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Abstract: Frequent and dramatic viewpoint changes make loop closure detection of hybrid ground/
aerial vehicles extremely challenging. To address this issue, we present a robust and efficient loop
closure detection approach based on the state-of-the-art simultaneous localization and mapping
(SLAM) framework and pre-trained deep learning models. First, the outputs of the SuperPoint
network are processed to extract both tracking features and additional features used in loop closure.
Next, binary-encoded SuperPoint descriptors are applied with a method based on Bag of Visual Words
(BoVW) to detect loop candidates efficiently. Finally, the combination of SuperGlue and SuperPoint
descriptors provides correspondences of keypoints to verify loop candidates and calculate relative
poses. The system is evaluated on the public datasets and a real-world hybrid ground/aerial vehicles
dataset. The proposed approach enables reliable loop detection, even when the relative translation
between two viewpoints exceeds 7 m or one of the Euler angles is above 50°.

Keywords: hybrid ground/aerial vehicles; visual SLAM; loop closure detection

1. Introduction

Recently, there has been some considerable interest in hybrid ground/aerial vehi-
cles [1–3]. These unique vehicles are generally designed to combine the advantages of both
terrestrial and aerial modes by moving on the ground to save energy and flying when
terrain constraints do not allow. Hybrid ground/aerial vehicles are excellent alternatives
in applications such as search and rescue or military surveillance due to their flexibility.
To achieve autonomous navigation in unknown, cluttered, and GPS-denied environments,
hybrid ground/aerial vehicles are often equipped with visual sensors, which are compact
and lightweight [4]. Based on visual information, the visual simultaneous localization and
mapping (SLAM) technique can estimate ego-motion and reconstruct the structure of the
environment. In the past decades, SLAM has been well-developed for unmanned aerial
vehicles (UAVs) or unmanned ground vehicles (UGVs) [5–10], while specific challenges
brought by the characters of hybrid ground/aerial vehicles are rarely studied. Among
the challenges, loop closure detection failures caused by frequent and dramatic viewpoint
changes are crucial, as is shown in Figure 1.

In this paper, the loop closure detection problem in visual SLAM for hybrid ground/aerial
vehicles is investigated. Loop closure detection is a vital component of state-of-the-art visual
SLAM systems. By recognizing the revisiting places correctly, loop closure is not only beneficial
to reduce the accumulated position errors but also useful for relocalization in a previous
map. The Bag of Visual Words (BoVW)-based methods, such as FAB-MAP [11,12] and
DBoW [13], are by far the most used techniques for loop closure in visual SLAM methods,
such as LSD-SLAM [14], ORB-SLAM3 [15] and VINS-Mono [16]. Most BoVW-based methods
use handcrafted keypoint features, such as SIFT [17], SURF [18], ORB [19] and BRIEF [20].
However, handcrafted feature descriptors extracted from images of the same place, captured
at ground and air view, can vary drastically. It can cause errors in both image retrieval and
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image matching, which are critical in loop closure detection. Thus, the traditional approaches
are inadequate for hybrid ground/aerial vehicles with a wide range of viewpoints.

Figure 1. It is challenging for hybrid ground/aerial vehicles to close loops, as they can revisit a place
with different perspectives. The top picture shows a self-developed hybrid ground/aerial vehicle
with four ducted fans for aerial mode and two continuous tracks for terrestrial mode (The non-English
characters on the picture represents for the Chinese name of Beijing Institute of Technology). The
bottom row illustrates the remarkably distinct appearances of an image pair captured at ground-level
and aerial views.

With the development of deep convolutional neural networks (DCNNs), using learning-
based local features to improve the loop closure pipeline is a new trend [21,22]. Though having
shown the potential for robustness against view changes, most learning-based methods
suffer from slow feature extraction and slow querying. Recently, experimental results of
SuperGlue [23] have illustrated that combining SuperGlue with SuperPoint [24] enables
matching extreme wide-baseline image pairs accurately and efficiently. However, integrating
the deep learning models into the appearance-based loop closure detection approaches is
also non-trivial. At first, strategies to extract features in practical SLAM frameworks are
different from offline image processing. Secondly, the SuperPoint descriptors are difficult to
be clustered in BoVW-based methods, as the descriptors are high-dimensional, float formatted
and hardly explainable.

To address the problems mentioned above, we present a robust and efficient loop closure
detection approach for hybrid ground/aerial vehicles. To combine pre-trained SuperPoint
models with state-of-the-art SLAM frameworks, the outputs of SuperPoint are processed to
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extract both tracking and additional features. To improve the efficiency of keyframe retrieval,
the SuperPoint descriptors are encoded and utilized in a BoVW model. Moreover, SuperGlue
is applied to find precise feature correspondences with SuperPoint descriptors.

The main contributions of this paper are the following:

• We utilize an encoding method for SuperPoint descriptors in a BoVW model to train a
compact vocabulary for speeding up keyframe retrieval.

• We propose a novel loop closure approach by embedding learning-based models into
state-of-the-art SLAM frameworks for hybrid ground/aerial vehicles.

• We evaluate the performance on EuRoC [25] datasets and the real-world data collected
by a hybrid ground/aerial vehicle.

• We provide a direct and high-performance replacement for the loop closure algorithm
in the popular VINS-Fusion pipeline to handle cases with large viewpoint changes.
The code is released at https://github.com/yutongwangBIT/SP-Loop (accessed on
10 February 2023) to further work in the field by the broader research community.

The remainder of this paper is structured as follows. In Section 2, we review published
work related to viewpoint change issues and efficient loop closure detection approaches.
The process of offline vocabulary training with the proposed descriptor encoding method
and the proposed online loop closure detection algorithm is presented in Section 3. Section 4
introduces the implementation details. In Section 5, experimental results are presented,
compared with the state-of-the-art and discussed. Finally, Section 6 is left to the conclusions
and to describe the future work.

2. Related Work
2.1. Viewpoint-Invariant Image Matching

Changes between ground and aerial modes of the hybrid ground/aerial vehicles
lead to the requirement of robustness against perspective changes. Although loop closure
detection for hybrid ground/aerial vehicles is, so far, unexplored, the viewpoint issues
have been investigated in some other applications, such as geo-localization of the UGVs in
GPS-denied environments and collaborative localization of UAVs/UGVs [26]. The methods
can be divided into three main categories: structure-based, semantic and learning-based
methods. Structure-based methods are usually applied to deal with the geo-localizing
problem in urban scenes where the building facades have self-similar structures [27,28].
Some researchers have used object semantics from images to localize [29–31], but some
objects do not have a precise bounding box to model semantic entities.

Recent studies on deep learning for image matching have illustrated the advanced
abilities of deep local features. UCN [32] and DeepDesc [33] have achieved fair results for
image matching with the extracted descriptors, but they do not perform any interest point
detection. On the contrary, despite the fact that LIFT [34] can detect keypoints, estimate
orientations and compute descriptors, it has been proven to not be competitive with hand-
engineering features in a real-life application [35]. The proposal of SuperPoint, an interest
point detector and description extractor trained by the unsupervised fully-convolutional
neural network architecture, has attracted researchers’ attention [24]. Further, the Graph
Neural Networks (GNNs)-based SuperGlue has been introduced to improve the ability to
find feature correspondences [23]. It has been shown that SuperGlue achieves advanced
results in challenging environments, especially when combined with SuperPoint. Moreover,
both SuperPoint and SuperGlue can perform on a modern GPU (Graphics Processing Unit)
in real-time.

2.2. Efficient Loop Closure Detection Approaches

To be used in real-time visual SLAM systems, loop closure detection should be efficient.
There are plenty of investigations aiming at improving its efficiency based on handcrafted
local features. Since the 21st century, BoVW-based approaches have been widely used in
practical SLAM systems. FAB-MAP and FAB-MAP 2.0 [11,12] represent images with a
bag of words based on SURF, and a Chow–Liu tree has been applied to learn the words’

https://github.com/yutongwangBIT/SP-Loop
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covisibility probability offline. Moreover, DBoW [13] has been boosted with binary BRIEF
descriptors and a k-dimensional (k-d) tree. Most handcrafted feature-based methods require
a stage of geometrical check due to the low recall rate and lack of matching correctness.

In contrast to handcrafted local features, efficiently using learning-based features in
loop closure detection is an open question. Yue et al. [36] have used SuperPoints for place
recognition based on an incremental BoVW approach with a graph verification process.
GCN [37] has evaluated a learned keypoint and descriptor detector using a naive SLAM
system, including loop closure with a BoVW library. Although the studies mentioned
above have integrated learned features into the fast BoVW models, none have tested the
algorithms in real-time datasets. Based on GCN, GCNv2 has been designed to suit the
real-time ORB-SLAM2 by training networks for binarized feature descriptors and keypoint
detectors [38]. GCNv2 has demonstrated the potential of integrating pre-trained deep
learning models into real-time systems. Inspired by the above analysis, our research
focuses on providing a more robust and efficient loop closure detection approach with the
combination of simplified SuperPoint features and BoVW models.

3. Methods

The whole process is divided into two parts, namely offline vocabulary trainingand
online loop closure detection. The former describes the approach of combing the deep-
learned descriptors with the traditional BoW methods, while the latter introduces the
proposed loop closure algorithm and its application in a state-of-the-art SLAM framework.

3.1. Offline Vocabulary Training

In this section, we first present the overview of the offline process based on a BoVW-
based approach. The method of encoding the original deep-learned descriptors to speed
up the offline training is then introduced.

3.1.1. Offline Process Overview

To detect revisited places for loop closure efficiently, we use the DBoW [13] approach
with binary-encoded SuperPoint features. DBoW constructs a hierarchical visual dictionary
containing lots of visual words through clustering local feature descriptors extracted from
a large-scale image training dataset. Thus, before its application in the online loop closure
system, we create the visual vocabulary offline by discretizing the descriptor space into
visual words.

The pipeline of offline training is shown in Figure 2. To obtain a rich set of features,
we prepare sufficient training images from different datasets, such as ICL-NIUM [39]
and TartanAir [40]. It is worth noting that the training images are independent of those
processed online later. With the open-released pre-trained weights of SuperPoint net,
the input tensors that are converted from the original images are first encoded. Then
the encoded tensors are decoded by the interest point decoder and descriptor decoder
separately. The descriptors used for training are extracted according to the keypoints from
the interest point decoder. Instead of using the original descriptors with float values, we
discretize a binary descriptor space to create a more compact vocabulary. The details of
binary encoding are described later. The binary SuperPoint descriptors are utilized in the
DBoW process to build the tree-structured vocabulary. In the DBoW process, the descriptors
are first clustered into k groups by executing k-medians clustering with k-means++ [41].
The k clusters constitute the first level of the vocabulary tree nodes, while the subsequent
levels are built by repeating the clustering operation on each node. Finally, a tree with nodes
and leaves (visual words) is constructed. Moreover, a direct index storing the features of
each image and an inverse index storing a list of images for each word are also generated
to speed up querying and verifying loop candidates later.
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Figure 2. A diagram illustrating the process of offline vocabulary training.

3.1.2. Binary Encoding

The DBoW approaches in the state-of-the-art visual SLAM frameworks prefer utilizing
handcrafted binary features. In the training process, they can construct compact vocabular-
ies. In the process of online loop closure, the keyframe query can also be extremely efficient
with binary descriptors, as they can be processed and clustered fast. By contrast, the
deep-learned features, such as SuperPoint descriptors, are high-dimensional, concentrated
and in float format. We analyzed the value of SuperPoint descriptors extracted from several
independent images statistically. A histogram of the collected descriptor values is shown
in Figure 3. There is a total of 1675 descriptors with 256 dimensions involved. The colors
on the histogram are randomly selected and used to distinguish the dimensions. As can
be observed in Figure 3, the values of the descriptors are normally distributed with an
expected value of 0 and a standard deviation of 0.07. Moreover, this distribution does not
change with dimensions, as the colors in the figure are evenly distributed. It is clear that
values like this are hard to be discretized into clusters of the tree-structured vocabulary.

Figure 3. The histogram of extracted SuperPoint descriptor values.
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Arroyo et al. [42] binarized CNN features to make topological localization more robust,
while Hafez et al. [43] encoded the deep-learned features to speed up querying for visual
place recognition. Inspired by them, we employ encoded descriptors to train the vocabulary
and later the online keyframe querying. According to the above data analysis of SuperPoint
descriptor values, we propose a practical formula to encode the values in a descriptor
vector v:

vi =

{
1, if vi ≥ 0
0, otherwise

(1)

where vi denotes the ith value of the vector.
After being binarized, each descriptor becomes an appreciably more compact vector

consisting of bits. To illustrate that the binary SuperPoint descriptors have similar per-
formance as the original ones, we display the comparison of ground/air image matching
results in Figure 4. As can be seen in Figure 4, there are several apparent incorrect matches
in the pictures with BRIEF and ORB descriptors, while all of the matches are true in the
picture with the original SuperPoint descriptors. As for the result of our binary SuperPoint
descriptors, only one false match can be observed. The accuracy of feature matching can
indicate the distinctiveness of the descriptors. Thus, the results of matching demonstrate
that the reduction in the distinctiveness caused by our process of encoding is negligible.

(a) (b)

(c) (d)

Figure 4. Comparison of image matching results. (a) With BRIEF descriptors. (b) With ORB descrip-
tors. (c) With the original SuperPoint descriptors. (d) With the binary SuperPoint descriptors.

In total, the proposed encoding technique has a good compromise between effec-
tiveness and distinctiveness. On the one hand, not only the training process but also the
querying in the online process is sped up. On the other hand, the performance of binarized
SuperPoint descriptors and the original ones are almost identical, which is noticeably
superior to handcrafted descriptors.

3.2. Online Loop Closure Detection

In this section, we first present the overview of the developed online process based
on a state-of-the-art SLAM framework. Next, the technical details of feature extraction,
keyframe retrieval, feature matching and pose computing are introduced sequentially.

3.2.1. Online System Overview

Our online system is developed on the basis of the state-of-the-art VINS-Fusion [16],
which contains visual-inertial odometry (VINS-VIO), pose graph optimization (VINS-PGO)
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and loop closure detection (VINS-Loop). In this work, VINS-VIO and VINS-PGO are
adopted, while our proposed loop closure detection approach is used to replace VINS-
Loop to improve robustness against viewpoint changes. The flow diagram illustrating the
pipeline of online loop closure is shown in Figure 5.

Figure 5. A diagram illustrating the pipeline of online loop closure.

Every new coming keyframe with tracking features from VINS-VIO is processed. The
same as in the offline training process, we use the open-released SuperPoint weights in our
real-time online system since they are lightweight and efficient [24]. There are two parts
of features after the feature extraction process: tracking features that are already selected
in VINS-VIO and additional features extracted in the loop closure process to improve the
performance of place recognition. The tracking features are used directly in the feature-
matching process. The additional descriptors are binarized as in the offline training to query
a loop candidate from the keyframe database based on the offline-trained visual vocabulary.
The SuperGlue net is applied to find feature correspondences between the tracking features
of the current keyframe and the additional features of the retrieved keyframe candidate.
While tracking features of the current keyframe can provide 3D position estimates for the
pose computation, the additional features can increase the number of matches. The output
of a SuperGlue net contains matches and confidence. Only the matches with confidence
above a set confidence threshold are selected. If the number of matching pairs is sufficient,
the loop candidate is accepted. Finally, the relative pose between the current keyframe and
the loop candidate is calculated by the Perspective-n-Point (PnP) method [44]. The loop
information, including the index of the candidate and the relative pose, is stored. During a
pose graph optimization, the loop information is added to the pose graph as additional
constraints. The more reliable constraints are, the more accurate estimation results can
be obtained.

3.2.2. Feature Extraction

Each new coming keyframe contains a corresponding image and tracking features.
The original image I (width W and height H) is converted to grayscale and resized to an
input tensor of shape W ′ × H′, which is defined by the pre-trained SuperPoint nets. For
example, if the SuperPoint weights are pre-trained with setting the resolution of 640× 480,
then W ′ = 640, H′ = 480 here. Higher resolution contributes to the increasing distinctive of
the features, but it also leads to higher computational demand and larger memory space. In
practice, 640× 480 is sufficient to extract features. Then the input tensor of shape W ′ × H′

is forwarded by the pre-trained SuperPoint nets. The output tensors are the score tensor
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S ∈ RH′×W ′ and the descriptor tensor D ∈ R1×L×W′
8 ×

H′
8 , where L is the length of a single

descriptor (e.g., L = 256). Tracking descriptors are extracted from D according to the image
coordinates of tracking features. The number of tracking features is bounded in VINS-VIO
with a maximum value (100–300), which ensures the real-time performance of VINS-VIO
but is not sufficient for image retrieval in loop closure. To increase the recall rate, 500 to
1000 additional features are detected and described.

Once the image is processed and forwarded by the pre-trained SuperPoint nets, track-
ing descriptors and additional features are extracted from the SuperPoint output tensors S
and D. The original feature extraction methods in SuperPoint cannot be directly used in
the proposed system. The tensors are processed to extract the two kinds of descriptors, as
illustrated in Figure 6.

Scores  
Tensor

Tracking  
Keypoints

Additional 
Keypoints

Masked 
 Tensor

Descriptors 
Tensor

Tracking 
Descriptors

Additional 
Descriptors

SuperPoint 
Net

Figure 6. The data flow diagram of feature extraction. The yellow blocks and bars represent the
tracking keypoints and descriptors, while the red blocks and bars are the addtional keypoints
and descriptors.

Tracking features from VINS-VIO include the image coordinates of keypoints during
tracking. Let A :=

{
fw

k
}n

k=1 be a set of n known tracking keypoints, where fw
k := (uk ·

H′/H, vk ·W ′/W) is the resized pixel location of a keypoint with 2D coordinates (uk, vk).
Then, a set of corresponding tracking descriptors

{
dw

k
}n

k=1 is computed using the known
tracking keypoints A and descriptors tensor D.

After that, additional features are extracted from the masked tensors. As the tracking
features cannot be selected twice; the score tensor is masked with known pixels. The
masked tensor S′ ∈ RH′×W ′ is constructed as:

S′ =
{

S′i,j | S′i,j =
{

Si,j, if (i, j) /∈ A
0, else

}
, (2)
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where i ∈ {1, . . . , H′}, j ∈ {1, . . . , W ′}. To decrease feature redundancy, local maximums,
whose score values are greater than all neighbors, are searched by Non-Maximum Suppres-
sion (NMS). The process is:

S′′ = g(S′, d), (3)

where g(.) represents the NMS function, and d denotes a minimum NMS distance. The
processed score tensor S′′ is then constructed to S′′′ with a threshold of scores t:

S′′′ =
{

S′′′i,j | S′′′i,j =

{
S′′ i,j, if S′′ i,j > t

0, else

}
, (4)

where i ∈ {1, . . . , H′}, j ∈ {1, . . . , W ′}.
Then, m largest nonzero elements {(u′k, v′k)}

m
k=1 in S′′′ are selected. According to

the elements and D, additional descriptors
{

da
k
}m

k=1 are computed. The set of additional
keypoints is

{
fa

k
}m

k=1, where fa
k := (u′k · H/H′, v′k ·W/W ′) is the back resized pixel location.

3.2.3. Keyframe Retrieval

A loop candidate is recalled based on the offline-trained vocabulary and a keyframe
database. The database stores processed vectors of all passing keyframes. When a keyframe
Kt is processed, its binary descriptors are converted into a vector vt of weighted visual
words according to the vocabulary. The vector vt searches vectors {vti}

t−T
i=1 in the database,

i.e., T latest keyframes are ignored for loop candidates. It results in a list of matching
candidates 〈vt, vt1〉, 〈vt, vt2〉, . . . , associated with the matching scores s(vt, vtj). Candidates
that do not reach a minimum score threshold sc are rejected. If no candidate meets the
requirements, Kt is skipped after being added to the database. Otherwise, the oldest
candidate vc among the accepted candidates is chosen, as it is assumed that estimates of
earlier appeared keyframes are more reliable. With the obtained index, tc, the candidate
keyframe Kc is recalled. 〈Kt, Kc〉 is thus a candidate pair for feature matching.

3.2.4. Feature Matching and Pose Computing

SuperGlue is utilized to find feature correspondences correctly, even if the image
baseline of candidate pairs is extremely wide. The SuperGlue net learns priors over
geometric transformation and regularities through training from image pairs. It leverages
both spatial relationships of the keypoints and their descriptors. Here, correspondences are
found between tracking features of the current keyframe Kt and additional features of the
loop candidate Kc. While the former can provide 3D position estimates in the world frame
for the pose computation, the latter can increase the number of matches. Next, an input
tensor M is constructed with keypoints, response values and descriptors of the features. M
is then forwarded by an attentional graph neural network and an optimal matching layer.
The output tensors include matches and confidences. Only the matches with confidences
above a set confidence threshold ct are selected. After that, L matching pairs {

〈
ftl , fcl

〉
}L

l=1
of features and their confidences c ∈ (ct, 1]L are calculated.

A candidate pair with an insufficient number of correspondences is rejected. Oth-
erwise, the loop is detected. Then, a relative transformation Ttc between Kt and Kc is
computed. A direct Perspective-n-Point (PnP) method [44] is performed to estimate the
pose using 3D points and 2D projections. Unlike VINS-Loop, where RANdom SAmple
Consensus (RANSAC) [45] iterations are demanded to reject outliers, a simple and efficient
PnP process can provide accurate estimates in our work. Three-dimensional position esti-
mates of matching features of Kt and the corresponding 2D keypoints locations of Kc are
the inputs of PnP. Finally, loop information, including transformation Ttc, is stored in Kt.
During a pose graph optimization operation, Ttc is added to the pose graph as additional
constraints. The more reliable constraints are, the more accurate results are obtained.
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4. Implementation Details

We implement the proposed algorithm with C++ and ROS (Robot Operating System)
as VINS-Fusion. Normally, the deep learning models are trained and utilized in Python,
the open-sourced pre-trained SuperPoint and SuperGlue weights are as well. To embed our
loop closure algorithm into VINS-Fusion, we first deployed the Pytorch models using the
Torch [46] C++ interface. In detail, the weights were converted to TorchScript, which can be
loaded by C++. For the DBoW model, we use the open-source improved version DBoW3
library. The extracted and processed SuperPoint descriptors replaced the handcrafted
BRIEF or ORB descriptors in the library. To achieve better real-time performance, we
deployed the processes using SuperPoint and SuperGlue weights on the GPU while other
computations are run on the CPU (Central Processing Unit).

We tested the algorithm on a laptop with a NVIDIA RTX 3080 and an Intel i9-10885H
CPU. On the GPU, it takes, on average, around 20 ms for SuperPoint extraction and about
60 ms for SuperGlue, respectively. On the CPU, keyframe query from the database costs
about only 3 ms. In total, the proposed loop closure detection can process keyframes at
over 10 FPS on our device. It indicates that our implementation can run in real time with
deep-learned models on a modern computer.

5. Experimental Results

We evaluate the different aspects of our proposal in the following. In Section 5.1, the
ability of the proposed binary SuperPoint descriptors in image retrieval is analyzed. Next,
the proposed loop closure detection algorithm is compared with VINS-Loop on public
datasets in Section 5.2. We then present the results of a real-world experiment conducted
with our quad ducted-fan hybrid ground/aerial vehicle in Section 5.3.

5.1. Descriptor Effectiveness

To investigate the effectiveness of the proposed binary SuperPoint descriptors, they
are compared with the original SuperPoint, ORB and BRIEF descriptors using the DBoW3
library. Experiments were conducted on a public dataset and a self-collected ground/air
dataset. Visual vocabularies of all descriptors were trained using 13,975 images of Tar-
tanAir [40] with a branching factor of 10 and depth levels of 6, resulting in 106 = 100,000
visual words. Term frequency-inverse document frequency (tf-idf) [13] was the weighting
type, and L1-Norm was the scoring type.

5.1.1. Performance on Dataset

For the test on the public dataset, 261 images from over 45,000 images of the New
College dataset [47] have been selected manually. Aiming at increasing the difficulty of
image retrieval, the overlapping area between each image pair does not exceed 80%.

The precision-recall curves of the proposed binary SuperPoint, the original SuperPoint,
ORB and BRIEF descriptors are illustrated in Figure 7. Note that the precision axis begins
at 0.6. The first remark is that the area under the curve (auc) of the original SuperPoint
descriptors is a lot lower than the others. It indicates the necessity of encoding. The figure
also reveals that binary SuperPoint outperforms both BRIEF and ORB descriptors. At 100%
precision, the proposed descriptors achieve approximately 80% recall rate, while the other
two handcrafted descriptors can barely reach around 40%.
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Figure 7. Precision-recall curves of binary SuperPoint, ORB, BRIEF and original SuperPoint descrip-
tors on the New College dataset [47].

5.1.2. Influence of Viewpoint Difference

To better illustrate the reliability of the proposed binary descriptors under viewpoint
change, 474 ground-level images and 467 air-level images have been collected. There are
two kinds of experiments to be compared. The first one uses only ground-level images. The
other experiment is called cross-verification. All air-level images are stored in a database,
from which each ground-level image recalls an image.

The precision-recall matrices of binary SuperPoint, ORB and BRIEF descriptors are
shown in Figure 8. Generally, curves with the term “(cross)” are lower than the curves
of the first experiment. It demonstrates the difficulty of loop closure detection under
perspective changes. It is also observed that the curve of binary SuperPoint in cross-
verification has an area of 0.966 under the curve, higher than ORB (0.948) and BRIEF
(0.896). The precision of binary SuperPoint in cross-verification at a recall rate of 100% is
about 90%, the highest among all curves. It supports that using binary SuperPoint is more
reasonable than handcrafted descriptors for image retrieval problems, especially on our
hybrid ground/aerial vehicles.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.7

0.8

0.9

1.0

P
re

ci
si

on

Collected Dataset

Binary SuperPoint auc=0.994
ORB auc=0.99
BRIEF auc=0.988
Binary SuperPoint (cross) auc=0.966
ORB (cross) auc=0.948
BRIEF (cross) auc=0.896

Figure 8. Precision-recall curves of binary SuperPoint, ORB, BRIEF and original SuperPoint descrip-
tors on the collected dataset with ground/air images.
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5.2. Online Experiments on Datasets

EuRoC presents visual-inertial datasets collected on-board a Micro Aerial Vehicle
(MAV), providing 11 sequences recorded in two different rooms and a large industrial
environment [25]. In our experiments, images from the left camera and IMU measurements
were the inputs of VINS-VIO. The performance is compared with VINS-Loop, as both
inputs are from the same VINS-VIO. First, we report the localization performance on every
single EuRoC sequence. Secondly, we analyze the influence of viewpoint difference by
setting the minimum relative pose to close the loop so that the extremely outstanding
advantages of the proposed system on ground/aerial vehicles are proved. Moreover, to
demonstrate the potential of our method for the collaborative SLAM with multi-robot
system, we also show multi-session results in three rooms.

5.2.1. Single-Session Performance

We evaluate the localization accuracy by an absolute trajectory error (ATE), which is
given by the difference between the estimated trajectory and ground truth with alignment.
In detail, the estimated poses are associated with ground-truth poses using the timestamps
as a pre-processing step. The maximally allowed time difference for matching entries is set
as 0.02, which is an approximate value observed in practice. Based on this association, the
true and the estimated trajectory are aligned using singular value decomposition. Finally,
the difference between each pair of poses is computed. The output root-mean-square
error (RMSE) [48] of all EuRoC sequences are listed in Table 1. Our report values are the
median after five executions. It can be observed that the proposed algorithm outperforms
the VINS-Loop in the majority of cases. For example, in sequence V2_02_medium, the
error of the proposed system is 0.054 , 0.2 and 0.04 m lower than VIO and VINS-Loop,
respectively. In some cases, such as MH_02_easy and MH_04_difficult, there was an
unapparent enhancement. The accuracy of the proposed approach is lower than VINS-Loop
only in the V1_03_difficult sequence. In these cases, where our system has insignificant
improvements, VINS-Loop also closes loops frequently, as the MAV revisited very similar
places multiple times during the flights. Meanwhile, the camera view in the machine hall is
normally broader than V1 and V2 rooms, so that we observe more obvious improvements
in the latter environment.

Table 1. RMSE in EuRoC datasets in meters. The best result is highlighted in bold.

Sequence VINS-VIO VINS-Loop Proposed

V1_01_easy 0.068 0.044 0.042
V1_02_medium 0.093 0.044 0.034
V1_03_difficult 0.133 0.080 0.082

V2_01_easy 0.065 0.049 0.038
V2_02_medium 0.246 0.093 0.054
V2_03_difficult 0.186 0.11 0.10
MH_01_easy 0.22 0.075 0.070
MH_02_easy 0.08 0.044 0.044

MH_03_medium 0.132 0.074 0.068
MH_04_difficult 0.292 0.10 0.10
MH_05_difficult 0.228 0.099 0.09

5.2.2. Influence of Viewpoint Difference

In order to demonstrate the outstanding advantages of our system under viewpoint
variation, a minimum relative pose (mint and minψ) between a loop candidate pair is set.
The relative translation tij and yaw angle (ψij) can be calculated from the estimated relative
pose, which is obtained by the PnP solver. The two parameters can indicate the significance
of viewpoint change. Thus, if the loop candidates with close viewpoints of the current
keyframes are ignored, we can find the limit of difference in viewpoints that our system
can withstand.



Drones 2023, 7, 135 13 of 20

In the experiments, loop candidates are accepted as loops only if |tij| > mint or
|ψij| > minψ, and a list of thresholds pairs mint \minψ is set. From all EuRoC sequences,
we select sequence MH_04_difficult, on which our system has no significant improvement
compared with VINS-Loop. The results are shown in Table 2, where the corresponding
loop numbers and absolute translation RMSE of our system and VINS-Loop are compared.
As expected, the more critical the constraints are, the more considerably the proposed
system outperforms VINS-Loop. When viewpoint difference is not considered, such as
in the previous subsection (0 m\0°), the RMSE of our algorithm is not better than VINS-
Loop. It indicates that both algorithms can reduce drifts adequately if the MAV flies
back to very similar places. As mint and minψ grow larger, the differences become more
noticeable. Until mint and minψ reach about 3 m and 45°, VINS-Loop cannot provide
reliable candidates anymore. However, the proposed algorithm can even close loops when
the relative translation is over 7 m or the yaw angle exceeds 50°.

Table 2. Comparison of Loop Number and RMSE (m). The best result is highlighted in bold.

mint\minψ

VINS-Loop Proposed

Loop Number RMSE Loop Number RMSE

0 m\0° 94 0.10 136 0.10
2 m\20° 15 0.12 74 0.10

2.5 m\30° 6 0.28 51 0.12
2.5 m\40° 1 0.29 38 0.14
3 m\45° 0 0.31 33 0.12
5 m\45° 0 0.31 20 0.21
7 m\50° 0 0.31 5 0.19

Some loop pairs with large viewpoint changes are shown in Figure 9, where θij and φij
denote the relative pitch and roll angles. For example, the relative angle between the loop
candidate and the current keyframe is over 50° in Figure 9a, and the relative translation is 7.4 m
in Figure 9b. In such situations, our system can not only retrieve the correct loop candidate but
also match features precisely. It is also worth noting that in Figure 9d, where the illumination
condition is limited, the proposed method can also extract distinct descriptors to close the
loop. Overall, it is convincing that our loop closure detection approach can perform more
robustly against viewpoint changes due to its reliability of recalling and feature matching.

(a)

(b)
Figure 9. Cont.
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(c)

(d)
Figure 9. Examples of detected loop pairs with matched features at different viewpoints in EuRoC
datasets. (a) tij = 1.8 m, ψij = 52.9°, θij = 0.5°, φij = 25.4°. (b) tij = 7.4 m, ψij = 13.2°, θij = 8.6°,
φij = 26.8°. (c) tij = 6.5 m, ψij = 6.9°, θij = 0.1°, φij = 23.3°. (d) tij = 3.4 m, ψij = 6.5°, θij = 5.0°,
φij = 20.5°

5.2.3. Multi-Session Performance

The EuRoC datasets contain several sessions for each of its three environments: five
in Machine hall, three in Vicon room 1 and three in Vicon room 2. As the loop closure
detection approaches also play an important role in merging multiple maps, the multi-
session performance of the proposed system is validated. We sequentially process all the
sessions corresponding to each environment. Each trajectory in the same environment has a
ground truth with the same world reference, allowing a single global alignment to compute
ATE. The first sequence in each room provides an initial map. Processing the following
sequences starts with a new trajectory. It can be merged with the previous sequences when
relocalized and optimized based on loop closure detection approaches.

Table 3 reports the global multi-session RMSE in the three rooms, compared with
VINS-Loop. As for V201-V203 in Vicon room2, the proposed system obtains 1.3 better
accuracy than VINS-Loop, and the advantage goes up to 2 times in multi-session. This
improvement is mainly due to the frequent and robust loop detection in current and
previous sequences. In Vicon Room 1, the RMSE of the whole trajectory is 0.055 m, about
6 cm better than VINS-Loop. Nevertheless, the difference in the results between our system
and VINS-Loop is insignificant in MH01-05 sequences. We hypothesize that a greater depth
scene for the machine hall sequences leads to richer features for loop closing, which is
similar to in the single-session experiments.

Table 3. Multi-session RMSE (m) on the EuRoC dataset. The best result is highlighted in bold.

Room Sequences VINS-Loop Proposed

Vicon Room 1 V101-03 0.061 0.055
Vicon Room 2 V201-03 0.162 0.086
Machine Hall MH01-05 0.075 0.087

5.3. Real-World Experiments with a Hybrid Ground/Aerial Vehicle

We conducted real-world experiments on a self-developed hybrid ground/aerial
vehicle (Figure 10) to prove the effectiveness and robustness of our system on this special
vehicle. The quad ducted-fan hybrid ground/aerial vehicle moves on the ground with
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its continuous tracks and flies with four ducted fans. To sense the environment, it is also
equipped with an Intel Realsense D435i camera and an NVIDIA Jetson Xavier NX. The
laboratory for the indoor experiments is shown in Figure 11. The robot’s ground-truth
position is provided by a NaturalPoint OptiTrack motion capture system, whose effective
range in this room is about 5 m. During the experiments, the hybrid ground/aerial vehicle
was manually controlled. It reached about 1.2 m after take-off and flew three rounds
stably. After landing on the ground, it drove nearly one round along a circular path with
continuous tracks. Color images from the left camera (15 Hz) and IMU measurements
(200 Hz) of D435i were recorded on-board and stored in rosbags.

Figure 10. A self-developed hybrid ground/aerial vehicle with continuous tracks, ducted fans, an
Intel Realsense D435i camera and an NVIDIA Jetson Xavier NX.

Figure 11. A laboratory with the NaturalPoint OptiTrack motion capture system.

We compare our algorithm with VINS-Loop, as both ours and VINS-Loop use the
tracking results of VINS-VIO. The results are shown in Table 4. Because of the high speed
the vehicle flew at and the inaccurate IMU data, VINS-VIO suffers noticeable drifts in
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the experiments. Specifically, the RMSE of VINS-VIO is 0.18 m. Meanwhile, VINS-Loop
reduces the error of VINS-VIO slightly (only 0.015 m better), since only a few loops have
been detected. In contrast, the proposed system achieves about 1.5 times more accurate
results than VINS-VIO, and the RMSE is 0.04 m lower than VINS-Loop.

Table 4. RMSE (m) in the Indoor Experiment. The best result is highlighted in bold.

System RMSE (m) Reduced Error

VINS-VIO 0.18 -
VINS-Loop 0.165 8.3%
Proposed 0.125 30.5%

To illustrate the detected loops in the experiments, in Figure 12, we display the
trajectories with loop links of VINS-Loop and ours, respectively. Each trajectory has two
parts: three flying rounds (the upper zigzag circles) and a driving round (the lower smooth
circle). Intuitively, the proposed system has drastically more loop links than VINS-Loop. In
Figure 12a, only several loops with similar views are closed, and almost no loops between
aerial and ground-level views are detected. On the contrary, plentiful loops with large
viewpoint changes can be observed in Figure 12b.

(a)

(b)
Figure 12. Trajectories of the real-world experiment with loop links (yellow lines). (a) VINS-Loop.
(b) Proposed.

Some examples of the detected loop pairs with large view variance are shown in
Figure 13. The symbols of relative translation and angles are the same as in the experiments
on datasets. We can observe apparent image differences despite small relative translation
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and angles since the depth scene in the laboratory is obviously short. We can see that the
two left images were captured at the ground-level view, while the two loop candidates
on the right were taken in the air. A change in viewpoint not only altered the scale of the
pictures, but also the illumination of the features. Even so, the loop is correctly detected,
and features are matched precisely. According to the experimental results in the real world,
it is evident that the proposed system fairly solves the viewpoint change problem for hybrid
ground/aerial vehicles.

(a)

(b)
Figure 13. Examples of detected loop pairs at different viewpoints in the indoor experiment.
(a) tij = 0.7 m, ψij = 2.6°, θij = 1.5°, φij = 0.4°. (b) tij = 0.9 m, ψij = 0.8°, θij = 1.4°, φij = 3.0°.

6. Discussion

In this paper, the problem of loop closure detection failures for HyTAVs caused by
significant viewpoint changes is investigated. A method including offline vocabulary
training and online loop closure detection is proposed. For offline vocabulary, the binary
encoding approach is presented to speed up the image retrieval process of utilizing deep-
learned descriptors in the traditional appearance-based approaches. For online loop closure
detection, the SuperPoint features are extracted according to the keyframe’s image and
tracking keypoints, and the loop candidate is retrieved using the offline trained vocabulary.
Finally, the constraint of the loop pair for graph optimization is computed by a PnP method
based on the feature-matching results of SuperGlue.

We evaluate both the performance of the offline trained vocabulary as well as the
effectiveness of the online approach on a public dataset and the dataset collected by a
self-developed hybrid ground/aerial vehicle. First, the proposed approach of combing the
BoW framework with an encoding method for vocabulary training and image retrieval is
proven to be more effective than the handcrafted ORB and BRIEF descriptors, thanks to the
distinctiveness of the binary-encoded descriptors. Moreover, according to the experimental
results of online experiments, the system is shown to be able to outperform the state-
of-the-art work VINS-Loop not only on the majority of EuRoC datasets, but also on our
ground/aerial data. The performance margin of the proposed method over the VINS-Loop
is larger in situations where there are large viewpoint changes, demonstrating that this
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system is more robust to viewpoint changes. It is also proven that the proposed method
has enabled detecting loops more frequently and reliably in the general case. Moreover,
the algorithm runs in real-time with a state-of-the-art SLAM framework on a modern CPU
and GPU.

Although the approach is proposed for hybrid ground/aerial vehicles, it can also be
expanded to UAVs, as they also suffer from viewpoint variances. Moreover, according to
the experiments in multi-session, we find its potential in collaborative multi-robot systems,
which need the coordination of different vehicles by loop closure. However, the swarms of
UAVs or hybrid ground/aerial vehicles have high demand on communication bandwidth.
To reduce the demand on the bandwidth, it would be of interest to explore the approach
with feature descriptors that are not only distinctive but also compact.
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