we positioned the source and goal near the
diagonal position of the map, varied the number of nodes and connection distance, and
repeated the experiment to record the pathfinding success rate, planning time, and path
length of the basic and improved PRM methods.

The path planning results of the four maps are shown in Figure 17, where blue
dots represent network nodes; blue and red lines represent visible and nonvisible edges,
respectively; yellow lines represent updated edges during path search; cyan lines represent
the forward-checked optimal path; and green lines represent the backward-checked optimal
path, i.e., the final path result.

Comparing the result of the basic PRM with that of the improved PRM, we found
two common cases. In the first case, the majority of nodes in both paths were the same
but had slightly different path shapes; in the second case, the two paths had considerably
different routes because we adopted an incremental update strategy and the path search
followed the rule of greedy extension rather than that of global length shortening. Notably,
as a result of our path optimization, the path length of our method was often comparable
to that of the basic one, despite the route difference.

The path planning results of the multilayer grid map are shown in Figure 18. The
source and the goal were the same as in Map_lib, with the source located in Area 1 and the
goal in Area 2 (as shown in Figure 15). To travel from start to end, the UAV adjusted its
flight altitude, i.e., ascending in the overlapping of Areas 1 and 3 and descending in the
overlapping of Areas 3 and 2. The complete path from start to end was composed of three
subpaths connected by two transfer nodes where the UAV performed vertical movements.

Drones 2023, 7, 92 22 of 32

Drones 2022, 6, x FOR PEER REVIEW 22 of 32

the forward-checked optimal path; and green lines represent the backward-checked opti-
mal path, i.e., the final path result.

Comparing the result of the basic PRM with that of the improved PRM, we found
two common cases. In the first case, the majority of nodes in both paths were the same but
had slightly different path shapes; in the second case, the two paths had considerably dif-
ferent routes because we adopted an incremental update strategy and the path search fol-
lowed the rule of greedy extension rather than that of global length shortening. Notably,
as a result of our path optimization, the path length of our method was often comparable
to that of the basic one, despite the route difference.

(a) 𝑛 = 30, 𝑐𝑑 = 0.5.

(b) 𝑛 = 75, 𝑐𝑑 = 0.25.
(c) 𝑛 = 80, 𝑐𝑑 = 0.25.

(d) 𝑛 = 60, 𝑐𝑑 = 0.25.

Figure 17. Path planning results of grid maps of node number (𝑛) and connection distance (𝑐𝑑). The
first row is the results of basic PRM, and the second row is the results of improved PRM. The col-
umns from left to right are Map1 (a), Map2 (b), Map_lib (c), and Map_pkl (d).

The path planning results of the multilayer grid map are shown in Figure 18. The
source and the goal were the same as in Map_lib, with the source located in Area 1 and
the goal in Area 2 (as shown in Figure 15). To travel from start to end, the UAV adjusted
its flight altitude, i.e., ascending in the overlapping of Areas 1 and 3 and descending in
the overlapping of Areas 3 and 2. The complete path from start to end was composed of
three subpaths connected by two transfer nodes where the UAV performed vertical move-
ments.

(a) Subpath in Area 1 (b) Subpath in Area 3 (c) Subpath in Area 2

Figure 18. Path planning result of multilayer grid map: three subpaths are searched in Area 1 (a),
Area 3 (b), and Area 2 (c), respectively, and the subpaths are connected by two transfer nodes in
the overlapping areas.

Figure 17. Path planning results of grid maps of node number (n) and connection distance (cd). The
first row is the results of basic PRM, and the second row is the results of improved PRM. The columns
from left to right are Map1 (a), Map2 (b), Map_lib (c), and Map_pkl (d).

Drones 2022, 6, x FOR PEER REVIEW 22 of 32

the forward-checked optimal path; and green lines represent the backward-checked opti-
mal path, i.e., the final path result.

Comparing the result of the basic PRM with that of the improved PRM, we found
two common cases. In the first case, the majority of nodes in both paths were the same but
had slightly different path shapes; in the second case, the two paths had considerably dif-
ferent routes because we adopted an incremental update strategy and the path search fol-
lowed the rule of greedy extension rather than that of global length shortening. Notably,
as a result of our path optimization, the path length of our method was often comparable
to that of the basic one, despite the route difference.

(a) 𝑛 = 30, 𝑐𝑑 = 0.5.

(b) 𝑛 = 75, 𝑐𝑑 = 0.25.
(c) 𝑛 = 80, 𝑐𝑑 = 0.25.

(d) 𝑛 = 60, 𝑐𝑑 = 0.25.

Figure 17. Path planning results of grid maps of node number (𝑛) and connection distance (𝑐𝑑). The
first row is the results of basic PRM, and the second row is the results of improved PRM. The col-
umns from left to right are Map1 (a), Map2 (b), Map_lib (c), and Map_pkl (d).

The path planning results of the multilayer grid map are shown in Figure 18. The
source and the goal were the same as in Map_lib, with the source located in Area 1 and
the goal in Area 2 (as shown in Figure 15). To travel from start to end, the UAV adjusted
its flight altitude, i.e., ascending in the overlapping of Areas 1 and 3 and descending in
the overlapping of Areas 3 and 2. The complete path from start to end was composed of
three subpaths connected by two transfer nodes where the UAV performed vertical move-
ments.

(a) Subpath in Area 1 (b) Subpath in Area 3 (c) Subpath in Area 2

Figure 18. Path planning result of multilayer grid map: three subpaths are searched in Area 1 (a),
Area 3 (b), and Area 2 (c), respectively, and the subpaths are connected by two transfer nodes in
the overlapping areas.

Figure 18. Path planning result of multilayer grid map: three subpaths are searched in Area 1 (a),
Area 3 (b), and Area 2 (c), respectively, and the subpaths are connected by two transfer nodes in the
overlapping areas.

We repeated the experiments by configuring different connection distances for a
different number of nodes. We recorded the planning time and path length of the basic and
improved PRM methods. The comparative results of Map1 and Map2 are listed in Table A2.
The basic PRM spent most of its time constructing the network, whereas the improved
PRM spent most of its time on path search, network update, and path postprocessing
optimization, as the check of network connectivity was deferred.

Drones 2023, 7, 92 23 of 32

For Map1 and Map2, we calculated the average planning time and average path
length ratio before and after the improvement, as shown in Figure 19. The planning time
of the improved PRM was only approximately 30% of that of the basic PRM, resulting
in a substantial reduction in path planning time. Due to some strategies adopted by the
algorithm, it tended to find a path as quickly as possible rather than determine the shortest
path between the source and the goal; consequently, the path length was longer than that
of the basic PRM by less than 10%, which is acceptable given the considerable increase in
planning time. In addition, the planning time and path length showed that as the number
of nodes increased, the advantage in the planning time of the proposed method became
more apparent.

Drones 2022, 6, x FOR PEER REVIEW 23 of 32

(a) subpath result in Area 1

We repeated the experiments by configuring different connection distances for a dif-
ferent number of nodes. We recorded the planning time and path length of the basic and
improved PRM methods. The comparative results of Map1 and Map2 are listed in Table
A2. The basic PRM spent most of its time constructing the network, whereas the improved
PRM spent most of its time on path search, network update, and path postprocessing op-
timization, as the check of network connectivity was deferred.

For Map1 and Map2, we calculated the average planning time and average path
length ratio before and after the improvement, as shown in Figure 19. The planning time
of the improved PRM was only approximately 30% of that of the basic PRM, resulting in
a substantial reduction in path planning time. Due to some strategies adopted by the al-
gorithm, it tended to find a path as quickly as possible rather than determine the shortest
path between the source and the goal; consequently, the path length was longer than that
of the basic PRM by less than 10%, which is acceptable given the considerable increase in
planning time. In addition, the planning time and path length showed that as the number
of nodes increased, the advantage in the planning time of the proposed method became
more apparent.

(a) Map1 (b) Map2

Figure 19. Planning time and path length of Map1 (a) and Map2 (b).

We also conducted the same experiments for two reduced dimensional raster maps
of indoor environments, Map_lib and Map_pkl; the results are listed in Table A3. From a
comparison of the results of the basic and improved PRM on Map_lib and Map_pkl, as
shown in Figure 20, our conclusions were basically the same: the improved PRM provided
an advantage over the basic PRM in terms of planning time, at the cost of an increase in
path length, which was acceptable.

(a) Map_lib (b) Map_pkl

Figure 20. Planning time and path length of Map_lib (a) and Map_pkl (b).

Comparing the binary image map and the reduced-dimensional raster map of the
indoor environment, we found that for the simple maps (Map1 and Map_pkl), the plan-
ning time stability in the improved PRM was high, i.e., the planning time did not notably
fluctuate with changes in the number of nodes or the connection distance. For the complex

Figure 19. Planning time and path length of Map1 (a) and Map2 (b).

We also conducted the same experiments for two reduced dimensional raster maps
of indoor environments, Map_lib and Map_pkl; the results are listed in Table A3. From
a comparison of the results of the basic and improved PRM on Map_lib and Map_pkl, as
shown in Figure 20, our conclusions were basically the same: the improved PRM provided
an advantage over the basic PRM in terms of planning time, at the cost of an increase in
path length, which was acceptable.

Drones 2022, 6, x FOR PEER REVIEW 23 of 32

(a) subpath result in Area 1

We repeated the experiments by configuring different connection distances for a dif-
ferent number of nodes. We recorded the planning time and path length of the basic and
improved PRM methods. The comparative results of Map1 and Map2 are listed in Table
A2. The basic PRM spent most of its time constructing the network, whereas the improved
PRM spent most of its time on path search, network update, and path postprocessing op-
timization, as the check of network connectivity was deferred.

For Map1 and Map2, we calculated the average planning time and average path
length ratio before and after the improvement, as shown in Figure 19. The planning time
of the improved PRM was only approximately 30% of that of the basic PRM, resulting in
a substantial reduction in path planning time. Due to some strategies adopted by the al-
gorithm, it tended to find a path as quickly as possible rather than determine the shortest
path between the source and the goal; consequently, the path length was longer than that
of the basic PRM by less than 10%, which is acceptable given the considerable increase in
planning time. In addition, the planning time and path length showed that as the number
of nodes increased, the advantage in the planning time of the proposed method became
more apparent.

(a) Map1 (b) Map2

Figure 19. Planning time and path length of Map1 (a) and Map2 (b).

We also conducted the same experiments for two reduced dimensional raster maps
of indoor environments, Map_lib and Map_pkl; the results are listed in Table A3. From a
comparison of the results of the basic and improved PRM on Map_lib and Map_pkl, as
shown in Figure 20, our conclusions were basically the same: the improved PRM provided
an advantage over the basic PRM in terms of planning time, at the cost of an increase in
path length, which was acceptable.

(a) Map_lib (b) Map_pkl

Figure 20. Planning time and path length of Map_lib (a) and Map_pkl (b).

Comparing the binary image map and the reduced-dimensional raster map of the
indoor environment, we found that for the simple maps (Map1 and Map_pkl), the plan-
ning time stability in the improved PRM was high, i.e., the planning time did not notably
fluctuate with changes in the number of nodes or the connection distance. For the complex

Figure 20. Planning time and path length of Map_lib (a) and Map_pkl (b).

Comparing the binary image map and the reduced-dimensional raster map of the
indoor environment, we found that for the simple maps (Map1 and Map_pkl), the planning
time stability in the improved PRM was high, i.e., the planning time did not notably
fluctuate with changes in the number of nodes or the connection distance. For the complex
maps (Map2 and Map_lib), the stability decreased, but was still considerably better than
that of the basic PRM.

We also conducted experiments on an onboard PC to simulate the integration of our
planning method into an autonomous UAV system. We tested our improved PRM method

Drones 2023, 7, 92 24 of 32

on the onboard PC and evaluated the planning time using the same input data as the
original experiments. At first, we did not set a resource limit on the onboard PC, but due to
its hardware configuration being more up-to-date than that of our desktop PC, it performed
even better. Therefore, we manually limited the CPU usage down to 30% to more accurately
simulate a resource-limited configuration.

The experimental results of the improved PRM on Map_lib and Map_pkl on the
onboard PC (with CPU usage limited to 30%) are listed in Table A4, and they are shown in
Figure 21. The planning times in both experimental environments exhibited comparable
trends under the same input data. Additionally, the consumed time was fundamentally
influenced by the hardware configuration, whereas our planning method maintained
appropriate performance despite resource limitations. Moreover, we showed that the
current onboard hardware was capable of high-level configurations (except for those
dedicated to micro vehicles), so scholars can more easily deploy and test their methods on
onboard computing platforms with high performance.

Drones 2022, 6, x FOR PEER REVIEW 24 of 32

maps (Map2 and Map_lib), the stability decreased, but was still considerably better than
that of the basic PRM.

We also conducted experiments on an onboard PC to simulate the integration of our
planning method into an autonomous UAV system. We tested our improved PRM
method on the onboard PC and evaluated the planning time using the same input data as
the original experiments. At first, we did not set a resource limit on the onboard PC, but
due to its hardware configuration being more up-to-date than that of our desktop PC, it
performed even better. Therefore, we manually limited the CPU usage down to 30% to
more accurately simulate a resource-limited configuration.

The experimental results of the improved PRM on Map_lib and Map_pkl on the
onboard PC (with CPU usage limited to 30%) are listed in Table A4, and they are shown
in Figure 21. The planning times in both experimental environments exhibited compara-
ble trends under the same input data. Additionally, the consumed time was fundamen-
tally influenced by the hardware configuration, whereas our planning method maintained
appropriate performance despite resource limitations. Moreover, we showed that the cur-
rent onboard hardware was capable of high-level configurations (except for those dedi-
cated to micro vehicles), so scholars can more easily deploy and test their methods on
onboard computing platforms with high performance.

(a) Map_lib (b) Map_pkl

Figure 21. Planning time of Map_lib (a) and Map_pkl (b), with comparison between desktop and
onboard PC configurations.

5.6. Experiments on Path Postprocessing Optimization
Using the same reduced-dimensional raster maps of the indoor environment, we con-

ducted the experiments of path post-processing optimization. Experimental results are
shown in Figure 22, where thick yellow lines represent updated edges, yellow lines rep-
resent collision-free path after path search, cyan lines represent the backward-checked
optimal path, and green line represents the forward-checked optimal path, i.e., the final
path result.

(a) Map_lib (b) Map_pkl

Figure 21. Planning time of Map_lib (a) and Map_pkl (b), with comparison between desktop and
onboard PC configurations.

5.6. Experiments on Path Postprocessing Optimization

Using the same reduced-dimensional raster maps of the indoor environment, we
conducted the experiments of path post-processing optimization. Experimental results
are shown in Figure 22, where thick yellow lines represent updated edges, yellow lines
represent collision-free path after path search, cyan lines represent the backward-checked
optimal path, and green line represents the forward-checked optimal path, i.e., the final
path result.

In Map_lib and Map_pkl, the paths were solved using the basic and improved PRM
methods for comparison. The initially obtained collision-free paths were then optimized
using two-step path postprocessing. The experimental results are listed in Table A5.

From the path postprocessing optimization results shown in Figure 23, we found that
the proposed optimization method substantially improves the path quality for the initially
obtained paths, with longer lengths and higher path repetition rates in the improved PRM,
as the method minimized redundant nodes and allowed the path to attain a “straightened”
route. This path postprocessing optimization method solves the problem where the initial
path quality obtained by the improved PRM method is inferior to that of the basic one,
completing the proposed path planning scheme. As a result, the optimization method
avoids redundant motions and ensures a collision-free and direct path for the UAV, which
is conducive to the safety of autonomous flight in indoor environments.

Drones 2023, 7, 92 25 of 32

Drones 2022, 6, x FOR PEER REVIEW 24 of 32

maps (Map2 and Map_lib), the stability decreased, but was still considerably better than
that of the basic PRM.

We also conducted experiments on an onboard PC to simulate the integration of our
planning method into an autonomous UAV system. We tested our improved PRM
method on the onboard PC and evaluated the planning time using the same input data as
the original experiments. At first, we did not set a resource limit on the onboard PC, but
due to its hardware configuration being more up-to-date than that of our desktop PC, it
performed even better. Therefore, we manually limited the CPU usage down to 30% to
more accurately simulate a resource-limited configuration.

The experimental results of the improved PRM on Map_lib and Map_pkl on the
onboard PC (with CPU usage limited to 30%) are listed in Table A4, and they are shown
in Figure 21. The planning times in both experimental environments exhibited compara-
ble trends under the same input data. Additionally, the consumed time was fundamen-
tally influenced by the hardware configuration, whereas our planning method maintained
appropriate performance despite resource limitations. Moreover, we showed that the cur-
rent onboard hardware was capable of high-level configurations (except for those dedi-
cated to micro vehicles), so scholars can more easily deploy and test their methods on
onboard computing platforms with high performance.

(a) Map_lib (b) Map_pkl

Figure 21. Planning time of Map_lib (a) and Map_pkl (b), with comparison between desktop and
onboard PC configurations.

5.6. Experiments on Path Postprocessing Optimization
Using the same reduced-dimensional raster maps of the indoor environment, we con-

ducted the experiments of path post-processing optimization. Experimental results are
shown in Figure 22, where thick yellow lines represent updated edges, yellow lines rep-
resent collision-free path after path search, cyan lines represent the backward-checked
optimal path, and green line represents the forward-checked optimal path, i.e., the final
path result.

(a) Map_lib (b) Map_pkl

Figure 22. Path postprocessing optimization result of Map_lib (a) and Map_pkl (b).

Drones 2022, 6, x FOR PEER REVIEW 25 of 32

Figure 22. Path postprocessing optimization result of Map_lib (a) and Map_pkl (b).

In Map_lib and Map_pkl, the paths were solved using the basic and improved PRM
methods for comparison. The initially obtained collision-free paths were then optimized
using two-step path postprocessing. The experimental results are listed in Table A5.

From the path postprocessing optimization results shown in Figure 23, we found that
the proposed optimization method substantially improves the path quality for the initially
obtained paths, with longer lengths and higher path repetition rates in the improved PRM,
as the method minimized redundant nodes and allowed the path to attain a “straight-
ened” route. This path postprocessing optimization method solves the problem where the
initial path quality obtained by the improved PRM method is inferior to that of the basic
one, completing the proposed path planning scheme. As a result, the optimization method
avoids redundant motions and ensures a collision-free and direct path for the UAV, which
is conducive to the safety of autonomous flight in indoor environments.

(a) Map_lib (b) Map_pkl

Figure 23. Path length before and after optimization on Map_lib (a) and Map_pkl (b).

6. Discussion
In this study, we primarily focused on modeling an indoor environment and improv-

ing the PRM path-planning method. We assumed the UAV was a quadrotor model and
reduced the controls to 3D translation and rotation in yaw angle. This assumption is rela-
tively simple but was sufficient for the purposes of this study, as numerous flight control
products and software have already encapsulated and integrated UAV operations into
simple commands. More in-depth research can be conducted on the topic of UAV control.

The data source for indoor environment modeling was a point cloud. Furthermore,
we used a point cloud projection scheme to generate reduced-dimensional raster maps of
indoor environments. Although this method preserves the semantic understanding of in-
door environment elements and the modeling speed is faster, the problem of noise points
present in the point cloud must still be solved, as determining whether these noise points
represent tiny obstacles or actually are noise points is crucial to the safety of indoor UAV
flights. In the actual process of map generation, we must also be problem-specific because
the presence of too many noise points will impede the efficiency of solving the path, and
eliminating these noise points may pose a safety risk, so we should strike a balance be-
tween these two factors.

Considering the complexity of indoor environments, we generated grid maps at var-
ious altitudes and constructed a multilayer map. This method increases the robustness of
path search and the applicability of the UAV.

The proposed improved PRM planning method aims to solve the computational ef-
ficiency problem caused by the basic PRM while minimizing the impact on the path
length. The results of our experiments showed that the proposed method is effective.
However, the efficiency of the proposed method may decrease in overly complex indoor
situations, because if collision checks on edges are not performed when constructing the
original network, a large number of edge adjacency information updates are required in

Figure 23. Path length before and after optimization on Map_lib (a) and Map_pkl (b).

6. Discussion

In this study, we primarily focused on modeling an indoor environment and improving
the PRM path-planning method. We assumed the UAV was a quadrotor model and reduced
the controls to 3D translation and rotation in yaw angle. This assumption is relatively simple
but was sufficient for the purposes of this study, as numerous flight control products and
software have already encapsulated and integrated UAV operations into simple commands.
More in-depth research can be conducted on the topic of UAV control.

The data source for indoor environment modeling was a point cloud. Furthermore,
we used a point cloud projection scheme to generate reduced-dimensional raster maps
of indoor environments. Although this method preserves the semantic understanding of
indoor environment elements and the modeling speed is faster, the problem of noise points
present in the point cloud must still be solved, as determining whether these noise points
represent tiny obstacles or actually are noise points is crucial to the safety of indoor UAV
flights. In the actual process of map generation, we must also be problem-specific because
the presence of too many noise points will impede the efficiency of solving the path, and
eliminating these noise points may pose a safety risk, so we should strike a balance between
these two factors.

Considering the complexity of indoor environments, we generated grid maps at
various altitudes and constructed a multilayer map. This method increases the robustness
of path search and the applicability of the UAV.

Drones 2023, 7, 92 26 of 32

The proposed improved PRM planning method aims to solve the computational
efficiency problem caused by the basic PRM while minimizing the impact on the path
length. The results of our experiments showed that the proposed method is effective.
However, the efficiency of the proposed method may decrease in overly complex indoor
situations, because if collision checks on edges are not performed when constructing the
original network, a large number of edge adjacency information updates are required in
the subsequent search and update process; each update necessitates at least one local path
search, resulting in a substantial decrease in efficiency. To avoid repeated checks, it is
recommended to check the connection between all nodes at the beginning.

The key to our improvement provided by our strategy is reducing a large number of
collision checks in the basic method, because collision checks performed during network
construction may be meaningless for two reasons: First, as the distance between nodes
increases, the possibility of visibility decreases, because more obstacles created blockages
between them. Second, the farther nodes are from the source and goal nodes, the less likely
they are to become candidates, so checks on them are often unnecessary in the end. As a
result, we adopted the strategy of constructing first and checking later to eliminate as many
unnecessary checks as possible and searched for paths based on the overall effectiveness
of the candidate nodes from high to low, which can more quickly solve the paths while
retaining the ability to search for all nodes because, in extreme cases after traversing
through all nodes in the space, as long as a path solution exists, the path solution should
be obtained.

7. Conclusions

In this study, we developed an improved probabilistic roadmap planning method for
safe indoor UAV flight, under the assumption of a quadrotor UAV.

We modeled the indoor environment with point cloud projection and represented
it with reduced-dimensional raster maps. The grid map model performed well in terms
of environment representativity and modeling efficiency. Furthermore, our proposed
multilayer gird map model, an innovation over the original single-layer model, contributes
to improving path planning effectiveness, particularly in complex environments.

Based on the grid map model, we conducted path planning experiments and improved
upon the basic PRM planning method in terms of network construction, search strategy,
and path optimization. Our method remarkably outperformed the basic PRM in computa-
tional efficiency while maintaining a reasonable path length. It also showed high-quality
performance on both desktop PCs and resource-limited onboard platforms, laying the
foundation for indoor UAV applications and fulfilling the requirements for autonomous
UAV flight safety.

Author Contributions: Conceptualization, Q.H. and S.W.; methodology, Q.J. and P.Z.; software, Q.J.
and P.Z.; validation, Q.H., S.W. and M.A.; formal analysis, Q.H. and S.W.; investigation, Q.J., P.Z. and
M.A.; resources, P.Z. and M.A.; data curation, Q.J., P.Z. and M.A.; writing—original draft preparation,
Q.J.; writing—review and editing, Q.H. and S.W.; visualization, Q.J.; supervision, Q.H. and S.W.;
project administration, Q.H.; funding acquisition, Q.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC),
grant number 42101441, and the Fundamental Research Funds for the Central Universities.

Data Availability Statement: Data and source codes in this study will be made available on https:
//github.com/Jin-qg/iPRM before 1 March 2023.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

https://github.com/Jin-qg/iPRM
https://github.com/Jin-qg/iPRM

Drones 2023, 7, 92 27 of 32

Appendix A

Table A1. Path planning results.

Node Num. 1 2
Edge Num.

6
Path

Length3 4 5

Map_lib
60 0.25 80% 213.38 417.50 1260.13 7.1084 984.82
60 0.5 100% 293.30 1235.40 362.30 19.8989 963.19
60 0.75 100% 297.30 1580.00 13.70 24.4590 963.19
60 1 100% 297.30 1593.70 0.00 24.7062 963.19
80 0.25 80% 380.88 778.13 2162.00 13.0713 928.56
80 0.5 100% 495.60 2272.50 552.90 35.4468 928.21
80 0.75 100% 501.50 2807.80 11.70 42.6125 928.21
80 1 100% 501.50 2819.50 0.00 42.5122 928.21

100 0.25 100% 548.90 1246.80 3355.30 19.8673 915.75
100 0.5 100% 710.60 3534.80 905.60 53.7906 910.33
100 0.75 100% 718.50 4411.20 21.30 64.2075 910.33
100 1 100% 718.50 4432.50 0.00 63.7934 910.33

Map_pkl
60 0.25 90% 400.11 264.44 1226.44 11.4924 700.32
60 0.5 100% 476.50 1143.50 271.00 33.1575 704.85
60 0.75 100% 482.20 1407.90 0.90 41.4939 704.85
60 1 100% 482.20 1408.80 0.00 41.5201 704.85
80 0.25 100% 697.90 486.30 2136.80 19.0639 650.89
80 0.5 100% 866.40 2020.80 433.80 54.8623 650.74
80 0.75 100% 878.40 2440.90 1.70 66.3098 650.74
80 1 100% 878.40 2442.60 0.00 65.3203 650.74

100 0.25 100% 1050.80 747.60 3352.60 29.3165 648.71
100 0.5 100% 1264.70 3164.30 722.00 83.9546 648.69
100 0.75 100% 1280.40 3868.50 2.10 101.9095 648.69
100 1 100% 1280.40 3870.60 0.00 102.1078 648.69

1 Connection distance weight; 2 Path finding success rate; 3 Edge number of collision-free edges; 4 Edge number
of collided edges; 5 Edge number of skipped; 6 Network construction time.

Table A2. PRM comparative results of Map1 and Map2.

Node Num. 1
2 Time of Improved PRM Path Length
3 4 5 Total Basic Improved

Map1
10 0.25 0.2655 0.1570 0.2500 0.4070 873.69 786.16
10 0.5 0.9056 0.2551 0.1994 0.4546 711.68 797.93
10 0.75 1.4807 0.3016 0.2715 0.5731 700.87 821.82
10 1 1.5241 0.3183 0.2689 0.5872 700.87 821.82
20 0.25 0.8855 0.1327 0.2073 0.3400 757.33 732.86
20 0.5 3.1325 0.2857 0.2985 0.5842 692.63 784.42
20 0.75 5.1130 0.2876 0.3155 0.6031 691.70 756.36
20 1 5.1925 0.3107 0.3138 0.6245 691.70 756.46
30 0.25 2.3752 0.1563 0.2483 0.4046 721.99 746.97
30 0.5 8.1504 0.3155 0.2887 0.6042 675.18 783.13
30 0.75 12.5140 0.3517 0.2684 0.6201 674.90 748.98
30 1 13.0509 0.3703 0.2669 0.6372 674.90 748.98

Average time ratio 33.0% Average length ratio 108.9%

Map2
60 0.25 5.2805 1.0070 1.0493 2.0563 1330.90 1443.88
60 0.5 15.2353 6.6992 1.1010 7.8002 1454.97 1556.92
60 0.75 20.9249 9.6638 1.3777 11.042 1454.71 1651.95
60 1 21.3038 10.019 1.3912 11.410 1454.71 1651.95
75 0.25 7.5534 1.2740 1.2716 2.5456 1274.06 1348.04

Drones 2023, 7, 92 28 of 32

Table A2. Cont.

Node Num. 1
2 Time of Improved PRM Path Length
3 4 5 Total Basic Improved

75 0.5 22.2787 5.3312 1.5318 6.8630 1306.63 1493.31
75 0.75 32.1494 7.7480 1.5358 9.2838 1306.61 1404.32
75 1 33.0011 7.7118 1.5358 9.2477 1306.61 1404.32
90 0.25 11.5591 1.7538 1.3451 3.0989 1281.55 1422.85
90 0.5 32.6026 5.1573 1.3882 6.5456 1279.15 1391.26
90 0.75 46.0452 6.1180 1.4262 7.5442 1279.09 1382.75
90 1 46.9495 6.0681 1.4318 7.4999 1279.09 1382.75

Average time ratio 33.1% Average length ratio 109.5%

1 Connection distance weight; 2 Time of basic PRM; 3 Network construction; 4 Update and search; 5 Path optimization.

Table A3. PRM comparative results of Map_lib and Map_pkl.

Node Num. 1
2 Time of Improved PRM Path Length
3 4 5 6 Total 7 8

Map1
60 0.25 7.11 0.00 5.0644 0.8180 5.8843 984.82 1043.95
60 0.5 19.90 0.01 11.1111 0.9270 12.0476 963.19 1037.95
60 0.75 24.46 0.00 12.7196 0.9000 13.6243 963.19 1014.45
60 1 24.71 0.00 12.7823 0.9002 13.6872 963.19 1014.45
80 0.25 13.07 0.01 5.9111 1.0935 7.0123 928.56 997.52
80 0.5 35.45 0.01 11.0135 0.9830 12.0074 928.21 1024.94
80 0.75 42.61 0.01 13.0456 1.0274 14.0872 928.21 1000.56
80 1 42.51 0.01 13.1091 1.0667 14.1884 928.21 1007.73

100 0.25 19.87 0.01 3.6025 1.6199 5.2286 915.75 998.80
100 0.5 53.79 0.01 4.4192 1.6485 6.0815 910.33 1018.50
100 0.75 64.21 0.02 4.8817 1.7028 6.6048 910.33 1017.93
100 1 63.79 0.02 4.9162 1.7433 6.6801 910.33 1017.93

Average time ratio 28.5% Average length ratio 108.5%

Map2
60 0.25 11.49 0.00 1.0242 0.7097 1.7357 700.32 738.45
60 0.5 33.16 0.01 2.0315 1.0820 3.1212 704.85 799.88
60 0.75 41.49 0.01 2.1125 1.0986 3.2173 704.85 799.88
60 1 41.52 0.00 2.0853 1.0827 3.1727 704.85 799.88
80 0.25 19.06 0.01 0.4200 0.5734 0.9996 650.89 698.75
80 0.5 54.86 0.01 0.8500 0.6561 1.5171 650.74 721.73
80 0.75 66.31 0.01 0.8879 0.6932 1.5919 650.74 721.55
80 1 65.32 0.01 0.9127 0.6798 1.6064 650.74 721.55

100 0.25 29.32 0.01 0.6826 0.7624 1.4544 648.71 705.78
100 0.5 83.95 0.02 3.0867 0.6923 3.7976 648.69 674.53
100 0.75 101.91 0.02 3.5807 0.6483 4.2493 648.69 674.53
100 1 102.11 0.02 4.0346 0.6420 4.6936 648.69 674.53

Average time ratio 4.8% Average length ratio 109.0%

1 Connection distance weight; 2 Time of basic PRM; 3, 4 Network construction time; 5 Update and search; 6 Path
optimization; 7 Basic.; 8 Improved.

Table A4. Improved PRM results on onboard PC (with CPU usage limited to 30%).

Node Num. 1
Planning Time

2 3 4 Total

Map_lib
60 0.25 0.00 8.4516 1.3514 9.8063
60 0.5 0.01 18.6095 1.6332 20.2484
60 0.75 0.01 21.7281 1.3381 23.0730
60 1 0.01 23.4918 1.6114 25.1119
80 0.25 0.01 9.7605 1.7316 11.4980

Drones 2023, 7, 92 29 of 32

Table A4. Cont.

Node Num. 1
Planning Time

2 3 4 Total

80 0.5 0.01 18.7435 1.3743 20.1281
80 0.75 0.01 22.3054 1.6590 23.9764
80 1 0.01 22.6307 1.6870 24.3299

100 0.25 0.01 6.2032 2.7115 8.9240
100 0.5 0.02 7.8199 2.7303 10.5656
100 0.75 0.02 8.5419 2.7033 11.2639
100 1 0.20 8.7333 2.8929 11.8291

Map_pkl
60 0.25 0.00 1.8963 0.9678 2.8676
60 0.5 0.01 3.6753 1.8464 5.5278
60 0.75 0.01 3.4006 1.7047 5.1124
60 1 0.01 3.6033 1.6536 5.2637
80 0.25 0.01 0.7882 1.0823 1.8764
80 0.5 0.01 1.4127 1.0773 2.5008
80 0.75 0.01 1.5038 1.1492 2.6650
80 1 0.01 1.4970 1.0774 2.5867

100 0.25 0.07 1.0735 1.1801 2.3278
100 0.5 0.08 5.1668 0.9108 6.1574
100 0.75 0.02 6.3549 0.8481 7.2209
100 1 0.02 6.3881 0.9770 7.3810

1 Connection distance weight; 2 Network construction; 3 Update and search; 4 Path optimization.

Table A5. Path postprocessing optimization results.

Node Num. 1
Path Length of Basic PRM Path Length of Improved PRM

Initial 2 3 Initial 4 5

Map_lib
60 0.25 984.82 981.51 981.47 19,788.58 1347.54 1043.95
60 0.5 963.19 963.19 963.19 34,983.89 1325.51 1037.95
60 0.75 963.19 963.19 963.19 38,275.40 1259.18 1014.45
60 1 963.19 963.19 963.19 38,361.68 1259.18 1014.45
80 0.25 928.56 927.74 927.74 20,592.44 1263.47 997.52
80 0.5 928.21 928.21 928.21 33,226.28 1210.95 1024.94
80 0.75 928.21 928.21 928.21 37,746.75 1258.81 1000.56
80 1 928.21 928.21 928.21 38,090.94 1330.02 1007.73

100 0.25 915.75 914.77 914.77 11,689.17 1594.60 998.80
100 0.5 910.33 910.33 910.33 13,224.70 1436.51 1018.50
100 0.75 910.33 910.33 910.33 14,401.92 1447.90 1017.93
100 1 910.33 910.33 910.33 14,672.96 1513.58 1017.93

Avg. length ratio 100% 99.95% 100.00% 100% 5.16% 75.06%

Map_pkl
60 0.25 700.32 700.30 700.30 3525.15 809.84 738.45
60 0.5 704.85 704.85 704.85 5544.48 894.79 799.88
60 0.75 704.85 704.85 704.85 5544.48 894.79 799.88
60 1 704.85 704.85 704.85 5544.48 894.79 799.88
80 0.25 650.89 650.74 650.74 1683.02 712.62 698.75
80 0.5 650.74 650.74 650.74 2729.33 733.67 721.73
80 0.75 650.74 650.74 650.74 2729.37 733.49 721.55
80 1 650.74 650.74 650.74 2729.37 733.49 721.55

100 0.25 648.71 648.69 648.69 2079.39 726.05 705.78
100 0.5 648.69 648.69 648.69 5480.68 694.70 674.53
100 0.75 648.69 648.69 648.69 5659.38 694.70 674.53
100 1 648.69 648.69 648.69 5659.38 694.70 674.53

Avg. length ratio 100% 100.00% 100.00% 100% 12.28% 97.10%

1 Connection distance weight; 2, 4 Backward-checked; 3, 5 Forward-checked.

Drones 2023, 7, 92 30 of 32

References
1. Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349.

[CrossRef]
2. Apolo-Apolo, O.; Martínez-Guanter, J.; Egea, G.; Raja, P.; Pérez-Ruiz, M. Deep learning techniques for estimation of the yield and

size of citrus fruits using a UAV. Eur. J. Agron. 2020, 115, 126030. [CrossRef]
3. Carroll, S.; Satme, J.; Alkharusi, S.; Vitzilaios, N.; Downey, A.; Rizos, D. Drone-based vibration monitoring and assessment of

structures. Appl. Sci. 2021, 11, 8560. [CrossRef]
4. Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A review of UAV monitoring in mining areas: Current status and future perspectives. Int. J.

Coal Sci. Technol. 2019, 6, 320–333. [CrossRef]
5. Sharma, V.; You, I.; Pau, G.; Collotta, M.; Lim, J.D.; Kim, J.N. LoRaWAN-based energy-efficient surveillance by drones for

intelligent transportation systems. Energies 2018, 11, 573. [CrossRef]
6. Gupta, A.; Afrin, T.; Scully, E.; Yodo, N. Advances of UAVs toward future transportation: The State-of-the-Art, challenges, and

Opportunities. Future Transp. 2021, 1, 326–350. [CrossRef]
7. Huang, H.; Savkin, A.V.; Huang, C. Scheduling of a parcel delivery system consisting of an aerial drone interacting with public

transportation vehicles. Sensors 2020, 20, 2045. [CrossRef]
8. Ghelichi, Z.; Gentili, M.; Mirchandani, P.B. Logistics for a fleet of drones for medical item delivery: A case study for Louisville,

KY. Comput. Oper. Res. 2021, 135, 105443. [CrossRef]
9. Pensieri, M.G.; Garau, M.; Barone, P.M. Drones as an integral part of remote sensing technologies to help missing people. Drones

2020, 4, 15. [CrossRef]
10. Liu, C.; Szirányi, T. Real-time human detection and gesture recognition for on-board uav rescue. Sensors 2021, 21, 2180. [CrossRef]
11. Jeelani, I.; Gheisari, M. Safety challenges of UAV integration in construction: Conceptual analysis and future research roadmap.

Saf. Sci. 2021, 144, 105473. [CrossRef]
12. Maity, R.; Mishra, R.; Pattnaik, P.K. Flying robot path planning techniques and its trends. Mater. Today Proc. 2021; in press.

[CrossRef]
13. Zhang, X.; Li, X.; Wang, K.; Lu, Y. A Survey of Modelling and Identification of Quadrotor Robot; Abstract and Applied Analysis;

Hindawi: London, UK, 2014.
14. Meier, L.; Tanskanen, P.; Heng, L.; Lee, G.H.; Fraundorfer, F.; Pollefeys, M. PIXHAWK: A micro aerial vehicle design for

autonomous flight using onboard computer vision. Auton. Robot. 2012, 33, 21–39. [CrossRef]
15. Quadcopters & Multirotor Drones—Draganfly—Driving Innovatin of Drones. Available online: https://draganfly.com/products/

quadcopters-multirotors/ (accessed on 8 November 2022).
16. Matrice 300 RTK—Built Tough. Works Smart—DJI. Available online: https://www.dji.com/matrice-300 (accessed on

8 November 2022).
17. Wu, X.; Xiao, B.; Qu, Y. Modeling and sliding mode-based attitude tracking control of a quadrotor UAV with time-varying mass.

ISA Trans. 2019, 124, 436–443. [CrossRef]
18. Jeon, H.; Song, J.; Lee, H.; Eun, Y. Modeling quadrotor dynamics in a wind field. IEEE/ASME Trans. Mechatron. 2020, 26, 1401–1411.

[CrossRef]
19. Ji, D.; Wang, R.; Zhai, Y.; Gu, H. Dynamic modeling of quadrotor AUV using a novel CFD simulation. Ocean. Eng. 2021, 237,

109651. [CrossRef]
20. Moshayedi, A.J.; Gheibollahi, M.; Liao, L. The quadrotor dynamic modeling and study of meta-heuristic algorithms performance

on optimization of PID controller index to control angles and tracking the route. IAES Int. J. Robot. Autom. 2020, 9, 256. [CrossRef]
21. Almakhles, D.J. Robust backstepping sliding mode control for a quadrotor trajectory tracking application. IEEE Access 2019, 8,

5515–5525. [CrossRef]
22. Lambert, N.O.; Drew, D.S.; Yaconelli, J.; Levine, S.; Calandra, R.; Pister, K.S. Low-level control of a quadrotor with deep

model-based reinforcement learning. IEEE Robot. Autom. Lett. 2019, 4, 4224–4230. [CrossRef]
23. Yang, S.; Xian, B. Energy-based nonlinear adaptive control design for the quadrotor UAV system with a suspended payload. IEEE

Trans. Ind. Electron. 2019, 67, 2054–2064. [CrossRef]
24. Zhang, X.; Wang, Y.; Zhu, G.; Chen, X.; Li, Z.; Wang, C.; Su, C.Y. Compound adaptive fuzzy quantized control for quadrotor and

its experimental verification. IEEE Trans. Cybern. 2020, 51, 1121–1133. [CrossRef] [PubMed]
25. Wang, L. Review of the application of open source flight control in multi-rotor aircraft. Int. Core J. Eng. 2021, 7, 261–270.
26. García, J.; Molina, J.M. Simulation in real conditions of navigation and obstacle avoidance with PX4/Gazebo platform. Pers.

Ubiquitous Comput. 2020, 26, 1171–1191. [CrossRef]
27. Kawamura, E.; Azimov, D. Integrated extremal control and explicit guidance for quadcopters. J. Intell. Robot. Syst. 2020, 100,

1583–1613. [CrossRef]
28. Khosiawan, Y.; Nielsen, I. A system of UAV application in indoor environment. Prod. Manuf. Res. 2016, 4, 2–22. [CrossRef]
29. Zhang, T.; Liu, C.; Li, J.; Pang, M.; Wang, M. A new visual inertial Simultaneous Localization and Mapping (SLAM) algorithm

based on point and line features. Drones 2022, 6, 23. [CrossRef]
30. Bauersfeld, L.; Ducard, G. RTOB SLAM: Real-time onboard laser-based localization and mapping. Vehicles 2021, 3, 778–789.

[CrossRef]

http://doi.org/10.3390/info10110349
http://doi.org/10.1016/j.eja.2020.126030
http://doi.org/10.3390/app11188560
http://doi.org/10.1007/s40789-019-00264-5
http://doi.org/10.3390/en11030573
http://doi.org/10.3390/futuretransp1020019
http://doi.org/10.3390/s20072045
http://doi.org/10.1016/j.cor.2021.105443
http://doi.org/10.3390/drones4020015
http://doi.org/10.3390/s21062180
http://doi.org/10.1016/j.ssci.2021.105473
http://doi.org/10.1016/j.matpr.2021.06.174
http://doi.org/10.1007/s10514-012-9281-4
https://draganfly.com/products/quadcopters-multirotors/
https://draganfly.com/products/quadcopters-multirotors/
https://www.dji.com/matrice-300
http://doi.org/10.1016/j.isatra.2019.08.017
http://doi.org/10.1109/TMECH.2020.3019831
http://doi.org/10.1016/j.oceaneng.2021.109651
http://doi.org/10.11591/ijra.v9i4.pp256-270
http://doi.org/10.1109/ACCESS.2019.2962722
http://doi.org/10.1109/LRA.2019.2930489
http://doi.org/10.1109/TIE.2019.2902834
http://doi.org/10.1109/TCYB.2020.2987811
http://www.ncbi.nlm.nih.gov/pubmed/32413942
http://doi.org/10.1007/s00779-019-01356-4
http://doi.org/10.1007/s10846-020-01211-2
http://doi.org/10.1080/21693277.2016.1195304
http://doi.org/10.3390/drones6010023
http://doi.org/10.3390/vehicles3040046

Drones 2023, 7, 92 31 of 32

31. Jing, Y.; Qi, F.; Yang, F.; Cao, Y.; Zhu, M.; Li, Z.; Lei, T.; Xia, J.; Wang, J.; Lu, G. Respiration detection of ground injured human
target using UWB radar mounted on a hovering UAV. Drones 2022, 6, 235. [CrossRef]

32. Kwon, J.; Hailes, S. In Scheduling UAVs to bridge communications in delay-tolerant networks using real-time scheduling
analysis techniques. In Proceedings of the 2014 IEEE/SICE International Symposium on System Integration, Tokyo, Japan,
13–15 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 363–369.

33. Potortì, F.; Palumbo, F.; Crivello, A. Sensors and sensing technologies for indoor positioning and indoor navigation. Sensors 2020,
20, 5924. [CrossRef]

34. Steenbeek, A.; Nex, F. CNN-based dense monocular visual SLAM for real-time UAV exploration in emergency conditions. Drones
2022, 6, 79. [CrossRef]

35. Moussa, M.; Zahran, S.; Mostafa, M.; Moussa, A.; El-Sheimy, N.; Elhabiby, M. Optical and mass flow sensors for aiding vehicle
navigation in gnss denied environment. Sensors 2020, 20, 6567. [CrossRef] [PubMed]

36. Deng, H.; Fu, Q.; Quan, Q.; Yang, K.; Cai, K.-Y. Indoor multi-camera-based testbed for 3-D tracking and control of UAVs. IEEE
Trans. Instrum. Meas. 2019, 69, 3139–3156. [CrossRef]

37. Xin, C.; Wu, G.; Zhang, C.; Chen, K.; Wang, J.; Wang, X. Research on indoor navigation system of uav based on lidar. In
Proceedings of the 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA),
Phuket, Thailand, 28–29 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 763–766.

38. Youn, W.; Ko, H.; Choi, H.; Choi, I.; Baek, J.-H.; Myung, H. Collision-free autonomous navigation of a small UAV using low-cost
sensors in GPS-denied environments. Int. J. Control. Autom. Syst. 2021, 19, 953–968. [CrossRef]

39. Majumdar, A.; Ahmadi, A.A.; Tedrake, R. Control design along trajectories with sums of squares programming. In Proceedings of
the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; IEEE: Piscataway, NJ,
USA, 2013; pp. 4054–4061.

40. Meyer-Delius, D.; Beinhofer, M.; Burgard, W. Occupancy grid models for robot mapping in changing environments. In
Proceedings of the 26th AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012.

41. Dhulkefl, E.; Durdu, A.; Terzioğlu, H. Dijkstra algorithm using uav path planning. Konya Mühendislik Bilimleri Dergisi 2020, 8,
92–105.

42. Zhou, F.; Nie, H. Quick path planning based on shortest path algorithm for multi-uav system in windy condition. Control. Syst.
Eng. 2021, preprint.

43. Hong, Z.; Sun, P.; Tong, X.; Pan, H.; Zhou, R.; Zhang, Y.; Han, Y.; Wang, J.; Yang, S.; Xu, L. Improved a-star algorithm for
long-distance off-road path planning using terrain data map. ISPRS Int. J. Geo-Inf. 2021, 10, 785. [CrossRef]

44. Belanová, D.; Mach, M.; Sinčák, P.; Yoshida, K. Path planning on robot based on D* lite algorithm. In Procedings of the 2018 World
Symposium on Digital Intelligence for Systems and Machines (DISA), Košice, Slovakia, 23–25 August 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 125–130.

45. Chen, X.; Zhang, J. The three-dimension path planning of UAV based on improved artificial potential field in dynamic environment.
In Proceedings of the 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou,
China, 26–27 August 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 144–147.

46. Li, F.; Zlatanova, S.; Koopman, M.; Bai, X.; Diakité, A. Universal path planning for an indoor drone. Autom. Constr. 2018, 95,
275–283. [CrossRef]

47. González de Santos, L.M.; Frías Nores, E.; Martínez Sánchez, J.; González Jorge, H. Indoor path-planning algorithm for uav-based
contact inspection. Sensors 2021, 21, 642. [CrossRef]

48. Xu, Z.; Zhang, L.; Ma, X.; Liu, Y.; Yang, L.; Yang, F. An anti-disturbance resilience enhanced algorithm for UAV 3D route planning.
Sensors 2022, 22, 2151. [CrossRef]

49. Hao, K.; Zhao, J.; Yu, K.; Li, C.; Wang, C. Path planning of mobile robots based on a multi-population migration genetic algorithm.
Sensors 2020, 20, 5873. [CrossRef]

50. Ajeil, F.H.; Ibraheem, I.K.; Azar, A.T.; Humaidi, A.J. Grid-based mobile robot path planning using aging-based ant colony
optimization algorithm in static and dynamic environments. Sensors 2020, 20, 1880. [CrossRef] [PubMed]

51. Li, J.; Sun, T.; Huang, X.; Ma, L.; Lin, Q.; Chen, J.; Leung, V.C. A memetic path planning algorithm for unmanned air/ground
vehicle cooperative detection systems. IEEE Trans. Autom. Sci. Eng. 2021, 19, 2724–2737. [CrossRef]

52. Liu, G.; Shu, C.; Liang, Z.; Peng, B.; Cheng, L. A modified sparrow search algorithm with application in 3d route planning for
UAV. Sensors 2021, 21, 1224. [CrossRef]

53. Wang, X.; Pan, J.S.; Yang, Q.; Kong, L.; Snášel, V.; Chu, S.C. Modified mayfly algorithm for UAV path planning. Drones 2022,
6, 134. [CrossRef]

54. Li, S.; Zhang, H.; Li, Z.; Liu, H. An air route network planning model of logistics UAV terminal distribution in urban low altitude
airspace. Sustainability 2021, 13, 13079. [CrossRef]

55. Yin, G.; Zhou, S.; Wu, Q. An improved RRT algorithm for UAV path planning. Acta Electonica Sin. 2017, 45, 1764.
56. Pettersson, P.O.; Doherty, P. Probabilistic roadmap based path planning for an autonomous unmanned aerial vehicle. In

Proceedings of the ICAPS-04 Workshop on Connecting Planning Theory with Practice, Whistler, Canada, 3–7 June 2004.
57. Gang, L.; Wang, J. PRM path planning optimization algorithm research. Wseas Trans. Syst. Control. 2016, 11, 81–86.

http://doi.org/10.3390/drones6090235
http://doi.org/10.3390/s20205924
http://doi.org/10.3390/drones6030079
http://doi.org/10.3390/s20226567
http://www.ncbi.nlm.nih.gov/pubmed/33212949
http://doi.org/10.1109/TIM.2019.2928615
http://doi.org/10.1007/s12555-019-0797-7
http://doi.org/10.3390/ijgi10110785
http://doi.org/10.1016/j.autcon.2018.07.025
http://doi.org/10.3390/s21020642
http://doi.org/10.3390/s22062151
http://doi.org/10.3390/s20205873
http://doi.org/10.3390/s20071880
http://www.ncbi.nlm.nih.gov/pubmed/32231091
http://doi.org/10.1109/TASE.2021.3061870
http://doi.org/10.3390/s21041224
http://doi.org/10.3390/drones6050134
http://doi.org/10.3390/su132313079

Drones 2023, 7, 92 32 of 32

58. Chen, J.; Zhou, Y.; Gong, J.; Deng, Y. An improved probabilistic roadmap algorithm with potential field function for path
planning of quadrotor. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 3248–3253.

59. Mohanta, J.C.; Keshari, A. A knowledge based fuzzy-probabilistic roadmap method for mobile robot navigation. Appl. Soft
Comput. 2019, 79, 391–409. [CrossRef]

60. Raheem, F.A.; Abdulakareem, M.I. Development of a* algorithm for robot path planning based on modified probabilistic roadmap
and artificial potential field. J. Eng. Sci. Technol 2020, 15, 3034–3054.

61. Abdulakareem, M.I.; Raheem, F.A. Development of path planning algorithm using probabilistic roadmap based on ant colony
optimization. Eng. Technol. J. 2020, 38, 343–351. [CrossRef]

62. Che, E.; Jung, J.; Olsen, M.J. Object recognition, segmentation, and classification of mobile laser scanning point clouds: A state of
the art review. Sensors 2019, 19, 810. [CrossRef] [PubMed]

63. Rahul Kala’s Source Codes. Available online: http://rkala.in/codes.php (accessed on 5 May 2022).
64. Point Cloud Library. Available online: https://pointclouds.org/ (accessed on 20 April 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.asoc.2019.03.055
http://doi.org/10.30684/etj.v38i3A.389
http://doi.org/10.3390/s19040810
http://www.ncbi.nlm.nih.gov/pubmed/30781508
http://rkala.in/codes.php
https://pointclouds.org/

	Introduction
	Generation of Reduced-Dimensional Raster Map Based on Point Cloud Projection
	Kinematic and Dynamic UAV Model Assumptions
	Indoor Environment Rasterization
	Indoor Environment Point Cloud Projection
	Indoor Environment Reduced-Dimensional Raster Map Generation

	Improved Probabilistic Roadmap Planning for Safe UAV Flight
	Basic PRM Algorithm
	Improvement Strategies for PRM Algorithm
	Network Construction Based on Connection Distance
	Path Local Check and Incremental Update
	Path Planning in Multilayer Grid Map

	Path Postprocessing Optimization
	Backward Path Connection Check
	Forward Path Connection Check

	Experimental Results
	Source Data and Environment
	Evaluation Metrics
	Experiments on Reduced-Dimensional Rasterization of Indoor Environment
	Experiments on Network Construction Based on Connection Distance
	Experiments on Improved Probabilistic Roadmap Planning
	Experiments on Path Postprocessing Optimization

	Discussion
	Conclusions
	Appendix A
	References

