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Abstract: Sustainable green products and services garner more attention from companies and en-
terprises that aim to succeed and grow in highly competitive markets by imposing less harms on
the environment and ecosystems. Last-mile delivery from local distribution centers to customers
plays an essential role in the retail business. Retail companies are leaning towards implementing
green, efficient transportation methods, such as drones, in their last-mile delivery operations to
conserve ecosystems. Accordingly, researchers have documented numerous research findings on
last-mile drone delivery in recent years. This literature review selected a collection of articles mostly
from 2011 to 2022 and reviewed them in terms of key technical challenges, such as routing, cargo
distribution optimization, battery management, data communication, and environmental protection.
These challenges are interrelated in a sense of achieving eco-friendly, efficient, lean, last-mile drone
delivery. The selection of these technical challenges is based on the top challenges discussed in
the literature.
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1. Introduction

Transporting goods by sea, land/ground, and air requires sustainable logistics in-
volving different vehicles to deliver parcels from one location to another. For instance,
sea transportation uses ships and boats, land /ground transportation uses railroad trains,
trucks, cars, and bikes, and air transportation uses airplanes and drones. Last-mile delivery
operations mostly use trucks. In fact, trucks are the most employed tool in urban logistics.
However, utilizing trucks in last-mile delivery has limitations, such as being unable to
provide deliveries to some rural regions that are hard to reach by truck, consuming gaso-
line that leads to air pollution, being unable to deliver parcels in a timely manner due to
traffic jams, etc. A potential eco-friendly vehicle in last-mile delivery is a bicycle. Retail
companies such as DoorDash [1,2] and UberEats [3,4] use bicycles to deliver parcels to
urban customers. However, bicycle delivery has drawbacks, such as exposing the bicycle
riders to traffic hazards, requiring longer delivery times, and having limited cargo capaci-
ties. Generally, bicycle delivery is good for neighborhoods, but it may not be efficient in
urban areas [5].

The invention of the drone technology [6] enabled the use of drones in last-mile deliv-
ery to complement the existing transportation methods. Abraham Karem [6] is the inventor
of drone technology. He was passionate about aircraft and started building prototype
aircraft when he was a teenager. He immigrated to the United States of America in the
1970s and later founded a company, Leading Systems Inc., in his home garage [6]. He
started manufacturing his first drone named Albatross, followed by the more advanced
Amber [7], which became the predecessor of the famed Predator drone [8] that brought
him the “Drone father” designation. The propulsion system of a drone consists of motors,
electronic speed controllers, and propellers, which allow the drone to fly and maneuver
in the air. Hassanalian and Abdelkefi [9] categorized the drone types in terms of their
weights, characteristics, and capabilities. Based on the propulsion system and the structural
design, there are four major types of drones; multi-rotor drones [10], fixed-wing drones [11],
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single-rotor helicopter [12,13], and fixed-wing hybrid VTOL (Vertical Take-Off and Land-
ing) drones [14]. Drones [15,16] benefit global industries by increasing work efficiency
and productivity, decreasing workload and production costs, improving accuracy and
repeatability, refining service and customer relations, and resolving security issues on a
vast scale.

The Internet and digital transformation allowed more retail companies to use electronic
commerce, or e-commerce [17]. E-=Commerce has been the primary method of shopping,
especially during the 2019-2021 pandemic, when more than half of the world population
had to stay at home [18]. This is the primary reason global parcel volume increased from
87 billion in 2018 to more than 126 billion in 2020 and is predicted to reach 200 billion by
2025 [19]. In 2019, UPS, FedEx, and Amazon only delivered about 11.2 billion packages in
the United States of America (USA).

Trucks are the primary transportation method for last-mile delivery. Fossil-fuel trucks
cause noise and air pollution, traffic jams, cluttered parking spots, traffic accidents, higher
delivery costs, and other unforeseen ground vehicle issues. Delivery trucks [20] are about
4% of vehicles on the USA roads; they cause about 50% of the nitrogen oxide emissions,
60% of the fine particulates, and 7% of all greenhouse gas emissions in the USA. Hence,
many retail companies, such as Amazon, Alphabet Wing, Walmart, UPS, etc., lean toward
using the drone technology as a sustainable transportation method as it offers eco-friendly,
faster delivery with lower operating costs and less human involvements [21-26]. Other
companies, such as Mercedes-Benz, started collaborating with the drone manufacturer
Matternet to implement the on-demand delivery of e-commerce products using electric
vans and drones [27]. Besides delivering standard parcels, drones are also used in food
delivery [1,4,28-33], vaccine delivery [31,34-37], and the delivery of other lifesaving sup-
plies in disaster relief operations [37]. However, utilizing drones in last-mile delivery
has numerous challenges, such as reducing delivery costs, increasing energy efficiency,
lowering environmental harms, tracking parcel deliveries, preventing sporadic delays in
deliveries, staying on track with advanced technologies, etc.

The aim of this study is to provide a constructive survey of recently published research
findings on the topics of last-mile drone delivery. The research findings are evaluated with
respect to key technical challenges, such as routing, cargo distribution optimization, battery
management, data communication, and environmental protection. The selection of these
technical challenges is based on the top challenges discussed in the literature.

The remainder of this paper is structured as follows. Section 2 describes the selec-
tion criteria of publications and the key technical challenges of last-mile drone delivery.
Sections 37 present the literature review analysis of the selected publications by highlight-
ing advancements and future opportunities with respect to each key technical challenge.
Section 8 provides the summary of the study.

2. Methodology

The survey methodology involved journal articles, books, book chapters, and confer-
ence proceedings from online sources such as Elsevier, IEEE, MDPI, Springer, and others,
obtained by searching on the Google Scholar website with keywords such as “last-mile
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drone delivery”, “unmanned aerial vehicle logistics”, “vehicle routing problem”, “the
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Internet of drone things”, “drone fleet”, “urban delivery”, “cyber-physical systems and
UAV”, “traveling salesman problem”, “optimizing fuel consumption in logistics”, and
“drone battery swapping/charging station”. Afterward, publications, mainly from 2011 to
2022, were selected for this review article. Furthermore, key technical challenges shown
in Figure 1, such as routing, cargo distribution optimization, battery management, data
communication, and environmental protection, were considered for the literature review
analysis as they were the top challenges discussed in the literature. The analysis involved
the evaluation of the selected publications with respect to the key technical challenges

shown in Figure 1.
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Last-Mile Drone Delivery Challenges

1. One Drone and One Truck (i.e., Flying Sidekick Traveling Salesman Problem)
1. Routing 2. Multiple Drones and One Truck (i.e., Multiple Flying Sidekick Traveling Salesman Problem)

3. Multiple Drones and Multiple Trucks (i.e., Vehicle Routing Problem with Drones)

| 2. Cargo Distribution Optimization 1. Combinatorial Optimization (i.e., Knapsack Problem)

2. Cargo Distribution Scheduling

1. Battery Usage Optimization
| 3. Drone Battery Management 2. Swapping/Charging Station Implementation

| 4 Data Communication 1. Networking for Data Collection, Data Sharing, Navigation, and Control

2. Cybersecurity

1. Reducing Green House Gas (GHG) and Pollution

| 5. Environmental Protection '—' 2. Increasing Energy Efficiency

3. Implementing Renewable Green Energy Sources

Figure 1. This figure illustrates last-mile drone delivery challenges.

Routing is an essential challenge to address as it aims to find optimum delivery routes
that make last-mile drone delivery economically, operationally feasible. Trucks are neces-
sary to carry drones and supplies as well as parcels in last-mile drone delivery. Therefore,
last-mile drone delivery routing should consider routes for both drones and trucks. De-
pending on drone-and-truck arrangements, last-mile drone delivery routing may involve
one drone and one truck (i.e., The Flying Sidekick Travelling Salesman Problem [38,39]),
multiple drones and one truck (i.e., The Multiple Flying Sidekicks Travelling Salesman
Problem [40—42]), or multiple drones and multiple trucks (i.e., Vehicle Routing Problem
with Trucks and Drones [37,43,44]).

Cargo distribution optimization is a critical challenge to address as it offers proper
distribution of parcels among delivery trucks, drones, bicycles, and robots for last-mile
delivery. Delivery vehicles have different cargo capacity limits, safety ratings, reliability
levels, eco ratings, and energy consumption. On the other side, parcels have different
sizes, weights, destinations, urgency levels, priorities, safe-handling requirements, and
costs [45-48]. Hence, assigning parcels to delivery vehicles requires proper cargo distribu-
tion to optimize the target performances of last-mile delivery with respect to budget limits,
time constraints, or any other restrictions on the delivery operation. Cargo distribution
optimization may involve combinatorial optimization (i.e., Knapsack Problem (KP) [49-52],
Bin Packing Problem (BPP) [47,51,53,54]), and cargo distribution scheduling [55-57].

Drone battery management is another key challenge to address as it aims to achieve
energy efficiency and reliability. Battery management in last-mile drone delivery may
involve battery charging /replacing strategies [37,55,58-61] or battery consumption opti-
mization [49,58,62-65] through adjusting the drone operation settings and conditions to
save more energy for longer battery consumption.

Data communication is an essential challenge to address as it enables data collection,
data sharing, coordination, navigation, and control during the last-mile drone delivery op-
eration. Data communication can be device-to-device, device-to-human, human-to-device,
or human-to-human. Communication challenges may encompass cybersecurity [66—69]
and networking [5,18,26,45,50,53,56,59,67,70-80] via flying ad-hoc networks [77], cellular
networks [71-73], the Global Positioning System [69,81], etc.

Environmental protection in last-mile drone delivery is a critical challenge to ad-
dress as it promotes eco-friendly strategies to preserve the environment and ecosystems.
Environmental protection can be achieved in various ways, such as reducing pollution
and carbon footprints [21,82-85], improving the energy efficiency of the delivery opera-
tion [49,63,64,72,80,86,87], implementing renewable green energy sources [88-90], etc.

Figure 2 shows trends in the selected publications from 2011 to 2022 with respect to
the technical challenges of last-mile drone delivery. There is a growing trend of publica-
tions that address drone battery management since 2018. In addition, the routing problem



Drones 2023, 7,77

40f19

Number of papers

16 4
14 4
124
10 4

remains a hot topic among publications from 2011 to 2022. Cargo distribution optimization,
data communication, and environmental protection have been drawing attention from
time to time. Sections 3-7 present the literature review analysis of the selected publica-
tions by highlighting advancements and future opportunities with respect to each key
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Figure 2. This figure illustrates trends in the selected publications from 2011 to 2022.

3. Routing
3.1. Advancements

Routing is an essential challenge to address as it aims to find optimum delivery
routes that make last-mile drone delivery economically and operationally feasible. Trucks
are necessary to carry drones and supplies as well as parcels in last-mile drone delivery.
Therefore, last-mile drone delivery routing should consider routes for both drones and
trucks. Depending on drone-and-truck arrangements, last-mile drone delivery routing may
involve one drone and one truck, multiple drones and one truck, or multiple drones and
multiple trucks.

Long before utilizing drones in last-mile delivery, Dantzig and Ramser [91] introduced
the vehicle routing problem (VRP) in 1959 to find the optimal set of routes for a fleet of
vehicles to deliver to a given group of customers. They were concerned with the optimal
route of a fleet of gasoline delivery trucks between the storage of petroleum products to
stations. The goal of the VRP is to minimize the total route a fleet should travel. Clarke and
Write [92] enhanced the VRP algorithm proposed by Dantzig and Ramser [91] by using a
compelling greedy perspective called the “savings algorithm”.

A novel solution that extends the classic Clarke-and-Wright algorithm [92] is a mathe-
matical model developed by Karak and Abdelghany [39] to solve the Hybrid Vehicle-Drone
Routing Problem (HVDRP). They set three experiments to examine the capability of their
proposed model to solve different vehicle-drone routing problems. They developed three
heuristics, the hybrid Clarke and Wright heuristic (HCWH), the vehicle-driven heuristic
(VDH), and the drone-driven heuristic (DDH), for solving HVDRP.

Murray and Chu [38] extended the HVDRP model [39] and introduced the Flying
Sidekick Traveling Salesman Problem (FSTSP) in 2015 to find optimal routing and schedul-
ing for multiple drones and a truck. In operations research, the makespan is the time taken
between the start and the end of work. If the makespan of the truck exceeds that of the
drone, minimal improvement may be possible, given that solutions are initialized to assign
all drone-eligible customers to drones. Therefore, the ongoing strategy focuses on the drone
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to monitor whether its makespan surpasses the truck. If so, reducing the drone makespan
is considered by shifting customers to the delivery truck.

Gonzalez-R et al. [93] introduced a mathematical model, an iterated greedy heuristic
method, using a simulated annealing (SA) algorithm to optimize the truck-and-drone
delivery routes. The model works with one truck and one drone. During the package
delivery, the drone will come back to the truck to swap/recharge the battery when needed
as the truck is a battery swap station for the drone as well. This means that the drone needs
to calculate the remaining battery life, and, if the drone needs new batteries, it will join
the truck at the next truck stop where the truck delivers a package. If the truck reaches
the stop sooner than the drone, it will wait for the drone to join and vice versa. They also
considered that drones could have multi-drop routes, which will help drones deliver to
multiple customers by eliminating unnecessary travel to the truck. There is no limitation
on the battery swap operation for drones, and each time drone will leave the truck with
full batteries and/or a newly assigned delivery task.

Es Yurek and Ozmutlu [94] work on FSTSP to reduce the completion time of last-mile
delivery. They proposed an iterative algorithm based on the decomposition approach. In
the first step, they find the truck route and determine which customer is eligible for drone
delivery based on weight, travel distance, and accessibility. In the second step, a mixed-
integer linear programming model is used to optimize the drone route by fixing the routing
and the assignment decisions made in the first stage. Lemardel€ et al. [95] investigated
two delivery methods—FSTSP and a method with ground autonomous delivery devices
(GADD:s). They suggested that the cost of drones with a truck is minimal in smaller areas
with less dense locations. However, in dense areas, it is more justifiable to use the GADD
method to reduce the cost of the operation. Salama and Srinivas [78] studied last-mile
delivery with multiple drones and a single truck, which is a multiple-drone VRP. They
proposed to divide the customer sites into clusters, establish a dispatch point in each group
for the truck to launch the delivery drones, and optimize the truck route for the dispatch
points. The truck stops at each dispatch point, and drones start their deliveries to customers;
meanwhile, the truck does deliveries to its assigned customers. They used an unsupervised
machine learning heuristic algorithm to minimize the total delivery cost and time.

Kitjacharoenchai et al. [44] extended FSTSP [38] to include multiple drones and mul-
tiple trucks in the model that is referred to as the Two Echelon Vehicle Routing Problem
with Drones (2EVRPD). The study aims to find optimized routes for drones and trucks
while minimizing delivery time. Moshref-Javadi et al. [42,96] presented an extension of
HVDRP [39] to optimize last-mile delivery routes, where both drones and trucks work
simultaneously. A truck acts as a mobile depot, while drones deliver packages to customers,
one customer per dispatch due to its weight limit. Trucks can also deliver parcels to multi-
ple customers. This synchronized system is used to minimize customer waiting time. Bakir
and Tini¢ [70] introduced another extension of HVDRP [39] where the drones are allowed
to be flexible, which means drones can connect to all the trucks in the system. They called
it Vehicle Routing Problem with Flexible Drone (VRPFD) and tried to find a set of routes
for a fleet of drones and trucks working simultaneously in the system. They also allowed
trucks to visit an exact location more than one time. They also suggested that flexible drone
utilization reduced the makespan by up to 12.12%, with an average of 5.39%.

Shavarani et al. [79] stated that using a drone fleet in last-mile delivery would reduce
the waiting time and the transportation cost. They developed a multi-objective mathemati-
cal model to find optimum locations for depots in the vicinity of customer locations. The
customers closest to the depot have higher priorities for receiving the delivery services.
Thus, the overall travel distance can be reduced, followed by reduced costs.

As last-mile delivery in urban areas directly influences customers, retail companies
regard it as a powerful tool for attracting more consumers. Drones with intelligent routing
capabilities would benefit last-mile delivery by offering eco-friendly, lean, reliable, fast, and
sustainable delivery services. In particular, the implementation of flying sidekick drones
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and trucks in last-mile delivery, as illustrated in Figure 3, would help reduce the overall
operation cost, fuel consumption, and environmental harms.
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Figure 3. This figure illustrates flying sidekick drones and trucks in last-mile delivery.

3.2. Opportunities

Based on FSTSP [38], Murray and Raj [40] documented an exciting study on multiple
Flying Sidekick Traveling Salesman Problem (mFSTSP). They explained that, because of
the complex nature of the routing problem, they could not rely on mixed-integer linear
programming (MILP). Perhaps, a practical solution can be achieved by using a heuristic
approach. Murray and Raj, as well as other researchers [38,40,42,44,70], mostly focused on
optimizing the delivery routes to minimize the total delivery time of the truck-and-drone
fleet. There are some research opportunities to optimize the delivery routes with respect to
other targets, such as energy efficiency, customer satisfaction, etc.

Sacramento et al. [43] formulated a mathematical model similar to FSTSP [38] with
additional constraints. They used time limit control for the capacitated multiple-truck cases
to minimize the distribution cost. They noticed that using small aircraft, such as drones,
has obvious advantages over the truck-only distribution of goods. However, their model
only looked at fuel costs of the distribution and no other factors, such as cargo capacities,
maintenance, driver salaries, other operational expenses, etc.

As vehicle routing is an open-ended problem, researchers are still exploring new
heuristic/ metaheuristic algorithms or new linear/nonlinear optimization techniques to
advance the last-mile drone delivery operation. Moreover, drones still experience some
logistic challenges when delivering items to customer places. They can deliver items to
accessible places, such as the front door or the back yard of a house. However, such delivery
approaches may pose security concerns as the delivered items may be left unattended. In
addition, drones cannot deliver packages to mailboxes or apartment buildings. Therefore,
last-mile drone delivery needs more research and development to find secure, diverse ways
to deliver items to diverse customer places.

4. Cargo Distribution Optimization
4.1. Advancements

Cargo distribution optimization is a critical challenge to address as it offers proper
distribution of parcels among delivery trucks, drones, bicycles, and robots for last-mile
delivery. Delivery vehicles have different cargo capacity limits, safety ratings, reliability
levels, and energy consumption. On the other side, parcels have different sizes, weights,
destinations, urgency levels, priorities, safe-handling requirements, and costs [45-48].
Cargo distribution optimization may involve combinatorial optimization (i.e., Knapsack
Problem (KP) [49-52], Bin Packing Problem (BPP) [47,51,53,54]), and cargo distribution
scheduling [55-57].
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Vehicle routing and cargo distribution among delivery vehicles are major optimization
problems in supply-chain management [45]. Naumov and Pawlu$ [51] reviewed last-
mile delivery in urban zones with restrictions on motorized vehicles and the use of cargo
bicycles in those zones. They focused on efficient packing, routing, and speed limitations
that depend on the cargo load. The Traveling Salesman Problem (TSP) and the Knapsack
Problem (KP) were involved in minimizing the distance and maximizing the specific bicycle
cargo. This study considered a number of homogenous bicycles and a number of packages
with different weights and sizes. KP deals with assigning packages to bicycles, and TSP
deals with optimizing the route of each bicycle. They used three algorithms to optimize
packaging and routing problems. The first algorithm is the Bin-Pack-3D method that
consists of two steps. The first step finds optimum package-cargo combinations, and the
second step optimizes the bicycle delivery routes. The second algorithm is the Multiple
Traveling Salesman Problem (MTSP), which finds every possible path for all bicycles and
selects the most feasible route for each bicycle. The third algorithm, the Capacitated
Traveling Salesman Problem (CTSP), finds service stations with delivery bicycles, whereas
each bicycle has a limited cargo capacity. They compared the three algorithms and found
that the three algorithms produced almost identical results in terms of the overall delivery
time and distance.

Sorbelli et al. [56] introduced the Multiple-Drone-Delivery Scheduling Problem (MDSP)
that involves drones assisted by trucks. This study aimed to search for the optimal schedul-
ing of drones to use their maximum battery life by ensuring that the battery power does
not deplete during delivery. The study involved KP in managing a set of delivery tasks
to maximize profit by considering the drone energy consumption and the cargo capacity
limits of drones. Correspondingly, Zhang [49] examined the practicality of using auto-
mated delivery robots to deliver packages with different weights and sizes. The presented
approach [49] consists of three steps. The first step is to use the Generalized Linear Model
(GLM) to fit the total volume of packages for distribution cycles. The second step is to solve
a routing problem for delivery robots by using a three-dimensional KP concept. The third
step uses a mixed-integer linear programming model to optimize the total distance and the
energy required by each delivery robot. The proposed approach demonstrated that using
delivery robots is more practical and efficient.

Parcel priority is another parameter to consider in cargo distribution and schedul-
ing [97]. Deplano et al. [52] proposed a mixed-integer linear programming model for the
multiple heterogeneous KP with realistic container loading constraints and the priority of
bins/parcels. Yildiz [50] compared exact KP methods with approximate KP methods. Exact
KP methods are time-consuming because of the NP-hard (non-deterministic polynomial-
time hard) nature of the problem. Therefore, the study focused on a deep reinforcement
learning model as an approximate KP method. It involved a neural net with fully connected
layers. The experimental results demonstrated that the proposed approximate KP method
was about 40 times faster than the exact KP methods.

Capacity in logistics is the amount of physical space, assets, and employees available
to carry, store, and deliver packages. Warehouses, trucks, drones, and employees are
examples of last-mile drone delivery capacity elements. Predicting the next-day package
volume is an important capacity planning problem [54]. Fadda et al. [53] introduced a
machine-learning model to predict the next-day distribution volume and the number of
vehicles needed to distribute parcels using historical data. They utilized machine learning
methods to predict demand based on historical data. They clustered the customer locations
and assigned a fleet to each cluster based on the distribution volume of each cluster by
Tactical Capacity Planning (TCP).

Implementing cargo distribution optimization concepts in last-mile delivery helps re-
tail companies gain more profits as it aims to optimize the cargo distribution process as well
as scheduling/planning. Although researchers proposed numerous brute-force methods as
well as heuristic methods for cargo distribution optimization and scheduling/planning,
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there is always room for advancements to make the cargo distribution operation more
eco-friendly, more efficient, and more profitable.

4.2. Opportunities

Delivery vehicles have different cargo capacity limits, safety ratings, reliability levels,
eco ratings, and energy consumption. On the other side, parcels have different sizes, weights,
destinations, urgency levels, priorities, safe-handling requirements, and costs [45-48]. Hence,
assigning parcels to delivery vehicles requires proper cargo distribution to optimize the
target performances of last-mile delivery with respect to budget limits, time constraints, or
any other restrictions on the delivery operation. In addition, forecasting the future parcel
volumes is a challenging problem to solve for cargo distribution scheduling as it involves
various levels of uncertainty.

Last-mile delivery now tends to use various delivery vehicles, such as trucks, drones,
bicycles, mobile robots, etc. Therefore, cargo distribution optimization with heterogeneous
delivery vehicles needs more accurate linear /nonlinear mathematical models for optimiza-
tion and further investigation, so that different types of delivery vehicles may effectively
complement each other in certain situations. Furthermore, the aspect of unusual parcel
shapes is underestimated in cargo distribution optimization. Handling parcels with un-
usual shapes in a safe, secure, timely manner adds new complexities to cargo distribution
and scheduling.

5. Battery Management
5.1. Advancements

Drone battery management is another key challenge to address as it aims to achieve
energy efficiency and reliability. Battery management in last-mile drone delivery may
involve (1) battery consumption optimization [49,58,62—65] through adjusting the drone
operation settings and conditions to save more energy for longer battery consumption or
(2) battery charging/replacing strategies [37,55,58-61].

Drone battery consumption is the topic of several studies. It depends on variables such
as the parcel weight, the drone speed, flight routes, weather conditions, altitudes, depot
locations, energy saving modes, and other drone operating conditions [98]. Overall, battery
consumption optimization focuses on route optimization, drone-speed-and-altitude opti-
mization, cargo weight optimization, and delivery scheduling based on weather forecasting.

To achieve optimum battery power consumption, drone routes and dispatch locations
can be optimized for greater energy efficiency. Raj and Murray [41] studied the effect of
drone speed on power consumption. In general, drone power consumption depends on
the cargo weight, the speed, and the weather condition. Raj and Murray [41] proposed an
algorithm that checks and adjusts the tradeoff between the speed and the travel distance.
They tried to minimize the total delivery time for both trucks and drones. The results
indicated that trucks would have shorter routes and fewer customers than that of drones.

Torabbeigi et al. [57] focused on the Battery Consumption Rate (BCR), a function of
the drone payload. They considered lightweight parcels in the study and identified that
about 60% of deliveries would fail, in drone delivery, if the weight of the parcels were not
considered in BCR. Dispatch location optimization is another approach to decreasing BCR.
Salama and Srinivas [78] worked on last-mile delivery with multiple drones and a truck.
They clustered customer locations and optimized drone dispatch points. The approach
showed a reduction in the overall cost and the delivery time. BCR is also crucial for sensor
data collection. Yuan et al. [80] proposed an Actor-Critic-based Deep Stochastic Online
Scheduling (AC-DSOS) algorithm that limits the drone hovering space to consume less
energy during the sensor data collection process. Moreover, Kim et al. [99] focused on the
atmospheric temperature and its effect on the drone battery depletion. They proposed an
optimization model that helps schedule deliveries under uncertain battery durations. The
model aims to minimize the total operating cost and the probability of not completing the
scheduled flights.
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Researchers suggest various battery charging/replacing strategies. For example,
battery stations can be added to the service routes, so that drones can stop by and
recharge/replace their batteries. Generally, battery stations can accommodate three ways
of replenishing drone batteries as illustrated in Figure 4: Battery swapping [100]; Contact-
based battery recharging [59]; Wireless battery recharging [88].

Battery Swap Station Contact-Based Charging Station Wireless Charging Station

o2 O
o2 2

o, 4

Figure 4. This figure illustrates the three types of battery replenishing stations for drones.

The battery swapping process needs a human operator. Galkin et al. [100] introduced
the use of cellular networks for drones and suggested that a drone fleet can be used as a
flying infrastructure to serve the cellular network users when the regular infrastructure is
busy. A significant challenge, in this case, is the battery limitation problem. They suggested
three solutions to the problem. The first solution involves drone swapping. This means
that when a working drone needs recharging, a new drone takes up its work to allow the
other drone to return to the charging station to recharge using a contact-based charger. The
second solution is similar to the first one in terms of drone swapping. However, the battery
charging stations are replaced by battery replacing stations that require human operators to
replace the drone batteries using mechanical tools. The third solution is similar to the first
solution, but it uses non-contact wireless chargers to recharge drone batteries. Asadi and
Nurre Pinkley [55] also worked on battery swap stations and proposed a model that uses
battery swap stations to reduce the recharging burden and the wait time. They proposed
a stochastic Scheduling, Allocation, and Inventory Replenishment Problem (SAIRP) to
solve for battery swap stations. They also considered that recharging causes battery
degradation. With the Markov Decision Process (MDP), they defined a two-dimensional
state space that shows the number of full batteries and their average capacities. In addition,
a two-dimensional action space indicates the number of batteries charged/discharged
and the number of batteries replaced. Results illustrated that MDP suffers from the high
dimensionality of the problem. Therefore, they implemented reinforcement learning (RL)
methods that demonstrate highly competitive performances in finding an optimality gap,
satisfying the demand gap, and reducing the computational time.

Raciti et al. [59] studied the contact-based charging stations installed on the roofs of
buildings. They stated that a drone has a limited battery life; therefore, having a network of
recharge stations on the tops of buildings would help achieve more operation hours. They
also suggested that, as different types of drones require different charging pads, it is better
to use multi-pad technology to charge various drones. They simulated the proposed idea
in the Simulink software and demonstrated its effectiveness.

Faraci et al. [88] introduced a green wireless charging station for a drone fleet. The
recharging station harvests energy from the wind so that a wireless power transfer system
charges drones with the harvested energy. This study aims to optimize the number of
drones based on the availability of wind energy for the seamless operation of a drone fleet.

5.2. Opportunities

Battery management in last-mile drone delivery involves optimizing the drone opera-
tion to save more energy and the logistics of battery recharging or replacing. New machine
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learning methods that monitor the drone battery consumption to figure out optimum drone
operation settings in conjunction with weather forecasting could be a potential future
direction for solving battery consumption problems. The logistics of battery recharging or
replacing still needs more research to improve the battery lifetime performances in terms
of reliability, durability, and longevity. In addition, improving the battery capacity and
lifetime using advanced materials and finding alternative energy sources that are renewable
are potential topics to study.

As drones use electric power to fly, their operation depends on the battery capacity
and the recharging/replacement arrangements. Researchers are still searching for new
materials and methods to increase the battery capacity and lifetime. For instance, Galkin
et al. [100] investigated new technologies in building batteries that have more lifecycle to
reduce the burden of recharging.

On the other hand, researchers are still trying to optimize the logistics of the drone bat-
tery recharging /replacement process. Figure 4 illustrates three types of recharging /replacing
stations used for drones: a battery swapping station, a contact-based recharging station,
and a wireless recharging station. The battery swap station requires a human operator to
replace the depleted batteries of drones with new ones and recharge the depleted batteries.
A drone would spend minimal time at the battery swap station as it does not need to wait
for recharging. However, the wait time depends on the number of drones in line, the avail-
ability of charged batteries, and the human operator’s skill. The contact-based charging
station has a recharging pad compatible with different types of drones. The waiting time
depends on the number of drones in the recharging line, the number of recharging pads,
and the drone recharging time. The wireless charging station provides an electromagnetic
field for wireless recharging. A drone should hover in the electromagnetic field of a wireless
recharging station to get recharged. This recharging method is fast and efficient as the
recharging process can be done autonomously.

A limitation of the battery swap station and the contact-based station is that a drone
needs to finish its delivery service before going to the charging station without any parcel.
However, the wireless charging station can accommodate wireless recharging for drones
with parcels, so that a drone can recharge itself before, during, or after the delivery service.
The wireless charging station offers greater efficiency in terms of time and logistics. The
future work may focus on identifying optimum locations of wireless recharging stations
for a drone fleet in a specific region. In addition, wireless recharging relies on the data
communication between drones as well as between wireless recharging stations and drones.

6. Data Communication
6.1. Advancements

Data communication is an essential challenge to address as it enables data collection,
data sharing, coordination, navigation, and control during the last-mile drone delivery op-
eration. Data communication can be device-to-device, device-to-human, human-to-device,
or human-to-human. Communication challenges mainly involve cybersecurity [66—-69]
and networking [5,18,26,45,50,53,56,59,67,70-80] via flying ad-hoc networks (FANETs) [77],
cellular networks [71-73], the Global Positioning System (GPS) [69,81], etc.

The Internet of Things (IoT) is the interconnection through the Internet of computing
devices embedded in things that people use. It has immense future potential and draws
the attention of various industries [67,74-76]. The IoT enabled ubiquitous computing
that involves cloud computing and fog/edge computing [31,69,75] as well as ubiquitous
sensing or ubiquitous geo-sensing [75,101] that involves omnipresent sensor networks
and their ability to probe geographic phenomena in real-time. A domestic ubiquitous
computing environment might interconnect lighting and environmental control systems
with personal biometric monitors woven into the clothing of the environment, so that the
illumination and the heating conditions can be modulated continuously and imperceptibly.
Industrial cloud computing stores data and has the computing power for data analytics
and decision-making. It serves as a data center over the Internet with various computing
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tools for analyzing data. This platform receives data from devices, analyzes the data, and
provides a clear data visualization for humans.

The Internet of Drones (IoD) [31,66,68,69,73,88,102] is a new term derived from IoT for
interconnected drones that share data, central computing systems, and human operators
for data analysis and decision-making. A drone may experience unpredictable situations
during its operation; therefore, it needs to sense the environment, analyze the data, and
make autonomous decisions. Drones that consist of sensors, actuators, drive mechanisms,
propellers, electronics, and digital control systems enable smart services by pushing the
boundaries of technological realms. Gharibi et al. [73] discussed using three types of net-
works for the IoD. The three types of networks include the air traffic control network, the
Internet, and a cellular network. They suggested that their model could be utilized in
package delivery, search and rescue, traffic monitoring, and other applications. In a compre-
hensive review, Abualigah [102] focused on the applications, deployment, and integration
of the IoD. Figure 5 illustrates that the IoD is enabled by secure data communication for
navigation, coordination, data sharing, and control.
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Figure 5. The Internet of Drones (IoD) uses secure data communication for navigation, coordination,

data sharing, and control.

The cybersecurity of the IoD is crucial for protecting information and preventing
cyber threats that target IoD hardware and software. Choudhary et al. [68] classified
and discussed possible cyberthreats and vulnerabilities in data communication networks.
Various cybersecurity tools are used to maintain the required level of security. Al-Garadi
et al. [67] stated that standard cybersecurity tools such as data encryption/decryption,
user authentication, and user access control are not enough for IoD cybersecurity. They
studied the use of machine learning and deep learning in cybersecurity, discussed possi-
ble vulnerabilities of each cybersecurity tool, and suggested potential research areas for
future improvements in IoD cybersecurity. Abdelmaboud [66] additionally discussed the
privacy and security challenges in global resource management, sensor communication,
coordination, scheduling, and drone distribution and deployment.

Nayyar [77] compared various routing protocols in the work entitled to Flying Adhoc
Networks (FANETs). The aim was to find which protocol can perform well in dynamic en-
vironments. The observations suggested that the Hybrid Wireless Mesh Protocol (HWMP)
and the Optimized Link State Routing Protocol (OLSR) perform well in unpredictable and
dynamic environments. Challita et al. [72] proposed a reinforcement learning model to
optimize the routes of drones interconnected via cellular connections based on the Echo
State Network (ESN) cells. They suggested that every drone builds a map of its own and
shares it with other drones to reduce the load on the ground network and wireless trans-
mission delays. Cao et al. [86] developed a Deep Reinforcement Learning (DRL) method
for drones to collect data from IoT nodes that cannot send data to the central server due to
their remote locations. They arranged for a drone to hover over an IoT wireless transmitter
to harvest data from the IoT node. They used DRL for a drone to find its optimum hovering
path over each IoT node to optimize the battery power consumption of the drone and
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the IoT transmitter. Goudarzi et al. [74] also mathematically formulated the drone path
planning problem for sensor data collection using drones and the Internet of Things (IoT).
They first developed a cost function to have a scalable system. They present a formula to
overcome a significant issue; path smoothing. As drones do not need to fly exactly over
each sensor, they utilize Bezier Curves (BCs) to generate smoothed paths for drones. They
used a Lyapunov vector controller to achieve a drone circular motion. They tested their
model using MATLAB. The simulation results demonstrated that drones could find the
shortest path and follow the circular path using the Lyapunov function within the data
access point zone.

Campion et al. [71] reviewed the current state of drone swarm communication and
suggested using cellular networks [71-73] as the communication infrastructure of drone
swarms. They classified the swarm communication variants into infrastructure-based
swarm architecture and the Flying Adhoc NETwork (FANET) architecture [69].

Akagi et al. [81] emphasized that drones use Global Positioning Signals (GPS) to mea-
sure their current locations. They suggested that drones need alternative ways to navigate
the environment and avoid collisions. Hence, Akagi et al. [81] obtained measurements
from multiple sources, including GPS, magnetometers, and cameras. A drone is assumed
to receive sporadic GPS measurements that are shared with the swarm. In addition, they
proposed a centralized extended Kalman filter to estimate the state of the drone swarm
using a line-of-sight measurement camera.

6.2. Opportunities

A data communication network is vulnerable to various cyberthreats. Hence, the IoD
networks need more intelligent, reliable cybersecurity tools to deal with cyberattacks that
are getting more sophisticated and harder to prevent. Moreover, the reliability of wireless
networks and the causes of network disruptions with proper resolutions are potential
topics to study. For instance, Nayyar et al. [69] stated that drones have GPS connectivity,
but only sometimes. A disruption in the GPS connectivity negatively affects the drone
operation. Fog computing or edge computing can provide distributed local computing
if cloud computing is not accessible. Perhaps, fog computing may help drones operate
autonomously with little or no GPS connection to satellites and ground servers, which may
allow drones to update themselves and perform ground, air, and underwater operations.

Another area of research may focus on the possibility of including the customers in
the data communication during the delivery operation. Notifying the customers with live
tracking data and getting necessary feedback from the customers for coordination and
arrangements would offer benefits in many ways.

As last-mile drone delivery garners more attention, the IoT and the IoD will grow along
with breakthrough advancements in unmanned aircraft, cyber-physical systems, data ana-
lytics, artificial intelligence, data communication, distributed computing,
and cybersecurity.

7. Environmental Protection
7.1. Advancements

Environmental protection in last-mile drone delivery is a critical challenge to ad-
dress as it promotes eco-friendly strategies to preserve the environment and ecosystems.
Environmental protection can be achieved in various ways, such as reducing pollution
and carbon footprints [21,82-85], improving the energy efficiency of the delivery opera-
tion [49,63,64,72,80,86,87], implementing renewable green power sources [88-90], etc.

Trucks are necessary to carry drones and supplies as well as parcels in last-mile drone
delivery. However, trucks mostly use fossil-based fuels that cause the Green-House Gas
(GHG). Edenhofer et al. [103] reported in 2014 that transportation produces 14% of the
global GHG and 95% of the world transportation energy is from fossil fuels. Figure 6
depicts a pie chart of global GHG emissions by economic sectors using the data reported
by Edenhofer et al. [103]. Due to the adverse effects of GHG on the environment, reducing
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GHG is a critical problem to solve. This problem also matters to retail businesses as they
use trucks that consume fossil fuels for transportation and delivery.

Other

Energy Industry
10% 21%

Electricity and
Heat
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Figure 6. This figure depicts a pie chart of global GHG emissions by economic sectors.

The Green Vehicle Routing Problem (GVRP) is a variant of TSP and VRP, which aims
to reduce fossil fuel consumption by reducing the vehicle travel distance, the speed, and
the cargo weight. Kuo and Wang [104] proposed a tabu-search algorithm for saving vehicle
fuel consumption by reducing the vehicle weight. They demonstrated that the heavier the
vehicle is, the more energy it needs to move. Heavier vehicles have greater inertia and
higher rolling resistance, which increases fuel consumption. Likewise, Xiao et al. [105]
claimed that the vehicle fuel-consumption rate is based on the weight and the distance
traveled. They developed a simulated-annealing algorithm with a hybrid exchange rule and
experimentally demonstrated that the method can reduce the fuel consumption by 5% with
a little more than 2% increase in the travel distance. MirHassani and Mohammadyari [85]
used a gravitational search algorithm to minimize the vehicle fuel consumption by reducing
the travel distance and the vehicle load.

The relationship between the vehicle speed and the fuel consumption was studied
by Bektas and Laporte [82] for heavy-duty delivery vehicles. They reported that speeds
above 40 km/h negatively impact the fuel efficiency. Franceschetti et al. [83] studied the
time-dependent pollution routing problem to determine optimum vehicle speeds with
a cost function that considers GHG emissions, traffic congestions, and driver costs. Kog
et al. [84] studied a heterogeneous fleet vehicle routing problem based on the pollution-
routing problem (PRP) presented by Bektas and Laporte [82] and proposed a hybrid
evolutionary metaheuristic model. They examined the proposed model to measure the
trade-offs between various cost indicators, such as the vehicle cost, the travel distance,
fuel consumption, GHG emissions, and the driver cost. The results indicated that using a
heterogeneous fleet without vehicle speed optimization enables a further reduction in the
total cost rather than a homogeneous fleet with vehicle speed optimization.

Drones help reduce GHG emissions in last-mile delivery. Dukkanci et al. [63] pro-
posed a model that involves multiple drones and trucks, where trucks are used as the
mobile launch spots of drones. They called the model the Energy-minimizing and Range-
constrained Drone Delivery Problem (ERDDP). This model considers mobile launch points
from a potential set of sites, finds travel routes for drones to do deliveries, and optimizes
the drone speed to do more deliveries with each battery charge cycle. Chiang et al. [62]
studied the effects of drones on GHG emissions and the delivery operation cost. Their
computational results strongly support the notion that using delivery drones in last-mile
delivery would save the overall cost by reducing the delivery time and the number of
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delivery vehicles. An interesting study conducted by Stolaroff et al. [87] demonstrated a
comparison between drone delivery and truck delivery. They concluded that the impact
of last-mile delivery by drones on the environment is lower than that of the urban truck
delivery. The results suggested that drone delivery may reduce GHG emissions and the
energy consumption of the delivery operation.

Alternative energy sources, such as biofuels, renewable natural gas, electricity, and
hydrogen fuels, help reduce GHG emissions. A study by Liu, et al. [8§9] compared Hydrogen
Fuel Cell Electric Vehicles (HFCEVs) to conventional fossil fuel vehicles. They stated that
the production and the transportation of the hydrogen fuel use 5-33% less fossil fuel
energy and produce 15-45% less GHG emissions. Ugurlu [90] compared different types of
hydrogen fuels and found that gaseous hydrogen produces less GHG emissions compared
to liquid hydrogen.

With each click on an online order, the customer and the company are responsible
for the carbon footprint of the online order. Many solutions would help customers and
companies reduce their carbon footprints. On the customer end, people can combine all
their purchases into just one order and have all the products shipped in one package. On
the vendor end, they can implement eco-friendly vehicles, such as drones, with optimized
passes to play their roles in reducing carbon footprints. In general, a large portion of
parcels are light enough for delivery vehicles such as drones. For example, 86% of Amazon
parcels weigh under 5 pounds [106]. Hence, drones can deliver such lightweight parcels
by reducing the number of trucks and truck routes in last-mile drone delivery. The energy
needed for drones is 94% less than the energy needed for delivery trucks [64].

7.2. Opportunities

Sustainable green products and services garner more attention from companies and
enterprises that aim to succeed and grow in highly competitive markets where environ-
mental conservation is critical. Environmental conservation in last-mile drone delivery can
be achieved in various ways, such as reducing pollution and GHG emissions, improving
the energy efficiency of the delivery operation, implementing renewable green power
sources, etc.

The main delivery vehicles in last-mile drone delivery are drones and trucks. Although
drones use the electric power that is renewable, the production and the disposal of their
batteries may pose harms to the environment and ecosystems. Trucks are necessary to carry
drones and supplies as well as parcels for last-mile drone delivery. However, fossil-fueled
trucks produce harmful pollution and GHG emissions as they use fossil fuels that are not
renewable. Moreover, the production of fossil fuels poses dire harms to the environment.

Routing, cargo distribution optimization, battery management, and data communica-
tion for the last-mile drone delivery operation have concerted effects on the environment
and ecosystems. Therefore, the current practices and technologies in last-mile drone deliv-
ery need to be upgraded or new practices and new technologies should be implemented to
conserve ecosystems.

8. Summary

Last-mile delivery from local distribution centers to customers plays an essential role
in the retail business. Retail companies are leaning towards implementing green, efficient
transportation methods, such as drones, in their last-mile delivery operations to conserve
ecosystems. Thus, researchers have documented numerous research findings on last-mile
drone delivery in recent years. This study selected a collection of articles mostly from 2011
to 2022 and reviewed them in terms of key technical challenges, such as routing, cargo
distribution optimization, battery management, data communication, and environmental
protection. The routing problem remained a hot topic among publications from 2011 to
2022. There is a growing trend of publications that address drone battery management since
2018. Cargo distribution optimization, data communication, and environmental protection
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have been drawing attention from time to time. These challenges are interrelated in a sense
of achieving eco-friendly, efficient, lean, last-mile drone delivery.

The main delivery vehicles in last-mile drone delivery are drones and trucks. Drones
use the electric power that is renewable, but the production and the disposal of their
batteries may pose harms to the environment and ecosystems. Furthermore, trucks are
necessary to carry drones and supplies as well as parcels for last-mile drone delivery, but
fossil-fueled trucks produce harmful pollution and GHG emissions as they use fossil fuels
that are not renewable.

Last-mile delivery now tends to use various delivery vehicles, such as trucks, drones,
bicycles, mobile robots, etc. Therefore, last-mile delivery with heterogeneous delivery
vehicles needs more accurate linear /nonlinear mathematical models for optimization and
further investigation, so that different types of delivery vehicles may effectively comple-
ment each other in certain situations.

As the key technical challenges are open-ended problems, researchers are still ex-
ploring new heuristic/metaheuristic routing algorithms, new linear/nonlinear cargo dis-
tribution optimization techniques, new renewable power sources, and new advanced
communication methods to advance the last-mile drone delivery operation. Moreover,
drones still experience some logistic challenges when delivering items to customer places.
They can deliver items to accessible places, such as the front door or the back yard of a
house. However, such delivery approaches may pose security concerns as the delivered
items may be left unattended. In addition, drones cannot deliver packages to mailboxes
or apartment buildings. Therefore, last-mile drone delivery needs more research and
development to find secure, diverse ways to deliver items to diverse customer places.

The efforts to address the key technical challenges of last-mile drone delivery, such as
routing, cargo distribution optimization, battery management, and data communication,
have concerted effects on the environment and ecosystems. Hence, the current practices
and technologies in last-mile drone delivery need to be upgraded or new practices and
new technologies should be implemented to conserve the ecosystems.
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