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Abstract: Fully autonomous trajectory planning for multiple unmanned aerial vehicles (UAVs) is
significant for building the next generation of the logistics industry without human control. This
paper presents a method to enable multiple UAVs to fly in the same trajectory without collision. It
benefits several applications, such as smart cities and transfer goods, during the COVID-19 pandemic.
Different types of nonlinear state estimation are deployed to test the position estimation of drones
by treating the information from AirSim as offline dynamic data. The obtained global positioning
system sensor data and magnetometer sensor data are determined as the measurement model. The
experiment in the simulation is separated into (1) the localization state, (2) the rendezvous state,
in which the proposed rendezvous strategy is presented by using the relation between velocity
and displacement through the setting area, and (3) the full mission state, which combines both the
localization and rendezvous states. The localization state results show the best RMSE in the case of
full GPS available at 0.21477 m and 0.25842 m in the case of a GPS outage during a period of time
by implementing the ensemble Kalman filter. Similarly, the ensemble Kalman filter performs well
with an RMSE of 0.5112414 m in the rendezvous state and demonstrates exceptional performance in
the full mission state. Moreover, the experiment is implemented in a real-world situation with some
basic drone kits as proof that the proposed rendezvous strategy can truly operate.

Keywords: AirSim; Kalman filter; UAV; rendezvous; trajectory planning

1. Introduction

Currently, drones and unmanned aerial vehicles (UAVs) play essential roles in many
fields and industries, such as remote sensing (e.g., mining), military applications, infras-
tructure inspection, and media and entertainment [1,2]. A swarm of UAVs is used in many
cases to achieve high performance in a short time, such as in forest firefighting missions [3].
A UAV rendezvous strategy, as presented in this work, can contribute to fully autonomous
trajectory planning for multiple UAVs, which has two main advantages as determined by a
literature review:

1. For autonomous aerial docking and refueling, this technology is theorized to endure
longer flight times and a better range than current technologies. In the docking
mission of a UAV and a mothership, researchers want the follower UAV to be close to
the mothership, deploying an optical sensing navigation system [4,5]. The guidance
law for rendezvous has been presented to allow a fixed-wing UAV to rendezvous in a
circular path, which creates an acceleration command based on the phase difference
from the moving point and the side-bearing angle with respect to the center of the
circle [6].
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2. In the future, rendezvous methods can be applied to swarm UAV missions to re-
duce working space and prevent collisions between UAVs, such as parcel deliv-
ery missions [7]. The research is implemented with different kinds of algorithms,
such as sampling-based algorithms, node-based algorithms, mathematic model-
based algorithms, bio-inspired algorithms, and multi-fusion-based algorithms [8]. A
computational-intelligence-based UAV path-planning method for both rendezvous
and delivery missions is also implemented [9,10].

Simulation programs can be used to train UAVs and study UAV behavior in real-time
based on a virtual environment that is realistic and accurate without danger or risk. Testing
and designing control algorithms for multi-UAV missions is difficult because of the risk of
damage during tests and the cost of UAV systems. Therefore, many simulation platforms
for UAV control algorithms have been developed, such as [11]. In this project, Aerial
Informatics and Robotics Simulation (AirSim) is introduced [12]. AirSim is a simulator that
runs on Unreal Engine (UE) software and was developed by the Microsoft research team as
a simulation platform for AI research to experiment with deep learning, computer vision
and reinforcement learning algorithms for autonomous vehicles. Farhad et al. [13] used
UAVs and AirSim to spot poachers at night and reported findings before animals were
hurt. AirSim provides a realistic real-time environment, and in previous work [14], AirSim
was used to simulate a new method of cooperative motion planning for multiple UAVs by
combining LOS guidance and the Bézier curve (called the LOS-based Bézier method) to
guide UAVs pursuing a moving target [14]. The Bézier curve is the parametric curve used
in the computer graphic. Currently, this method has been applied in many studies. The
Bézier curve has been used for UAV trajectory planning to successfully generate an optimal
path for UAVs to avoid obstacle collisions in flight fields [15].

Moreover, the Bézier curve has been applied to trajectory generation, and tracking
algorithms developed using a ROS (Robot Operating System) for AR and Drone 2.0 quad-
copter with a Kalman filter [16]. In this work, the LOS-based Bézier method is used as the
control input of a nonlinear Kalman filter and used as the trajectory planning for the UAV
rendezvous method in Section 3. The trajectory planning and guidance system play essential
roles in the UAV rendezvous method. In previous work [14], trajectory planning—namely, the
Bézier curve—was combined with the LOS guidance system to provide better performance
than the conventional method.

A Kalman filter (KF) is a state estimation algorithm that uses a dynamic model,
such as one based on physical laws of motion and the control input used by the system;
additionally, multiple measurements, such as those obtained by GPS sensors, are used to
obtain a state that is better than that based on only one measurement. Recently, nonlinear
control has been presented to perform UAV motion control [17,18]. In nonlinear cases,
other methods are used, such as the extended Kalman filter (EKF), unscented Kalman
filter (UKF), and ensemble Kalman filter (ENKF). Farhad et al. [13] used an EKF method to
estimate the state of a system for tracking weak GPS signals. The UKF is a slightly better
option than the EKF when a combined method is used in the positioning module of an
integrated navigation information system, as in this work. Zhang et al. [19] used a UKF
for autonomous vehicle navigation with IMU, GPS, and digital compass measurements.
The ENKF is a computational technique for state-space models that is suitable for problems
with large numbers of variables, such as geophysical models. Work et al. [20] used an
ENKF algorithm to estimate the velocity field along a highway using data obtained from
GPS devices. One study [21] presents a method that can improve the performance of
a KF, namely, using a data fusion technique in the UAV for simultaneous localization
and mapping (SLAM). Another study [22] proposed a robust KF for a scenario where
the transition probability density is unknown and possibly degenerates, which is very
important in real-world applications.

This experiment aims to compare several kinds of nonlinear Kalman filters, namely,
the EKF, UKF, and ENKF. The experiment is separated into three parts. First, the localization
state has two scenarios: GPS signal always available and GPS signal loss in some duration
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time. In the localization state, the LOS-based Bézier method [14] is used as the control
input of the nonlinear KFs. Second, the rendezvous state applies the relationship between
velocity and displacement through the setting area by using nonlinear KFs to estimate
position and LOS guidance to estimate the heading angle of the target UAV. Third, the full
mission state explains the combination of both the localization and rendezvous states to
work together.

2. Related Works
2.1. AirSim

There are many platforms that can be used for simulation, such as Gazebo Koenig
and Howard [23], Hector Meyer et al. [24], and RotorS Furrer et al. [25]. RotorS and Hector
are popular micro aerial vehicle (MAV) simulators built on Gazebo, which are generally
used with the popular robot operating system (ROS). Gazebo is not a good choice for
developing a learning-based system because it can render with limited capabilities and
is not designed for efficient parallel dynamics simulation. AirSim also has its limitation:
AirSim can use only its own simplified multirotor physics engine, Fast Physics, a linear
model. Moreover, other simulators, such as Gazebo and RotorS, use their high-performance
full nonlinear physics engine model. However, AirSim is favored in this work because it is
a new guidance and localization algorithm applicable to UAVs. AirSim is an open-source
aerial informatics and robotics simulation program developed by Microsoft and can run
across platforms on MacOS, Windows, and Linux systems. AirSim supports software-in-
the-loop simulations with popular flight controllers such as PX4 Autopilot and ArduPilot
and hardware-in-loop simulations with PX4 for physically and visually realistic simulations.
The platform also supports common robotic platforms, such as robot operating systems
(ROS) at the Stanford Artificial Intelligence Laboratory [26]. Thus, AirSim uses application
programming interfaces (APIs), which can be used to interact with vehicles in simulations,
retrieve images, obtain states, and control vehicles. All APIs use an Earth-fixed northeast-
down (NED) coordinate system, which means that positive X is in the north direction,
positive Y is in the east direction, and negative Z is the altitude, according to AirSim [27].
The APIs are linked through remote procedure cells (RPCs) and are accessible via a variety
of languages, including C++, Python, C#, and Java. AirSim includes realistic sensors, such
as barometers, gyroscopes, accelerometers, magnetometers, and GPSs, according to [25].

2.2. Line-of-Sight Guidance-Based Bézier Algorithm (LOS-Based Bézier Method)

The LOS-based Bézier method [14] was introduced to aid in UAV navigation when
pursuing another UAV in AirSim. The LOS guidance method plays an essential role in
many fields, especially in guidance for underactuated marine vessels and vehicles operating
on or below the surface of the sea, as well as in path-following tasks [28]. Conceptually,
LOS guidance steers the ground velocity vector toward a target. A LOS guidance method
can estimate the azimuth angle of LOS (ΨLOS) from the position of a UAV Pq

(
xq, yq

)
and

the position of a target UAV Pt(xt, yt) based on the geometry shown in Figure 1. Thus,
a velocity command (vx, vy) for the AirSim API used to control a UAV can be written as
shown in Equations (2) and (3).

ΨLOS = tan−1 xt − xq

yt − yq
(1)

vx = vs cos ΨLOS (2)

vy = vs sin ΨLOS (3)

where vs is the ground speed of the UAV.
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Figure 1. The structure of the conventional LOS guidance method. (Red dots represent the front side
as a quadrotor moves forward, and blue dots represent the back side of the quadrotor).

The Bézier curve can be estimated from a set of control points, including a starting
point, terminal point, and shape-defined point. The Bézier curve method has been used in
motion planning algorithms for autonomous vehicles in many studies [29]. In this work,
we assume that the control points are the points that the target UAV has passed along the
path. Thus, a Bézier curve P(s) of degree n obtained from n + 1 control points (P0, P1, . . ., Pn)
can be written as:

P(s) =
n

∑
i=0

(
n
i

)
si(1− s)n−iPi s ∈ [0, 1] (4)

where: (
n
i

)
=

n!
i!(n− i)!

i ∈ 0, 1, . . . , n (5)

The objectives of the LOS-based Bézier method are to generate a UAV path from a set
of control points determined from the points that a target UAV passed and then use the
LOS guidance system to command the UAV to move along the corresponding path. This
method can guide UAVs to follow a target UAV and outperform conventional methods
(e.g., the LOS technique). However, because the Bézier path is generated before guidance
steps, this algorithm consumes more time than the conventional method. Figure 2 shows
the results of experiments presented in previous work. Since the output of this method is a
ground speed command from the LOS guidance system, this method can be used as the
control input of the nonlinear KF.

2.3. Nonlinear Kalman Filter

A KF is a state estimation algorithm that generates unknown variables that tend to be
more accurate than measurements observed over time [30]. KFs are used to estimate the
state based on linear dynamic systems processed from time k− 1 to time k. The KF model
assumes that the state vector x at time k evolves from the state vector at k− 1, as given in
Equation (6):

xk = Akxk−1 + Bkuk + wk (6)
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where Ak is the state transition model, which is multiplied by the state vector at the previous
time xk−1; Bk is the control input model, which is multiplied by the control vector uk; and
wk is the process noise vector, which is assumed to be zero-mean Gaussian with covariance
Q, and wk ∼ N (0, Qk). The observation or measurement zk of the state vector xk can be
calculated as follows:

zk = Hkxk + vk (7)

where Hk is the observation model or measurement matrix at time k and vk is the obser-
vation noise or measurement noise, which is assumed to be zero-mean Gaussian with
covariance R(vk ∼ N (0, Rk)). Q and R are typically used as tuning parameters for obtain-
ing appropriate results.
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Figure 2. The results of LOS-based Bézier simulation: (a) results of the LOS-based Bézier simulation;
(b) results of the LOS-based Bézier method on a random flight path with a 90-degree turning flight
path simulation; (c) results of the LOS-based Bézier method on a straight flight path with wind
simulation.

The standard KF is used to solve linear problems, but most real-world systems are
nonlinear [31]. For nonlinear state estimation in this paper, the EKF, UKF, and ENKF are
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introduced. Thus, the corresponding nonlinear state transition and observation models can
be written as:

xk = f (xk−1, uk) + wk (8)

zk = h(xk) + vk (9)

where f is a function used to compute the predicted state at time k from the previous
estimation at time k− 1, and function h is used to compute the predicted measurement
from the predicted state.

An EKF can be efficiently used in nonlinear models, as in the studied problem, based on
differentiation with a Jacobian matrix to reduce the mean square error of the estimates [32].
This work involves nonlinear dynamic models of UAVs and nonlinear measurement models
based on GPS sensors and magnetometer sensors.

According to St-Pierre and Gingras [33], UKFs are used in nonlinear models with
multiple types of sensor data in this work, including GPS sensor and magnetometer
data. UKFs solve the approximation issues of EKFs by using a minimal set of cautiously
chosen sample points [34]. In this work, sigma points and weights are calculated through
an unscented transformation method [35] to capture high-order information about the
considered distribution based on a very small number of points.

ENKF is a Monte Carlo approximation of KF [4], and it can avoid evolving the covari-
ance matrix of the state vector. Conceptually, instead of reweighting in the update state,
ENKF uses shifts, which allow the algorithm to remain stable in high-dimensional problems.
ENKF uses a number of sigma points (ensemble, Nens) around hundreds to thousands of
state vectors randomly sampled around an estimate and adds perturbations at each update
and prediction step. During the initialization process, an ensemble of Nens initial states ζ0
is generated by drawing random samples from a multivariate normal distribution.

In this study, nonlinear KFs are state estimators that help a GPS sensor with a magne-
tometer to localize UAVs and then use those states to compute the UAV’s proper velocity
and steering angle to utilize the proposed methods. State estimation using nonlinear KFs
will be employed when the algorithm requests the UAV positions from the sensors as de-
scribed in Sections 3.3–3.5. The states given by those sensors will be applied with nonlinear
KFs to optimize localization performance and help localize UAVs when GPS is blocked in
some areas.

2.4. Accuracy Assessment

The root mean square error (RMSE) is used for accuracy assessment in this paper. It
is calculated in both the horizontal and vertical axis directions. It computes by using the
positions estimated from the nonlinear KFs and the positions obtained from the API of the
simulation program. According to Section 2.1, all APIs use the NED coordinate system(

xapi, yapi, zapi
)
. Thus, the RMSE in each direction is given by:

RMSEx =

√√√√ 1
N

N

∑
I=1

(
xapi − xk f

)2
(10)

RMSEy =

√√√√ 1
N

N

∑
I=1

(
yapi − yk f

)2
(11)

RMSEz =

√√√√ 1
N

N

∑
I=1

(
zapi − zk f

)2
(12)

where
(

xapi, yapi, zapi
)

is an exact NED coordinate location of a UAV obtained from the

AirSim API controller and
(

xk f , yk f , zk f

)
is a NED coordinate location of a UAV estimated



Drones 2023, 7, 142 7 of 29

by nonlinear KFs. Thus, the accuracy in 2D dimensions (horizontal axis) and 3D dimensions
(horizontal and vertical axes) can be calculated using the equations below:

RMSExy =

√√√√ 1
N

N

∑
I=1

(
xapi − xk f

)2
+
(

yapi − yk f

)2
(13)

RMSExyz =

√√√√ 1
N

N

∑
I=1

(
xapi − xk f

)2
+
(

yapi − yk f

)2
+
(

zapi − zk f

)2
(14)

3. Materials and Methods

This section describes the methods used in the experiment, including the simulation
procedure for each experiment. The dynamic model of UAVs that is used for nonlinear
KFs is explained in Section 3.1. The measurement model, which includes an AirSim
GPS sensor and magnetometer, is described in Section 3.2. These models are used in the
localization state process with three types of nonlinear KFs for a follower UAV, with the
control input provided by the LOS-based Bézier algorithm, which is described in Section 3.3.
The proposed rendezvous method is presented in Section 3.4. The full mission state is
explained in Section 3.5.

3.1. Kinematic Model

This research considers the movement of UAVs in both the horizontal plane and the
vertical plane because, unlike cars, UAVs can move vertically. The kinematic model of
UAVs includes position and velocity variables. Therefore, we assume that the state vector
of a UAV in six dimensions is xk =

[
px py pz vx vy vz]T , where (px, py, pz) is the

position vector of a UAV in relation to the NED coordinate system in AirSim, according
to [27]. (vx, vy, vz) is the velocity vector of a UAV in relation to the coordinate system in
AirSim. Thus, the discrete-time dynamic UAV model is given by the following equations:

px
k = px

k−1 + vx
k ∆tk (15)

py
k = py

k−1 + vy
k ∆tk (16)

pz
k = pz

k−1 + vz
k∆tk (17)

vx
k = vx

k−1 + γx (18)

vy
k = vy

k−1 + γy (19)

vz
k = vz

k−1 (20)

where ∆tk is the value of the continuous time state vector at time k and γx and γy are the
velocity control vectors of the UAV, which are given by the output of the LOS guidance-
based Bézier algorithm in Section 2.2. According to the KF theory discussed in Section 2.3,
the transition matrix Ak and input control model Bk can be written as:

Ak =



1 0 0 ∆tk 0 0
0 1 0 0 ∆tk 0
0 0 1 0 0 ∆tk
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, Bk =



0 0
0 0
0 0
1 0
0 1
0 0

, uk =

[
γx
γy

]
(21)
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Therefore, the discrete-time dynamic model of a UAV can be written as shown in the
following equation:

xk =



1 0 0 ∆tk 0 0
0 1 0 0 ∆tk 0
0 0 1 0 0 ∆tk
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

xk−1 +



0 0
0 0
0 0
1 0
0 1
0 0


[

γx
γy

]
(22)

3.2. Measurement Model

The measurement model used in this study is based on a GPS sensor simulated in
AirSim in terms of latitude, longitude and elevation information. Geodetic coordinates,
such as latitude, longitude, and elevation, can be converted to the NED coordinates used in
AirSim by transforming the geodetic coordinates into Earth-fixed (ECEF) coordinates [36].
Then, the ECEF coordinates are converted into the NED coordinates used in AirSim. The
conversion of geodetic coordinates (latitude ς, longitude v, height ϕ) to ECEF coordinates
(X, Y, Z) can be expressed as follows:

X(ς, v, ϕ) = (N(ς) + ϕ) cos ς cos vX(ς, v, ϕ) = (N(ς) + ϕ) cos ς cos v (23)

Y(ς, v, ϕ) = (N(ς) + ϕ) cos ς sin vY(ς, v, ϕ) = (N(ς) + ϕ) cos ς sin v (24)

Z(ς, v, ϕ) = [(1− ε)N(ς) + ϕ] sin ς (25)

where:
N(ς) =

a√
1− ε2 sin2 ς

(26)

In the above equations, a is the equatorial radius, and ε2 is the square of the first
numerical eccentricity of an ellipsoid. The variables used in AirSim are set as a = 6378137
and ε = 6.69437999014× 10−3. Thus, the NED coordinates in AirSim

[
px py pz]T can be

calculated from the ECEF coordinates given by the functions X, Y, and Z and the geodetic
coordinates of geopoints in AirSim (geopoint latitude hlat, geopoint longitude hlon, and
geopoint height halt) as follows:

0 = tan−1 Z(hlat, hlon, halt)√
X(hlat, hlon, halt)

2 + Y(hlat, hlon, halt)
2

(27)

Ω =

− sin0 cos hlon − sin0 sin hlon cos0
− sin hlon cos hlon 0

cos0 cos hlon cos0 sin hlon sin0

 (28)

∀g =

px

py

pz

 =

X(ς, v, ϕ)− X(hlat, hlon, halt)
Y(ς, v, ϕ)−Y(hlat, hlon, halt)
Z(ς, v, ϕ)− Z(hlat, hlon, halt)

 Ω (29)

where 0 is defined as the angle in the Euclidean plane, given in radians, between the
positive x-axis and the ray to the point

(
Z,
√

X2 + Y2
)
6= (0, 0) [37], and ∀g is the mea-

surement equation for a GPS sensor. In AirSim, we consider the original geopoint to be
hlat = 40.544289, hlon = −4.012101, and halt = 122, which is the default setting in Air-
Sim [27]. Another measurement equation set in the experiment is the cumulative travel
distance dk as follows:

dk =
k

∑
n=1

tk

√
(vx

k )
2 +

(
vy

k

)2
(30)
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where tk is the value of the time state vector at time k. vx
k and vy

k are the velocity vectors of a
UAV in relation to the coordinate system in AirSim. ∆tk is the value of the continuous-time
state vector at time k. Thus, it can be written as:

∀d = dk − dk−1 = ∆tk

√
(vx

k )
2 +

(
vy

k

)2
(31)

Now, we consider the second sensor, which is a magnetometer. As noted in Section 2.1,
AirSim includes a realistic magnetic field. Thus, a magnetometer was attached to the
UAV to measure the magnetic field and the bearing angle of the UAV. As reported by
Shah et al. [38], the output of the magnetometer is produced in relation to the body frame
of the UAV, and the UAV is simulated in relation to the AirSim world. Thus, the bearing
angle of the UAV is given as follows:

α = tan−1 τy

τx
(32)

where τx and τy are the strengths of the magnetic field in the north and east directions or x
and y directions in the NED coordinate system, respectively. Therefore, the measurement
equation for this sensor can be written as:

α = tan−1 vy
k

vx
k

(33)

To avoid a particular case where vx
k → 0 , the measurement equation can be rewritten as:

∀x
h = cos α =

vx
k√

(vx
k )

2 +
(

vy
k

)2
(34)

∀y
h = sin α =

vy
k√

(vx
k )

2 +
(

vy
k

)2
(35)

In summary, the equation for the combined GPS and magnetometer measurements is
given as:

∀k =
[
∀T

g ∀x
h ∀y

h ∀d

]T
(36)

3.3. Localization State Processes

The processes for localization state refer to the processes to work with the area outside
of the sky-blue circle in Figure 3. The localization method is described below in Algorithm 1.
The process begins by connecting the API and AirSim and setting all initial conditions for
the nonlinear KF, including the tuning parameter. Then, iterative commands are applied for
the UAV to move following a target UAV along a given waypoint sequence. The iteration
process starts with planning the path from the set of control points (C), which includes
the points that the target UAV passes, based on the Bézier curve method described in
Section 2.2. nlbb is a tuning parameter in the LOS-based Bézier algorithm. Consequently, a
new set of control points is collected from the target UAV and used to control the following
UAV movements based on the LOS-based Bézier method, which is used as the control input
(uk) of the nonlinear KFs. The next step is obtaining a GPS sensor value and magnetometer
sensor data for nonlinear Kalman processing. The two test cases can be established from this
localization state, namely, the all-available GPS signal (full-GPS-signal) case and blocked
GPS signal case. For a blocked GPS signal, the KF’s tuning parameters R and Q are reset for
a blocked GPS signal situation. Finally, all of these datasets are input into a kinematic model
and a measurement model with three types of nonlinear KFs, and the results are compared.
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Algorithm 1: Simulation Procedure for Localization

1: Connect API to AirSim;
2: Set all tuning parameters for the nonlinear Kalman Filter;
3: Nens ← Let ensemble be 900;
4: x ← Initial state of follower UAV;
5: while Two UAVs should not collide do
6: R, Q ← Initial KF tuning parameters;
7: if C is null then
8: C ← Collect the locations that the target passes each second in nlbb;
9: end if
10: P(s)← Bézier curve from the set of control points C;
11: for i = 0 to nlbb do

12: uk ← Obtain the LOS velocity command between the UAV and P
(

i
nlbb

)
;

13: do in parallel
14: C ← Collect the target position;
15: Command the UAV following uk;
16: end do
17: if GPS is not blocked then
18: Latitude ς, longitude v, height ϕ ← Get GPS data of the follower UAV;
19: else
20: R, Q ← reset new KF tuning param;
21: end if
22: ∀g ← NED coordinates converted from (ς, v, ϕ);
23: ∀x

h , ∀y
h ← Get magnetometer data for follower UAV;

24: ∀d ← Compute the cumulative travel distance from GPS data;
25: x ← State estimation by the nonlinear Kalman filter;
26: end for
27: end while
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3.4. Proposed Rendezvous State Processes

A proposed rendezvous method guides a following UAV moving toward the target
UAV based on the heading angle estimation resulting from LOS guidance and position
estimation by nonlinear KFs. The processes work based on considering the relative velocity
and displacement between the two UAVs. The proposed rendezvous state processes apply
to the sky-blue and red areas in Figure 3, which are separated into a rendezvous zone
and a dangerous zone. Algorithm 2 and Figure 4 describe the simulation procedure of the
proposed rendezvous method, which command a UAV via conventional LOS guidance
alone. The position and velocity of the target UAV are obtained and the output is given as
the proper velocity vector from the conventional LOS guidance based on the displacement
and position of the UAVs at that time to steer the follower UAV. The experiment implements
nonlinear KFs with an offline dynamic dataset exported from AirSim and keeps the data
from the magnetometer and GPS sensor as the measurement parameters. As mentioned,
the proposed rendezvous processes deploy the relation between velocity and displacement
to define a setting parameter for the flight controller to command UAV movement.

Algorithm 2: Simulation Procedure of the Rendezvous Method

1: Connect API to AirSim;
2: Set all tuning parameters for nonlinear Kalman Filter;
3: Nens ← Let ensemble be 900;
4: x ← Initial state of the follower UAV;
5: Rd ← Set the dangerous zone;
6: while Follower UAV is in Rendezvous zone do
7: PF ← Obtain the position of the follower UAV with the GPS sensor;
8: PT ← Obtain the position of the target UAV with the GPS sensor;
9: DFT ← Calculate the displacement between the follower and target UAVs;
10: if DFT ≥ Rd then
11: vs ← Calculate the approach velocity for the follow conditions;
12: else
13: vs ← Calculate the approach velocity for slow-down conditions;
14: end if
15: ΨLOS ← Calculate the LOS angle from PF to PT ;
16: uk ← Compute the LOS velocity command;
17: Command the UAV following uk;
18: ∀g ← NED coordinates converted from PF;
19: ∀x

h , ∀y
h ← Obtain magnetometer data for the follower UAV;

20: ∀d ← Compute the cumulative travel distance from GPS data;
21: x ← State estimation by the nonlinear Kalman Filter;
22: end while

The proposed rendezvous strategy applies a displacement condition for the UAV
velocities. The higher the velocity of the target UAV is, the higher the velocity of the
follower. In far displacement between 2 UAVs, the LOS-based Bézier method can provide
excellent performance in path planning. However, only LOS guidance is recommended in
the case of two UAVs approaching or in a rendezvous state because it is a short distance
and does not require complex processes and has limited time. The displacement between
UAVs (DFT) can be computed as follows:

DFT =

√
(xT − xF)

2 + (yT − yF)
2 + (zT − zF)

2 (37)

where (x, y, z)F is the position of the following UAV and (x, y, z)T is the position of the
target UAV, which is provided by the GPS sensor and then converted to the NED coordinate
system of AirSim, as described in Section 3.2. The position of the follower UAV is computed
based on the localization method in Section 3.3. After computing the displacement between
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UAVs, the ground speed of the follower UAV (vs) can be computed using Equation (38),
which is based on the linear relation between the displacement of UAVs and the velocity of
the target UAV.

vs =


(

vm−vT
1.5×Rd−Rd

× DFT

)
+ vm −

(
vm−vT

1.5×Rd−Rd
× 1.5× Rd

)
; DFT ≥ Rd(

vT
Rd−0.5×Rd

× DFT

)
−
(

vT
Rd−0.5×Rd

× 1.5× Rd

)
; DFT < Rd

(38)

where vm is the maximum approach speed of the follower UAV and vT is the velocity of
the target UAV. We assume that vs ∈ [0, vm]. The LOS angle between UAVs is calculated
from Equation (1) with PF and PT information. Then, the horizontal command velocity
(vx, vy) is calculated with Equations (2) and (3) based on ΨLOS and vs. Finally, the follower
UAV is controlled based on a command velocity to follow the target UAV with minimum
displacement between them, and the obtained position estimation data are used by the
nonlinear KFs for state estimation.
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3.5. The Proposed Full Mission State Processes

A full mission state is implemented when the distance between two UAVs from the
starting point is large. Switching between the localization state and rendezvous state
strategy will be applied, as shown in both the inside and outside of the circle in Figure 3.
A full mission state is a mission in which a follower UAV tries to follow a target UAV
while maintaining minimum displacement between them and avoiding collisions. The
rendezvous state strategy from Section 3.4 can be used for the entire mission. However, to
fully utilize, the experiment separates into: (1) the localization state using the LOS-based
Bézier guidance systems and (2) the rendezvous state, which uses the conventional LOS
guidance. When the follower UAV is outside the rendezvous zone, the LOS-based Bézier
will be applied. Otherwise, the conventional LOS guidance method will be applied. In
summary, instead of using a single motion planning method like Algorithm 1 or Algorithm 2,
the full mission state adapts between two motion planning methods using the results
previously discussed in Section 2.2 [14].

The proposed full mission state method is presented in Figure 5. It switches between
the localization state processes, as discussed in Section 3.3 and the proposed rendezvous
state processes, as discussed in Section 3.4. The localization state processes deal with long
distances of UAVs. The proposed rendezvous state processes work when the distance
between UAVs is closer or inside the circle area, as shown in Figure 3. The distance can
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be computed from the displacement equation expressed in Equation (37). Algorithm 3
presents the procedure for the proposed full mission state processes. The processes were
implemented with dynamic offline data exported from AirSim, and the data from the
magnetometer and GPS sensor were used as measurement parameters, as mentioned in
the proposed rendezvous state processes. However, it has a procedure to check that the
following UAV is entering the rendezvous zone or sky-blue zone in Figure 3. After checking,
the processes will decide to use the localization state processes or the proposed rendezvous
state processes to command the UAV.

Algorithm 3: Simulation Procedure for a Full Mission State

1: Connect the API to AirSim;
2: Set all tuning parameters for the nonlinear Kalman Filter;
3: Nens ← Let ensemble be 900;
4: x ← Initial state of the follower UAV;
5: Rd ← Set the dangerous zone;
6: while during the mission do
7: PF ← Obtain the position of the follower UAV;
8: PT ← Obtain the position of the target UAV;
9: DFT ← Calculate displacement between the follower and target UAVs;
10: if DFT is not in the rendezvous zone then
11: if C is null then
12: C ← Collect the locations that target passes each second in nlbb;
13: end if
14: P(s)← Bézier curve from set of control points C;
15: for i = 0 to nlbb do

16: uk ← Compute the LOS velocity command between the UAV and P
(

i
nlbb

)
;

17: do in parallel
18: C ← Collect the position of the target;
19: Command the UAV following uk;
20: end do
21: if GPS is not blocked then
22: latitude ς, longitude v, height ϕ ← Obtain GPS data for the follower UAV;
23: else
24: R, Q ← Tune the parameters;
25: end if
26: ∀g ← NED coordinates converted from ς, v, ϕ;
27: ∀x

h , ∀y
h ← Obtain magnetometer data for the follower UAV;

28: ∀d ← Compute the cumulative travel distance from GPS data;
29: x ← State estimation based on the nonlinear Kalman Filter;
30: end for
31: else
32: if DFT ≥ Rd then
33: vs ← Calculate the approach velocity for the follow conditions;
34: else
35: vs ← Calculate the approach velocity for slow-down conditions;
36: end if
37: ΨLOS ← Calculate the LOS angle from PF to PT ;
38: uk ← Compute the LOS velocity command from ΨLOS;
39: Command the UAV following uk;
40: ∀g ← NED coordinates converted from PF;
41: ∀x

h , ∀y
h ← Obtain magnetometer data for the follower UAV;

42: ∀d ← Compute the cumulative travel distance from GPS data;
43: x ← State estimation based on the nonlinear Kalman Filter;
44: end if
45: end while
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4. Simulation Results

The simulation of the three-state experiment was performed on a laptop equipped
with a 2.9 GHz dual-core Intel Core i5 CPU with Intel Iris Graphics 550 and 8 GB of
memory. The API control, which is used to interact with AirSim, was written in the Python
programming language. Since the altitude of a UAV is negative in the Z direction, as
described in Section 2.1, the altitude of a UAV obtained from the API will be converted
from a negative number to a positive number to make the result easier to read and analyze.
In this section, the results obtained from the processes in Sections 3.3–3.5 are explained,
and organized as follows:

- Section 4.1 presents the simulation results for the localization state processes (following
the process in Section 3.3), which include the situation of the full GPS signal available
case in Section 4.1.1 and the situation of the blocked GPS signal in Section 4.1.2.

- Section 4.2 presents the simulation results of the proposed rendezvous state method
by following the method proposed in Section 3.4.

- Section 4.3 presents the simulation results for the proposed full mission state processes
(referring to the process in Section 3.5).

- Section 4.4 presents the result from implementing the proposed full mission state
process (referring to the process in Section 3.5) for two UAVs.

Note that all raw data from the GPS sensor have Gaussian distribution noise with a
mean of zero and standard deviation of 0.15 to increase the practicality of GPS sensor data.

4.1. Localization State Results

For the localization state, the experiments include two cases: (1) a full-power GPS sig-
nal and (2) weak GPS signals in disturbed areas. These two cases affect position estimation
performed by nonlinear KFs. The LOS-based Bézier method is applied to control the inputs
of the nonlinear KFs. In this experiment, AirSim is used to perform a simulation of two
UAVs, the follower UAV and target UAV. The target UAV moves along the waypoints WP1
(0, 7), WP2 (10, 9), WP3 (13, 25), and WP4 (15, 1) and starts at WP1 at an altitude of 7 m. The
target UAV is moved through API control in AirSim at a ground speed of 2 m per second.
The follower UAV is controlled at a command velocity obtained from the localization state
processes with the initial speed (vs) at 1 m per second setting by API control. The data
from the GPS sensor and magnetometer of both the follower UAV and target UAV are
collected from AirSim with a 1 Hz GPS sensor. The AirSim API, which is written in the
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Python programming language, is used to collect actual flight data. The tuning parameter
of the LOS-based Bézier method (nibb) was set to 2 for both the full-GPS-signal case and
blocked-signal experiments. The initial state of the follower UAV in both experiments was
set as follows:

px = −3.0608, py = 7.173, pz = 7, vx = 0, vy = 0, vz = 0

4.1.1. Full GPS Signal Result

In this experiment, the GPS worked normally without signal blockage issues. The
tuning parameters of the nonlinear KFs R and Q were considered as follows:

R = diag{5, 5, 5, 5, 5, 5, 10} × 10−1

Q = diag{5, 5, 5, 5, 5, 5} × 10−1

REKF = diag{1, 1, 1, 5, 5, 1, 10} × 10−1

QEKF = diag{5, 5, 1, 1, 1, 1}

Nens = 900

where R and Q are used for the UKF and ENKF, respectively, and REKF and QEKF are used
for the EKF.

According to Figures 6 and 7, which illustrate the position estimation results of
this experiment, the nonlinear KFs provide very impressive results and corresponding
with Table 1, the accuracy of positioning based on all algorithms is shown. The most
accurate position estimates are provided by the ENKF with the lowest RMSE of XYZ at
0.21686 m, followed by those of the UKF (RMSE of XYZ = 0.24823 m) and EKF (RMSE of
XYZ = 0.26880 m). Overall, all the nonlinear KFs provided higher accuracy than methods
based only on using GPS sensor data (RMSE of XYZ = 0.27158 m).
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Table 1. RMSE estimates from the EKF, UKF, ENKF, and GPS sensor data for both full-signal and
blocked-signal flight cases.

RMSE of X (m) RMSE of Y (m) RMSE of XY (m) RMSE of XYZ (m)

Full
GPS

Signal

Blocked
GPS

Signal

Full
GPS

Signal

Blocked
GPS

Signal

Full
GPS

Signal

Blocked
GPS

Signal

Full
GPS

Signal

Blocked
GPS

Signal

GPS sensor 0.15901 0.94677 0.21535 0.57575 0.26769 1.10809 0.27158 1.10903
EKF 0.15636 0.28312 0.21379 0.34127 0.26487 0.44342 0.26880 0.44581
UKF 0.14964 0.29380 0.19272 0.24207 0.24399 0.38068 0.24823 0.38341

ENKF 0.13742 0.22031 0.16083 0.18997 0.21155 0.29091 0.21686 0.29538

4.1.2. Blocked GPS Signal Result

In this experiment, the GPS signal was blocked or lost for some time. The tuning
parameters are modified to rely on the system model more than the measurements. Thus,
the process and measurement noise covariance during the loss of GPS signal data can be
rewritten as follows:

RUKF = diag{50, 0.2, 0.01, 50, 0.2, 0.01, 0.07} × 102
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RENKF = diag{10, 0.2, 0.01, 30, 10, 0.01, 0.05} × 102

REKF = diag{6, 0.1, 0.01, 1, 0.1, 0.001, 0.1} × 103

Q = diag
{

10−10, 10−10, 1, 1, 1, 1
}

where Q is used for all nonlinear KFs when the GPS signal is lost.
Figures 8–10 show the 3D and 2D position estimations of the follower UAV. Even if the

GPS signal is blocked for a period of time, all nonlinear KFs are able to estimate the state
or position with acceptable accuracy. In addition, the highest accuracy in this experiment
is achieved with the ENKF by an RMSE of XYZ equal to 0.29538 m, followed by the UKF
(RMSE of XYZ = 0.38341 m) and EKF (RMSE of XYZ = 0.44581 m), as shown in Table 1.
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Normally, at least four satellites are needed to extract the position or location. This
concept can be used as a trigger or threshold to switch the parameters of state estimation
between the GPS available and GPS outage situation. In real-world applications, some
drone kit libraries provide a function to check the number of satellites [39] to calculate a
location. Moreover, state estimation can work in GPS outage situations in short periods of
time, as shown in Figure 10, depending on the system model. However, it still needs the
GPS signal for updating in the next time step.
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4.2. Rendezvous State Results

This experiment focuses on the case of the follower UAV approaching the target UAV
and getting as close as possible while avoiding collisions based on the proposed rendezvous
method described in Section 3.4. The target UAV moves along the waypoints from WP1 (0, 7)
to WP2 (0, 100) at a constant velocity (vT) of 2 m per second and an altitude of 7 m. In
addition, the initial conditions of the follower UAV are as follows:

px = −5, py = 7, pz = 7, vx = 0, vy = 0, vz = 0

RUKF = diag{0.01, 20, 1, 0.5, 0.5, 1, 10} × 10−1

QUKF = diag{0.01, 0.0001, 0.00001, 1, 0.00001, 0.00001} × 105

REKF = diag{1, 1, 1, 5, 5, 1, 10} × 10−1

QEKF = diag{5, 5, 1, 1, 1, 1}

Nens = 900

R = diag{0.001, 100, 0.1, 10, 1, 0.1, 1}

Q = diag{10, 1, 0.2, 0.5, 0.2, 0.01} × 102

where (px, py, pz) is the position of the follower UAV in the NED coordinate system in
AirSim, (vx, vy, vz) is the velocity of the follower UAV, R and Q are used for the ENKF, UKF
and QUKF are used for the UKF, and REKF and QEKF are used for the EKF. The follower
UAV can move at the maximum approach speed (vm) in the approach state, which is 2.5 m
per second. The dangerous zone (Rd) is set equal to 3 m around the target UAV. The
rendezvous zone is 6 m around the target UAV. For the rendezvous state experiment, the
follower UAV is already in the rendezvous zone at the start of the simulation, as shown in
Figure 3. The state estimation strategy for the follower UAV is the same as that considered
in the localization state approach described in Section 4.1. The positioning information
for the target UAV is provided by a 1 Hz GPS sensor. The position estimation result is
shown in Figure 11. According to Figure 12, the follower UAV tries to follow the target with
minimum displacement and without collisions. The follower UAV can reach the dangerous
zone in 12 s at point (−0.36378, 26.12666) and an altitude of 6.91099 m based on only GPS
sensor data, at point (−0.36889, 26.12615) and an altitude of 6.91126 m based on the EKF,
at point (−0.36378, 26.18720) and an altitude of 6.91101 m based on the UKF, and in 11 s
at point (−0.57952, −0.57952) and an altitude of 6.91901 m based on the ENKF. The UAV
then attempted to stay as close to the dangerous zone as possible without entering the
zone. Table 2 provides the RMSE of the XYZ results after the follower UAV enters the
dangerous zone (3 m around the target UAV) and the time when the follower UAV reaches
the dangerous zone. Table 2 shows that the ENKF can achieve the best result, with an
RMSE of XYZ equal to 3.00275 m. Figure 13 shows the velocity results for the following
UAVs and indicates that the follower quickly accelerates to the maximum approach speed
from time at 1 s to 10 s to follow the target UAV and minimize displacement. After 10 s, the
follower UAV decelerates and maintains a relatively constant speed to maintain a constant
displacement distance.

Table 2. RMSE of XYZ results after the follower UAV enters the dangerous zone and the time when
the follower UAV reaches the dangerous zone in the rendezvous state simulation.

GPS EKF UKF ENKF

RMSE of XYZ (m) 0.65385 0.65179 0.60513 0.53544
Time (s) 12 12 12 11
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4.3. The Proposed Full Mission State Results

For the full mission state simulation, the path of the target UAV is set to include a long
90-degree turn in the middle, as shown in Figure 14. Thus, the target UAV moves along
waypoints WP1 (0, 7) to WP2 (0, 150) and then to WP3 (−100, 150) at an altitude of 7 m.
The target UAV is controlled by API control in AirSim at a velocity of 2 m per second. The
follower UAV follows the target UAV by using the proposed full mission state processes
(described in Section 3.5) based on the following initial conditions:

px = −20, py = 7, pz = 7, vx = 0, vy = 0, vz = 0

where (px, py, pz) is the position of the follower UAV in the NED coordinate system in
AirSim and (vx, vy, vz) is the velocity of the follower UAV. Because there are two different
states, namely, outside and inside of the rendezvous zone, as shown in Figure 3, the tuning
parameters of KFs (Q, R) are separated into two groups as follows:

• Outside rendezvous zone

REKF = diag{1, 1, 1, 5, 5, 1, 10} × 10−1

QEKF = diag{5, 5, 1, 1, 1, 1}

RUKF = diag{0.001, 0.001, 0.1, 5, 5, 5, 1}

QUKF = diag{0.1, 0.1, 0.1, 1, 1, 0.01} × 102

RENKF = diag{0.001, 5, 0.1, 5, 5, 0.1, 1}

QENKF = diag{1, 0.00005, 0.00001, 1, 0.00001, 0.00001} × 105

Nens = 900
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• Inside rendezvous zone

REKF = diag{1, 1, 1, 5, 5, 1, 10} × 10−1

QEKF = diag{5, 5, 1, 1, 1, 1}

RUKF = diag{0.05, 0.05, 0.005, 0.05, 0.05, 5, 0.001} × 102

QUKF = diag{1, 1, 1, 10, 10, 1} × 10

RENKF = diag{1, 1, 1, 1, 1, 5, 10} × 10−1

QENKF = diag{1, 1, 1, 10, 1, 0.05} × 10−2

Nens = 900
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The maximum ground speed (vs) of the follower UAV is set to 3 m per second in the
localization state in this experiment. GPS sensors on both UAVs are assumed to operate
at 1 Hz. The radius of the rendezvous zone is 6 m to provide enough space, which has
been tested to be enough for the follower UAV to slow safely at this speed. The larger the
rendezvous zone radius, the safer this algorithm can perform, which depends on many
factors, such as the performance of the UAV, the maximum speed, and the environment.
Therefore, this work only focuses on how the algorithm performs within the scope of this
limitation. If the following UAV is outside of the rendezvous zone radius, the localization
processes, which include the LOS-based Bézier method by setting the tuning parameter
of the LOS-based Bézier method (nibb) to 3 in this experiment, will be applied. After the
follower UAV enters the rendezvous zone, the follower UAV is operated according to the
proposed rendezvous method described in Section 3.4. The dangerous zone (Rd) is set at
3 m around the target UAV in this experiment, and the maximum approach speed (vm) of
the follower UAV is set to 2.5 m per second.

Figures 15 and 16 show the results of the full mission state. Figure 15 shows the
result of displacement between the UAVs in each time frame. The follower UAV uses
the localization method initially until it enters the rendezvous zone after approximately
19 s. Then, the rendezvous method is used to command the following UAV toward the
target UAV. After approximately 70 and 80 s, the target UAV turns 90 degrees following
the designated path, as shown in Figure 14. During the turn, the target UAV decreases its
speed to almost 1 m per second, as shown in Figure 16. Thus, the follower UAV decreases
its speed to almost 0.5 m per second and then accelerates to the same speed as the target
UAV. The results indicate that the proposed rendezvous method can guide the follower
UAV to the rendezvous zone and aid in the approach of the dangerous zone in 22 s (Table 3)
at point (0.47686, 51.74109) and an altitude of 6.83795 m based on GPS sensor data only, at
point (0.47795, 51.74018) and an altitude of 6.83779 m based on the EKF, at point (0.49439,
51.72599) and an altitude of 6.83809 m based on the UKF, and at point (0.48511, 51.76452)
and an altitude of 6.83052 m based on the ENKF. The accuracy assessment of this experiment
is separated into two parts, namely, the RMSE of XYZ outside the rendezvous zone and the
RMSE of XYZ inside the rendezvous zone, as presented in Table 3. The ENKF performs
better than the others both inside, with an RMSE of XYZ at 0.51319 m, and outside the
rendezvous zone (RMSE of XYZ at 0.75051 m). The RMSEs in this experiment are higher
than those in other experiments because there is a 90-degree turn in the flight path of the
target UAV. However, for a very short time, the displacement between UAVs is less than
that of the dangerous zone radius. This experiment illustrates that even if the target UAV
turns 90 degrees and decelerates, the proposed rendezvous method can still track the target
UAV without a collision occurring. From Tables 2 and 3, the RMSEs of nonlinear KFs are
higher than those for the method based only on GPS sensor data because some parameters
can be tuned to achieve higher performance.

Table 3. RMSE of the follower UAV in three dimensions and the time when the follower UAV reaches
the dangerous zone in the full mission state experiment.

GPS EKF UKF ENKF

RMSE of XYZ outside Rendezvous (m) 0.71376 0.69982 0.65594 0.51319
RMSE of XYZ inside Rendezvous (m) 0.76316 0.76243 0.75740 0.75051

Time (s) 22 22 22 22



Drones 2023, 7, 142 24 of 29

Drones 2023, 7, 142 25 of 31 
 

of the target UAV. However, for a very short time, the displacement between UAVs is less 
than that of the dangerous zone radius. This experiment illustrates that even if the target 
UAV turns 90 degrees and decelerates, the proposed rendezvous method can still track 
the target UAV without a collision occurring. From Tables 2 and 3, the RMSEs of nonlinear 
KFs are higher than those for the method based only on GPS sensor data because some 
parameters can be tuned to achieve higher performance. 

 
Figure 15. The displacement between the follower and target UAVs in the full mission state simu-
lation. 

 
Figure 16. Comparison of the velocities of the follower UAV and target UAV in the full mission state 
simulation. 

  

Figure 15. The displacement between the follower and target UAVs in the full mission state simulation.

Drones 2023, 7, 142 25 of 31 
 

of the target UAV. However, for a very short time, the displacement between UAVs is less 
than that of the dangerous zone radius. This experiment illustrates that even if the target 
UAV turns 90 degrees and decelerates, the proposed rendezvous method can still track 
the target UAV without a collision occurring. From Tables 2 and 3, the RMSEs of nonlinear 
KFs are higher than those for the method based only on GPS sensor data because some 
parameters can be tuned to achieve higher performance. 

 
Figure 15. The displacement between the follower and target UAVs in the full mission state simu-
lation. 

 
Figure 16. Comparison of the velocities of the follower UAV and target UAV in the full mission state 
simulation. 

  

Figure 16. Comparison of the velocities of the follower UAV and target UAV in the full mission
state simulation.

4.4. Implementation of the Proposed Full Mission State Process

In this section, the proposed full mission state processes have been implemented with
two UAVs that have a simple specification as follows:

• Pixhawk 4 Mini
• Frame: Holybro QAV250
• Holybro Telemetry Radio V3
• Motors—DR2205 KV2300
• 5” Plastic Props
• Holybro GPS Neo-M8N
• Battery: MEGA POWER 3S 11.1 V 2200 mAh
• Fr-sky D4R-ii receiver
• Flysky FS-i6 Flight controller



Drones 2023, 7, 142 25 of 29

The experiment for real implement deploys an on-board state estimation in Pixhawk
4 Mini. In the mission, the target UAV flies as a setting waypoint, and the following
UAV always detects the position of the target UAV and calculates the heading angle to
the command direction. The proposed full mission state processes are deployed in the
following UAV. Therefore, the following UAV will detect and recognize the position and
zone to adjust the velocity to prevent the collision event.

Figure 17 shows a block diagram of the real implementation of the proposed full
mission state processes, and the results regarding the position of the target and follow UAV
are presented in Figure 18, while their velocity is presented in Figure 19. A video of the real
implementation is available at “www.tinyurl.com/2p8bj8sc (accessed on 20 May 2022)”. In
real implementation, it has other parameters that are not included in the simulation, such
as the wind effect. Therefore, the positions of the UAVs in Figure 18 do not exactly match
between the follower UAV and the target UAV. However, both UAVs can work without
collision depending on the radius of the dangerous zone (Rd) and the velocity of the target
UAV (vT) that has been used to calculate the command velocity of the follower UAV (vs) as
presented in Figure 17, which is considered to complete the aim of this research. Because
there still is a chance of collision when the target is moving very fast, the (Rd) parameter
must be optimized to match (vT) dynamically or manually to generate a safer operation,
which can be extended in subsequent work.

Drones 2023, 7, 142 26 of 31 
 

Table 3. RMSE of the follower UAV in three dimensions and the time when the follower UAV 
reaches the dangerous zone in the full mission state experiment. 

 GPS EKF UKF ENKF 
RMSE of XYZ outside Rendezvous (m) 0.71376 0.69982 0.65594 0.51319 
RMSE of XYZ inside Rendezvous (m) 0.76316 0.76243 0.75740 0.75051 

Time (s) 22 22 22 22 

4.4. Implementation of the Proposed Full Mission State Process 
In this section, the proposed full mission state processes have been implemented with 

two UAVs that have a simple specification as follows: 
• Pixhawk 4 Mini 
• Frame: Holybro QAV250 
• Holybro Telemetry Radio V3 
• Motors—DR2205 KV2300 
• 5″ Plastic Props 
• Holybro GPS Neo-M8N 
• Battery: MEGA POWER 3S 11.1 V 2200 mAh 
• Fr-sky D4R-ii receiver 
• Flysky FS-i6 Flight controller 

The experiment for real implement deploys an on-board state estimation in Pixhawk 
4 Mini. In the mission, the target UAV flies as a setting waypoint, and the following UAV 
always detects the position of the target UAV and calculates the heading angle to the com-
mand direction. The proposed full mission state processes are deployed in the following 
UAV. Therefore, the following UAV will detect and recognize the position and zone to 
adjust the velocity to prevent the collision event. 

Figure 17 shows a block diagram of the real implementation of the proposed full mis-
sion state processes, and the results regarding the position of the target and follow UAV 
are presented in Figure 18, while their velocity is presented in Figure 19. A video of the 
real implementation is available at “www.tinyurl.com/2p8bj8sc (accessed on 20 May 
2022)”. In real implementation, it has other parameters that are not included in the simu-
lation, such as the wind effect. Therefore, the positions of the UAVs in Figure 18 do not 
exactly match between the follower UAV and the target UAV. However, both UAVs can 
work without collision depending on the radius of the dangerous zone (𝑅 ) and the ve-
locity of the target UAV (𝑣 ) that has been used to calculate the command velocity of the 
follower UAV (𝑣 ) as presented in Figure 17, which is considered to complete the aim of 
this research. Because there still is a chance of collision when the target is moving very 
fast, the (𝑅 ) parameter must be optimized to match (𝑣 ) dynamically or manually to gen-
erate a safer operation, which can be extended in subsequent work. 

 
Figure 17. Real implementation block diagram of the rendezvous strategy. Figure 17. Real implementation block diagram of the rendezvous strategy.

Drones 2023, 7, 142 27 of 31 
 

 
Figure 18. The 2D positions of the real implementation of the proposed full mission state strategy. 

 
Figure 19. Comparison of the velocities of the follower UAV and target UAV in the real implemen-
tation of the proposed rendezvous strategy. 

5. Discussion 
UAVs have been utilized in several proposed and different environments. For exam-

ple, UAVs are used in cinematography [40], or deployed under threats, which has a pri-
mary goal of finding optimal routes that consider target visit, threat exposure, and travel 
time [41,42]. However, no matter the UAV application, UAV path planning to avoid con-
flict among UAVs is very important. [43] implements an artificial moment method for 
conflict resolution with robots being close to their targets. [44] implements a cooperative 
and geometric learning algorithm for path planning. [45] improve high performance path 
planning by considering a control-oriented UAV. In this experiment, trajectory planning 
for multiple UAVs was developed based on a sequential Monte Carlo method, which was 
testing using GPS always available and GPS lost scenarios with some time and separation 
for a rendezvous zone and dangerous zone to calculate the relevant parameters to control 
the UAV. Therefore, the proposed method has presented another aspect and contributes 

Figure 18. The 2D positions of the real implementation of the proposed full mission state strategy.

www.tinyurl.com/2p8bj8sc


Drones 2023, 7, 142 26 of 29

Drones 2023, 7, 142 27 of 31 
 

 
Figure 18. The 2D positions of the real implementation of the proposed full mission state strategy. 

 
Figure 19. Comparison of the velocities of the follower UAV and target UAV in the real implemen-
tation of the proposed rendezvous strategy. 

5. Discussion 
UAVs have been utilized in several proposed and different environments. For exam-

ple, UAVs are used in cinematography [40], or deployed under threats, which has a pri-
mary goal of finding optimal routes that consider target visit, threat exposure, and travel 
time [41,42]. However, no matter the UAV application, UAV path planning to avoid con-
flict among UAVs is very important. [43] implements an artificial moment method for 
conflict resolution with robots being close to their targets. [44] implements a cooperative 
and geometric learning algorithm for path planning. [45] improve high performance path 
planning by considering a control-oriented UAV. In this experiment, trajectory planning 
for multiple UAVs was developed based on a sequential Monte Carlo method, which was 
testing using GPS always available and GPS lost scenarios with some time and separation 
for a rendezvous zone and dangerous zone to calculate the relevant parameters to control 
the UAV. Therefore, the proposed method has presented another aspect and contributes 

Figure 19. Comparison of the velocities of the follower UAV and target UAV in the real implementa-
tion of the proposed rendezvous strategy.

5. Discussion

UAVs have been utilized in several proposed and different environments. For example,
UAVs are used in cinematography [40], or deployed under threats, which has a primary goal
of finding optimal routes that consider target visit, threat exposure, and travel time [41,42].
However, no matter the UAV application, UAV path planning to avoid conflict among UAVs
is very important. [43] implements an artificial moment method for conflict resolution with
robots being close to their targets. [44] implements a cooperative and geometric learning
algorithm for path planning. [45] improve high performance path planning by considering
a control-oriented UAV. In this experiment, trajectory planning for multiple UAVs was
developed based on a sequential Monte Carlo method, which was testing using GPS always
available and GPS lost scenarios with some time and separation for a rendezvous zone
and dangerous zone to calculate the relevant parameters to control the UAV. Therefore,
the proposed method has presented another aspect and contributes to UAV path planning.
The proposed method also tests a real situation as mentioned in Section 4.4 and illustrates
satisfactory results. For future work, a parameter-tuning method and other factors, such as
wind effects in the dynamic model, should be included to enable the proposed method to
achieve higher performance.

6. Conclusions

This study presents a comparison of different types of nonlinear KFs, including an EKF,
a UKF, and an ENKF, with offline UAV dynamic data exported from AirSim and applies
combined GPS data and magnetometer data as a measurement model. The experiment
contains three cases, namely, localization, the proposed rendezvous strategy, and the
proposed full mission strategy. The localization state includes two test cases, namely, a GPS
outage in some areas and a fully available GPS signal. The RMSE is used as an accuracy
assessment by computing the RMSE between the actual flight position obtained from the
API of AirSim and the position estimates of different types of nonlinear KFs.

The procedure in the localization state includes the LOS-based Bézier method for
heading angle estimation and nonlinear KFs for position estimation. The result for the
localization state shows that even when GPS outages occur in some areas, nonlinear KFs
are able to estimate the state of UAVs with higher accuracy than methods based only on
GPS sensor data.

The proposed rendezvous method allows a follower UAV to safely approach a moving
target UAV without collision. Additionally, the proposed rendezvous method maintains
the displacement distance during flight. The proposed rendezvous strategy works based
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on the relationship between velocity and displacement distance through setting the area,
namely, the rendezvous zone and dangerous zone. The nonlinear KFs are implemented
for position estimation, while the LOS method is used for heading angle estimation. The
performance in the rendezvous state shows that the ENKF is exceptional.

Finally, the proposed full mission state strategy is to control the follower UAV at the
minimum displacement distance from the target UAV while minimizing the time consump-
tion and avoiding collisions. The proposed full mission state strategy has to work inside
and outside of the rendezvous zone, as shown in Figure 3. Therefore, the localization state
method applies to the outside rendezvous zone, and the proposed rendezvous processes
apply to the inside rendezvous zone. The results present two sets of RMSE inside and
outside the rendezvous zone. Similar to the proposed rendezvous strategy results, the
ENKF illustrates the best performance.

Furthermore, the real implementation has been done with simple specification UAVs
and using an onboard state estimation in Pixhawk 4 Mini flight controller illustrated in
“www.tinyurl.com/2p8bj8sc (accessed on 20 May 2022)”. The real implementation is proof
that the proposed full mission state strategy can be truly operated.

This research provides a useful approach for UAV traffic management and other kinds
of autonomous vehicle traffic management. This work can also contribute to the two main
challenge objectives mentioned in the introduction, namely the UAV docking operation
to recharge and swarm UAV missions to reduce operating space and prevent collisions
between UAVs, such as parcel delivery missions.

Future research will include studying other effects in the simulation, such as the wind
effect, which will allow the proposed rendezvous method to have higher performance.
Other subsystems, such as communication systems and energy systems, that will contribute
to long-term flight are also included in future research plans.
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