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Abstract: In the traditional rapidly exploring random tree (RRT) algorithm, the planned path is not
smooth, the distance is long, and the fault tolerance rate of the planned path is low. Disturbances in an
environment can cause unmanned surface vessels (USVs) to deviate from their planned path during
navigation. Therefore, this paper proposed a path-planning method considering environmental dis-
turbance based on virtual potential field RRT* (VPF-RRT*). First, on the basis of the RRT* algorithm, a
VPF-RRT* algorithm is proposed for planning the planning path. Second, an anti-environmental dis-
turbance method based on a deep recurrent neural networks PI (DRNN-PI) controller is proposed to
allow the USV to eliminate environmental disturbance and maintain its track along the planning path.
Comparative simulation experiments between the proposed algorithm and the other algorithms were
conducted within two different experimental scenes. In the path-planning simulation experiment, the
VPF-RRT* algorithm had a shorter planning path and a smaller total turning angle when compared to
the RRT* algorithm. In the path-tracking simulation experiment, when using the proposed algorithm,
the USV could effectively compensate for the impact of environmental disturbance and maintain its
navigation along the planning path. In order to avoid the contingency of the experiment and verify
the effectiveness and generality of the proposed algorithm, three experiments were conducted. The
simulation results verify the effectiveness of the proposed algorithm.

Keywords: unmanned surface vessel; path planning; rapidly exploring random tree algorithm; path
tracking; diagonal recurrent neural networks; PI controller

1. Introduction

In recent years, unmanned surface vehicles (USVs) have been widely used for the water
quality sampling of public water [1–4]. Disturbances exist in the real water environments,
which is not conducive to the navigation safety of the USV [5–8]. Therefore, scholars
have carried out a lot of research on USV path planning and path tracking methods under
a disturbed water environment [9–12]. The hybrid problem of path planning and path
tracking is the research focus of USV navigation technology [13–16].

At present, there are various path-planning methods. Path planning methods mainly
include the A* algorithm [17], Dijkstra algorithm [18–20], rapidly exploring random trees
(RRT)- [21], and deep reinforcement learning (DRL)-based algorithms [22]. The planning
path of most traditional path-planning algorithms contains many unnecessary turning
points, which is not applicable to the movement of USVs. In a real lake environment, there
are environmental disturbances, such as wind and water flow, which lead to that the USV
deviating from the planning path during navigation.

In order to solve the problem of path planning in environments with obstacles, a path-
planning method considering environmental disturbances based on the virtual potential
field RRT* is proposed. The main contributions of this work can be summarized as follows:
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(1) A VPF-RRT* algorithm is proposed that has a short planning-path distance and
high-fault tolerance rate.

(2) An anti-environmental disturbance method based on a DRNN-PI controller is
proposed. This method can overcome the impact of environmental interferences on a USV.
At the same time, the combination of DRNN and the PI controller improves the flexibility
of the PI controller, which can adjust the parameters Kp and Ki in real-time.

This paper is organized as follows. Section 2 presents the related works. Section 3
provides the modeling and problem formulation of this paper. Section 4 presents the
algorithm proposed in this paper. The experimental results are discussed in Section 5, and
the paper is concluded finally in Section 6. This paper has strong novelty in the field of USV
cruise. This paper optimizes the RRT* algorithm to improve the efficiency of path planning.
At the same time, this paper improves the PI controller and uses the DRNN algorithm to
adjust the parameters of the PI controller.

2. Related Works
2.1. Path Planning

In order to solve this problem, Zhang [23] proposed a new heuristic function combined
with the artificial potential field (APF) method and introduced this into A* algorithm,
which effectively reduces the turning points in the planning path and makes the path
smoother. Yu [24] improved the expansion mode of the eight connections of the traditional
A* algorithm to the 20 connections so that the sharpness of turning (at a corner) can be
greatly reduced and the planning path is smoother. However, the calculation speed of
the above algorithm is too slow. In the path-planning algorithm, the RRT algorithm has
the advantage of a fast sampling speed, so it is widely used to solve the multitarget path-
planning problem. However, the path length generated by the RRT algorithm is long. In
order to solve this problem, Verbari [25] proposed a decentralized iterative algorithm based
on single-agent dynamic RRT-star; this algorithm introduces a decentralized strategy that
is based on an iterative plan-compare-assign process to reduce the length of the planning
path. Park [26] proposed a boundary RRT* algorithm by increasing real-time performance
through simple calculations and using the boundary of the configuration space. The
functions of the above algorithms are shown in Table 1.

Table 1. The algorithm and simulation experimental parameters.

Algorithm Path Smoothing Increase of Efficiency

Autonomous land vehicle path-planning algorithm based on
improved heuristic function of A-Star [23] Yes /

Improved safety-first A-star algorithm for autonomous vehicle [24] Yes /
Multiagent trajectory planning: A decentralized iterative algorithm

based on single-agent dynamic RRT star [25] / Yes

Boundary-RRT* algorithm for drone collision avoidance and
interleaved path replanning [26] / Yes

2.2. Path Tracking

In order to solve this problem, Li [27] proposed a new fractional-order PID controller
with the desired gain and phase margin, which increases the accuracy and robustness of the
system and enhances the control accuracy and antidisturbance ability of the USV. Wu [28]
proposed an antidisturbance nonlinear control law that can accurately track the target in a
limited time based on the red interference observer, which enhances the antidisturbance
ability of the USV. Xu [29] proposed an improved double-factor adaptive Kalman filter to
adjust the position and pose of a USV to achieve the purpose of antidisturbance. Zhang [30]
proposed an antidisturbance control law for a USV to make the yaw angle and position
of the USV reach the expected value and reduce the impact of environmental disturbance.
Peng [31] proposed a data-driven adaptive antidisturbance control method to estimate the
unknown input gain, unmeasured speed, and total disturbance and combined this with a



Drones 2023, 7, 145 3 of 22

PID controller to reduce the impact of environmental disturbance. The above algorithms are
only based on the yaw and deviation of the USV, which does not consider the environmental
disturbance as an input of the controller to control the USV. The parameters of a traditional
linear controller need to be manually set and cannot be adjusted in real-time, lacking
flexibility. In order to solve this problem, Yao [32] proposed a PID controller based on a
fuzzy algorithm and a BP neural network, which can adjust three parameters in the PID
controller in real time, improve the flexibility of the PID controller, and reduce the yaw of
a USV during navigation. Xu [33] proposed a backstepping-based controller design for
uncertain, switched high-order nonlinear systems via PI compensation, which combines
a backstepping algorithm with a PI controller and introduces a feedback neural network
to adjust the parameters in real-time; thus, the flexibility of PI controller is improved. The
neural network selected by the above algorithms is too simple to effectively deal with
dynamic problems. The functions of the above algorithms are shown in Table 2.

Table 2. The algorithm and simulation experimental parameters.

Algorithm Improve Anti-Interference Capability Increase Flexibility

Fractional-order controller for course-keeping of
underactuated surface vessels based on frequency

domain specification and improved particle swarm
optimization algorithm [27]

Yes /

Antidisturbance leader–follower synchronization
control of marine vessels for underway replenishment

based on robust exact differentiators [28]
Yes /

An antivibration-shock inertial matching measurement
method for hull deformation [29] Yes /

Antidisturbance control for dynamic positioning system
of ships with disturbances [30] Yes /

Output-feedback flocking control of multiple
autonomous surface vehicles based on data-driven

adaptive extended state observers [31]
Yes /

Research and comparison of automatic control
algorithm for unmanned ship [32] / Yes

Backstepping-based controller design for uncertain
Switched high-order nonlinear systems

via pi compensation [33]
/ Yes

Based on the above defects, this paper proposed a path-planning method considering
environmental disturbances based on a virtual potential field RRT* (VPF-RRT*). First of
all, a VPF-RRT* algorithm is proposed for path planning. The virtual potential field is
introduced into the RRT* algorithm to adjust the position of the path node, connecting the
starting point and the target point. The connecting line segment generates the attractive
potential field, which is superimposed with the repulsive potential field generated by the
obstacle. The position of the path node is adjusted according to the size of the superimposed
potential field. Second, aiming at the problem of the USV devices being moved from the
planning path caused by environmental disturbance, an anti-environmental disturbance
method based on a deep recurrent neural networks PI (DRNN-PI) controller is proposed.
The yaw angle was obtained by detecting the environmental disturbance through the sensor.
The DRNN-PI controller was used to obtain the compensation angle and correct the yaw
angle so that the USV could overcome the environmental disturbance and navigate on
the planning path. At the same time, the DRNN neural network was combined with a PI
controller, and a DRNN neural network was used to select the two parameters Kp and Ki,
which allowed the PI controller to adjust the parameters in real time. The implementation
process of the algorithm is shown in Figure 1.
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3. Modeling and Problem Formulation
3.1. USV Modeling

This study defines the USV movement co-ordinate system on the Earth’s surface,
as shown in Figure 2. A fixed co-ordinate system is established on the Earth’s surface,
where the origin Oe of the Earth co-ordinate system can be any point on the Earth’s surface,
and the Ye- and Xe-axes point to the north and east of the Earth, respectively, thus, this
system can be simplified as an {e} co-ordinate system. In order to simplify the analysis, this
paper considers only the surge, sway, and yaw of a USV. The three-degrees-of-freedom
mathematical model of a USV is expressed as follows:{ .

η = J(η)υ
M · .

υ + C · υ + D · υ = τ + ω
(1)

where η = [x, y, ψ] T is the pose vector, which defines the position and heading angle;
υ = [u, v, r] T is the speed vector, which includes the forward, sway, and steering

speeds; J(η) is the transformation matrix from the Earth co-ordinate system to the USV
motion co-ordinate system. The second equation denotes a dynamic equation, where τ
is the torque vector, ω is the force vector defined by the wind, wave, and current in an
environment, M is the inertia matrix of a USV, C is the Coriolis centripetal matrix, and
D is the resistance matrix [34].
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A real USV was modeled by the Unity3D platform to obtain a 3D USV model. The
real USV and its 3D model are presented in Figure 3a,b, respectively. The collision
and collision detection modules of the Unity3D platform were added to the 3D USV
model to facilitate the observation of the collision of the 3D USV model. This paper
adds rigid body and kinematic rigid body collider to the 3D USV model to ensure the
inertia and gravity of the model. Finally, the buoyancy module is added to the 3D USV
model. The abovementioned modeling methods can make the 3D USV model have real
physical properties in simulation experiments, and the proposed algorithm can be more
effectively verified in the simulation experiment.
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3.2. Obstacle Modeling

This paper uses the Unity3D platform to model the obstacles in the map. Since a USV
is navigated only on the horizontal plane, the section of an obstacle on the horizontal plane
is regarded as an obstacle in the path-planning process. Due to the uncertainty of obstacles
on the water surface and to ensure the navigation safety of a USV, it is necessary to leave a
safe distance between a USV and the obstacles and conduct an expansion modeling of the
obstacles. The obstacle co-ordinate system {o} is established with the center of the obstacle
as the origin, as shown in Figure 4. In Figure 4a, the static obstacle before expansion can be
seen, and in Figure 4b is the static obstacle after expansion.
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The boundary co-ordinates of the obstacles are (xo.i, yo.i), i = 1, 2, . . . , n. The boundary
of the obstacle is expanded, and the expression is as follows:

(
x∗o.i − xo

a + B
)

q
+ (

y∗o.i − yo

b + B
)

p
= 1 (2)

where B is the obstacle expansion coefficient, and x*
o.i and y*

o.i are the expanded obstacle
boundary co-ordinates. q and p are the gains of the equivalent geometry of the obstacles on
the x- and y-axes in the {e} co-ordinate system, respectively. xo is the central co-ordinates of
the obstacle on the x-axis, and the expression is as follows:

xo =

n
∑

i=1
xo.i

n
(3)

and yo is the central co-ordinates of the obstacle on the y-axis, and the expression is as follows:

yo =

n
∑

i=1
yo.i

n
(4)

3.3. Problem Formulation

This paper requires the USV to navigate to the end-point in the shortest distance on
the basis of ensuring safety. Therefore, it is necessary to establish an evaluation standard
based on distance. The planning path P is established by connecting a series of path nodes
or grids. The Euclidean distance of the planning path P is:

D(P) =
k−1

∑
i=1

si, si =

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 (5)

where si is the Euclidean distance between adjacent path nodes or grids, and (xi, yi),
i = {1, 2, . . . , k − 1} is the co-ordinate of each path node or grid.

There are various obstacles in the lake environment, such as reefs and islands. These
obstacles constitute the forbidden area O that USV must avoid for voyage safety. First,
on the premise that the path can avoid the forbidden area O, the shortest path can be
obtained by comparing the length D(P) of different paths. Based on the above, build an
objective function:

argmin
P

[D(P)], P ∩O = ∅ (6)

where D(P) is the Euclidean distance of the planning path P, and the planning path P does
not pass through the forbidden area O.
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4. Materials and Methods
4.1. A Virtual Potential Field -RRT* Algorithm

The RRT algorithm is an incremental construction method. During the construction
process, the algorithm continuously generates a random state point in the search space.
If the point is in a collision-free position, the nearest node in the search tree is found as
the reference node. From the reference node, it extends towards the random node with a
certain step length. The location of the end-point of the extension line is added to the search
tree as an effective node. The growth process of the search tree continues until the distance
between the target node, and the search tree is within a certain range. Then the search
algorithm searches for the shortest path connecting the starting point to the end-point in
the search tree. The traditional RRT algorithm is a path-planning algorithm with a random
sampling tree structure. The basic idea of an RRT algorithm is to construct paths by adding
specific random trees. The algorithm does not need to model space, and the expansion
between nodes does not need to be preprocessed. This algorithm will detect the collision of
paths between nodes to solve the obstacle avoidance problem. This algorithm can quickly
search the blank area in the space and further reduce the distance between the path node
and the target point [35].

When the distance between the planning path and the obstacle is close, the fault
tolerance rate of the planning path will be reduced, which is not conducive to the sub-
sequent path tracking of USV. The smooth planning path is more suitable for the path
tracking of USV, but there are many unnecessary inflection points in the planning path
of the traditional RRT* algorithm, so it is necessary to adjust the nodes to optimize the
angle of inflection points. However, the existing path smoothing algorithm will increase
the memory loss of the algorithm. Therefore, it is necessary to adjust the path node and use
the VPF-RRT* algorithm to plan the path of USV. The expansion step is p, the initial value
of i is 1, and the maximum number of iterations is n.

Connect the start point and the target point. This line is the virtual gravity lines.
Obstacles will generate repulsive virtual potential fields. Adjust the position of path
nodes according to the combined virtual potential fields. This method shortens the long
planning path, adjusts the distance between path nodes and obstacles, and improves the
fault tolerance rate of the path, as shown in Figure 5.
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Make a vertical line from the path node to the gravity line, and the length of the
vertical line is L. Calculate the gravity Fy of the current gravity line on the node; its
expression is as follows:

Fy = −Fz · sin α (7)

where α is the included angle between the planning path and the gravitational line; Fz is
the tension of the planning path. Let the maximum angular velocity of USV be ω, the mass
of USV is derived from m and inertia coefficient B, and the expression is as follows:

Fz =
mω2L

B
(8)

Let the repulsive force of the obstacle on the node be Fc, and its expression is as follows:

Fc =

{
ηmω2

maxR3
min(

1
L −

1
ρ )

2
, L < ρ

0 ,L ≥ ρ
(9)

where η is the repulsion coefficient, whose value is set manually; ωmax is the maximum
angular velocity of USV; Rmin is the minimum turning radius of USV; ρ is the range of
influence of obstacles on nodes. When the path node exceeds the influence range of the
obstacle, the repulsive force is zero.

Using the difference between the gravitational force Fy and the repulsive force Fc
in the current situation, the gravitational difference Fy

* is obtained, and its expression
is as follows:

F∗y = Fy − Fc (10)

Use Fy
* to calculate the compensation distance ∆L. The compensation distance ∆L will

be used to adjust the position of the path node, and its expression is as follows:

∆L =
−EF∗y

mω2 sin α
(11)

Use the difference between the current vertical segment L and the compensation
distance ∆L to obtain a new vertical segment L, whose expression is as follows:

L′ = L− ∆L (12)

The pseudocode of VPF-RRT* is shown in Algorithm 1.

Algorithm 1: VPF-RRT*

Step1: T← InitializeTree (T, qinit);
Step2: For i = 1: n do
Step3: qrand← Sample (T, qgoal, M);
Step4: qnear← Nearest (T, qrand);
Step5: End qnew← Steer (qnear, qrand, p);
Step6: qneighbor← Findnearneighbor (T, qnew, M);
Step7: if CollisionFree (qnew, T, M) then
Step8: T← Chooseparent (qnew, qneighbor, T);
Step9: T← Rewire (T, qnew, qneighbor);
Step10: T← (12);
Step11: Return T;

4.2. An Anti-Environmental Disturbance Method Based on DRNN-PI Controller

The previous section introduced the VPF-RRT* algorithm, which is used to plan the
path from the starting point to the target point. This section proposes an anti-environmental
disturbance method based on a DRNN-PI controller, which is used to control USV naviga-
tion on the planned path and realize path tracking.
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The recurrent neural networks can be divided into single hidden layer recurrent neu-
ral networks and deep recurrent neural networks (DRNN) according to the structure [36].
DRNN can enhance the ability of the PI controller, which can repeat the loop body at
each time many times [37]. The parameters in the loop body of each layer of the DRNN
network are shared, but the parameters between different layers can be different [38].
The DRNN network has strong sensitivity. DRNN stores the output value of the hidden
layer neuron at the previous time through the receiving layer and returns it to the input
of the first hidden layer so that the final output of the network is related to the current
information and the historical information [39]. DRNN has strong dynamic information
processing ability, high prediction accuracy, and strong generalization ability, which can
avoid local minimum problems [40].

Set the input vector of the DRNN neural network as x = [x1, x2, . . . , xm]; there are n
hidden layers, and the number of nodes in each layer is represented by l1, l2, . . . , lk, and
the number of nodes in the output layer is 1. When the time is t, the output vector of the
first hidden layer of the DRNN neural network is:

R1(t) = f {W1[X(t), z(t)] + B1} (13)

where R1(t) is the output of the first hidden layer. W1 is the weight matrix and B1 is the
threshold matrix, both of which are between the input layer and the first hidden layer.
Function f is the transfer function of the hidden layer of DRNN. z(t) is the feedback state
vector [41]. The output of other hidden layers except for the first hidden layer of DRNN is:

RL(t) = f {WLRL−1(t) + BL} (14)

where RL(t) is the output vector of the L hidden layer. WL is the weight matrix, and BL is
the threshold matrix, both of which are between the L-1 hidden layer and the L hidden
layer [42]. The output y(t) of the output layer of DRNN is:

y(t) = g[Wn+1Rn(t) + Bn+1] (15)

where Wn+1 is the weight matrix and Bn+1 is the threshold matrix, both of which are
between the n + 1 hidden layer and the output layer. Function g is the transfer function
of the output layer of DRNN. The structure of DRNN is shown in Figure 6. The DRNN
network includes one input layer, two hidden layers, and one output layer.
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In the real lake environment, there are wind disturbances and wave disturbances. The
USV deviates from the planning path due to the influence of wind and wave, which prolong
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the actual sailing distance of the USV and increase the energy loss and the possibility of
collision. Therefore, this paper proposes an anti-environmental disturbance method based
on the DRNN-PI controller. First, the environmental disturbance information of the USV,
such as wind and water flow, is obtained through the sensor. Second, a yaw angle is
obtained by using the information on environmental disturbance, and the compensation
angle is obtained by the DRNN-PI controller to correct the yaw angle so that the USV can
overcome the influence of environmental disturbance. Finally, the USV navigates on the
planning path.

The deep recurrent neural network (DRNN) network is used to adjust the perfor-
mance of the PI controller. The hidden layer of the neural network has L nodes. There
are N samples in each USV heading angle data set. The output of a single hidden layer is
as follows:

s =

L
∑

i=1
si

L
(16)

where si is the output of a single hidden layer node. The DRNN neural network aims to
minimize the error loss between the expected heading angle and the actual heading angle,
as shown in the following:

N

∑
j=1
‖sj − ψ(t)‖ = 0 (17)

The loss function is used to obtain the output error of the network model, and the
gradient descent method is used to find the minimum value, update the weight, and finally
make the model converge. Mean square error (MSE) is selected as the loss function to
measure the deviation between the predicted value and the real value after each step of
training in the neural network. During the operation, the output value of the loss function
will become smaller and smaller and eventually approaches zero. The expression of MSE is
as follows:

MSE[ψd(t), ψ(t)] =
1
N

N

∑
i=1

[ψd(t)− ψ(t)]2 (18)

where Ψd(t) is the expected heading angle, Ψ(t) is the actual heading angle, and N is the total
number of samples. In addition, the optimizer selects the root mean square propagation
(RMSProp) method. The RMSProp method is suitable for dealing with nonstationary
targets. The root mean square error (RMSE) and mean relative error (MRE) are used to
verify the prediction accuracy of the neural network model. The expression is as follows:

RMSE[ψd(t), ψ(t)] =

√√√√ 1
N

N

∑
i=1

[ψd(t)− ψ(t)]2 (19)

MRE[ψd(t), ψ(t)] =
1
N

N

∑
i=1

∣∣∣∣ψd(t)− ψ(t)
ψ(t)

∣∣∣∣× 100% (20)

where Ψd(t) is the expected heading angle, Ψ(t) is the actual heading angle, and N is the
total number of samples.

The USV in this paper is equipped with sensors on both sides, which can detect the
environmental disturbance force on the ship body, including wind disturbance force Fwind
and wave disturbance force Fwave. The force analysis of USV is shown in Figure 7, in which
the directions of Fwind and Fwave are randomly selected.
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In Figure 7, the forward driving force Ffrant of the USV is constant. FR is the resultant
force of environmental disturbance on the right side of the USV, and the direction of FR is
consistent with the negative direction of Xb-axis. FL is the resultant force of environmental
disturbance on the left side of the USV, and the direction of FL is consistent with the positive
direction of Xb-axis. The expressions of FR and FL are:{

FR = Fwind · cos(π − γ) + Fwave · cos(π − β)
FL = Fwind · cos γ + Fwave · cos β

(21)

where γ is the included angle between the wind disturbance force and the positive direction
of the Xb-axis; β is the included angle between the wave disturbance force and the positive
direction of the Xb-axis. A yaw angle ε(t) is obtained by using the environmental disturbance
information. Then, set a compensation angle α(t), whose value is consistent with the yaw
angle ε(t). The formula is:

α(t) = ε(t) =

∣∣∣∣∣π2 − arccos(
|FR(t)− FL(t)|

Ff
)

∣∣∣∣∣ (22)

where, FR(t) is the resultant force of environmental disturbance on the right sides of the USV
detected by the sensor at time t. FL(t) is the resultant force of environmental disturbance on
the left sides of the USV detected by the sensor at time t. After the compensation angle α(t)
is obtained, α(t) is introduced into the PI controller:

ω(t) = Kp[ψd(t)− ψ(t)] + Ki

∫
[ψd(t)− ψ(t)]dτ (23)

where Ψd(t) is the expected angle between the forward direction of the USV and the forward
direction of the planning path. In order to resist the impact of environmental disturbance,
Ψd(t) needs to be equal to the compensation angle α(t), i.e., Ψd(t) = α(t). Ψ(t) is the actual
included angle between the forward direction of the USV and the forward direction of the
planning path. Kp is the proportional coefficient. Ki is the integral coefficient. Let Fmax be
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the maximum force that can yaw the USV; when |FR − FL| > Fmax, the USV deviates from
the planning path, as shown in Figure 8.
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Figure 8. USV deviates from the planning path.

In Figure 8, the red line represents the planning path. ε is the yaw angle obtained by
using the environmental disturbance information, and α is the compensation angle. The
black dotted line is the simulated path after the USV deviated from the planning path.
When using the PI control to realize the control of the USV, the proportional coefficient Kp
and integral coefficient Ki must be adjusted in real-time. There is a nonlinear relationship
between Kp and Ki. Traditional PI controllers adjust Kp and Ki manually, which leads to
slow response speed and the poor anti-interference ability of PI controller. Therefore, a
DRNN with strong self-learning abilities is combined with a PI controller to adjust Kp
and Ki in this paper. In contrast to the traditional PI controller, the DRNN-PI controller
adjusts Kp and Ki by obtaining the dynamic characteristics of the system in the internal
feedback loop through the recursive nerve. The structure of DRNN-PI controller is shown
in Figure 9.
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In Figure 9, the expected included angle between the forward direction of the USV
and the forward direction of the planning path is equal to the compensation angle, i.e.,
ψd(t) = α(t). The error e(t) is the difference between the expected included angle ψd(t) and
the actual included angle ψ(t), i.e., e(t) = α(t) − ψ(t). The integral separation is used to solve
the integral saturation problem of the PI controller. When the integral is about to reach the
saturation state, set the dead zone to limit the integral from reaching the saturation state.
When integral saturation occurs, integral separation is used to eliminate integral saturation.

Before using the DRNN-PI controller, the parameters of DRNN need to be determined.
First, the structure of the neural network is determined. In this paper, the number of input
layer nodes is 3, the number of hidden layer nodes is 4, and the number of output layer
nodes is 2. Second, each layer of the neural network is assigned an appropriate weight
value and deviation value. In this paper, the initial weight value is 1, and the deviation
value is 0. Finally, the activation function, learning rate, and inertia coefficient (suitable for
the actual problem) are selected. In this paper, the ReLu function was used as the activation
function of the neural network. The learning rate was 0.01, and the inertia coefficient was
0.1. The process of selecting proportional coefficient Kp and integral coefficient Ki by DRNN
is shown in Algorithm 2:

Algorithm 2: DRNN-PI controller

Step1: Initialize parameters;
Step2: α(t)← (22);
Step3: ψd(t) = α(t);
Step4: Sample ψd(t) and ψ(t);
Step5: ω(t)← (23);
Step6: The inputs of DRNN←ψd(t), ψ(t), ω(t);
Step7: The outputs of DRNN←Kp, Ki;
Step8: DRNN starts iterative learning;
Step9: Return Kp and Ki;

5. Simulation Experiment and Discussion

The simulation environment was based on the public water area of Yuyuantan Lake,
located in the west of Beijing. The simulation experiment used Windows 10 as the operating
system and Unity3D as the simulation tool. The hardware platform was an Intel Core
i5-10200h processor with a main frequency of 2.4 GHz and 16 GB memory. In order to verify
the effectiveness of the algorithm, a map of the simulation experiment was established
based on Section 3. The parameters of the proposed algorithm and simulation experiment
in this paper are presented in Table 3.

Table 3. The algorithm and simulation experimental parameters.

Parameters Definition Numerical Value

u (m/s) Forward speed of USV 10
Ffront (N) Forward force of USV 30
r (rad/s) Maximum angular velocity of USV 0.3

R (m) Minimum turning radius of USV 3
a (m) x-axis radius of obstacle 8
b (m) y-axis radius of obstacle 8

q x-axis gain of obstacle 1.5
p y-axis gain of obstacle 1.5

Rs (m) Safety range of USV 6
Fmax (N) Maximum disturbing force of USV 10

B Inertia coefficient 8
η Repulsion coefficient 6
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The parameter values in Table 1 are derived from experience. We created a 1000 m
× 1000 m square 3D map containing some of the environmental disturbance areas. The
co-ordinates of the center point of the square 3D map were (0,0). The upward direction
along the center point on the map plane was the Ye-axis, and the rightward direction along
the center point on the map plane was the Xe-axis. The positions of obstacles on the map
were random.

5.1. Simulation Experiment of Neural Network

We set a start point and a target point in an area containing obstacles and used the
RRT algorithm to plan the path from the start point to the target point. The USV advanced
at a speed of 10 m/s, and we used a DRNN-PI controller to control the steering of the
USV. The DRNN neural network was trained based on the principle of the minimum
difference between the actual heading angle and the expected heading angle of the USV.
The simulation experiment was conducted in an obstacle-ridden environment. The BP and
CMAC algorithms were used as comparison algorithms, and the error curves of the neural
network are shown in Figure 10.
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It can be seen from Figure 10 that the convergence speed of the BP and CMAC
algorithms is slower than that of the DRNN algorithm. The error curve of the BP algorithm
tends to be stable only when the step in the iterations reaches about 1300. The error curve
of the CMAC algorithm tends to be stable only when the step in the iterations reaches
about 1200. When the DRNN algorithm iterates to about 1000 steps, the error curve starts
to stabilize. Therefore, the convergence speed of the DRNN algorithm in the obstacle
environment is higher than that of the comparison algorithm, and the loss value of the
DRNN algorithm is lower.

The BP, CMAC, and DRNN network models were established. The network model
parameters were set and trained 2000 times, respectively. The loss function value and
computational time after running the program were recorded. A comparison of the results
for the control accuracy of different models is shown in Table 4.

Table 4. Control accuracy of different models.

Algorithm RMSE MRE Loss Computational Time (s)

BP-PI 7.3519 12–14% 0.0396 18.5181
CMAC-PI 6.5987 8–11% 0.0287 16.2566
DRNN-PI 5.9182 7–9% 0.0211 16.3271
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Table 4 shows that, compared with BP and CMAC, the RMSE, MRE, and Loss of
DRNN networks are lower. Because the hidden layer structure of DRNN is more complex,
the computational time of DRNN is long, yet it is within a reasonable range, and the
control accuracy of the DRNN is higher, so the effectiveness of the DRNN is better. The
computational time refers to the difference between the sailing time obtained after the
planning path length is divided by 10 m/s and the actual sailing time of the USV; that is,
the time consumed by the PI controller to adjust the heading angle of the USV.

In order to avoid contingency in the experimental results, 20 groups of different
starting points and targets were selected for the simulation experiment, and the results are
shown in Figure 11.
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It can be seen from Figure 11 that during the whole USV sailing process, the compu-
tational time required for the DRNN-PI algorithm (to adjust the USV heading angle) was
between 15 s and 16 s, which was lower than the comparison algorithm. Although in the
14th and 19th experiments, the steps required by the proposed algorithm were similar to
those of the comparison algorithm, the difference was within a reasonable range. Therefore,
the simulation experiment proved that the ability to control the USV using the DRNN-PI
algorithm was high and had strong practicability.

5.2. Simulation Experiment of Path Planning

In the path-planning simulation experiment, the co-ordinates of the start point were
(423, 440), and the co-ordinates of the target point were (411, 411). Based on the above
map parameters, the RRT* algorithm with a PI controller and the B-spline curve-RRT*
with a PI controller was selected as the comparison. The comparison experiment was
conducted with the RRT* algorithm with a PI controller, the B-spline curve-RRT* with a
PI controller, and the VPF-RRT* algorithm with PI controller to verify the effectiveness
of the planning path of the VPF-RRT* algorithm. The experimental results are shown in
Figures 12–14 and Table 5.
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Table 5. Results for path planning simulation experiment.

Algorithm Name Path Length (m) Total Turning Angle Computational Time (s) Sailing Time (s) Normalization Index

RRT* with PI
controller 1710.15182 161◦3752′ 22.15748 182.54843 1.43525

B-spline
curve-RRT* with

PI controller
1952.94236 286◦1475′ 26.22971 201.21855 1.63901

VPF-RRT* with PI
controller 1623.07952 89◦1398′ 22.87613 178.33216 1.36217

When combined with the experimental results in Table 5, the normalized index value
is the path length divided by the Euclidean distance between the start point and target
point. It can be seen from Figure 12 that the length of the planning path of the RRT*
algorithm with a PI controller is longer than the length of the VPF-RRT* algorithm with a
PI controller, and the total turning angle of the RRT* algorithm with a PI controller is also
larger than the total turning angle of the VPF-RRT* algorithm with a PI controller. It can be
seen from Figure 13 that the length of the planning path of the B-spline curve-RRT* with a
PI controller is longer than the length of the VPF-RRT* algorithm with a PI controller, and
the total turning angle of the B-spline curve-RRT* with a PI controller is also larger than the
total turning angle of the VPF-RRT* algorithm with a PI controller. As can be seen from
Figure 14, since the VPF-RRT* algorithm adjusts the position of the path nodes based on
the virtual potential field, this shortens the length of the planning path for the VPF-RRT*
algorithm and reduces the total turning angle for it; the planning path of the VPF-RRT*
algorithm was suitable for the movement ability of the USV.

In order to avoid the contingency of the experiment results, three groups of different
start and target points were selected in the path-planning simulation experiments. The
results are shown in Table 6.
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Table 6. Results for the different start and target points under path planning simulation.

Start and Target Algorithm Name Path Length (m) Total Turning Angle Computational Time (s) Sailing Time (s) Normalization Index

(−94, −27)
(347, −451)

RRT* algorithm
with PI controller 725.15104 45◦1268′ 13.20158 90.12177 1.11500

B-spline curve-RRT*
with PI controller 816.20583 50◦3288′ 14.98402 99.37544 1.25501

VPF-RRT*
algorithm with PI

controller
709.13587 44◦1534′ 13.81035 87.79353 1.09037

(400, 400)
(−400,−400)

RRT* algorithm
with PI controller 1634.98075 109◦8418′ 20.56508 171.34998 1.44513

B-spline curve-RRT*
with PI controller 2120.18598 302◦9211′ 26.30054 219.44503 1.87399

VPF-RRT*
algorithm with PI

controller
1568.27831 105◦7518′ 18.60874 168.47056 1.38617

(400, −400)
(−400, 400)

RRT* algorithm
with PI controller 1612.83788 141◦4894′ 19.32007 182.21533 1.42556

B-spline curve-RRT*
with PI controller 1984.33276 291◦0233′ 24.11328 203.55983 1.75391

VPF-RRT*
algorithm with PI

controller
1567.15489 134◦4537′ 18.83021 177.00357 1.38518

5.3. Simulation Experiment of Path Tracking

Environmental disturbance was added to the path-tracking simulation experiment.
The parameters of disturbance are shown in Table 7. In Figure 15, the blue arrow is the
wave disturbance, and the direction of the wave is consistent with the direction of the blue
arrow. The white arrow is the wind disturbance, and the direction of the wind is consistent
with the direction of the Ye-axis.

Table 7. Environmental disturbance parameters.

Parameters Definition Numerical Value

Fwind (N) Disturbing force of wind 1
Fwave (N) Disturbing force of wave 15

vwind (m/s) Velocity vector of wind 0.1
vwave (m/s) Velocity vector of wave 3
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In the path-tracking simulation experiment, the co-ordinates of the start point were
(−430,−430), the co-ordinates of the target point were (430, 430), and the light bule rectan-
gular frame in the map is the wave disturbance area. In order to verify the effectiveness
of the proposed algorithm under environmental disturbance, the VPF-RRT* algorithm
with a PI was selected as the comparison algorithm, and we compared it with the pro-
posed algorithm to verify the effectiveness of the proposed algorithm under environmental
disturbance. The experimental result is shown in Figure 15 and Table 8. The red path is
the planning path, and the green track is the actual navigation track of the USV with the
proposed algorithm. The orange track is the actual navigation track of the USV with the
VPF-RRT* algorithm with a PI controller.

Table 8. Results of the simulation experiment for path tracking.

Algorithm Name Navigating Time (s) Navigating Length (m) Total Turning Angle

The VPF-RRT* algorithm with PI controller 71.18744 1664.6812 381◦0250′

The proposed algorithm 62.86429 1598.489 206◦7511′

We combined the experimental results in Table 8. As shown by the orange track in
Figure 15, after the USV traveled to the disturbance area, due to the influence of waves,
the USV deviated from the initial planning path. After replanning the planning path, the
USV reselected the planning path that was more inclined to the direction of the Ye-axis,
which prolonged the navigating time and increased the navigating length of the USV. As
shown in the green track in Figure 14, the proposed algorithm used the anti-environmental
disturbance method based on a DRNN-PI controller such that the USV could navigate a
planned path in a disturbed area. Therefore, the navigating time of the proposed algorithm
is shorter than those of the comparison algorithms, and the navigating length of the
proposed algorithm was shorter than that of the comparison algorithm. Therefore, the
performance of the proposed algorithm on the map with environmental disturbances was
better than that of the comparison algorithms.

In order to avoid the contingency of the experiment results, three groups of different
start and end points were selected in a simulation experiment for path tracking. The results
are shown in Table 9.

Table 9. Results of different start and target points under simulation experiment for path tracking.

Start and Target Point Algorithm Name Navigating Time (s) Navigating Length (m) Total Turning Angle

(420, −50)
(−400, 0)

The VPF-RRT* algorithm
with PI controller 52.15899 1040.41123 159◦3235′

The proposed algorithm 43.70968 1009.45018 120◦9144′

(400, 400)
(−400, −400)

The VPF-RRT* algorithm
with PI controller 73.15134 1632.12661 327◦4137′

The proposed algorithm 59.08492 1601.4809 291◦1008′

(400, 400)
(−44, −131)

The VPF-RRT* algorithm
with PI controller 64.15184 1303.02153 186◦5998′

The proposed algorithm 41.21003 927.60188 154◦3234′

In order to avoid contingency in the experimental results for the total turning an-
gle, 20 groups of different starting points and targets were selected for the simulation
experiment, and the results are shown in Figure 16.
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It can be seen from Figure 16 that the total turning angle of the proposed algorithm is
between 120 and 370, which is lower than the comparison algorithm. Although the total
turning angle of the proposed algorithm is similar to that of the comparison algorithm in the
sixth experiment, the difference is within a reasonable range. The simulation results show
that the proposed algorithm has better control over the USV and has stronger practicality.

6. Conclusions

In this paper, a path-planning method that considers environmental disturbances
based on VPF-RRT* is proposed. First, on the basis of the RRT* algorithm, a VPF-RRT*
algorithm is proposed that can conduct a planning path. Second, an anti-environmental
disturbance method based on a DRNN-PI controller is proposed, allowing the USV to
eliminate environmental disturbances and still track the planning path. The compara-
tive simulation experiments between the proposed algorithm and other algorithms were
conducted within two different experimental scenes. In the path-planning simulation exper-
iment, we compared VPF-RRT* to the RRT* algorithm; the VPF-RRT* algorithm performed
a shorter planning path and a smaller total turning angle, which is conducive to USV path
tracking. In the path-tracking simulation experiment, the USV using the proposed algo-
rithm could effectively compensate for the impact of environmental disturbances and keep
navigating along the planning path. In order to avoid the contingency of the experiment
and verify the effectiveness and generality of the proposed algorithm, three experiments
were conducted. The experimental results show that the path length of the proposed
algorithm was better than other algorithms, and the USV using the proposed algorithm
could effectively overcome the impact of environmental disturbances.

In future research, the proposed algorithm might be improved in two aspects. First, most
of the parameters in the proposed algorithm were obtained by experience, and these would
have been influenced by subjective factors. These parameters can be optimized by other
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methods in the future. Second, this paper does not consider the traversal method of multitarget
points. In future research, other algorithms will be introduced to determine the traversal order
between multitarget points. In addition, the algorithm proposed in this paper has not been
tested on a real USV and will be tested on a real USV in the future.
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