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Abstract: Lodging is one of the major issues that seriously affects wheat quality and yield. To obtain
timely and accurate wheat lodging information and identify the potential factors leading to lodged
wheat in wheat breeding programs, we proposed a lodging-detecting model coupled with unmanned
aerial vehicle (UAV) image features of wheat at multiple plant growth stages. The UAV was used to
collect canopy images and ground lodging area information at five wheat growth stages. The PSPNet
model was improved by combining the convolutional LSTM (ConvLSTM) timing model, inserting the
convolutional attention module (CBAM) and the Tversky loss function. The effect of the improved
PSPNet network model in monitoring wheat lodging under different image sizes and different growth
stages was investigated. The experimental results show that (1) the improved Lstm_PSPNet model
was more effective in lodging prediction, and the precision reached 0.952; (2) choosing an appropriate
image size could improve the segmentation accuracy, with the optimal image size in this study being
468 × 468; and (3) the model of Lstm_PSPNet improved its segmentation accuracy sequentially
from early flowering to late maturity, and the three evaluation metrics increased sequentially from
0.932 to 0.952 for precision, from 0.912 to 0.940 for recall, and from 0.922 to 0.950 for F1-Score, with
good extraction at mid and late reproductive stages. Therefore, the lodging information extraction
model proposed in this study can make full use of temporal sequence features to improve image
segmentation accuracy and effectively extract lodging areas at different growth stages. The model can
provide more comprehensive reference and technical support for monitoring the lodging of wheat
crops at different growth stages.

Keywords: unmanned aerial vehicle; deep learning; Lstm_PSPNet; lodging; wheat

1. Introduction

As one of the world’s most important food crops, wheat and its production are of
great significance to ensuring global food security. For a long time, and affected by diseases
and insect pests, typhoons and heavy rainfall [1,2], there have been lodging phenomena
of different severity in the process of wheat planting which seriously threaten the healthy
wheat production and cause severe economic losses. Rapid assessment of crop lodging
areas is important for understanding the causes of lodging, yield assessment, loss estimation
and agricultural research. In the monitoring of lodging, traditional methods mainly rely on
manual work that is time-consuming and labor-intensive. Based on the latest information,
processing technology can help accurately identify wheat collapse, provide powerful
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technical tools for scientific damage determination and post-disaster compensation, and
provide strong support for rapidly obtaining the statistics of wheat yield. Therefore, it is of
great value and significance to study nondestructive monitoring methods and technologies
of wheat lodging for world food stability.

Remote sensing is a technique for acquiring information at a certain distance through
specific sensors [3], and has been widely used in agricultural production in recent years.
Remote sensing provides time- and space-monitoring data, and can frequently monitor the
incidence, distribution and severity of lodging in large areas and different regions [4,5].
Satellite remote sensing platforms can monitor the structural and spectral properties of
vegetation at different spatial and temporal scales. Some scholars have explored the
application of satellite optical images in crop lodging monitoring. For example, Guan et al.
proposed a lodging area estimation method based on a Sentinel 2 optimal grid unit, and a
crop lodging rate using machine learning methods to overcome the limitations of traditional
pixel-based mapping methods that cannot obtain quantitative lodging information [6]. In
recent years, multi-source satellite remote sensing data have been continuously enriched.
Synthetic aperture radar (SAR) can achieve high-resolution synthetic aperture microwave
imaging coverage and all-weather capabilities, and can perceive highly sensitive crop
structure changes well [7,8]. The Sentinel 1A can continuously provide C-band SAR images
(in all weather and all day) with two microwave channels. The revisiting period is 12 days,
and the coverage is 250 km. Shu et al. [9] used Sentinel 1A data before and after the
dual-polarization development change detection method to calculate the lodging angle
and monitor the lodging area in maize using plant height. Although some researchers
mainly use the single polarization and dual polarization of Sentinel 1 to solve the problem
of crop lodging, some researchers use the multi-configuration (multi-polarization and
multi-incident angle) data of RADARSAT-2 [10,11]. In their study, the authors found
that polarization ratios (especially those based on odd/even scattering) are sensitive in
distinguishing lodging and non-lodging regions. However, each satellite platform contains
a fixed revisit cycle, sometimes resulting in satellite-based data that cannot provide timely
data for crop lodging assessment.

In recent years, with the rapid development of UAV platforms and information process-
ing technology, UAVs have played an increasingly important role in agricultural monitoring.
With the advantages of low cost, high efficiency and high flexibility, UAVs have been widely
concerned and rapidly promoted and applied in precision agriculture. At present, many
studies use RGB images combined with machine learning methods to extract lodging
information and area [12,13]. RGB images contain three bands of red, green and blue
data. Zhao Jing et al. [14] used a UAV remote sensing platform to obtain RGB visible light
images after wheat lodging, extracted the digital surface model (DSM) image, calculated
the overgreen vegetation (EXG) index, and obtained the DSM + RGB fusion image and
the DSM + EXG fusion image. The maximum likelihood method and the random forest
method were used to supervise and classify the two feature fusion images and extract
the wheat lodging area. It was found that the DSM + RGB feature fusion image had the
highest accuracy in extracting the wheat lodging area, with an accuracy of 93.75%. Li
Guang et al. [15] extracted two single features of wheat lodging based on UAV RGB images,
constructed the comprehensive features of lodging information, combined them with a
K-means algorithm to construct a multi-temporal lodging area extraction method, and
obtained a lodging recognition model with good generalization ability. Chauhan et al.
used UAV multispectral images to classify lodging wheat with different severity by using
a multi-resolution segmentation (MRS) algorithm and a nearest neighbor classification
algorithm. They found that red and near-infrared band data can effectively distinguish
different categories with an overall accuracy of 90% [16]. Cao et al. proposed a hybrid
algorithm based on a watershed algorithm and adaptive threshold segmentation to extract
wheat lodging, which is better than a single watershed algorithm [17]. The recognition
accuracy of machine learning technology applied to UAV lodging monitoring is high,



Drones 2023, 7, 143 3 of 14

but its practical application is more complicated, and it is necessary for experts to select
certain features.

Compared with traditional machine learning methods, deep learning is different in
that it uses a feature extraction layer to accomplish automatic feature extraction. More
and more scholars are beginning to use deep learning for lodging monitoring of UAV.
New information processing technology plays an increasingly important role in image
classification, target detection, and image segmentation using its efficient deep learning
algorithms. Many scholars have conducted a lot of research on crop lodging monitoring
based on UAV remote sensing technology and deep learning methods. Zhao et al. used
the Unity Networking (Unet) network to extract the lodging area of late mature rice,
and the dice coefficient reached 0.9442 [18]. Yang et al. used the FCN-AlexNet network
to construct an extraction model suitable for rice lodging, and the extraction accuracy
reached 94.43%, which was better than traditional machine methods such as the maximum
likelihood method [19]. For the extraction of corn lodging area, Zheng et al. achieved
an extraction accuracy of a corn lodging area of 88.65% based on the FCN8s network of
VGG16 [20]. In addition, besides applying existing deep learning models, it is also an
important that research is directed at improving existing models and constructing new
models for high-precision estimation of specific crop lodging. For sunflower lodging
monitoring, Song et al. improved the semantic segmentation network SegNet by adding
skip connections, separable convolutions and conditional random fields on the basis of
the original network, resulting in an accuracy of 89.8% in extracting fall; this accuracy is
better than that of support vector machines (SVM), fully convolutional networks (FCN)
and the original SegNet [21]. Deep learning has achieved some research results in the
lodging extraction of various crops, but it has just started, and more research is urgently
needed to serve practical applications. Regarding wheat lodging, most researchers have
conducted wheat lodging extraction based on a single growth period, while little research
has been conducted on multiple growth periods. Based on UAV remote sensing data,
Zhao et al. used a convolutional neural network to construct an extraction model for two
growth stages of wheat at early filling and maturity, and the average accuracy reached
89.23% [22]. Zhang et al. [23] automatically extracted wheat lodging regions based on
transfer learning and a deepLab v3+ network for five fertility stages: early flowering,
late flowering, filling, early maturity, and late maturity, achieving 90.7%, 87.6%, 88.8%,
92.3%, and 91.3% extraction accuracy, respectively. However, these studies only used the
characteristics of each growth stage for segmentation, and did not consider that lodging
information could be transmitted between different growth stages of crops in the process
of temporal sequence image segmentation. When extracting the lodging information from
the images of one crop growth period, the segmentation and classification accuracy of
the crop’s lodging period can be improved based on the segmentation and classification
information of the crop images in other periods.

The main conclusions of this study were as follows: (1) Based on UAV images, and on
the basis of improving the existing deep learning methods, a lodging information extraction
model is proposed which can couple the image features of a wheat multi-growth period;
(2) The feasibility of the method proposed in this study for monitoring lodging information
during multiple growth periods of wheat is explored.

2. Materials and Methods
2.1. Field Trial

A field trial was conducted at the Baihu Farm in Lujiang County, Hefei City, Anhui
Province, China (117◦27′ E, 31◦13′ N) in the 2018–2019 cropping season. The area had a
subtropical monsoon climate, with an annual average temperature of 13–20 ◦C and an
annual precipitation of 800–1500 mm, which was suitable for wheat production. Wheat (cv.
Ningmai 13) was planted in 30 plots each with the size of 3 × 4 m. This study consisted
of four base nitrogen application treatments, 0 kg/ha (black box), 120 kg/ha (yellow
box), 180 kg/ha (blue box), 240 kg/ha (red box) (Figure 1). Phosphorus and potassium
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fertilizers are applied at planting at the same rates of P2O5 120 kg/ha and K2O 120 kg/ha.
Topdressing was carried out at the wheat reviving stage.
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Figure 1. Experimental design of four nitrogen fertilizer treatments: 0 kg/ha (black box), 120 kg/ha
(yellow box), 180 kg/ha (blue box), 240 kg/ha (red box).

2.2. Data Collection and Preprocessing

In this study, the UAV images and ground lodging area information were collected at
the different stages of wheat growth in 2019. The UAV images were acquired at the stages
of early flowering (April 20), late flowering (April 24), filling (May 1), early maturity (May
9), and late maturity (May 18). The image data were acquired by DJI 4pro (DJI Innovation
Technology, Shenzhen, China) in parallel with the ground lodging survey. The flight height
and speed were set at 20 m and 3 m s-1, respectively. The resolution of a single RGB
image was 5472 × 3648 pixels. The spatial resolution at this altitude was 0.5 cm/pixel. DJI
GS Pro software was used for the flight route design of the UAV. Both forward and side
overlapping of the RGB image were set at 80%. The shooting interval of visible light camera
was set at 2 s. A total of 223 RGB original images were obtained from five camera shots.

The GPS points were collected by Tianbao R2 (Trimble, Stuttgart, Germany) and
used to make geometric corrections with an error of 2 cm or less. Photoscan (Agisoft, St.
Petersburg, Russia) software was used to mosaic UAV images, and control points were
added in the middle to complete geometric correction. The UAV images from the five
wheat growth stages were obtained. The experimental area was cut out, and five RGB
images with a size of 2304 × 10,000 pixels were obtained, as shown in Figure 2. The color
and brightness of the observed wheat canopy images differed due to the different growth
states of wheat at different growth stages.

The lodging area data were obtained based on the visible image of the UAV, acquired
using Labelme software (CSAIL, Boston, MA, USA), by manually extracting the wheat
lodging areas in the images with the guidance of agronomic experts.
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Figure 2. Visible light images and labeling results of five wheat growth stages. A1 through A5 are
the visible images from the five growth stages of early flowering (A1), late flowering (A2), filling
(A3), early maturity (A4) and late maturity (A5), respectively. (B1–B5) are the corresponding labels
of the visible images. In the label data, the red part is the wheat lodging area, and the black part is
the non-lodging area.

2.3. Data Augmentation

For the pre-processed image data in the study area, slide window was performed at
an interval of 468 pixels, that is, the image size was 468 × 468, and a total of 2400 RGB
images were obtained. By randomly inverting, rotating, adding noise and filtering the raw
data, the data are enlarged. The number of images in each group was increased to 7200,
and the data were packed according to a time slice of five photos (each field was arranged
according to five periods respectively) divided into 1440 groups and divided into training
and test sets according to a 4:1 ratio. To avoid data imbalance between the training set and
validation set caused by the differences in illumination and growth trend of UAV image
data at a single growth stage, the data of each time slice were randomly disrupted and
randomly extracted to form the training dataset and validation dataset. For the PSPNet
model, the enlarged image can be divided in a ratio of 4:1.

For further comparative analysis of the network model, sliding Windows of other
sizes were used in this study for comparison, respectively 156 × 156,312 × 312,624 × 624.
The datasets’ production processes were the same as above.
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2.4. Construction of a Novel Extraction Method for Wheat Lodging Information

The PSPNet network is proposed as a deep learning network to deal with segmen-
tation problems at different scales. The network is characterized by the introduction of
the pyramid pooling module (PPM), which deeply analyzes the high-dimensional feature
layer with rich semantic information so that the global and local connections of the feature
layer work together in the final prediction, which can improve the image segmentation
quality [24]. Due to many practical problems, it is difficult to obtain high-quality data, so
PSPNet has a good application in many fields, such as bridge crack monitoring [25,26], mu-
ral segmentation [27,28], remote sensing image segmentation, and so on [29–31]. However,
in the field of crop inversion extraction, there are few studies based on using PSPNet to
extract crop inversion information. The PSPNet network is suitable for scenarios in which
the lodging dataset is complex and the lodging area varies in size. Although the PSPNet
network model can fuse enough deep features, the shallow features are insufficient [32].
For UAV images with rich details and features, only analyzing high-dimensional features in
the parsing process will inevitably cause details in the image to be lost, resulting in blurred
segmentation edges [33,34].

The RGB image data obtained by the UAV are characterized by a high pixel count and
many detailed features. To obtain a better segmentation effect, the segmentation model
needs to take into account both the depth resolution of a single feature layer and the
utilization of different dimensional features. In order to obtain a more suitable model for
wheat lodging information extraction, this study combined the ConvLSTM timing sequence
model, and inserted the convolutional attention module (CBAM) and the Tversky loss
function to improve the PSPNet model.

LSTM (long short term memory) is a neural network capable of memorizing long
and short term information, solving the problem of feature coverage due to the excessive
length of the network. It extracts the image’s information features in a similar manner to
the extraction of sequence features in order to extract the image’s contextual information.
ConvLSTM is a temporal series model applied to two-dimensional images [35]. Its core
essence is the same as LSTM, which takes the output of the previous layer as the input of
the next layer. The difference is that after adding the convolution operation, not only can
the temporal series relationship be obtained, but the features and spatial features can also
be extracted, much like the convolution layer. The switching between states is also replaced
by convolution calculations.

it = σ
(
Wix ∗ xt + Wih ∗ ht−1 + Wic

◦
ct−1 + bi

)
ft = σ

(
W f x ∗ xt + W f h ∗ ht−1 + W f c

◦
ct−1 + b f

)
ot = σ

(
Wox ∗ xt + Woh ∗ ht−1 + Woc

◦
ct−1 + bo

)
gt = tan h

(
Wgx ∗ xt + Wgh ∗ ht−1 + bg

)
ct = ft

◦
ct−1 + it

◦
gt

ht = ot
◦

tan h(ct)

(1)

where the subscript t represents the t step of ConvLSTM; xt represents the input data; and
ht indicates hidden status. ct represents the state of the storage unit; and it, ft and ot are
the input, forget and output doors of ConvLSTM, respectively. W and b are weights and
biases that need to be learned; *,

◦
, σ and tan h, respectively, are the convolution operation,

elements’ multiplication, Sigmoid function and tan h function. Here, xt, ct, ht, it, ft and ot
are all three-dimensional tensors, and convolution operation is used during state-to-state
transition and input-to-state transition so as to retain the spatial information of wheat
lodging characteristics. The internal structure of the ConvLSTM is shown in Figure 3.
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The improved model based on ConvLstm is shown in Figure 4. Symbol ‘A’ is the
input section, and input ‘It’ is a series of inverted sequence images of length 5 arranged
in chronological order. The output image Γt is the result of the lodging segmentation
image. ‘B’ is the calculation part of feature map. The relationship between temporal
sequence images was obtained through ConvLstm, and 5-dimensional data was input
and divided into sample number, time slice and image length, width and height. A slice
was a temporal sequence with a length of 5. ‘C’ is the improved spatial pyramid pooling
module. Unlike the traditional module, the improved module uses the convolutional block
attention module (CBAM) to further extract the channel and spatial information of images
at each pooling scale before convolution and upsampling. The CBAM module is shown in
Figure 5. Unpooling is used instead of Unsampling to further preserve the original feature
information. As shown in Figure 5, there are the input, channel attention module, spatial
attention module, and output. Feature F ∈ RC∗H∗W , then one-dimensional convolution
MC ∈ RC∗1∗1 of the channel attention module were input, then the convolution result was
multiplied by the original figure. The output result of the CAM (channel attention module)
was taken as input, and two-dimensional convolution MS ∈ R1∗H∗W of the spatial attention
module was carried out. The output was then multiplied with the original.

F′ = MC(F)⊗ F (2)

F′′ = MS
(

F′
)
⊗ F′ (3)

When the spatial pyramid module is pooled, it consists of 1× 1, 2× 2, 3× 3, and 6 × 6
pooling modules, which obtain information of different scales, respectively. After CBAM,
1 × 1 convolution needs to be used, and the number of adjustment channels is 1/4 of the
number of input channels, so that the features of all levels are spliced with the original
feature map to form a global prior representation for subsequent segmentation prediction.

Due to the large gap between the wheat’s lodged and unlodged areas in the obtained
drone images, the proportion of normal and lodging samples in the final sample was
extremely uneven. In this study, the Tversky function was used as the loss function of the
improved PSPNet network, which is a good balance between precision and recall. The loss
function calculation formula is shown in Equation (1):

TL = 1− TP + ε

TP + αFN + βFP + ε
(4)
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where the value of α is 0.3, the value of β is 0.7, and the value of ε is 10−7. TP (true positive)
is the region that is correctly classified as lodging wheat, FP (false positive) is the region
that is wrongly classified as lodging wheat, and FN (false negative) is the region that is
wrongly classified as normal wheat.
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2.5. Model Training

The Lstm_PSPNet network was built in the Keras framework with Tensorflow as the
backend, using the optimizer Adadelta and using the original parameters by default. Using
the TimeDistributed wrapper, a layer is applied to each time slice of the input (that is, each
sequence of the time dimension is carried out separately as a convolution operation to
extract features). The ConvLstm core was set to 5 × 5, and the convolution core was set to
3 × 3, followed by Leaky ReLU and batch normalization after ConvLstm. The batch size
was set to 2 sequences, the training epoch was set to 80, and the learning rate of every ten
cycles was halved.

In the same programming environment, the PSPNet network was built; the optimizer
used was Adadelta and the original parameters were used by default. Based on the dataset
constructed in this study, the network was trained 80 times, and the batch size was set to
10. Based on the Nvidia 3070 hardware environment, the program was written in Python
3.8 software to implement the above process.

2.6. Accuracy Evaluation

In order to evaluate the classification quality of the model, three evaluation indexes
were adopted, namely Pr (precision), Rc (recall) and F1-Score. The corresponding equations
are shown in Equations (5)–(7). Pr and Rc can reflect the accuracy of lodging area extraction
by the model, and F1-Score integrates the results of both. The comparison of PSPNet
network before and after the improvement was achieved by comparing the above three
evaluation metrics.

Precision =
TP

TP + FP
(5)
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Recall =
TP

TP + FN
(6)

F1− Score =
2RcPr

Pr + Rc
(7)

TP, FP and FN represent the regions correctly and incorrectly classified as lodging
wheat and incorrectly classified as normal wheat, respectively.

3. Results
3.1. Field Lodging Scenario

The wheat in this study had different lodging situations due to different nitrogen
levels. Wheat with a basal N application rate of 120 kg/hm2 did not fall over. Wheat with
a basal N application rate of 180 kg/hm2 had fewer lodging areas. The wheat with base
N application of 240 kg/hm2 had the largest lodging areas, as shown in Figure 1. This
study covered most of the lodging situations, which basically represent various situations
that may occur in actual fields and provide effective data support for the construction of
lodging monitoring models.

3.2. Comparison of PSPNet Network Segmentation Accuracy before and after Improvement

This study’s experimental results demonstrated that the one-way LSTM model has
some predictive effect on wheat inversion at different fertility stages, but the focus of
this study was to demonstrate how effective the improved Lstm_PSPNet is. Here, the
results of late maturity of PSPNet and Lstm_PSPNet network model output were taken
as examples, that was, the digital results of Pr (precision), Rc (recall) and F1-Score. As
shown in Table 1, Lstm_PSPNet improved 5.1 percentage points, 6.6 percentage points,
and 6.3 percentage points in precision, recall, and F1-Score, respectively, over PSPNet. The
F1-Score of Lstm_PSPNet was 0.950, which was the highest accuracy, and fully balanced
the prediction errors of precision and recall, indicating that the improved Lstm_PSPNet
network model was more effective in lodging prediction.

Table 1. Accuracy comparison of PSPNet network without and with LSTM.

Model Precision Recall F1-Score

PSPNet 0.901 0.874 0.887
Lstm_PSPNet 0.952 0.940 0.950

3.3. Effect of Image Size on Lodging Monitoring

Here, the lodging monitoring effect in late maturity was taken as an example to
illustrate the influence of four images sizes on the lodging segmentation effect, as shown
in Figure 6. Among the four image sizes, 468 × 468 performed the best, with all three
evaluation metrics outperforming the other sizes. 156 × 156 had the worst effect, with
precision at 0.943, recall at 0.925 and F1-Score at 0.934, which were 0.009, 0.015 and 0.016
less than the highest precision, respectively. 624 × 624 was second only to 468 × 468, and
better than 312 × 312. 312 × 312 was better than 156 × 156. It can be concluded that when
the drone images are used for wheat lodging segmentation, the optimal image size is not as
large as possible, and selecting the appropriate size can better improve the segmentation
accuracy.
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3.4. Comparison of Monitoring Effects in Different Growth Periods

Here, the image size of 468 × 468 was taken as the experimental sample, and the
results of wheat lodging extraction in five growth periods were obtained based on the
Lstm_PSPNet deep learning network, as shown in Figure 7. From early flowering to late
maturity, the three evaluation indexes increased successively; precision grew from 0.932 to
0.952, recall from 0.912 to 0.940, and F1-Score from 0.922 to 0.950. However, there was little
difference between early and late flowering, with their F1-Scores differing by only 0.001,
and the accuracy increment was larger from late flowering to late maturity. Overall, the
Lstm_PSPNet model trained in this study had better extraction results in both mid and late
reproductive stages.
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4. Discussion
4.1. Comparative Analysis between the Method Proposed in This Paper and Previous Studies

Traditional machine learning methods, such as nearest neighbor, linear discriminant
analysis, random forest (RF), neural network (NN), and support vector machine (SVM),
were mostly used in previous crop lodging monitoring research. Liu et al. [36] applied SVM
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to the color, texture and thermal infrared features of crops to distinguish lodging and non-
lodging crops. Zhang et al. [37] used the color and texture features of UAV images combined
with SVM for wheat lodging detection. With the development of smart agriculture that
requires high-precision and efficient crop lodging monitoring, scientists have introduced
deep learning network models for image processing and data analysis [38], which have
also been proven to be superior to many existing machine learning algorithms [39]. Zhang
et al. [40] combined the UAV RGB images with the GoogLeNet learning algorithm for
wheat lodging detection, with an accuracy of more than 90%. Hamidi Sepehr et al. [41]
used computer vision and three deep learning methods (Faster R-CNN, YOLOv2 and
RetinaNet) to extract corn lodging information from UAV RGB images. However, these
studies only used primitive machine learning and deep learning network models to segment
the features of each growth stage, and did not consider that lodging information could be
transmitted between different growth stages of crops in the process of temporal sequence
image segmentation. In this study, the PSPNet model is improved by introducing the
ConvLSTM neural network with the ability to memorize long- and short-term information,
inserting the convolutional attention module (CBAM) and the Tversky loss function to
transfer the temporal sequence relationship between different growth periods network-by-
network, thus improving the segmentation accuracy.

4.2. Analysis of Wheat Lodging Monitoring Effect under Different Size Images

At present, wheat lodging extraction is mostly based on a single image size, and there
is little research on the exploration of image size. For example, Chauhan et al. achieved
an overall accuracy of 0.9 for lodging wheat extraction of different grades based on a
single-size image [16]. Zhang et al. extracted wheat inversion based on an image pixel size
of 256 × 256 and obtained an extraction accuracy of about 0.92 [23]. Yang et al. achieved
89% accuracy for wheat lodging extraction based on the improved Unet model using a
single-size image [42]. This study further investigated the effect of different size images
on wheat lodging extraction. The results showed that the optimal image size is not as
large as possible, showing an increasing trend in accuracy from 156 to 312 to 468 and
a decreasing trend from 468 to 624. Intuitively, the larger the image size is, the more
texture and context information it has, and the better the features can be captured. In
addition, some discriminative features are better obtained when the image size becomes
larger. However, when the size becomes larger, to a certain extent, limited by the size
of the convolution kernel, its classification performance may remain unchanged or even
deteriorate. In addition, as the size increases, hardware requirements will also increase,
and the appropriate size needs to be selected in order to maximize efficiency.

4.3. Analysis of Wheat Lodging Monitoring Coupled with Images of Multiple Growth Stages

Due to the different effects of cultivation management, climate environment, diseases
and other factors on crop lodging, crop lodging behaves differently in different growth
periods. Most of the existing extraction methods for wheat lodging areas are based on data
from a single growth period. For example, Chauhan et al. used UAV multispectral images to
extract lodging based on a single growth period, and the overall accuracy reached 90% [16].
Cao et al. proposed a hybrid algorithm based on watershed algorithm and adaptive
threshold segmentation for extracting wheat lodging, which achieved better segmentation
results than the single watershed algorithm [17]. Zhao et al. used UAV technology and a
convolutional neural network to construct a lodging extraction model for lodging wheat
in two fertility stages, early filling and maturity, with an average accuracy of 89.23% [22].
In terms of wheat lodging extraction, Zhang et al. [23] analyzed the differences of more
growth stages, and their deepLabv3+ network model had good monitoring effect under
multiple growth stages. However, the model could not make use of temporal sequence
characteristics to predict segmentation, and the results of the filling stage were better than
those of early and late maturity. In this study, the model of Lstm_PSPNet made full use
of the correlation between the before and after images for analysis and prediction, and its
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segmentation accuracy improved sequentially from early flowering to late maturity, which
fully demonstrates that the use of temporal sequence features can improve segmentation
accuracy. However, due to the little difference in lodging between the early flowering stage
and the late flowering stage, the segmentation effect is similar. The results of this study can
provide strong technical support for lodging damage monitoring.

4.4. Future Work

In this study, the data of five growth stages were collected, and the segmentation accu-
racy was improved by using temporal sequence characteristics which provided technical
support for estimating the loss of lodging. However, in order to achieve a function similar
to typhoon satellite cloud image prediction, it is necessary to collect more fertility period
data and reconstruct the existing network.

5. Conclusions

In this study, the canopy images and ground lodging area information of wheat at five
growth stages were collected based on UAV RGB images, and the improved Lstm_PSPNet
network model was used to explore the monitoring effects of wheat lodging under different
image sizes and different growth stages. The results showed that compared with the
original PSPNet model, the improved Lstm_PSPNet network can improve the accuracy of
wheat lodging information monitoring. Selecting the appropriate image size can ensure the
maximum efficiency of lodging image information. With the advance of the growth period,
the segmentation accuracy of the model was gradually improved, which fully indicates that
the segmentation accuracy can be improved by using the temporal sequence characteristics
of the model. The model has higher application potential in the monitoring of wheat
lodging information at multi-growth stages. This study provides a more comprehensive
reference and technical support for wheat multi-fertility inversion information monitoring
and disaster early warning forecasting.
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