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Abstract: Recent years, autonomous drones have attracted attention in many fields due to their
convenience. Autonomous drones require precise depth information so as to avoid collision to fly
fast and both of RGB image and LiDAR point cloud are often employed in applications based on
Convolutional Neural Networks (CNNs) to estimate the distance to obstacles. Such applications
are implemented onboard embedded systems. In order to precisely estimate the depth, such CNN
models are in general so complex to extract many features that the computational complexity increases,
requiring long inference time. In order to solve the issue, we employ optical flow to aid in-depth
estimation. In addition, we propose a new attention structure that makes maximum use of optical
flow without complicating the network. Furthermore, we achieve improved performance without
modifying the depth estimator by adding a perceptual discriminator in training. The proposed model
is evaluated through accuracy, error, and inference time on the KITTI dataset. In the experiments,
we have demonstrated the proposed method achieves better performance by up to 34% accuracy,
55% error reduction and 66% faster inference time on Jetson nano compared to previous methods.
The proposed method is also evaluated through a collision avoidance in simulated drone flight and
achieves the lowest collision rate of all estimation methods. These experimental results show the
potential of proposed method to be used in real-world autonomous drone flight applications.

Keywords: depth estimation; optical flow attention; perceptual discriminator

1. Introduction

There has been growing demand for Unmanned Aerial Vehicles (UAVs), so called
drones, with diverse capabilities in many fields such as agriculture, surveillance, logis-
tics, military, and so on [1]. The term of the drone is commonly known as remote (or
autonomous) flying robots, but in fact, this term is also used to describe a variety of vehicles
such as submarines or land-ropers. Focusing on drones as flying robots, commonly known
as drones, we classified them into three types derived from the flying mechanisms [2]:
Multi-rotor drones, fixed-wing drones, and hybrid-wing drones. Multi-rotor drones have
a set of rotary wings and are based on Vertical Take-Off and Land (VTOL) principle, and
then they need to tilt for producing driving horizontal force. Fixed-wing drones can be
imagined such as small airplanes, which have a higher potential of glide to fly fast than
multi-rotor ones [3]. Unlike multi-rotor drones, fixed-wing drones require a runway to take
off and land due to their Horizontal Take-Off and Landing (HTOL) nature. As the other
type of drones, hybrid-wing drones are utilized. They are called hybrid with regard to
including fixed and rotary wings and can flexibly take advantage of either wing depending
on the flight situation.

These drones are adopted depending on their usage. Especially for military usage,
fixed-wing drones could be employed since the military has a runway long enough for
such drones to be ready for taking off and landing [4]; however, commercial use of drones
such as logistics and smart city surveillance can hardly prepare the specialized runway so
that multi-rotor drones have been commonly employed in the literature so far [5].
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In order to realize fully autonomous flight of drones, there must be an essential
function that enables drones to perceive their surroundings and avoid collision with
obstacles [6]. There have been many works on obstacle avoidance for several decades
and they have adopted depth perception methods through distance sensors such as ul-
trasonic sensors, LiDAR, Microsoft Kinect, or stereo cameras [7–10]. For instance, the
authors employed high-performance sensors such as ultrasonic sensors and radars in the
proposals [11–13]. These methods achieved collision avoidance by acquiring the distance
between the drone and the obstacle from the sensor and using an obstacle-free location as a
waypoint. However, such sensors have a limitation of either range of distance or energy
consumption due to battery capacity on drones and are not suitable for autonomous drones.
On the other hand, several works employ LiDAR as a long-distance measurable sensor [7,8].
Although these methods have realized high-speed autonomous flight, the flight distance of
a drone equipped with LiDAR is limited due to the high energy consumption caused by its
weight. For example, the weight of HDL-64E is well-known as 12,700 g [14]. Therefore, to
make effective use of drones, it is necessary to estimate the long distance from light sensors.
Instead of such sensors, a monocular camera as the depth sensor for obstacle recognition
and avoidance has been an attractive solution for autonomous drones due to several ad-
vantages of the monocular camera, including ease of use, lightweight, small footprint, and
low power consumption. Although in order to fly safely, vision-based methods require
Deep Neural Networks (DNNs)-based algorithms with high power consumption, with the
advancement of embedded systems technology, it is now possible to use small form-factor,
low-power-consumption board computers (e.g., Jetson Nano and Jetson Xavier NX) that
can be installed on drones for DNN-driven computations.

Most monocular depth estimation methods usually employ Convolutional Neural
Networks (CNNs). In addition, high-accuracy depth estimation networks consist of large-
scale CNN in many cases [15–18]. Several methods have achieved practical accuracy in
long-depth estimation from a monocular camera using CNN. In the studies [19,20], the
authors employed the two steps CNN to estimate depth accurately. In the first step, the
network takes a monocular image and outputs a global rough depth map. The network
refines the depth map locally from a monocular image and the global rough depth map
in the second step, but the drawback of this network is low accuracy for the network
size. To solve this problem, various efforts have been made to improve the accuracy of
depth estimation.

One way to improve accuracy is to deepen and expand the network. In the work [17],
the authors employed Visual Geometry Group (VGG) to extract features from a monocular
image for depth estimation. The architecture of VGG is characterized by its simple design
and the use of multiple small convolutional filters, which led to its excellent performance
on large-scale image classification benchmarks [21] and the paper [17] achieved higher
accuracy than the works in [19,20]. These methods [15,16,18,22,23] also used other deep
CNNs (e.g., ResNet50 [24] and DenseNet121 [25]). In addition, the authors added the trans-
former techniques to the CNN depth estimator to refine the depth estimation map [26,27].
The deep CNN [15,16,22] or transformer [26–28] methods improve accuracy significantly.
However, the inference time of these methods is too long for drones to fly safely, espe-
cially on a low or middle-grade Graphical Processing Unit (GPU), which can be loaded
on drones. In order to utilize high accuracy and large-scale deep CNN-based methods,
drones communicating with cloud servers have been recognized as an efficient solution
in that the computation is conducted very quickly on a cloud server instead of on a drone
itself. However, the latency between a drone and a cloud server usually takes up to a few
seconds and it also jeopardized to security vulnerabilities, resulting in fatal systematical
problems [2,29–31].

Another way to improve the depth estimation method is to pre-process a monocular
image and use lightweight CNN. For instance, the authors in [32] employed semantic seg-
mentation as a pre-processing to improve accuracy. This method [32] identifies categories
and calculates instance segmentation maps followed by dividing them into patches from



Drones 2023, 7, 134 3 of 17

categories and instance maps. In the next step, this method estimates the depth of each
category and each instance. As a result, by category and instance-wise depth estimation,
the computational cost for depth estimation is small, and the edges are sharper and more
accurate than the other methods. However, the authors employed ResNet50 for segmenta-
tion, which increases the computational cost for pre-processing. Therefore, pre-processing
for depth estimation on drones must process fast not to increase the total inference time of
depth estimation.

The authors in [33,34] employed Pix2Pix [35] for depth estimation and demonstrate
that inference time is practical for autonomous flight. The authors [34] concluded the
estimation accuracy of this method [33] is not enough for collision avoidance completely;
therefore, the authors in [34] employed optical flow as a pre-processing and improved
accuracy. This method [34] generates optical flow maps and replaces a part of monocular
image pixels with the optical flow map pixels. However, this method [34] does not uti-
lize full optical flow information. The work in [36] proposed a method that inputs two
images into CNN and this method worked well to use all information in the image. The
method [36] employed ORB-SLAM presented in [37], which is known as a Simultaneous
Localization and Mapping (SLAM), as a pre-processing and generated a sparse depth
map. SLAM is a technology that allows a device to create a map of its surroundings and
determine its location within that map in real time without Global Positioning Systems
(GPS). SLAM algorithms are computationally expensive, and real-time performance can be
difficult to achieve on limited computational resources. In addition, the simplified depth
map generated by the SLAM algorithm is a sparse depth map like a LiDAR cloud point
map. However, due to the characteristics of CNNs, it is difficult to extract point cloud
features from sparse depth maps. Stereo photogrammetry, Structure from Motion (SfM)
photogrammetry and Multi-View Stereo (MVS) are also a process of creating 3D images
from 2D images by using the stereogram principle, which involves the use of stereo imagery
to derive 3D information about a scene. However, these methods need high-resolution
cameras to create accurate 3D models. Furthermore, these methods can only obtain a 3D
model if multiple images are acquired. Therefore, to use these methods for drone collision
avoidance, it is necessary to pre-flight the flight route and create a 3D map in advance,
which is not suitable for dynamic environments.

There exist some works that employ Conditional Generative Adversarial Networks
(CGAN) [38] to train CNN for depth estimation for its easy adaptation for many image-
to-image problems [33,34,39,40]. CGAN improves the performance of the generator by
feeding additional data to the generator and the discriminator. However, it is not enough to
determine true/false with only one discriminator, and it is effective to determine true/false
from other perspectives.

In this paper, we propose fast and effective pre-processing for depth estimation and
CNN to utilize pre-processing information. To further enhance our proposal, we adopt a
perceptual discriminator to improve the accuracy of depth estimation without increasing
the complexity of the generator network.

The rest of this paper is organized as follows. Section 2 describes a proposed method
for depth estimation using optical flow attention and a perceptual discriminator. The
experiments on the evaluation of error, accuracy, and collision rate are presented in Section 3,
and Section 4 shows the results of these experiments. Section 5 describes discussions about
experimental results and issues of our proposed method. Section 6 concludes this paper.

2. Proposed Method

This section describes a proposed depth estimation method with optical flow attention.
Figure 1 shows system overview of the proposed method.
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Figure 1. The proposed method.

As shown in Figure 1, the proposed method has two main processes. Firstly, the
proposed method generates optical flow from serial frames. Secondly, the proposed method
estimates depth using CNN with attention, which takes a monocular image and an optical
flow map. In addition, a discriminator different from the conventional CGAN is added
during the training of the estimator to improve accuracy. In Setion 2.1, we introduce optical
attention and depth estimation in detail. In Setion 2.2, we detailed present the perceptual
discriminator used in training.

2.1. Optical Flow Attention and Skip Connection

We focused on the fact that drones are a form of mobility, and the continuous frames
acquired by the camera on a moving drone show small movements of distant objects and
large movements of nearby objects. The optical flow can obtain the movement vectors of
objects in the image, and in drones, the displacement of the optical flow can be regarded as
a simplified depth. We employ the Farnebäck method [41] to generate optical flow since
this method can obtain dense optical flow. The Farnebäck method [41] approximates pixel
luminance values with a second-order polynomial and compares the coefficients between
frames to estimate the amount of movement with high accuracy. Let ft(x) ∈ [0, 1] denote
the luminance value of coordinate x at time t. The luminance values in the neighborhood
of x are expressed as second-order polynomials, and the coefficients are optimized by the
weighted least-squares method in Equation (1).

f̂t(x) = xT Atx + bT
t x + ct (1)

At, bt, ct are a (2,2) symmetric matrix, a (2,1) column vector, and a scalar, respectively.
The amount of movement vt at time t can be estimated from Equation (2). For details refer
to [41].

f̂t(x) = f̂t+1(x + vt) (2)

In Figure 1, this optical flow map is regarded as simplified depth. However, this
map is noisy, and when this map is input CNN for depth estimation, the output of depth
estimation affected by noise is low accuracy. Therefore, we propose a network using
attention to fully utilize this simplified depth image and minimize the effect of noise.

As shown in Figure 1, this network has thirteen convolutional layers and eight trans-
posed convolutional layers. The kernel size is four, and the stride is two in these layers. In
addition, between these layers, there is ReLU as an activation function and batch normal-
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ization. In the attention block, the features of the optical flow map extracted by the two
convolutional layers are normalized from 0.0 to 1.0 by the Sigmoid function, and the output
channel size is the same as the monocular image features before multiplication to determine
the attention area in each channel. Finally, the output of the attention block is multiplied by
the feature values of the monocular image. In past work, some pixels in the optical flow
map are selected at certain intervals and added to the RGB map [34]. This approach does
not guarantee that the optical flow pixels containing key information are selected, and at
the same time, it is possible to select noise points and add them to the RGB image. In this
work, we select the pixels to be added through the attention block. The attention block can
determine which areas and channels are not needed from the information in the optical
flow map when the output of the attention block is close to 0, and which areas and channels
should be focused on in the next layer when the output of the attention block is close to 1.
Since noisy optical flow features are used for the attention block, the attention block can
reduce the impact on the output of depth estimation and maximize the use of the optical
flow map.

In addition, we employ skip connections inspired by U-Net [42]. The deeper the
convolutional layer, the more local features can be extracted, but location information
becomes ambiguous. The skip connection gives the decoder outputs of the encoder at the
same depth, and it is possible to recover positional information and extract local features.
However, when a skip connection is connected to the optical flow, the depth estimation
results are less accurate due to the noise of the optical flow. Therefore, the skip connections
are only connected to monocular image layers.

2.2. Perceptual Discriminator

We train the estimator based on the Pix2Pix training method [35]. However, when the
estimator is trained using the Pix2Pix training method as it is, the accuracy is not improved
enough. Therefore, we add a perceptual discriminator to improve the accuracy of depth
estimation inspired by [43]. Figure 2 shows the overview of training.

Figure 2. Overview of training

In Figure 2, there are white blocks and red blocks. The white blocks are the Pix2Pix
training method, and the red blocks are our added training method. As shown in Figure 2,
the perceptual discriminator takes features extracted from pre-trained CNN. In training,
the parameters of pre-trained CNN are frozen, and the perceptual discriminator identifies
whether the input is the features of ground truth or depth estimation. Therefore, by
employing a perceptual discriminator, the depth estimator can make the estimation results
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resemble ground truth in terms of features. The loss function of the perceptual discriminator
shows in Equation (3).

Lp(E, Dp) = Egt[log Dp(F(gt))] +Em,o[log(1− Dp(F(E(m, o))] (3)

Here, m is a monocular image, gt is a ground truth of the depth map, E is an output
of the estimator, F is features extracted by pre-trained CNN and Dp is an output of the
perceptual discriminator.

LCGAN(E, DCGAN) = Em,gt[log DCGAN(gt, m)] +Em,o[log(1− DCGAN(E(m, o), m)] (4)

Here, DCGAN is an output of the CGAN discriminator. An additional intelligence m
is added to the input to improve performance compared to conventional GAN. Lp and
LCGAN are predicated on binary logarithmic loss, and Dp and DCGAN are probabilities
which these discriminators identify an input as ground truth. Also, these losses only add
more relevance to the estimator, and the error is likely to be large for depth estimation.
Therefore, we use the L1 loss as in Pix2Pix to give an absolute value error as shown in
Equation (5).

LL1(E) = Em,o,gt[||gt− G(m, o)||1] (5)

Finally, we define the total loss as:

Ltotal = αLCGAN + βLp + γLL1 (6)

Here, α, β, and γ are weights of each loss function.

3. Experiments

In this section, we evaluate our method in terms of accuracy, latency, and performance
to avoid collisions. The dataset, which is used for training, validation, and testing, has been
collected from the four maps provided in the AirSim environment; Blocks, City, Coastline,
and Neighborhood, where the overview of the maps is shown in Figure 3.

(a) (b) (c) (d)

Figure 3. Appearance of the maps for training: (a) City environment, (b) Coastline, (c) Neighborhood,
(d) Blocks.

AirSim [44] is a kind of flight simulator that uses a virtual environment called Unreal
Engine 4. This simulator faithfully reproduces reality in visual information and physics.

3.1. Implementation

In AirSim [44], we can obtain depth maps and monocular images in the same frame
so that we create a dataset that is suitable for autonomous drones. We have obtained the
data through the flight simulation with a quadcopter built-in AirSim, and the dataset has
9000 pairs as training data, 1000 pairs as validation data, and 1000 pairs as test data.

We used Intel Core i9-10900K (32 GB of main memory) and NVIDIA GeForce RTX
3090 in training our models. We train our model in the following conditions we manually
optimized these parameters: the number of epochs is set to 500. The batch size is set to 32,
α is 0.5, β is 0.5, and γ is 100.
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In addition, in order to compare other depth estimation methods not using AirSim
dataset, we train our model using KITTI dataset [45]. KITTI dataset [45] is a famous dataset
to evaluate depth estimation and has real-world depth maps and monocular images. KITTI
with Eigen split has 22,600 pairs as training data, 888 as validation data, and 697 pairs as
test data. In training our models using the KITTI dataset, we employ Eigen’s split method
and the following conditions and we manually optimized these parameters: the number
of epochs is set to 200. The batch size is set to 8, α is 0.5, β is 0.5, and γ is 100. In addition,
we employ fine-tuning from the pre-trained AirSim dataset model in training since our
model needs more effective training because of a small network. The epoch number is
determined based on the convergence of the loss function. The parameters α, β and γ of the
loss function are set to 0.5 because α and β are the losses associated with the discriminator,
respectively, and both need to give the same ratio of losses. γ is determined with reference
to Pix2Pix [35]. These were determined using the same values for both the AirSim and
KITTI datasets. The batch size was determined based on the available GPU memory of the
computer used for training.

In addition, The models used in the comparison, CycleGAN [46], Shimada et al. [33]
and Shimada et al. [34] are trained by ourselves on the AirSim dataset. In Shimada et al. [33]
and Shimada et al. [34], the parameters are the same as in these papers. The parameters of
CycleGAN [46] is the weight of identity loss is 5, the weight of cycle consistent loss is 10,
the number of epochs is 200, and the batch size is 16 based on CycleGAN paper [46]. The
models on the KITTI dataset are compared using the results in these papers. In addition,
the inference time evaluations use publicly available neural networks.

3.2. Accuracy, Error and Latency Evaluation and Ablation Study

In order to quantify the estimation error of models, we use root mean squared error
(RMSE) and absolute relative error (Rel.) metrics. Hereby, RMSE is obtained by the
following equation.

RMSE =

√√√√ 1
N

N

∑
i=1

(ygt
i − yi)2 (7)

ygt
i is ground truth value. yi is estimation value. N is a number of data. Rel. is obtained by

the following equation.

Rel. =
1
N

N

∑
i=1

||ygt
i − yi||
ygt

i

(8)

Specifically, the accuracy metrics are defined as:

δn =

{
x
∣∣∣∣ yi : max

(
yi

ygt
i

, ygt
i

yi

)
< 1.25n

}
N

(n = 1, 2, 3), (i ∈ (1, ..., N)) (9)

In addition, we evaluate inference time in order to analyze the inference time. In
this experiment, we compare our proposed method with the 6 methods which are Eigen
et al. [19] Shimada et al. [33], Shimada et al. [34], CycleGAN [46], Xin et al. [36], and
Kuznietsov et al. [18], respectively. To compare these methods, we reproduce the networks
from published papers and measure inference times. Also, we use the three devices
which are Jetson Nano, Jetson Xavier NX, and GeForce RTX 2070 SUPER, respectively.
The network inputs are the images which are 256 × 256 resolution and the channels are
three based on the AirSim dataset. In KITTI dataset, the network inputs are the images
which are resized in height is 256, and width is 1024 to be able to compute Jetson Nano.
This experiment is performed 1000 times consecutively for each method, and the average
inference time is evaluated.
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3.3. Collision Rate Evaluation

Previously, we have evaluated the accuracy and runtime of the proposed method. In
this section, we conduct the simulation of a drone flight in AirSim to demonstrate that the
proposed method can fly avoiding collision with objects. In order to realize the safe flight
of an autonomous drone, it is necessary to plan the path by itself, that is, the drone needs
to select the direction so that the drone can avoid colliding with objects. In the experiments,
we use a state-of-the-art path planning method for flight control, which is developed in [47].
The work in [47] introduces a method that divides a depth map into multiple sections. The
presented method in [47] divides a depth image into 289 overlapped sections (17 rows and
17 columns) as shown in Figure 4.

(a) (b)

Figure 4. Direction decision from divided sections in [47]. (a) Overlapped section, (b) Section selection.

By dividing into overlapped sections, the drone selects the best section to avoid
obstacles and pass safely so that the drone determines the section with the maximum total
pixel value. The flight is simulated 400 times in the four environments. The flight scenarios
are randomly generated in terms of route, direction, and distance. We compare the collision
rates that the number of collisions accounts for towards the total number of flights. Hereby,
we define the collision rate for a map in the following equation:

Collision Rate =
No. o f Collisions

No. o f Flights (i.e., 400 f lights in total)
(10)

Note that we assume that the flight has a collision if the drone collides with an obstacle
even once during its flight.

In the experiments, we use the following four methods: The first can measure up
to 10 m, which assumes a real depth camera for a reasonable price and is light-weight
enough to be equipped on a drone. The second can measure up to 255 m. This method
assumes an ideal depth camera, where it can measure up to 255 m but is too heavy to be
mounted on a drone in the real world. This method is used as ground truth depth images
for comparison. The third and the fourth are presented by Shimada et al. [33] and [34].
This method inputs a monocular image to generate a depth image through Pix2Pix. The
fifth is our proposed method. In this experiment, we use Intel Core i7-9700K (64 GB of
main memory) and NVIDIA GeForce RTX 2070 SUPER. In addition, the depth estimation
is performed on the CPU to avoid the discrepancy between the drone with a low-grade
GPU and the inference time. Our method combines an image with an optical flow map into
Pix2Pix, and it generates the estimated depth map.

4. Results
4.1. Accuracy, Error and Latency Evaluation

Table 1 shows the results of error and accuracy using the AirSim dataset, and Figure 5
shows the inputs and outputs of Shimada et al. method [34] and ours.
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Table 1. Error and accuracy evaluation using AirSim dataset.

Error (↓) Accuracy (↑)

RMSE Rel. δ1 δ2 δ3

Shimada et al. [33] 5.924 0.133 0.882 0.956 0.977
Shimada et al. [34] 5.917 0.131 0.886 0.957 0.982

Cycle GAN [46] 5.961 0.135 0.891 0.960 0.984

Ours 5.771 0.131 0.898 0.970 0.994

(e)(d)(c)(b)(a)

(1)

(2)

(3)

(4)

Figure 5. Inputs and outputs each method: (a) monocular image, (b) optical flow map, (c) Shi-
mada et al. [34], (d) ours, (e) ground truth, (1) Blocks, (2) City Environment, (3) Coastline, (4) Neighborhood.

As shown in Table 1, our proposed method is superior to the other methods. In
Shimada et al. method [33] and Cycle GAN method [46], these networks take only a
monocular image, and these methods cause low accuracy because of limitations of extracted
information. In Shimada et al. method [34], this method generates optical flow and a part
of pixels in a monocular image replaced to pixels of optical flow maps so that optical flow
information is misses when replacing pixels, causing low accuracy.

As shown in Figure 5, in the block, the output of Shimada et al. method [34] is blurred
around the orange sphere. In addition, some white dots are visible in other outputs. We
have identified an outlier due to the influence of the replaced pixels in the optical flow.
On the other hand, the proposed method has no such outliers and almost no blurring of
edges such as spheres. The rational use of optical flow based on the attention method is
considered to be the reason why the proposed method is superior to other methods.

Table 2 shows the evaluation accuracy and error using KITTI dataset [45].
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Table 2. Error and accuracy evaluation using KITTI dataset with Eigen’s split.

Error (↓) Accuracy (↑)

RMSE Rel. δ1 δ2 δ3

Eigen et al. [19] 7.156 1.515 0.692 0.899 0.967
Liu et al. [23] 6.986 0.217 0.647 0.882 0.961

Kuznietsov et al. [18] 4.621 0.113 0.862 0.960 0.986
Shimada et al. [34] 7.605 0.154 0.813 0.958 0.985

Xin et al. [36] 5.752 0.125 0.869 0.956 0.980

Ours 4.712 0.121 0.870 0.973 0.992

As shown in Table 2, Kuznietsov et al. [18] achieves the lowest errors in RMSE and
Rel. and our proposed method is the highest accuracy in all δ. In comparison to these
methods, the accuracy of our proposed method on δ1 , δ2, and δ3 respectively is 7.0 percent,
1.6 percent, and 0.7 percent better than Shimada et al. [34] since the proposed method can
utilize optical flow information by using attention block more than Shimada et al. [34].
In Kuznietsov et al. [18] method, the network uses ResNet 50 as an encoder. Although
the network is deeper by far than our proposed method, and the estimation results have
a larger percentage of zero errors and lower RMSE and Rel. than our proposed method,
running a deeper network generally consumes more power. The high energy consumption
is not good for drones in terms of their battery capacity. On the other hand, in δ, our
proposed method is superior to Kuznietsov et al. [18] since the estimation results of our
proposed method have a small number of outliers by taking an optical flow map as a
simplified depth map.

Tables 3 and 4 shows the results of inference time evaluation.

Table 3. Inference time evaluation using AirSim dataset.

Method
Inference Time [ms]

Nano Xavier RTX 2070 SUPER

Eigne et al. [19] 8.8 5.1 1.4
Shimada et al. [33] 18.4 13.4 2.9
Shimada et al. [34] 18.0 12.5 2.7

CycleGAN [46] 32.1 23.1 4.5
Xin et al. [36] 33.4 22.2 4.8

Kuznietsov et al. [18] 70.1 39.1 9.6

Ours 23.8 14.5 3.6

Table 4. Inference time evaluation using KITTI dataset.

Method
Inference Time [ms]

Nano Xavier RTX 2070 SUPER

Eigne et al. [19] 9.5 7.0 1.6
Shimada et al. [33] 18.4 12.9 3.1
Shimada et al. [34] 17.7 13.4 3.0

CycleGAN [46] 34.5 24.6 5.7
Xin et al. [36] 35.2 24.8 5.5

Kuznietsov et al. [18] 76.3 41.3 12.0

Ours 25.9 16.4 4.3

As shown in Tables 3 and 4, Eigen et al. [19] achieves the shortest inference time on all
devices, and the proposed method has the second shortest inference time. Shimada et al. [34]
and Shimada et al. [33] use Pix2Pix, and our network adds an attention technique to
Pix2Pix, and the inference time is increased only by the computational load. On the other
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hand, the inference time is 2.95X, 2.70X, and 2.67X shorter on each device than method
Kuznietsov et al. [18], whose accuracy is competitive with the proposed method. Therefore,
considering the accuracy and inference time, the proposed method is the most suitable
method for autonomous drones.

4.2. Ablation Study

A total of eight combinations is used to evaluate error and accuracy as an ablation
study. Table 5 shows the results of the ablation study using the AirSim dataset.

Table 5. Ablation study using AirSim dataset.

Perceptual Optical Flow Skip Error (↓) Accuracy (↑)

Discriminator Attention Connection RMSE Rel. δ1 δ2 δ3

6.721 0.244 0.774 0.887 0.928

X 6.227 0.237 0.768 0.883 0.923
X 6.290 0.226 0.771 0.888 0.929

X 5.942 0.134 0.887 0.956 0.977
X X 6.287 0.236 0.768 0.887 0.930
X X 5.951 0.206 0.818 0.915 0.950

X X 5.929 0.131 0.887 0.960 0.986

X X X 5.771 0.131 0.898 0.970 0.994

As shown in Table 5, the combination of all the factors is the best result and combina-
tions without skip connections have significantly worse accuracy and error. In addition,
the combinations that include the optical flow attention have a higher accuracy than the
combinations without the optical flow attention, and the combinations involving the per-
ceptual discriminator have greatly improved accuracy for combinations with a certain level
of accuracy. Figure 6 shows the outputs of each combination.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 6. Ablation study: (a) monocular image, (b) nothing, (c) perceptual discriminator, (d) optical
flow attention, (e) skip connection, (f) perceptual discriminator and optical flow attention, (g) per-
ceptual discriminator and skip connection, (h) optical flow attention and skip connection, (i) ours,
(j) ground truth.
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As shown in Figure 6b–d,f, the outputs of the combinations without the skip con-
nection have fuzzy edges and the overall image appears blurred. This fuzzy edge causes
significantly decreased accuracy. Therefore, skip connections can recover location infor-
mation that becomes ambiguous when the network extracts local features. As shown in
Figure 6d,f,h,i, the outputs of the combinations with the optical flow attention have a more
accurate depth than without it. Therefore, the results show that optical flow information
is correlated with depth, and optical flow attention is an effective use of this information.
As shown in Figure 6c,f,g,i, the outputs of the combinations including the perceptual
discriminator have been able to estimate the depth of thin objects such as trees, which are
lost in the other combinations. These results demonstrate the perceptual discriminator
can distinguish vanishing objects from the input features and propagate them back to the
estimator as losses. Therefore, all of the proposed factors are essential for a lightweight and
accurate depth estimation network.

4.3. Collision Rate Evaluation

Table 6 shows the results of collision rate evaluation.

Table 6. Comparison of collision rate.

Map
Collision Rate (%)

10 m 255 m Shimada [33] Shimada [34] CycleGAN [46] Ours

Blocks 58.75 7.000 17.50 14.50 15.00 5.50
City environment 73.50 26.00 34.75 34.00 36.50 26.50

Coastline 70.50 0.250 1.500 1.250 1.500 0.00
Neighborhood 82.00 7.000 2.500 1.000 5.500 0.25

As shown in Table 6, in City Environment, the method using ground truth up to
255 m achieves the lowest collision rate of all, and in the other environments, our proposed
method does the lowest collision rate. CycleGAN method [46] is higher collision rate
than Shimada et al. method [34]. As shown in Table 1, CycleGAN [46] is higher accuracy
than Shimada et al. [34]. According to these results, we can see that high-accuracy depth
estimation alone does not reduce the collision rate and that the inference time needs to
be shorter. The method using depth estimation would not reduce the collision rate more
than the method dealing with ground truth. However, as the results show, the proposed
method outperforms the method that handles ground truth. There are two reasons for these
results. Firstly, the ground truth is an absolute distance, whereas the distance estimated by
the depth estimation method is a relative distance (i.e. the maximum distance is always
255 m and the minimum distance is 0 m). The nearest obstacle in the depth image is
always zero depth value in the depth estimation method so that the drone takes larger
avoiding action than in the method dealing with the ground truth depth map. Therefore,
the proposed method has the ability to record a lower collision rate than the ground truth.
Finally, the depth estimation method sometimes estimates the depth of obstacles that are
more than 255 m away. Therefore, in advance, the drone considers distant obstacles and
determines waypoints has led to lower collision rates. From these results, we conclude
that the proposed method provides sufficient estimation since it is able to select waypoints
equivalent to those of the ground truth method despite the inference time.

In addition, there is a reason why our proposed method is superior to the other depth
estimation methods [33,34]. As shown in Table 1, the proposed method is more accurate,
and the estimation is performed many times during the flight. This iteration causes a
situation where errors accumulate in the determination of waypoints. This accumulation of
errors can lead to a fatal situation for the drone. Therefore, the proposed method results
lower collision rate than [33,34] in all the environments.
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5. Discussion

In this section, we will discuss what makes high accuracy with a short inference time.
We also discuss the technical issues that need to be addressed.

First of all, we show how optical flow attention actually works and how it contributes.
The proposed method is superior to the other methods because of the optical flow attention
as shown in Tables 1, 2 and 5. Figure 7 shows visualization of optical flow attention in
KITTI dataset.

(a) (b) (c)

Figure 7. Visualization how the optical flow attention works in KITTI dataset: (a) monocular images,
(b) optical flow maps, (c) visualization of attention.

As shown in Figure 7, the optical flow attention adds large attention to nearby objects.
The optical flow attention can also add information to areas not represented by optical
flow maps. The features of the monocular image enhanced by this attention are input to
subsequent down-sampling, allowing more effective feature extraction than with monoc-
ular images. Therefore, the proposed method achieves high accuracy since the proposed
method can utilize the optical flow information more than Shimada et al. method [34]
which takes only a part of optical flow pixels.

In addition, as shown in Table 2, adding optical flow information by attention is
possible to achieve the same accuracy as the Kuznietsov et al. method [18], which is a
high-performance CNN. Figure 8 shows visual aspects using the KITTI dataset.

(a) (b) (c) (d)

Figure 8. Visual aspects using KITTI dataset: (a) monocular images, (b) Kuznietsov et al. estimation
results, (c) our results, (d) ground truth.

As shown in Figure 8, the proposed method has clear edges and the results are
comparable to the Kuznietsov method [18]. On the other hand, the proposed method
reflects the poles in the depth estimation results while the Kuznietsov method [18] does
not show them in the depth estimation results. As shown in Figure 7c, the telephone poles
have been highlighted by the optical flow attention with displacements detected in the
previous and current frames. The shape of the car in side of a street is also clearer by the
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optical flow attention than in the Kuznietsov method, and these differences are reflected in
the accuracy of the proposed method. Therefore, without deepening the CNN, the optical
flow attention improves the accuracy of depth estimation with fast inference time.

We describe the technical issues. Our proposed method employs an optical flow as
a simplified depth. The simplified depth required by the optical flow requires the object
to be moving between each frame. Therefore, optical flow acquired by a moving camera,
such as a drone, can accurately calculate the simple depth outside the center of the image.
On the other hand, in the central part of the image, there is very little or no movement
between each frame of the moving camera and it does not show up in the optical flow.
Objects moving at the same speed as the drone are similarly not represented in the optical
flow. Figure 9 shows an example that optical flow does not work.

Figure 9. An example the optical flow does not work: (a) previous frame, (b) current frame, (c) optical
flow map.

As shown in Figure 9, the bounding box shows a car location however in the optical
flow map, there is no information in the bounding box. Therefore there is a necessity to
develop a more effective simplified depth generation method.

6. Conclusions

In this paper, we propose a fast inference time and high-accuracy depth estimation
method for autonomous drones. To achieve a highly accurate depth estimation of monocu-
lar images alone, it is generally necessary to use a deeper CNN to extract more features.
However, this is not suitable for drones due to the long inference time. We propose optical
flow attention that does not deepen the network but rather inputs optical flow as infor-
mation that can aid in-depth estimation. In addition, we add perceptual discriminators
and skip connections to make our fast estimator more effective than the conventional
training method.

Experimental results demonstrate our proposed method is superior to the state-of-the-
art in accuracy, error, and collision rate with fast processing time. Our proposed method
is considered to be the most suitable method for the autonomous flight of drones. We
also conduct an ablation study to confirm the contributions of our proposed method. The
results of the ablation study demonstrate that the skip connection contributes to edge sharp-
ness, the optical flow attention contributes to accuracy improvement, and the perceptual
discriminator contributes to preventing the vanishment of detailed object estimation.

In future work, we will investigate more efficient information than optical flow. In
addition, as shown in Table 6, the collision rate in City Environment is too high to be feasible
for real environments. Therefore, we will design more effective collision avoidance for
depth estimation. There are also a number of challenges in the current technology of depth
estimation for drones. These include, for example, reduced energy consumption, faster
inference times, higher accuracy and fast and robust waypoint determination methods.
Solving these problems is a future challenge for the field.
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