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Abstract: Recently, analysis and decision-making based on spatiotemporal unmanned aerial vehicle
(UAV) high-resolution imagery are gaining significant attention in smart agriculture. Constructing
a spatiotemporal dataset requires multiple UAV image mosaics taken at different times. Because
the weather or a UAV flight trajectory is subject to change when the images are taken, the mosaics
are typically unaligned. This paper proposes a two-step approach, composed of global and local
alignments, for spatiotemporal alignment of two wide-area UAV mosaics of high resolution. The first
step, global alignment, finds a projection matrix that initially maps keypoints in the source mosaic
onto matched counterparts in the target mosaic. The next step, local alignment, refines the result of
the global alignment. The proposed method splits input mosaics into patches and applies individual
transformations to each patch to enhance the remaining local misalignments at patch level. Such
independent local alignments may result in new artifacts at patch boundaries. The proposed method
uses a simple yet effective technique to suppress those artifacts without harming the benefit of the
local alignment. Extensive experiments validate the proposed method by using several datasets for
highland fields and plains in South Korea. Compared with a recent work, the proposed method
improves the accuracy of alignment by up to 13.21% over the datasets.

Keywords: unmanned aerial vehicle (UAV); spatiotemporal image; image alignment; smart agriculture

1. Introduction

Recent progress in the growth monitoring of crops through unmanned aerial vehi-
cles (UAVs) has enabled a wide variety of applications for precision farming, including
crop yield and disease management [1–3]. UAVs have significant advantages in terms
of easy control, which helps in capturing narrow areas as high-resolution aerial images
(approximately 0.1 m) from low-altitude flights (e.g., 30–60 m) [4–6]. Airplanes or satel-
lites can contain the entire target site in a single shot. Thus, scanning a whole target site
typically results in multiple UAV images that are used to create a single wide-area image
mosaic for further analysis, such as estimation of the vegetation index [7], crop yield [8,9],
and monitoring environment [10,11].

Besides the use of a single image, time-series monitoring and analysis are gaining
research attraction in various domains of data-driven smart agriculture, such as growth
monitoring, yield estimation, and climate forecasting. Early approaches to corn yield
prediction proposed multilayer perceptron neural networks that use environmental data of
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genotype and climate [12]. A decision tree is widely used to detect changes in field usage
from multispectral satellite orthography [13] or classify between wetland and dryland from
images with a resolution of 5 m [14]. Recently, advanced neural networks have been used,
which include long short-term memory (LSTM) with climate data [15], recurrent convolu-
tional neural network (CNN) with previous yield, climate, and soil data [16], and transfer
learning for the prediction of soybean and corn yield [16]. The approach proposed in [17]
used convolutional LSTM with radar data of satellites for weather forecasting. In [18],
a CNN-based method has been proposed to perform crop classification from temporal
multispectral satellite images of low resolutions (4–8 m) [19]. Temporal satellite images are
also used for managing crop disease by monitoring its growth status [20]. A LiDAR sensor
is used to constitute temporal data with satellite orthography for crop classification [21] or,
with the temporal vegetation index, to classify the severity level of forest fires [22].

Spatiotemporal data in those approaches typically consisted of spatially aligned or-
thoimages taken hours to years apart. An orthoimage is an aerial image geometrically
corrected, i.e., orthorectified, such that its scale is uniform, accurately representing the
Earth’s surface. An orthophotomosaic is a raster image made by merging orthoimages.
Conventionally, orthoimages are generated by using dense point cloud or digital models
(DMs) such as the digital building model (DBM), the digital terrain model (DTM) [23],
and the digital surface model (DSM) [24], to detect overlapped regions and recover the
occluded area. Recent advances in orthoimage generation based on deep neural networks
(DNNs) include resolution improvement of the digital elevation model (DEM) [25], genera-
tion of DEM from a single image [26], and detection of the occluded area through a point
cloud model [27]. These approaches require precise exterior orientation parameters by
using trilateration or a 3D model of high resolutions, thus being computationally expensive.

In addition, most existing approaches rely on spatiotemporal low-resolution satellite
images obtained at distances of several meters [14,18,19] to even kilometers [16]. Their
spatial alignment is relatively straightforward but results in limited applications. On the
other hand, UAV imagery of high-resolutions allows us to analyze and monitor crop growth
more finely. For example, it is possible to precisely manage wheat diseases from UAV
images of high resolution, e.g., 3.4 cm/px [28]. Its applications include crop classification
and identification [29], crop yield prediction [2,30], crop height estimation from 3D point
clouds [31], health monitoring of roots [32], and estimating surface fluxes from a vegeta-
tion index [33]. Spatially aligning high-resolution images, however, requires mosaicking
multiple UAV images into a large one, which is challenging compared with low-resolution
counterparts.

Image mosaicking typically is comprised of three steps: image registration, seam
cutting, and image blending. Image registration extracts overlapped areas to find a homog-
raphy for geometrically matching adjacent images. Although this stage requires global
positioning system (GPS) data or georeferenced information, the absence of this informa-
tion, which is prevalent, can be resolved by keypoint-extraction methods, such as phase
correlation [34], SIFT [35] and spatial transformation [36,37]. Seam cutting aims to find a
joining boundary that is natural and visually indistinguishable without artifacts [38,39]. Im-
age blending is the last step to refine the seam boundary in an image mosaic [40]. Although
recent DNN-based approaches have enhanced the performance of each step, for instance,
image registration [41–45], and seam cutting [46,47], they are not suitable for wide-area
images of high resolutions. In contrast, conventional alignment algorithms are able to
handle images with arbitrary resolutions.

UAV operations are usually affected by time-variant factors, such as weather con-
ditions. Therefore, image acquisitions over a whole target site are highly likely incon-
sistent, necessitating individual transformations locally to subregions or patches of the
mosaics. However, recent image-alignment methods are primarily applicable for images
with relatively small resolutions [41–45,48]. Furthermore, the naive application of inde-
pendent transformations to the patches of the mosaics may cause unexpected artifacts
along patch boundaries.
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To address these difficulties, this paper proposes a simple yet effective method by
which to construct high-resolution spatiotemporal imagery from UAV images of a wide-
area target site. Our method performs a geometrical alignment of a wide-area mosaic,
called source, with its counterpart called target, which have been taken several days or
weeks apart. The proposed approach consists of two steps: (1) global alignment, in which
the keypoints coexisting in two image mosaics are matched through a single transforma-
tion matrix, called homography, and (2) local alignment, which refines misalignments
by using per-patch transformations. Our approach combines a conventional keypoint-
matching algorithm and a keypoint-extraction technique by using a DNN. A conventional
keypoint matching [49] is applicable to images of arbitrary resolutions but with limited
accuracy [35–37,49,50]. In contrast, DNN-based methods better predict the relevant transfor-
mation for keypoint matching, outperforming the conventional ones [41–45,48]. Although
CNNs are popular for this purpose, the size of input images is restricted, usually as patches
with resolutions of millions of pixels, due to the internal structure of CNNs [48]. The
image alignment is based on keypoints that appear robustly and repetitively in images.
Identifying such keypoints is challenging for farmland photos wherein patterns of color
and texture are often largely repetitive. For this purpose, the proposed method adopts a
DNN-based method to extract trustworthy keypoints.

2. Materials and Methods
2.1. Problem Definition and Method Overview

Problem Definition. Let Xs and Xt be two input images, namely source and target,
respectively. We assume that each input image is a wide-area mosaic of high resolutions
built from UAV images with an identical time tag (usually the same date) for a study site.
The mosaic images are created independently with different time tags and are spatially
misaligned. The source and target have an equal number of multispectral bands, including
the conventional RGB channels. For simplicity, we assume images of a single channel
represented as 2D (width and height) without loss of generality.

We also assume that the input mosaics are annotated with reference points, which are
pixels corresponding to reliably different locations over the input images. Time-invariant
structures or geographical patterns are well suited to being reference points. Typical ex-
amples of reference points include predefined GCPs and corners of buildings and roads
of unique curvature. LetRs andRt be sets of 2D pixel coordinates for reference points in
Xs and Xt, respectively, and |Rs| = |Rt|. Then, our objective is to find a set of transfor-
mations to align the source Xs with the target Xt in a way that the distance between the
corresponding reference pointsRt andRs is minimized:{

mg, Ml
}
= arg min
{m∗g ,M∗l }

d
(
Rt, T

(
m∗g, M∗l ,Rs

))
, (1)

where mg is a global mapping (or transformation) that maps the coordinates inRs to their
counterparts in Rt (Section 2.2), and Ml is a set of local mappings applied to each patch
of Xs respectively (Section 2.3). T(·) is a set of reference points in the source (i.e.,Rs) that
are transformed through the global and local alignments, mg and Ml . d(·) is a distance
measure between two point sets (Section 3.4). Table 1 provides a summary of notations
used throughout the paper.
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Table 1. Notations used in the paper. The sections where each notation is defined are shown in the
corresponding parenthesizes.

Notations Definitions

Xs (Section 2.1) Source mosaic image

Xg (Section 2.2) Source mosaic image that has been transformed by the
global alignment

Xt (Section 2.1) Target mosaic image

Rs (Section 2.1) A set of referent points annotated in Xs

Rt (Section 2.1) A set of referent points annotated in Xt

mg (Section 2.1) A global mapping to mapRs to their counterparts inRt

Ml (Section 2.1) A set of local mappings applied to each patch of Xs

d(A, B) (Section 2.1) A distance measure between two point sets A and B

T(G, L, A) (Section 2.1) A set of transformed keypoints A using global alignment G and
a set of patch-wise local alignments L

h (Section 2.2) A 3 × 3 matrix to represent a homography

Cs (Section 2.2) A set of keypoints in Xs

Ct (Section 2.2) A set of keypoints in Xt

ϕ(k) (Section 2.2) Multidimensional descriptor for a keypoint k

Pg (Section 2.3) A set of nonoverlapped patches for Xg

Pt (Section 2.3) A set of patches for Xt

Kg (Section 2.3) A refined set of keypoints for Xg

Kt (Section 2.3) A refined set of keypoints for Xt

Method Overview. We first perform the global alignment of Xs with respect to Xt
as shown in Figure 1b. At the outset, the keypoints in Xs and Xt were extracted and
matched. This step aims to find a mapping that best aligns keypoints in Xs with their
counterparts in Xt. We adopted a DNN-based method to extract keypoints and their
descriptors [42]. Note that any keypoint extractor can be used in this step. Reference points,
Rs and Rt, and keypoints are conceptually similar in that they represent time-invariant
and unique locations of the target site. However, there are two essential differences
between them. First, we use the reference points to evaluate the alignment accuracy only
at the end, whereas keypoints were intermediate data for finding mappings mg and Ml in
Equation (1). Secondly, not all keypoints are meaningful; thus, outliers in matched keypoint
pairs may exist.
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Figure 1. Overview of the proposed method. (a) Extracting keypoints and their descriptors
(Section 2.2), and two alignment steps of wide-area UAV mosaics. (b) Global alignment (Section 2.2).
(c) Local alignment (Section 2.3).

We use homography as a mapping mg in the global alignment. For this purpose, we
adopted an algorithm to align the keypoint pairs, known as the random sample consensus
(RANSAC) [49], owing to its applicability in aligning high-resolution images and robustness
for outlier keypoint pairs. RANSAC is an iterative method that estimates the parameters of
a mathematical model for a given set of observations, i.e., keypoint pairs, allowing outliers
if they do not affect the values of the estimates. The detailed description of RANSAC is
beyond the scope of this paper. The global alignment provides an initial alignment of the
source with the target, as shown in Figure 2. The figure also shows that the alignment
is incomplete yet. Then, the local alignment splits each input image into small patches
from the global alignment and finds individual local mappings well-suited for the patches.
However, the straightforward merge of those independently transformed patches into a
single mosaic may result in artifacts at patch boundaries, as depicted in Figure 3.
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(a) (b)

Figure 2. Examples of (a) before and (b) after the global alignment. The source mosaic is outlined
in orange and the target in blue. Even though the initial misalignments on the road and house
are improved through the global alignment, not all misalignments are resolved, thus, necessitating
further improvement.

Figure 3. Artifacts at patch boundaries are incurred by applying independent homographies to
individual patches.

2.2. Global Alignment

Review of Homographies. We first provide a brief review of the homography, which
is represented as a matrix h ∈ R3×3:

h =

h11 h12 h13
h21 h22 h23
h31 h32 1

. (2)
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Homography h maps (or projects) pixel (x, y) in the source image to pixel (x′, y′) in
the target image as

h
[
x y 1

]T
=

h11x + h12y + h13
h21x + h22y + h23
h31x + h32y + 1

 =

u
v
w

 =

wx′

wy′

w

, (3)

where w ∈ R is a scaling factor of the x- and y-axes with respect to the z-axis by the
projection. For example, if homographies are

hs =

h11 0 0
0 h22 0
0 0 1

, ht =

1 0 h13
0 1 h23
0 0 1

, and hr =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

,

then hs scales an image in the x- and y-coordinates with corresponding scale factors h11
and h22, ht translates the image by h13 and h23 along the x- and y-axes, respectively. Lastly,
applying hr rotates the image counterclockwise by θ.

For given N keypoint pairs
{{

(xi, yi),
(
x′i , y′i

)}}N
i=0, h is calculated by solving a linear

system Uh = 0, where

U =


x1 y1 1 0 0 0 −x′1x1 −x′1y1 −x′1
0 0 0 x1 y1 1 −y′1x1 −y′1y1 −y′1

...
xN yN 1 0 0 0 −x′N xN −x′NyN −x′N
0 0 0 xN yN 1 −y′N xN −y′NyN −y′N

and

h =
[
h11 h12 h13 h21 h22 h23 h31 h32 1

]T .

(4)

Although ĥ can be calculated with only four point pairs, typically we have more
keypoint pairs, which leads us to define the least square problem as

h = arg min
h∗

‖Uh∗‖2. (5)

A solution to Equation (5) is the eigenvector of UTU with the smallest eigenvalue.
Keypoint Extraction. Keypoints for aligning two images should be reliable in that they

can be distinguished from other pixels in an image. In addition, the location indicated by a
keypoint pair should appear across images repetitively. Those keypoints are represented
by descriptors that are usually multidimensional vectors [35,42–45]. If pixels in different
images have similar descriptors, they are likely to be similar geographical locations. Let
Cs = {cs,i} be a set of keypoints for Xs and ϕ(cs,i) be its multidimensional descriptor.
Similarly, Ct = {ct,i} corresponds to Xt, where |Ct| 6= |Cs| in general.

Calculating mg in Equation (1) requires a set of matched keypoints from Cs and Ct in
terms of descriptors. Keypoints are selected from Cs and reordered as Cs = {ki}, such that
ki is a keypoint of the source matched to keypoint ct,i of the target satisfies

|ϕ(ct,i)− ϕ(ki)| ≤
∣∣ϕ(ct,i)− ϕ

(
cs,j
)∣∣ ∀ki, cs,j ∈ Cs and ki 6= cs,j. (6)

As a result, the number of matched keypoints pairs is |Cs|.
Determining Homography. Keypoint matching in Equation (6) may include outlier

keypoint pairs because multiple keypoints in Cs may be matched to the same keypoint in
Ct. For example, in agricultural UAV images, the proliferation of similar visual patterns
appears at farm boundaries and roads, and therefore pretty distal keypoints with similar
descriptors could be made. As discussed earlier, we use RANSAC to estimate mg from
matched keypoints. For given mapping mg, we denote a transformed source image by
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Xg = mgXs. In other words, for given pixels (x, y) ∈ Xs and (x′, y′) ∈ Xg, from Equation (3),
it holds that

w
[
x′ y′ 1

]T
= mg · [x y 1]T . (7)

2.3. Local Alignment

Even though the global alignment provides a proper alignment of the source mosaic
only with a single homography mg, local misalignments may persist, as shown in Figure 2.

Let Pg =
{

p(i)g

}
be a set of nonoverlapped patches for the transformed source image Xg

and Pt =
{

p(i)t

}
be a set of patches for the target Xt. Moreover, let Kg be keypoints in

Xg, i.e., transformed keypoints of Xs. Then, each local mapping ml
i ∈ Ml is estimated

for corresponding patches of Pg and Pt. After the global alignment, patches of the inputs

with the same index, for example, p(i)g ∈ Xg and p(i)t ∈ Xt, are likely to overlap with
each other significantly. Therefore, it is natural to take ml

i as a mapping concerning the

patches. Furthermore, such spatial proximity information between p(i)g and p(i)t enables
us to identify the fidelity of the keypoint pairs established in the global alignment step,
wherein no distance information between the source and target was available. In particular,
we use a threshold on the pixel distance of the matched keypoints to exclude outlier pairs
before estimating patch-level homographies. As a result, we obtain refined keypoints
for patch p(i)g , denoted by K(i)

g ⊂ Kg, and p(i)t , by K(i)
t ⊂ Ct for the local alignment. Then,

distance between pixels in p(i)g and p(i)t is no larger than a threshold τl , which is a predefined
pixel distance to identify outliers.

Any keypoint-matching techniques can be used for the local alignment. Although the
local alignment reduces misalignments inside a patch, the straightforward application of
individual transformations into patches p(i)g may result in new artifacts causing misalign-
ments along with the boundaries of patches as shown in Figure 3.

Those artifacts can be avoided if we ensure that pixels close to patch boundaries are less
affected when applying patch-level transformations. For this purpose, we propose a simple
yet effective technique called boundary-aware alignment. The core idea of boundary-aware
alignment is to apply any transformation of pixels in adapting to their distance from the
boundaries of the patch. In particular, we apply transformation into pixels in the vicinity of
the patch center, whereas the strength (i.e., weight) of the transformation decreases as it
propagates to the boundaries. Figure 4a illustrates a heat map example to represent the
weight distribution that applies to a patch.

(a) (b)

𝑚

(c)

𝐴

Mapping

close to

𝑚

Mapping

close to

identity

Figure 4. The proposed boundary-aware alignment illustrated in Figure 2: A distribution of distance-
aware weights corresponding to the pixels in an image of 500 × 500 px. (a) The heat map intensity
depicts how strong a mapping is applied to pixels. Visualizations of the transform in Example 2 are
shown for (b) an initial homography and (c) boundary-aware alignment.
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Let λ(x,y) be the intensity of the weight distribution at (x, y) in the local coordinates in a patch:

λ(x,y) =

∥∥∥∥[wp−1
2

hp−1
2

]T
−
[
x y

]T
∥∥∥∥

∞
, (8)

where ‖v‖∞ is the l∞-norm of column vector v, ‖v‖∞ = max{|v1|, . . . , |vn|}, and
v = (v1, . . . , vn)

T . λ(x,y) represents a distance of (x, y) from the center of a patch. Then, let
σ(x,y) ∈ [0, 1] be the normalized form of λ(x,y) as a distance-aware weight applied to each
pixel (x, y), which is given by

σ(x,y) = 1− λ(x,y)

max
(

wp−1
2 , hp−1

2

) . (9)

Note that boundary-aware alignment requires the precomputation of λ(x,y) only once
and applies to all patches of the same resolutions for individual local mappings. Let
Ai =

{
a(x,y)

}
be a set of local mappings applied to pixels in patch p(i)g by associating the

weights with its original local mapping mi. Then we have

a(x,y) =
(

1− σ(x,y)
)
·
[
x y

]T
+ σ(x,y) ·m(x,y)

i , (10)

where m(x,y)
i is an original local mapping of (x, y). Figure 4b illustrates the effects of

boundary-aware alignment when we use a homography for the local mapping. Note that
the distance function of Equation (8) in the proposed boundary-aware alignment applies
no transformation to boundary pixels by Equations (9) and (10).

More general formulation of T(·, ·, ·) with global and local transformations mg and

Ml =
{

ml
i

}
is given by

T
(
mg, Ml ,Rs

)
=
⋃

ml
i · K

(i)
g , (11)

where K(i)
g are the keypoints in patch p(i)g of Xg and ml

i is a local transformation corre-

sponding to p(i)g . We provide two simple examples to enable a better understanding of the
proposed method.

Example 1. Simple transformation. Let us consider a homography hbase to align the reference
points inRs andRt defined in Section 2.1. If we apply a simple translation with the identical 2D
offset vector tbase for all the points inRs as

tbase =
1
N ∑

i

(
rt

i − rs
i
)
, ∀ rt

i ∈ Rt, rs
i ∈ Rs, (12)

where N = |Rt| = |Rs|. We then have rs
i = rt

i − tbase with its corresponding transfor-
mation T

({
rs

i − tbase
}

, {I},Rs
)

in Equation (1). I is an identity matrix. Thus, no local
transformation is applied.

Example 2. Boundary-aware alignment. Next, consider a simple alignment of a patch that scales
the patch by α and translates by β. Then, the corresponding homography hl is given by

hl =

α 0 0
0 α 0
0 0 1

 ·
1 0 β

0 1 β
0 0 1

 =

α 0 α · β
0 α α · β
0 0 1

.
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We apply boundary-aware alignment by using the homography to two locations, i.e., center
and boundary. For a pixel (0, 0) at boundaries of the image, λ(xp ,yp) in Equation (8) is

λ(0,0) =

∥∥∥∥[wp−1
2

hp−1
2

]T
−
[
0 0

]T
∥∥∥∥

∞
−max

(
wp − 1

2
,

hp − 1
2

)
= 0.

As a result, g(0,0) = 0 in Equation (9) and a(0,0)
i = (0, 0), which means that no transformation

is applied to the pixel. On the other hand, at the center of the image
(

wp−1
2 , hp−1

2

)
, we have

λ

( wp−1
2 ,

hp−1
2

)
= max

(
wp − 1

2
,

hp − 1
2

)
− 0,

which results in σ

( wp−1
2 ,

hp−1
2

)
= 1. Thus, the transformation fully applies to the image center.

Figure 4b depicts the result with α = 0.9 and β = 9. The output homography matrix hl scales the
input image of 500 × 500 px by 0.9 and shifts 9 px along with the x and y axes.

The introduction of λ(x,y) into Equation (8) was inspired by the distance transform [51].
Extending the distance transformation, boundary-aware alignment has been tailored for
considering the boundary artifacts when aligning wide-area mosaics. In other words,
pixels at boundaries have zero distance, thereby assigning longer-distance values to inner
pixels. It could be assumed that overlapping adjacent patches with each other will remove
the artifact boundaries without the proposed boundary-aware alignment. However, this
approach does not solve the artifact problem because keypoints in overlapped regions of
the patches cannot be aligned owing to the multiple local mappings that need to be applied
to the keypoints. Boundary-aware alignment may not be the optimum for the alignment
accuracy of the reference points. However, we demonstrate that the performance drop
owing to boundary-aware alignment is insignificant, and it maintains patch boundaries
during the alignments.

3. Experimental Setups
3.1. UAV Image Acquisition

We acquired UAV images from four target sites located in two provinces in South
Korea, which are three highland areas used for cultivating kimchi cabbage and one plain
used for cultivating barley, as shown in Figure 5. Kimchi cabbage is the primary vegetable
that affects consumer prices in South Korea and, therefore, accurate yield prediction is
essential. Table A1 summarizes the details of the image acquisition.

(a) (b)

RedEdge-MXDiji M210Xeno FX Double 4K

Gwinemi

Maebongsan

AnbanduckNampo-ri

Figure 5. UAV image acquisitions from four target sites. (a) A plain and (b) three highland regions
used for the cultivation of barley and kimchi cabbage, respectively. The upper halves of the figures
correspond to the location of the target sites, and the bottom halves correspond to UAVs and image
sensors used for image acquisition. The target site maps are borrowed from [52], crop images
from [53], and UAV and sensor images from [54] and [55], respectively.
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3.2. Preprocessing Dataset

Creating Wide-Area Image Mosaics. We performed postprocessing steps to create
wide-area image mosaics from the acquired UAV images. To create a mosaic of high quality,
it is necessary to ensure that images are continuously acquired from a single flight of UAV.
For this purpose, we set the flight trajectory of a single UAV flight conditioned on the over-
lap threshold of 0.7 in terms of intersection over union (IoU). When performing mosaicking,
images acquired during takeoff and landing were excluded. We used commercial software,
PIX4D Mapper [56] for stitching UAV images. The process of mosaicking uses simple
image stitching with no orthorectification. Examples of the mosaics are shown in Figure 6.
The details of the image mosaicking process are presented in Table A1.

(a)

(b)

Figure 6. Examples of UAV image mosaics from (a) DA (210828) and (b) DD (210415) with their
reference points annotated. Each of the images in the datasets is identified by the date it was taken.
For example, an image named “190828” was taken on 28 August 2019.

Annotation of Reference Points. After creating the mosaics, reference points of datasets
on the kimchi cabbage-cultivating highland (datasets DA, DB, and DC in Table A1) were
annotated by carefully identifying time-invariant and visually distinguishable locations
such as warehouse and road junctions (see Figure 6 for examples). We created 200 reference
points for each image mosaic in dataset DA, DB, and DC, and 100 reference points for
each image mosaic in dataset DD. In addition, for dataset DD, we separately annotated 20
RTK-based GCPs as an alternative set of reference points.

3.3. Case Studies on Local Alignment

We adopt three algorithms for the local alignment: RANSAC, moving direct linear transfor-
mation algorithm, or MDLT [57] and DNN-based method, called RANSAC-flow [48]. The ap-
plication of RANSAC to the local alignment is straightforward; it is identical to the global
alignment except that we calculate individual homographies for each patch only with their
corresponding keypoints.
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On the contrary, RANSAC-flow predicts the transformation of each pixel in a nonpara-
metric way, called flow, in the matchable regions of the input images by exploiting features
of a neural network. In the local alignment step, RANSAC-flow estimates the flow between
two patches from the source and target mosaics. We exploit these flows instead of matched
keypoints when estimating individual mapping between the patches. MDLT estimates each
patch-level homography by using weighted singular value decomposition (SVD), where
the distance between keypoints and the center of the patch is explicitly considered, similar
to ours. MDLT is a single-stage approach, directly calculating the homography of each
patch without needing the global alignment. Those homographies correspond to the local
alignment of the proposed method. However, calculating a patch’s homography requires
the entire keypoints of an input mosaic. As a result, local homographies are not entirely
independent.

3.4. Evaluation Metric

We measure alignment accuracy using the Euclidean distance between two sets of
reference points annotated in Xs and Xt. The distance function d(·, ·) in Equation (1) for
Rs = {r(i)s } andRt = {r(i)t } is given as

d(Rs,Rt) =
1
|Rs| ∑

i∈|Rt |

∣∣∣r(i)s − r(i)t

∣∣∣. (13)

3.5. Method Implementations

We used a DNN-based method to extract keypoints from the input mosaic images [42].
From an input image, the keypoint extractor evaluates two types of confidence scores, repeata-
bility and reliability, of pixels as its eligibility for being keypoints. Repeatability corresponds
to how robust keypoints appear over images, whereas reliability corresponds to how strong
a keypoint is among candidates in the images. Pixels with high values of the scores are likely
to be keypoints. We use a threshold on the scores to control the number of keypoints and
obtain keypoints of high quality, which is investigated in Section 4.2. We set the dimension of a
keypoint descriptor ϕ(·) to 128. The input mosaics are fed into patches of 1024 × 1024 px as
inputs of the keypoint extractor. Table A2 shows the summary of the keypoint extractions.

In the local alignment, we divide the source and target mosaics into patches so that cor-
responding geographical areas are similar. In particular, we used patches of 2000 × 2000 px
for DA, DB, and DC and 3000 × 3000 px for DD considering its smaller ground sample
distance (GSD) (the distance between pixels measured on the ground), compared with
that of other datasets, letting the local alignment take the similar area as inputs from the
datasets. The threshold to pixel distance τl to choose outlier keypoint pairs, discussed
in Section 2.3, was set differently, which was τl = 50 for datasets DA, DB, and DC and
τl = 100 for dataset DD, respectively.

We implemented an in-house tool for annotating reference keypoints and the proposed
alignment framework in Python. We used open-sourced Python implementations for MDLT
and RANSAC-flow [48,57], which have been integrated into our framework.

4. Results and Discussions
4.1. Performance Comparisons

We first compare the performance of several methods to assess the effects of the
components of the proposed method on the alignment accuracy. In particular, we consider
several variants of the proposed method as shown in Table 2; “Global” and “G + reference points”
perform the global alignment only. They differ in that “Global” uses the extracted keypoints, i.e.,
Ct and Cs, whereas “G + reference points” uses the reference pointsRt andRs as keypoints
for finding mapping mg. Moreover, “G + RANSAC” and “G + RANSAC-flow” involve the
local alignments without boundary-aware alignment, which are RANSAC and RANSAC-flow,
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respectively. The last two variants, “G + RANSAC+BA” and “G + RANSAC-flow + BA”,
perform the local alignment step with boundary-aware alignment (BA).

Table 2. Results of case studies. Mosaics acquired from different study sites are grouped into each
dataset: DA, DB, DC, and DD. Alignment errors are listed in meters unless specified otherwise.
A lower value indicates better alignment performance.

Method
Average Alignment Error

DA DB DC DD

Global (G) 2.54 0.62 0.87 1.18

G + reference points 2.54 0.62 0.91 1.04

MDLT 2.54 0.53 0.85 1.16

G + RANSAC 2.02 0.42 0.62 1.09

G + RANSAC-flow 1.64 0.40 0.62 0.76

G + RANSAC + BA (proposed) 2.46 0.46 0.79 1.12

G + RANSAC-flow + BA (proposed) 2.36 0.44 0.72 0.82

Table 2 summarizes the average alignment errors for each dataset. The alignment
errors of each mosaic image are listed in Tables A2 and A3. We first observe that our
method outperforms MDLT across all the datasets; for example, by 13.21% in dataset DB
and 7.06% in dataset DC, respectively. In the proposed method, local transformations for
subregions tend to be independent of a global transformation, leading to nontrivial perfor-
mance improvements from the results of the global alignment. On the other hand, given
that local transformations with “MDLT” strongly correlate with a global transformation,
“MDLT” provides trivial performance improvement compared with “Global” by 0.18–2.4%
over the datasets.

Moreover, despite the reference points being manually and carefully annotated for
evaluating methods, the difference in alignment accuracy between the usage of reference
points for the global alignment, “G + reference points”, and extracted keypoints, “Global”,
is negligible except DD. This observation implies that DNN-based keypoint extraction
provides high-quality keypoints essential to achieving accurate alignment.

We evaluate how the local alignment step affects the accuracy of the proposed method
through two variants, “G + RANSAC” and “G + RANSAC-flow”. Applying local align-
ments without the global alignment is infeasible because no geographic similarity be-
tween patches of the source and target images is known before the global alignment.
The DNN-based alignment, “G + RANSAC-Flow”, outweighs the conventional method,
“G + RANSAC”, across all datasets by 4.7–18.9%. However, there exist several tradeoffs
for using DNNs in the local alignment. In RANSAC-flow, the flow estimation considers
the relationship between all pixels, resulting in more reliable and denser pixel-level corre-
spondences. However, in terms of applicability and flexibility, conventional methods can
consider the arbitrary form of keypoints created by human intervention or from external
techniques exploiting rich positional information. Furthermore, conventional methods can
reuse keypoints used in the global alignment. On the other hand, DNN-based methods
typically extract keypoints based on their internal representation with the extra time cost.

Finally, the last two rows show that the proposed method with the different local
alignments eliminated the boundary artifacts effectively, as shown in Figure 7. Even
though the lack of boundary-aware alignment in the local alignment step leads to superior
performance compared with their counterparts using boundary-aware alignment, these
performance gains arise from the fact that the accuracy metric is only concerned with the
distance between the reference points, unaware of the visual fidelity of a transformed image.
The artifacts at boundaries are more obvious when the distance between the homographies
corresponding to two adjacent patches grows. Figure 7 depicts sampled results of the
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proposed method “G + RANSAC + BA” that shows a natural-looking alignment as a
compromise at the expense of a slight sacrifice of accuracy. The visual insusceptibility at
boundaries can be crucial to downstream tasks needing the mosaics. For instance, field
usage identification with respect to cultivated crops may be deteriorated if the artifacts exist,
which is clearly shown in the example in the right column of the second row in Figure 7.

before after before after

Figure 7. Results of the boundary-aware alignment. The images in the columns labeled “before” are
obtained from default homographies with boundary artifacts and those in the columns “after” are
obtained from the weighted homographies that eliminate the artifacts.

4.2. Effects of the Number of Keypoints on Accuracy and Speed

Despite the promising performance, the DNN-based method, RANSAC-flow relies
on the implicit internal information instead of explicit keypoints for local alignments,
resulting in its limited applicability in case of handling images deviated from its training
data. In contrast, RANSAC requires at least four keypoint pairs to estimate homography.
We contemplate how the number of keypoints, |Ct| and |Cs|, affects the accuracy and speed
of the proposed method. We note that from the alignment speed perspective, the time for
keypoint extraction is nearly consistent as long as the resolutions of an input patch are kept.
However, the time for matching keypoint pairs in Equation (6) depends on both |Ct| and
|Cs| with time complexity of O(|Ct| · |Cs|).

Table 3 and Figures 8 and 9 depict the aforementioned tradeoff to determine the
optimal number of keypoints. As explained in Section 3.2, using a higher threshold value
for the keypoint scores when extracting keypoints ends in a smaller number of keypoints
as shown in Table 3. A lower threshold value results in a larger number of keypoints, likely
to include a larger number of poor keypoints that must be excluded as outliers. Moreover,
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increasing the number of keypoints requires a longer processing time for keypoint extraction
and matching, as shown in Figure 9. In particular, time for the keypoint matching dominates
the entire processing time and decreases superlinearly to the number of keypoints. We
chose 0.99 as the threshold of the keypoint score. Although an excessively high threshold
may result in the extraction of an insufficient number of keypoints and omission of essential
keypoints, nearly consistent alignment errors in Figure 8 suggest that no such side effects
were found in our cases.

Table 3. The number of keypoints by varying the threshold to the reliability and repeatability of the
keypoint extractor.

Dataset
Threshold

0.80 0.85 0.90 0.95 0.99

DA
# KPs in global alignment (×106) 3.77 3.58 3.26 2.74 1.38
# KPs/patch in local alignment 257.12 250.22 235.59 192.76 121.55

DB
# KPs in global alignment (×106) 2.19 2.09 1.93 1.66 0.89
# KPs/patch in local alignment 399.20 386.62 370.75 338.16 213.76

DC
# KPs in global alignment (×106) 2.17 2.07 1.91 1.64 0.88
# KPs/patch in local alignment 873.12 850.43 805.98 733.85 438.72
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Figure 8. Effects of the number of keypoints on alignment accuracy of the local alignment. The hori-
zontal axis corresponds to variations in the threshold to control the number of keypoint to extract.
The larger the threshold value, the fewer keypoints are created. The vertical axis shows the alignment
error for each of the threshold values.
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Figure 9. Effects of the number of keypoints on alignment speed of the local alignment for datasets
(a) DA, (b) DB, and (c) DC. The vertical axis of each graph corresponds to the execution times of three
components for the local alignments, which include keypoint extraction, keypoint pair matching,
and homography estimation, by considering all patches in an input mosaic.

4.3. Qualitative Evaluations

Figures 10 and 11 show that the proposed local alignment step alleviates misalignments
effectively, which is untapped by the global alignment. For ease of comparison, Xs and
Xt overlap, and the opacity of the target is set to 0.5. We highlight patches containing
significant misalignments even with the global alignment. Structured objects, such as
buildings and roads, appear redundantly, or the regions look blurry, and they are resolved
by the proposed method.

(a)

(b)

Figure 10. Qualitative results of alignment. The left column shows the results of aligning 190,725
(target) and 190,828 (source) of DA, corresponding to (a) global alignment only, and (b) proposed
method with RANSAC for the local alignment. The right column corresponds to the case with
190,729 (target) and 190,724 (source) of DC. Each area is enlarged to display them in a large square
of the same color.
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(a)

(b)

Figure 11. Qualitative results of alignment. The left column shows the results of aligning 190,807
(target) and 190,909 (source) of DB, corresponding to (a) global alignment only, and (b) proposed
method with RANSAC for the local alignment. The right column corresponds to the case with
210,506 (target) and 210,427 (source) of DD. Each area is enlarged to display them in a large square of
the same color.

We also show the benefits of boundary-aware alignment in Figure 7. We sampled
10 regions in the mosaics 190,828, 190,909, 190,724, and 210,427 from datasets DA, DB,
DC, and DD, respectively, and provide the results of the local alignment when applying
boundary-aware alignment. Severe boundary artifacts appear owing to the application of
independent homographies to patches without boundary-aware alignment.

Not all boundary artifacts can be eliminated from boundary-aware alignment. In par-
ticular, due to the nondeterministic nature of sampling keypoint pairs in RANSAC, an out-
lier may deteriorate homography estimation. Moreover, inputs deviating from the dis-
tribution of training data may confuse the DNN-based alignment and result in incorrect
alignment predictions. In our experiments, the first issue rarely occurred because the key-
point matching in the local alignment is based on geometric proximity between keypoints.
Still, the second issue has not been fully addressed, as shown in Figure 12. Section 4.4
discusses this limitation of DNN-based alignments.
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(a)

(b)

(c)

Figure 12. Examples of incomplete local alignments with boundary-aware alignment applied to the
image mosaic 210223 in DD: (a) The entire image with RANSAC–flow for the local alignment and
(b) five enlarged patches and (c) their corresponding cases with the global alignment only. Severe
boundary artifacts remain when a neural network is used for the local alignment.

4.4. Discussions for Improving the Proposed Method

We demonstrated the viability of the proposed method in terms of alignment accuracy
and practical applicability. There is still room for improvement. This section discusses
several limitations of our method and addresses future directions.

Dataset Requirements for Training Keypoint Extractor. The alignment accuracy of the
proposed method largely depends on the quality of keypoints. The keypoint extractor used
in this study was trained with a dataset containing various natural scenes. Because such a
dataset may have different characteristics for extracting keypoints compared with typical
UAV images of farmland, keypoint extraction can be improved if the extractor is further
trained with a dataset tailored for this purpose, which requires substantial engineering
efforts as discussed below.

Inconsistent Keypoint Extraction Caused by Time-Variant Image Patterns. Extracting
keypoints of high quality assumes that images possess time-invariant texture patterns.
However, UAV images of farmland may vary based on environmental changes, such as a
quick shift in weather conditions or fast crop growth. As a result, more outlier keypoints
are likely to appear, as shown in Figure 13. To address this problem, the keypoint extraction
must be trained to focus on time-invariant patterns—for example, the unique shapes
of roads, warehouses, and other facilities. The use of multispectral images that contain
invisible wavelength ranges may help this purpose.

Furthermore, when a patch has less than four keypoint pairs, the proposed method
retains the global alignment. If any misalignments are present in the patch, they remain un-
tapped, as shown in Figure 13. Possible solutions to this problem would be to encourage the
extraction of keypoints across all patches in the mosaic or apply interpolated homographies
of neighboring patches to a patch with sparse keypoints.

Misalignments Near Patch Boundaries. While the proposed method effectively allevi-
ates the problem of boundary artifacts, remaining misaligned keypoints from the global
alignment may be untapped if they are close to patch boundaries because they are hardly
affected by transformations applied in the local alignment. A possible solution to the
problem is to consider mixing homoghrapies of two adjacent patches as a transformation
applied to patch boundary regions. Another method is to determine the patch boundaries
by selecting areas with few keypoints if the keypoints distribution is nonuniform.
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(a)

(b)

Figure 13. Failure cases of keypoint extraction with the proposed method. The target and source
are (a) 210,506 and (b) 210,323, respectively, in DD. Keypoint extraction is concentrated on the right
upper region of the images, where time-invariant structures are observed more frequently than in
other regions.

5. Conclusions

This study proposed a simple yet effective method to align high-resolution, wide-area
mosaic images through two steps, global and local alignments. The global alignment aims
to align the source and target mosaics on the whole by applying a single homography
using keypoints pairs created from a DNN-based extractor. Then the second step, the local
alignment, improves the alignment by removing the local misalignments within small
patches obtained by dividing the mosaics with their transformations. Although the local
alignment results in better accuracy than the global alignment, new artifacts at patch
boundaries may be introduced, which degrades the perceptual quality and applicability of
the final alignment. To overcome this problem, we introduced a novel technique, called
boundary-aware alignment, to preserve boundary consistency between adjacent patches while
improving local alignments. We demonstrated the effectiveness of the proposed method on
wide-area mosaics acquired from four representative regions cultivating kimchi cabbage
and barley in South Korea. The experiments showed that integrating two steps resulted in
the best alignment accuracy across all datasets. The alignment errors ranged from 0.46 to
2.46 m, which is an improvement of by up to 13.21% over recent approaches.

Author Contributions: Conceptualization, H.L. and S.K. (Sungchan Kim); methodology, H.L. and
S.K. (Sungchan Kim); software, H.L.; formal analysis, H.L. and S.K. (Sungchan Kim); investigation,
S.K. (Semo Kim) and L.-H.K.; resources, S.-H.B., L.-H.K. and S.K. (Sungchan Kim); data curation,
S.K. (Semo Kim), D.L., S.-H.B. and L.-H.K.; writing—original draft, H.L.; writing—review & editing,
S.K. (Sungchan Kim); supervision, L.-H.K. and S.K. (Sungchan Kim); project administration, S.-H.B.,
L.-H.K. and S.K. (Sungchan Kim); funding acquisition, S.-H.B., L.-H.K. and S.K. (Sungchan Kim). All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Spatial Information Research Institute grant funded by
LX (Grant No. 2020-502) and the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2022R1A2C1011013).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Drones 2023, 7, 131 20 of 23

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Information on UAV image acquisition. The acquisition frequency of dataset DD was
varied such that the overlap ratio of consecutive images is no smaller than 65%.

Dataset DA DB DC DD

Study site Anbanduck Gwinemi Maebongsan Nampo-ri

Provincial location Gangwon Gangwon Gangwon Jeollabuk

Geographic longitude N 37◦13′05′′ N 37◦20′21′′ N 37◦37′31′′ N 35◦48′20′′

Geographic latitude E 128◦57′58′′ E 129◦00′20′′ E 128◦44′21′′ E 126 46′55′′

Area of study site
(km2)

8.55 2.18 3.85 3.77

Crops Kimchi cabbage Kimchi cabbage Kimchi cabbage Barley

Dates of acquisition
(yymmdd)

190725, 190809,
190828, 190909

190807, 190809,
190902, 190909

190724, 190729,
190805, 190808

210223, 210323,
210415, 210420,
210427, 210506,
210518, 210525,
210609

UAV model used DJI M210
(rotary wing)

DJI M210 DJI M210 Xeno FX
(fixed wing)

Image sensor used RedEdge-MX
(MicaSense)

RedEdge-MX RedEdge-MX Double 4K
(Sentera)

Flight altitude 1235 1075 1235 300

UAV Image resolution
(width × height) 1280 × 960 1280 × 960 1280 × 960 4000 × 3000

Ground sampling distance 13.58 11.97 13.81 8.14

Acquisition frequency
(frames/s) 2 2 2 Variable

Average mosaic resolution
(width × height × channel)

11,973 × 38,023 × 3
(RGB) 11,075 × 13,941 × 3 17,037 × 11,982 × 3 39,817 × 14,431 × 3

# images for mosaicking 197,666 9325 11,227 623

# reference points
(Annotation method)

268
(Manually)

338
(Manually)

260
(Manually)

100
(Manually + GCP)



Drones 2023, 7, 131 21 of 23

Table A2. Keypoints used in the datasets.

Dataset Source # KPs in Global
Alignment (×106) # Patches # KPs/Patch in

Local Alignment # GCPs

DA

190725 2.09 120 - -
190809 3.04 120 142.51 -
190828 2.93 133 276.95 -
190909 2.26 133 197.92 -

DB

190807 1.30 42 - -
190809 1.56 48 22,048 -
190902 1.70 42 434.02 -
190909 1.72 48 371.96 -

DC

190729 1.26 54 - -
190724 0.97 54 2189.13 -
190805 0.97 63 105.16 -
190808 1.91 63 115.16 -

DD

210506 1.13 70 - -
210223 1.23 78 0.54 20
210323 1.13 65 0.906 -
210415 1.29 84 14.41 20
210420 1.40 84 22.45 -
210427 1.40 84 81.6 -
210518 1.13 70 3.48 -
210525 1.32 70 1.02 -
210609 1.02 70 3.26 20

Table A3. Results of case studies. Alignments errors are shown in meter unless specified otherwise.
Less errors represent better alignment performance.

Dataset Source Global (G) G + Ref. G + RANSAC (LR) G + LR + BA

DA

190828 2.35 2.49 1.83 2.26
190909 2.58 2.61 2.10 2.58

avg. error 2.54 2.54 2.02 2.46
avg. error (pixels) 18.72 18.71 14.85 18.12

DB

190902 0.72 0.71 0.56 0.48
190909 0.35 0.35 0.32 0.35

avg. error 0.62 0.61 0.42 0.46
avg. error (pixels) 5.14 5.11 3.49 3.88

DC

190805 0.92 1.00 0.65 0.88
190808 0.85 0.90 0.64 0.84

avg. error 0.87 0.91 0.62 0.79
avg. error (pixels) 6.28 6.59 4.46 5.69

DD

210223 2.82 1.02 2.82 2.82
210323 0.73 1.06 0.75 0.73
210415 1.02 1.33 0.76 0.84
210420 0.74 0.91 0.61 0.64
210427 0.78 0.79 0.56 0.69
210518 1.33 0.93 1.27 1.25
210525 1.01 0.90 1.01 1.01
210609 0.99 1.34 0.94 0.94

avg. error 1.18 1.04 1.09 1.12
avg. error (pixels) 14.46 12.73 13.36 13.73
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