
Citation: Arshad, M.A.; Ahmed, J.;

Bang, H. Quadrotor Path Planning

and Polynomial Trajectory

Generation Using Quadratic

Programming for Indoor

Environments. Drones 2023, 7, 122.

https://doi.org/10.3390/

drones7020122

Academic Editors: Yu Wu and

Liguo Sun

Received: 29 December 2022

Revised: 31 January 2023

Accepted: 6 February 2023

Published: 9 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Quadrotor Path Planning and Polynomial Trajectory Generation
Using Quadratic Programming for Indoor Environments
Muhammad Awais Arshad , Jamal Ahmed and Hyochoong Bang *

Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology,
Daejeon 34141, Republic of Korea
* Correspondence: hcbang@kaist.ac.kr

Abstract: This study considers the problem of generating optimal, kino-dynamic-feasible, and
obstacle-free trajectories for a quadrotor through indoor environments. We explore methods to
overcome the challenges faced by quadrotors for indoor settings due to their higher-order vehicle
dynamics, relatively limited free spaces through the environment, and challenging optimization
constraints. In this research, we propose a complete pipeline for path planning, trajectory generation,
and optimization for quadrotor navigation through indoor environments. We formulate the trajectory
generation problem as a Quadratic Program (QP) with Obstacle-Free Corridor (OFC) constraints. The
OFC is a collection of convex overlapping polyhedra that model tunnel-like free connecting space from
current configuration to goal configuration. Linear inequality constraints provided by the polyhedra
of OFCs are used in the QP for real-time optimization performance. We demonstrate the feasibility
of our approach, its performance, and its completeness by simulating multiple environments of
differing sizes and varying obstacle densities using MATLAB Optimization Toolbox. We found that
our approach has higher chances of convergence of optimization solver as compared to current
approaches for challenging scenarios. We show that our proposed pipeline can plan complete paths
and optimize trajectories in a few hundred milliseconds and within approximately ten iterations of
the optimization solver for everyday indoor settings.

Keywords: path planning; quadratic programming; trajectory generation; optimization; obstacle-free
corridors

1. Introduction

A generic motion planning framework for mobile robots can be divided into map
acquisition, path planning, trajectory generation, trajectory optimization, and trajectory
tracking. Map acquisition is the process of acquiring and representing the spacial envi-
ronment (workspace) of robots in a structured way. Commonly used structured maps
include occupancy grid maps [1], octomaps [2], point cloud maps [3], Voronoi diagram
maps [4], Euclidian signed distance fields [5,6], etc. The quality and accuracy of these maps
directly influence the path planning performance. The goal of path planning is to find
piecewise linear segments from a current point to a target point in a robot’s configuration
space (C-Space) while avoiding obstacles. This path can be represented by a set of points
(called waypoints or knot-points) joining those linear segments. We may broadly classify
path planning algorithms into Graph-Search-Based Algorithms (GSBAs) and Sampling-
Based Algorithms (SBAs) [7]. Commonly used algorithms for both graph-search-based
algorithms, as well as sampling-based algorithms, are shown in Figure 1. Path planning
algorithms usually consider the geometric constraints of the robot’s workspace but ignore
the dynamical limitations of the robots. Therefore, the final segmented paths suggested
by the path planner might not be executable by the actual robot. The trajectory gener-
ation and optimization process considers the dynamics of the mobile robot along with
other constraints (e.g., safety constraints, kino-dynamic constraints, etc.) and incorporates

Drones 2023, 7, 122. https://doi.org/10.3390/drones7020122 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7020122
https://doi.org/10.3390/drones7020122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-2856-9541
https://orcid.org/0000-0003-0131-3546
https://doi.org/10.3390/drones7020122
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7020122?type=check_update&version=2


Drones 2023, 7, 122 2 of 24

the time-allocation mechanism to empower the motion planner with a better executable
and optimal trajectory. Therefore, by cascading path planning with trajectory generation
and optimization, a motion planner can finally generate kino-dynamic-feasible, collision-
free, executable, and trackable trajectories that satisfy several optimization constraints
and objectives.

Figure 1. Motion planning framework for mobile robots. Symbols (∗, #) are part of the name of the
method. RRT-Star (RRT∗) is an improved version of RRT.

Motion planning of quadrotors for indoor environments is a challenging problem in
terms of mapping (obstacles of different sizes and shapes), path planning (relatively limited
free spaces), and trajectory optimization (challenging constraints). We consider the indoor
environment as an enclosed Euclidean space in R3 with possible partitioning of its interior
into multiple sections (rooms) by thin walls. Nieuwstadt et al. [8] considered the problem
of real-time trajectory generation and tracking for nonlinear differentially flat systems and
formulated the problem as a Quadratic Program (QP). Mellinger et al. [9] also formulated
the problem with QP by parameterizing the trajectory as a kth order polynomial. Earlier
works focused on modeling the obstacles in the environment as convex objects by imposing
integer constraints and solving the problems with Mixed Integer Linear Programming
(MILP) or Mixed Integer Quadratic Programming (MIQP) solvers [10–12]. These mixed
integer-based approaches are impractical because we need to impose multiple constraints
for every single obstacle in the environment. We also need to consider that all the obstacles
in the environment can be represented with single or multiple convex polyhedra. Moreover,
integer constraints placed in optimization problems require MILP/MIQP solvers which are
relatively slow for real-time performance requirements [10–12]. These limitations led to the
expansion of quadrotor motion planning work in two directions. First, new approaches
were developed to remove the integer constraints and solve the resulting optimization
problems as QPs [13–15]. Second, researchers preferred modeling free spaces instead of
modeling every single object in the environment and used those models of free spaces as
inequality constraints in a quadratic programming solver [14–16].

Richter et al. [13] built upon the work of Mellinger et al. [9] and solved for the optimal
trajectory in closed form by imposing constraints on higher derivatives of trajectories at
fixed locations (waypoints) but their method does not provide any guarantees for trajectory
generation in fixed time-span in complicated map scenarios. Chen et al. [14] modeled free
spaces through the environment with axes-aligned cubes. This formulation may lead to an
excessively large number of constraints because of the unnatural modeling of free space and
reduces the chances of convergence during the optimization step. This approach may only
be suitable for environments where all obstacles are rectangular parallelopipeds. Inspired
by birds flying through cluttered environments such as dense forests, Karaman et al. [17]



Drones 2023, 7, 122 3 of 24

analyzed the high speed motion planning through a random obstacle field but they did not
consider non-trivial robot dynamics of quadrotors and their results may not be applicable
to quadrotors. Liu et al. [18] built upon the work of Deits et al. [16] and formulated
trajectory generation as a quadratic program using the collection of convex overlapping
polyhedra that model free space. They used the Jump Point Search (JPS) [19] algorithm as
a guide to generate convex overlapping polyhedra (Safe Flight Corridors) to model free
space. The JPS algorithm forces the path to pass in close proximity to obstacles which
may impose tight constraints in an optimization problem. JPS algorithm may also lead
to generating paths with very small segments near thin obstacles as shown in Figure 2.
Polyhedra generated by short segments again impose very challenging constraints on the
optimizer and considerably reduce the chances of convergence. Zhou et al. [20] tried to
solve the problem associated with the close proximity to the guided path to the obstacles
by modifying the optimization objective function using Euclidean Distance Field as a guide
but ended up converting the problem into a non-quadratic one, which is much slower
to solve.

Figure 2. Robotic path planning with the GBSA (JPS-3D) algorithm on the left and the SBS (RRT∗)
algorithm on right. The planned path through the environment is comprised of piece-wise line
segments shown in red. Note the considerably small length of one segment in the path planned with
the JPS-3D algorithm in close proximity to the thin wall.

In QP-based methods described above, safety guarantees are usually obtained by
having a local planner that plans a trajectory with a stop condition in the free-known local
space and replans the upcoming trajectory after more free space is known by following the
previously generated trajectory. This, however, leads to slow and conservative trajectories.
Tordesillas et al. [21] tried to address this problem by proposing FASTER (Fast and Safe
Trajectory Planner), which is based on the MIQP formulation again. FASTER obtains high-
speed trajectories by enabling the local planner to optimize in both the free-known and
unknown spaces and provides safety guarantees by always having a feasible, safe backup
trajectory in the free-known space at the start of each replanning step. Now, it is important
to mention some recent work on trajectory planning for multiple quadrotors in dynamic
environments. Tordesillas et al. [22] proposed MADER to plan trajectories for multi-agents
in dynamic environments. A distinctive feature of MADER, in comparison to previous
approaches, is that it performs real-time collision avoidance with other dynamic obstacles
by performing outer polyhedral representations of every interval of the trajectories and
then includes the plane that separates each pair of polyhedra as a decision variable in
the optimization problem. Since they used outer polyhedral representations of every
interval of the trajectories instead of some control points on the trajectory to formulate the
optimization problem, their method provides better guarantees but, again, at the cost of
non-quadratic formulation of the problem which is slower and less likely to converge as
compared to the quadratic problem. Another recent work on the swarm of micro flying
robots in the wild is proposed by Zhou et al. [23], and is based on their previous work



Drones 2023, 7, 122 4 of 24

on EGO-Planner [24]. EGO-Planner is unique from other mainstream methods because
it formulates the collision term in an objective function of the optimization problem by
comparing the colliding trajectory with a collision-free guiding path. This objective function
of EGO-Planner is free from ESDFs (Euclidean Signed Distance Fields) used previously by
the same authors. An anisotropic curve fitting algorithm is introduced to adjust higher-
order derivatives of the trajectory while maintaining the original shape. Like other high-end
multi-agent techniques, this method does not formulate the optimization problem as a
quadratic programming problem.

We adopt some ideas from related works [9,13,16,18] and improve upon the techniques
to generate optimal, kino-dynamic-feasible, obstacle-free, and executable trajectories for
quadrotors with applications to indoor settings. We limit ourselves to the quadratic pro-
gramming formulation of the trajectory optimization problem as opposed to Gao et al. [15]
and Tordesillas et al. [21,22], so that we may benefit from the convergence and compu-
tational efficiencies of quadratic programming formulation. We propose an algorithm
that improves upon the limitations of current techniques with an emphasis on improving
optimization performance in complex scenarios. Our pipeline uses a linear piecewise path
from the path planning algorithm and improves this path further with our path relocation
algorithm to guide the convex decomposition of the map to find an Obstacle-Free Corridor
(OFC) from the current configuration to the goal configuration of a robot. We formulated
the trajectory generation problem as a quadratic program and treated OFCs as inequality
constraints in QP. By minimizing the snap (a fourth derivative of position) of trajectories, we
made sure that the fourth-order dynamical system is able to follow our generated trajectory
through a nonlinear controller. The total time for trajectory generation using our trajectory
planning pipeline is sufficiently small and we may use it in real time for a navigation
system with mapping and state estimation. We tested our procedure in simulation with
diverse indoor environments. Four distinguishing features of our work are summarized
below.

1. We formulate the trajectory planning problem as a quadratic program, which is more
likely to converge in real time as compared to non-quadratic approaches.

2. Our path relocation algorithm along with the obstacle-free-corridor construction proce-
dure provides better optimization performance as compared to mainstream techniques.

3. The safety and completeness of the algorithm make it attractive for real-world applications
4. We provide a comprehensive control pipeline along with the trajectory planning

pipeline and test complete architecture in simulations.

The outline of this article is as follows: in Section 2, we describe the system model;
in Section 3, we explain and compare different path planning schemes; in Section 4, the
trajectory planning pipeline is discussed; in Section 5, we present our control strategy;
simulation results are discussed in Section 6; conclusions follow in Section 7.

2. System Model

We consider a development drone (VOXL m500 drone manufactured by ModelAI,
San Diego, CA, USA) as the reference platform in this research work with its coordinate
system as shown in Figure 3. Body frame, B, and camera frame, C, are fixed to the body
of the quadrotor while the world frame, W, is an inertial frame. We use ZXY sequence of
rotation to define Euler angles yaw, φ, roll, θ, and pitch, ψ. We define the rotation matrix
from the body frame, B, to the world frame, W, as RWB = RWCRCB, where RWC defines the
orientation of the camera frame, C, in world frame, W, while RCB defines the orientation
of the body frame, B, in the camera frame, C. Our system uses four motors [m1, · · · , m4]
with propellers rotating in specified directions with angular velocities [ω1, · · · , ω4]. Forces
[F1, · · · , F4], and momenta [M1, · · · , M4] produced by the propellers are related to angular
velocities [ω1, · · · , ω4] by Fi = kFω2

i , Mi = kMω2
i , where kF and kM are force coefficients

and momentum coefficients of the propeller, respectively. We denote the angular velocity
of the robot by ωW

B = pxB + qyB + rzB, where p, q, and r are the components of velocity



Drones 2023, 7, 122 5 of 24

along the x-axis, y-axis, and z-axis of the body frame B. We define the kinematics of the
quadrotor as: p

q
r

 =

cos(θ) 0 −cos(φ)sin(θ)
0 1 sin(φ)

sin(θ) 0 cos(φ)cos(θ)

φ̇
θ̇
ψ̇

 (1)

We may exert different forces and moments on quadrotors with the help of propellers
and derive the dynamics of the quadrotor with the help of Newton–Euler equations as:

mr̈ =

 0
0
−mg

+ RWB

 0
0

F1 + F2 + F3 + F4

 (2)

I

 ṗ
q̇
ṙ

 =
1√
2

 L(−F1 + F2 + F3 − F4)
L(−F1 + F2 − F3 + F4)√

2(−M1 −M2 + M3 + M4)

−
p

q
r

× I

p
q
r

 (3)

where m denotes the mass of the vehicle, r̈ represents the acceleration of the center of the
mass of the quadrotor in the inertial frame of reference, and g denotes acceleration due to
gravity. The distance between the axis of rotation of the propeller and the center of mass of
the vehicle is denoted by L. The constant I represents the moment of inertia matrix of the
quadrotor referenced to the center of the mass and along the body-fixed frame of reference.

Figure 3. Development drone (Manufactured by ModelAI, San Diego, CA, USA) with our Coordinate
system. We consider three frames of reference namely World Frame, W (shown in black), Body
Frame, B (shown in red), and a Camera Frame, C (shown in blue), with relevant axes [x, y, z]. Forces,
[F1, · · · , F4], moments, [M1, · · · , M4], and angular velocities, [ω1, · · · , ω4], produced by rotors are
shown with black, blue, and green arrows respectively.

When we apply external force or torque to a quadrotor, it is applied with the help
of motors in the body-fixed frame of reference. We control the angular velocity of the
motors with the help of the pulse-width-modulated signal from the controller and it
correspondingly applies forces and torques on the robot in the body-fixed frame of reference.
Therefore, it is important to represent forces and moments in the body-fixed frame of
reference in terms of the angular velocities of rotors. We represent control input to the
system as a 4× 1 vector u = [u1, u2, u3, u4]T , where u1 is the net body force and u2, u3, u4



Drones 2023, 7, 122 6 of 24

are the body moments in the body-fixed frame of reference. This can be expressed in terms
of rotor speeds as:

u =


u1
u2
u3
u4

 =
1√
2


kF kF kF kF
−kFL kFL kFL −kFL
−kFL kFL −kFL kFL
−
√

2kM −
√

2kM
√

2kM
√

2kM




ω2
1

ω2
2

ω2
3

ω2
4

 (4)

Now, we may further simplify our Newton–Euler force equation as well as angular
acceleration equation as shown in Equations (5) and (6). zW and zB represent the z-axis of
the world frame W and the body frame B, respectively.

mr̈ = −mg zW + RWB u1 zB (5)

ω̇W
B = I−1

−ωW
B × IωW

B +

u2
u3
u4

 (6)

The state vector of the quadrotor system is usually defined with position, velocity,
Euler angles, and the angular velocity [x, y, z, ẋ, ẏ, ż, φ, θ, ψ, p, q, r]T for the purpose of vehi-
cle control. We can show that the quadrotor is a flat system as its dynamics have flatness
property [8]. Quadrotor dynamics with four inputs [u1, u2, u3, u4]

T may be represented
with four flat outputs σ = [x, y, z, ψ]T , which can be used to explicitly express all states and
inputs. In other words, the states and the inputs can be written as algebraic functions of
four carefully selected flat outputs σ = [x, y, z, ψ]T and their derivatives. This facilitates the
representation of the state vector and input vector of the under-actuated quadrotor with
just four parameters. Therefore, the trajectory generation problem can be thought of as a
generation of a considerably smooth (with reasonably bounded derivatives) four-element
time-varying vector in the space of flat outputs as:

σ(t) : [t0, tm]→ R3 × SO(2) (7)

3. Path Planning

Path planning is a process of finding a feasible piece-wise linear path that consists of
a series of waypoints in a robot’s configuration space (C-Space) from the current configu-
ration to the goal configuration. Different approaches are used for robotic path planning
depending on the type of environment, planning goals, accuracy requirements, and timing
requirements. Path planning algorithms may be broadly classified into Graph-Search-Based
Algorithms (GSBA) and Sampling-Based Algorithms (SBA) [7]. GSBAs are resolution-
optimal and resolution-complete but suffer from the curse of dimensionality. Therefore,
GSBAs are very inefficient in large, high-dimensional settings. SBAs, on the other hand, are
non-optimal, directionless, and only probabilistically complete algorithms. The main advan-
tage of SBAs comes in their relatively efficient implementation in large, high-dimensional
configuration spaces. Prominent graph-search-based planning algorithms include Dijk-
stra [25], A∗ [26], Jump Point Search (JPS) [19], and State Lattice methods [20,27,28]. We
also have more efficient variants of these prominent graph-search-based algorithms such
as Dynamic A∗ (D∗) [29], Lifelong Planning A∗ (LPA∗) [30], D∗ Lite [31], etc. Probabilistic
Road Maps (PRM) and Rapid-exploring Random Trees (RRT) are two fundamental types
of sampling-based path planning methods [32]. As in the case of graph-search-based
algorithms, we have different variants of sampling-based methods as shown in Figure 1.

The quality and execution time of a planned path are highly dependent upon the choice
of the path planning algorithm. We experimented with both GSBAs and SBAs in this study
and applied these algorithms to different scenarios. In SBAs, we experimented with the 3D
version of the asymptotically optimal RRT planner (RRT-Star) [33]. This method provides
probabilistic completeness and we can apply this method to a map of a relatively larger



Drones 2023, 7, 122 7 of 24

size. Though this method does not provide any guarantee concerning the time it takes to
find a path, it is mostly comparable to other GSBA-based methods in moderately dense and
relatively small environments. For GSBAs, we experimented with a 3D version of the Jump
Point Search algorithm (JPS-3D) [18]. Although search-based algorithms such as Dijkstra
and A∗ are resolution complete, their computation time for finding an optimal path is a
limitation when used with large maps. The 3D version of the Jump Point Search (JPS-3D)
algorithm solves this problem to some extent by planning in uniform-cost grid maps. A
graphical comparison of these two methods is presented in Figure 2 and the difference in
the execution times of these two methods for varying scenarios can be seen in Table 1. Once
we find a path through the path planning algorithm, we can apply our trajectory pipeline
to generate optimal, kino-dynamic-feasible, and obstacle-free trajectories in cluttered indoor
environments as shown in Figure 4.

Table 1. Execution times for different parts of our algorithm. Since the Path Relocation (PR) step is
the unique feature of our algorithm, we test our system with PR and without PR.

Execution Times (sec)

Map
Scenario Map Size Voxel Size Path Planning Path

Relocation Obstacle-Free Corridor Trajectory Optimization

(m) (cm) JPS-3D RRT∗ PR with PR w/o PR with PR w/o PR

(a) Vertical
Boxes 3 × 3 × 3 1 × 1 × 1 0.242581 2.257435 0.060654 0.244080 0.346878 0.549249 0.583510

(b) Vertical
Columns 3 × 3 × 3 2 × 2 × 2 0.081071 2.236969 0.069489 0.590176 0.624557 0.571728 0.604901

(c) Multiple
Floors 6 × 6 × 10 1 × 1 × 1 2.891760 6.154565 0.097741 1.691436 1.700918 0.457560 Failure 1

(d) Multiple
Rooms 10 × 10 × 4 1 × 1 × 1 1.141364 1.915849 0.079010 0.594684 0.718829 0.563237 Failure 1

(e) Long
Corridor 10 × 6 × 2.5 1 × 1 × 1 1.192246 2.445646 0.073292 1.355371 2.086071 0.469419 Failure 1

1 Solver stopped prematurely after reaching the maximum iteration limit of 2000 iterations. A probable cause for
solver failure is the presence of at least one extra-small segment in the path close to the edge of the thin wall.

Figure 4. Block diagram for our system.

4. Trajectory Planning

Our trajectory planning pipeline is comprised of three steps as shown in Figure 4. In the
first step of trajectory planning, namely path relocation, we relocate the path generated by the
path planning algorithm such that we assist our next step of obstacle-free corridor generation
and improve the optimization performance of the algorithm. In the second step, we try to
find an obstacle-free corridor in the free space that can be used to plan a quadrotor trajectory.
In the final step of the trajectory pipeline, we represent our trajectory with polynomials and
optimize that trajectory within the constraints provided by the obstacle-free corridor (OFC).
These three steps of the trajectory planning pipeline are explained below.



Drones 2023, 7, 122 8 of 24

4.1. Path Relocation

We experimented with GSBAs and SBAs for path planning as explained in the previous
section and found that paths planned through these algorithms usually pass in very close prox-
imity to obstacles. This behavior is particularly dominant in graph-search-based techniques
because GSBAs try to minimize path lengths. Though paths with minimum length are good
for energy-efficient navigation, the close proximity of these paths to the obstacles makes con-
vergence very difficult with respect to the trajectory optimization problem. We have observed
in our simulations that convergence of the optimization problem takes considerably more
iterations when applied to paths in close proximity to obstacles. Sometimes, the optimization
solver may even fail to produce a feasible result because the constraints for the optimization
solver are very tight in close proximity to obstacles. Therefore, we have a situation where we
need a compromise because if we try to generate shorter paths for energy-efficient navigation,
the optimization solver is less likely to converge. Conversely, if we try to move the path away
from the obstacle, we generate long trajectories that may not be energy-efficient.

The second problem associated with path planning algorithms is the presence of very
small segments in a generated path (segments smaller than 0.25 m in length). This phe-
nomenon is particularly dominant in graph-search-based algorithms near thin obstacles
because these algorithms try to minimize the path length as shown in Figure 2. These small
segments might also be present in SBAs because of their random nature. These extra-small
segments impose very tight constraints on the optimization problem in challenging robotic
environments. We observed in our experiments that even one segment of a small length in a
path usually results in solver failure. Finally, we sometimes experience the problem of locked
segments in generated paths. A locked segment is one that is locked among obstacles such
that it gives very little freedom to rotate or relocate this segment within free space. One such
segment is shown in Figure 5a. This problem particularly arises when we have extra long
segments in our generated path (segments greater than 10 m in length). Locked segments
also tighten the constraints and make the optimization problem difficult to solve. With these
observations, it is not suitable to use path planning results directly for trajectory generation
and optimization.

Figure 5. Left (a): Path planned with the planning algorithm comprised of three segments with its
middle segment locked among obstacles. Waypoints of the original path have been superimposed
with margin spheres shown in red. Center (b): Middle segment of the planned path in (a) is bisected
into two sub-segments and the new waypoint is defined at the cut point. Now we have more freedom
to relocate the path. Right (c): Middle segment of the planned path in (a) is divided into three
sub-segments and new waypoints are defined at cut points. We have even more freedom to relocate
the path in (c).



Drones 2023, 7, 122 9 of 24

We came up with a novel solution to handle these problems and propose a path relocation
algorithm that relocates path segments such that they are sufficiently far from obstacles but not
far enough to affect the overall lengths of paths. Moreover, it solves the problem of extra-small
segments as well as locked segments. It is pertinent to mention that Zhau et al. [20] also
tried to solve the problem associated with the close proximity to generated paths to obstacles
by using the collision cost term in the objective function of the optimization problem. The
collision cost term in the optimization problem is formulated as a repulsive force of obstacles
acting on each control point using Euclidian Distance Fields (EDF). This way of solving the
close proximity problem led to the non-quadratic formulation of the objective function which
is not that efficient to compute. Secondly, it may also take the original path far away from
obstacles and considerably increase the overall length of the path. Our method tries to solve
this problem along with the other two problems presented above without any compromise
concerning the quadratic formulation of the problem and does not let the path be relocated far
beyond the limits. We have not come across any work that solves the problem of extra-small
segments as well as locked segments. Our path relocation algorithm is described below.

4.1.1. Define Margin Spheres

In the first step of path relocation, we define multiple margin spheres along the length of
the path generated by path planning algorithms. Based upon our observation of paths gener-
ated via the planning algorithm, we make sure every junction between segments (waypoints)
has a margin sphere defined on it as shown in Figure 6. We chose to define margin spheres on
every waypoint because waypoints lie in close proximity to obstacles in graph-search-based
planning algorithms. We choose the dimensions of spheres considering the size of free space
openings (such as window/door opening sizes) in our environment. Our work considers a
diameter of 1.5 m for margin spheres because we assume that our environment has a mini-
mum opening of 1.5 m × 1.5 m between the starting point and the target point in the robotic
configuration space. By doing so, we try to have a minimum distance of 0.75 m between our
waypoints and obstacles.

Figure 6. Left: The Path Relocation (PR) concept in a 2D map, where obstacle space is represented with
gray area. The black dotted line shows the original path planned by the planning algorithm and the black
solid line shows the relocated path. Margin spheres along with relocation direction arrow are shown in red
color. Right: Path relocation results in 3D map, where obstacle space is represented with blue cubes. The
black dotted line show original path planned by the planning alogrithm. Red dotted line shows relocated
path produced by Path Relocation (PR) step. Note the removal of extra-small segments and increase in the
spacing between relocated path and obstacles.



Drones 2023, 7, 122 10 of 24

4.1.2. Margin Spheres Update

Once we define margin spheres at the waypoints of our path, the next step is to
relocate those margin spheres to a new location such that we minimize the overlap of
margin spheres with the obstacles. Assuming we have an onboard sensor that provides
us with point-cloud data of obstacles around that sphere, we select the points inside the
boundary of the margin sphere to take further steps. In this step, we relocate our margin
spheres based on the number and distribution of point-cloud data inside the boundaries
of margin spheres. To relocate the margin sphere to a feasible point, we need to find the
direction of relocation and the step size of relocation. For the direction of relocation, we
find the average of the k-nearest point inside the boundary of the sphere, sk,avg, as a guide.
Our direction of relocation for the jth sphere is from sk,avg towards the center of the sphere
sc. The step size of relocation is a tuneable parameter and we can vary its step length
depending on the obstacle density of the map, and the required timing performance of the
algorithm. The primary purpose of the margin sphere relocation is to gradually move a
margin sphere away from obstacles such that its overlap with obstacles decreases in every
iteration. We stop the margin sphere relocation at a point where we may not reduce the
obstacle overlap any further. If we keep our step size very small, we may need numerous
iterations to assure that we have the minimum possible overlap of relocated margin spheres
with obstacles. Therefore, decreasing step size to extra-small lengths may negatively affect
the computational efficiency of the algorithm. On the other hand, if we make our step
size very large, the accuracy of our algorithm suffers. If we increase the step size beyond
the diameter of the margin sphere, we may jump from one obstacle to a totally different
obstacle and our algorithm may produce totally inaccurate results. Our work uses a step
size of 0.15 m, which is ten percent of the margin sphere diameter. Once we know the
direction and step size of the relocation for each margin sphere, we may relocate margin
spheres to new locations in the environment. At the end of this step, the center points of
our margin spheres do not necessarily lie exactly over the planned path waypoints.

4.1.3. Path Update

Once we relocate our margin spheres, we need to check if we can update our path
waypoints with the center points of relocated margin spheres or not. To guarantee the
feasibility of relocated margin spheres as new waypoints, we must check if the new con-
figuration of path segments formed by the center points of relocated margin spheres is
free from obstacle collisions or not. If the result is true, we may safely update segments
and waypoints in the path. We may repeat the margin sphere update step and the path
update step until the number of point-cloud data in the boundary of the margin spheres
is decreasing as shown in the while-loop of the pseudocode shown in Algorithm 1. Once
we exit the while-loop in Algorithm 1, we have a modified path that is sufficiently far
away from the obstacles but not far enough to considerably affect the overall length of
the planned path. Spacing of the modified path from obstacles depends upon the radius
of margin spheres as well as the volume of free spaces in the map around the initial path
planned with the path planning algorithm.



Drones 2023, 7, 122 11 of 24

Algorithm 1 Given planned path P =
〈

p0, p1, . . . , pN〉, find modified path S =〈
p0, s1, s2, . . . , sk, pN

〉
for better optimization performance. The set of obstacle points is

denoted by O.

function PATH_RELOCATION(P, O)
for iteration = 1, 2, . . . (N − 1) do

sj(R, d)← De f ineWaypointSpheres(pj)
Oinside ← CalculatePointsInside(sj, O)
while ∆Oinside > 0 do

sj
temp ← RelocateSpheres(sj, Oinside)

sj
f lag ← CheckCollisions(P, sj

temp)

if sj
f lag = False then

sj ← sj
temp

end if
Onew ← CalculatePointsInside(sj, O)
∆Oinside ← CalculateDeltaO(Onew, Oinside)
Oinside ← Onew

end while
end for.
RemoveExtraSmallSegments(sj)

return S =
〈

p0, s1, s2, . . . , sk, pN
〉

end function

4.1.4. Extra-Small Segment Removal

An important step of the path relocation algorithm is the removal of extra-small segments
from the path because these extra-small segments also impose tight constraints for the opti-
mization solver. We use a very intuitive strategy in removing extra-small segments from the
modified path. For every segment in the path, we check if its length is smaller than a certain
threshold. If it is, we simply remove that segment from our path and join the surrounding seg-
ments together. Though we check for path collision with an obstacle after removing extra-small
segments, we observe that the removal of extra-small segments from the path does not affect
the feasibility of the path in most cases. We present the concept of path relocation along with
results in simulation in Figure 6. We may note that the path relocation step changes the paths
in two ways. First, it relocates the paths sufficiently far from the obstacles. Second, it removes
extra-small segments from the path. These two effects can be observed in Figure 6 (Right).
The black piece-wise dotted line segments show the original path planned by the planning
algorithm. We can see that the original path has five segments and two of those segments are
extra-small. Moreover, the original path is planned in very close proximity to the obstacles.
The modified path (shown as a red piece-wise dotted line) solves both of these problems by
moving the path farther from the obstacles and handling extra-small segments. The modified
path has only three segments as compared to the five segments in the originally planned path.

4.1.5. Handling Locked Segments

Our path relocation algorithm is comprised of four steps: (a) define margin spheres,
(b) margin sphere update, (c) path update, and (d) extra-small segment removal. These four
steps of the path relocation algorithm solve only two of the three problems associated with
the original path planned with the path planning algorithm. Our original path planning
algorithm is designed to solve the problem of close proximity to the planned path to
obstacles as well as the problem of extra-small segments. However, these steps do not solve
the problem of locked segments. It is pertinent to mention that we cannot know in advance
if our generated path has a locked segment or not. We can only find the locked segment by
comparing the relocated path with the original path once the path relocation algorithm is
complete. Therefore, we might need to run the path relocation algorithm multiple times



Drones 2023, 7, 122 12 of 24

while resolving the locked segments before each iteration. We may resolve the locked
segments by dividing every locked segment into multiple sub-segments and defining new
waypoints at the cut points as shown in Figure 5. By doing so, we give more freedom to
sub-segments to relocate to feasible locations as compared to the original single locked
segment. Different approaches may be used to select the location of cut points at the locked
segment. A simple and intuitive approach is to cut a long locked segment into two or three
sub-segments of equal length and run the path relocation algorithm once again. However,
a more robust approach is to find one or more cut points in close proximity to locking
obstacles by using Euclidean Distance Fields (EDF) as used by Zhou et al. [20] to compute
the collision cost term in the objective function. Once we resolve the locked segment
problem in our path by multiple iterations of Algorithm 1, we may use this modified
path to define better corridor constraints for the optimization problem as described in the
next section.

4.2. Obstacle-Free Corridor Construction

The second step of the trajectory planning pipeline is the Obstacle-Free Corridor (OFC)
finding which we adopted from the work of Liu et al. [18]. In this step, we construct
a polyhedron around every segment of the piece-wise linear modified path such that
those polyhedra define a free space in which we may generate the optimal trajectory for
quadrotors to follow. Every polyhedron is defined with multiple hyperplanes, which
represent different faces of polyhedra. Those hyperplanes may be used as inequality
constraints in our optimization problem. The process of finding hyperplanes representing
polyhedra of obstacle-free corridors is comprised of three steps, namely (1) find ellipsoid,
(2) find polyhedron, and (3) cuboidal bonding. The cuboidal bonding step in our approach
is slightly different from [18] in the sense that we use the size of free space openings (e.g.,
door openings in walls) in our environment to decide the dimensions of the cuboid instead
of the maximum speed and the maximum acceleration of quadrotors. We assume that the
free space openings are wider than the quadrotor size and the quadrotor may easily pass
through free space openings. The reason for this change in approach is to make the corridor
finding step independent of quadrotor types.

4.2.1. Find Ellipsoid

In this step, we try to find the empty space surrounding the path segments with the
help of ellipsoids. Our goal is to find an ellipsoid with its major axis aligned with the
path segment. The other semi-axes of ellipsoids are such that they maximize the volume
contained by ellipsoids while avoiding all obstacles in the environment. An ellipsoid in R3

can be represented with a matrix E and a vector d where E is a 3× 3 symmetric positive
definite matrix representing the deformation of the sphere and d represents the center of
the ellipsoid.

ξ(E, d) = {p = Ep̄ + d | ‖ p̄‖ 6 1} (8)

To find a feasible ellipsoid, we need point cloud data representing obstacles in the
vicinity of the path segment and a line representing the path segment itself. We first start
with a spheroid around the line segment as shown in Figure 7a. Now considering the line
segment as the semi-major axis of the ellipsoid, we shrink the initial spheroid to obtain a
maximal spheroid (a spheroid with two axes of equal length) such that it does not contain
any point-cloud data representing obstacles within its boundaries. We shrink the ellipsoid
step by step by searching for the closest obstacle point from the ellipsoid center. At the end
of the shrinking process, we have a maximal spheroid with one closest obstacle point lying
at its boundary. This process is depicted in Figure 7. With the closest point at the boundary
of the maximal ellipsoid and a line segment, we form the xy-plane of the ellipsoid. Later
we deform the maximal ellipsoid further and dilate it along the z-axis. We find the right
length of the third axis in the z-axis direction by a similar procedure by first expanding the
ellipsoid along the z-axis and then shrinking step by step until we have no obstacle point



Drones 2023, 7, 122 13 of 24

inside the boundary of the ellipsoid as explained in Algorithm 2. Multiple segments of the
obstacle-free path along with the corresponding ellipsoid are also depicted in Figure 8d.

Figure 7. Ellipsoid shrinking process shown in 2D, where grey area represents obstacle space of
environment map. The blue solid line segment represents a single segment of the planned path.
Left (a): We start with a black solid-line ellipsoid shown in (a). We find a point in the obstacle space
that is closest to the center of the blue path segment to generate the black dashed-line ellipsoid. This
completes the first iteration of ellipsoidal shrinking. Center (b): Now, we take the black dashed-line
ellipsoid generated in (a) as a reference and repeat another iteration of the shrinking process to
generate a black dashed-dotted-line ellipsoid. Right (c): Again, we take the black dashed-dotted-line
ellipsoid generated in (b) as a reference and repeat another iteration of the ellipsoid shrinking process
to generate the black dotted-line ellipsoid shown in (c). After this iteration, we may define xy-plane
of ellipsoid.

Algorithm 2 Given line segment S0, find the ellipsoid ξ0(E, d). The set of obstacle points is
denoted by O.

function Find_Ellipsoid(S0, O)
ξ0(E, d)← De f ineInitialEllipsoid(S0)
Oinside ← RemovePointsOutside(ξ0, O)
j← 0
while Oinside 6= Empty do

pe
j ← ClosestPoint(ξ0, Oinside)

ξ0(E, d)← ShrinkEllipsoidAlongYZ(ξ0, pe
j )

Oinside ← RemovePointsOutside(ξ0, Oinside)
j← j + 1

end while
nxy ← FindXYPlane(ξ0, pe

j )

ξ0(E, d)← DilateEllipsoidZ(ξ0, nxy)

Oinside ← RemovePointsOutside(ξ0, O)
k← 0
while Oinside 6= Empty do

pe
k ← ClosestPoint(ξ0, Oinside)

ξ0(E, d)← ShrinkEllipsoidAlongZ(ξ0, pe
k)

Oinside ← RemoviePointsOutside(ξ0, Oinside)
k← k + 1

end while
return ξ0(E, d)
end function



Drones 2023, 7, 122 14 of 24

Figure 8. Robotic motion planning process in sequence in 2D. (a) Map of the environment representing
obstacles (grey areas), starting location (four-point star), and goal location (five-point star). (b) Initial
path planned with planning algorithm (dotted line segments). Margin spheres are represented in
red at waypoints. (c) The modified path after the application of the path relocation procedure (solid
line segments). (d) Path segments with obstacle-free ellipsoids superimposed on corresponding
segments. (e) Representation of polyhedra encapsulating corresponding ellipsoids (in orange color)
on every path segment. (f) Cuboidal bonding of polyhedra (in green) to find tunnel-like pathway.
(g) Intersection of polyhedra and cuboids to find obstacle-free corridor (OFC) represented in green.
(h) Obstacle-free corridor along with optimized trajectory represented in red with dashed lines.

4.2.2. Find Polyhedron

In this step, we start with the ellipsoid derived in the previous section corresponding
to each segment and find an obstacle-free polyhedron surrounding every segment of the
path. As in the case of the ellipsoid in the previous section, the space inside the boundary
of the polyhedron must be free of all obstacle points. To derive this polyhedron, we slowly
dilate the ellipsoid found in the previous step to define a halfspace every time we find an
obstacle overlapping the ellipsoid and continue the process. All such halfspaces provide
us with a polyhedron free from obstacles. Assume we have an ellipsoid ξ0(E, d) that
we are slowing dilating until we find a point pc

0 at the boundary of the ellipsoid. The
tangent plane to the ellipsoid at the point can be defined as a halfspace H0 =

{
p
∣∣aT

0 p < b0
}

containing the ellipsoid. After computing the halfspace, we can remove all the obstacle
points Oremain away from that halfspace. Later, we can again dilate the ellipsoid slowly
until we obtain another obstacle point and repeat the process. Continuous repetition of
the process produces a set of halfspaces that collectively form a polyhedron as shown in
Figure 9 in a 2D setting. This polyhedron contains the segment and the initial obstacle-free
ellipsoid inside it. Algorithm 3 shows the pseudo-code for this process. The hyperplane
defining the jth halfspace Hj is tangent to the ellipsoid ξ j at point pc

j and is computed as:

aj =
dξ j

dp

∣∣∣∣
p=pc

j

= 2E−1ET(pc
j − d) (9)

bj = aT
j pc

j (10)



Drones 2023, 7, 122 15 of 24

Figure 9. Ellipsoidal dilation and polyhedron finding process. Orange-colored solid-lines represent
the hyperplanes that we find in each iteration of the ellipsoidal dilation process. Light-shaded orange
areas represent the halfspaces defined by these hyperplanes. Left (a): We start the ellipsoidal dilation
process with the ellipsoid represented with dotted-line and find the first hyperplane as shown in
(a). Center (b): We dilate further to find the second hyperplane, which is tangent to the ellipsoid
represented with dashed-dotted-line and shown in (b). Right (c): Again, we dilate once last time to
find the third hyperplane, which is tangent to the third ellipsoid (represented with dashed-line) and
shown in (c). By finding the intersection of these halfspaces (defined by corresponding hyperplanes),
we may form a polyhedron for the corresponding segment.

Algorithm 3 Given ξ0(E, d), find the polyhedron C(A, b). The set of obstacle points is
denoted by O.

function FIND_POLYHEDRON(ξ0, O)
Oremains ← O
j← 0
while Oremains 6= Empty do

pc
j ← ClosestPoint(ξ0, Oremains)

ξ j ← DilateEllipsoid(ξ0, pc
j )〈

aj, bj
〉
← FindHal f Plane(ξ j, pc

j )

j← j + 1
end while
C : A← [a0, a1, . . . ], b← [b0, b1, . . . ]
return C(A, b)
end function

4.2.3. Cuboidal Bonding

Since polyhedrons generated through the last part contain the ellipsoid inside them
and the ellipsoids themselves contain the corresponding line segment, we are guaranteed
to have our planned path inside the union of all polyhedrons. Moreover, polyhedrons
corresponding to adjacent segments are always guaranteed to overlap to some extent
with each other because the ellipsoids contained by these polyhedrons are connected with
each other. Thus, technically speaking, we have an obstacle-free space containing the
whole planned path inside it and we can plan our trajectory inside this obstacle-free space.
However, this obstacle-free space is not that efficient yet because the trajectory generated
inside this obstacle-free space may go too far away from the original planned path. To keep
the trajectory close to the original planned path, we use the concept of cuboidal bonding.
We enclose every segment of the planned path inside a cuboid and take the intersection of
the cuboid with the polyhedron as shown in Figure 8f,g. By doing so, we further restrict
the obstacle-free corridor such that it provides a free space like a tunnel surrounding the
modified path generated through the path relocation step. The maximum width of the
obstacle-free tunnel-like corridor is dependent upon the dimensions of the cuboid we use.
Wider the cuboid we use, wider the tunnel-like obstacle-free space will be. We choose the



Drones 2023, 7, 122 16 of 24

dimensions of the cuboid considering the size of free space openings (e.g., door openings
in walls) in our environment. This tunnel-like pathway is defined with a set of hyperplanes
and is called the obstacle-free corridor (OFC). We can use this obstacle-free corridor as
inequality constraints while optimizing our trajectory with respect to our objective criterion
as explained in the next section. Before we jump to the next section, it is important to
emphasize the importance of the path relocation step in our trajectory planning pipeline.
The relocation step in our pipeline helps to generate paths sufficiently far from obstacles
with the least possible segments. The further the paths are from the obstacles, the easier
it will be to generate wider tunnel-like obstacle-free corridors surrounding the path. The
wider the obstacle-free corridors surrounding the path, the easier the constraints will be for
the optimization solver.

4.3. Trajectory Generation and Optimization

In this section, we introduce the general setup of trajectory generation and optimiza-
tion. Given the map of an environment and starting/goal position of the robot, we first
planned the path, which is comprised of multiple piece-wise linear segments connected
with each other by waypoints. We also improved the planned paths by modifying them for
better optimization performance in the path relocation stage of the trajectory generation
pipeline. Later, we defined obstacle-free corridors (OFCs) from the starting position to
the ending position. Now we want to have a trajectory that our robot may track from
the start to the goal position through these corridors, without colliding with obstacles.
First, we represent our trajectory with piece-wise polynomial basis functions as shown in
Equation (11) where σm(t) represents the trajectory corresponding to the mth segment of
the path represented by the nth order polynomial basis function.

σ(t) =



σ1(t) =
n
∑

i=0
σ1iti t0 ≤ t < t1

σ2(t) =
n
∑

i=0
σ2iti t1 ≤ t < t2

...

σm(t) =
n
∑

i=0
σmiti tm−1 ≤ t < tm

(11)

We know that our robot is a dynamical system and it cannot follow arbitrary trajecto-
ries. Therefore, we also need our trajectories to be smooth enough so they can be tracked
by our dynamical system. The smoothness of trajectories translates to minimizing the rate
of change of trajectories. Since a quadrotor is a fourth-order dynamical system, we should
be able to control the fourth derivative of the trajectory with the quadrotor. This means that
we need to have trajectories that are differentiable to the fourth order and their fourth-order
derivative should be as low as possible. Therefore, we formulate our trajectory generation
problem as an optimization problem where our objective function is the fourth derivative
of the trajectory (snap) and we constrain our trajectory within the obstacle-free corridors
found in the previous section.

arg min
σ

J =
m−1

∑
i=0

∫ ∆ti

0

∣∣∣∣∣∣∣∣ d4

dt4 σi(t)
∣∣∣∣∣∣∣∣2dt

s.t. AT
eqσi(t) = beq

AT
i−eqσi(t) < bi−eq (12)

Here the equality constraints represented by matrix AT
eq and vector beq correspond

to the lower order derivatives of the trajectory at waypoints (junction points between
independent segments of the planned path) [34]. To ensure the smoothness of the trajectory
at waypoints, derivatives up to the order of three (zeroth, first, second, and third derivatives)



Drones 2023, 7, 122 17 of 24

of the trajectory at the end of any segment must be equal to the corresponding derivatives
at the start of the next connecting segment as in Equation (13). Moreover, inequality
constraints represented by matrix AT

i−eq and vector bi−eq correspond to the half-planes
representing obstacle-free corridors (OFCs).

dk

dtk σi(ti) =
dk

dtk σi+1(ti), k = 0 . . . 3 (13)

We can formulate the optimization problem in Equation (12) as a Quadratic Program
(QP) by considering coefficients of piece-wise polynomial functions cσ = [cσ1 , · · · , cσm ]
as decision variables as formulated in Equation (14). Here, cσm represents the vector of
polynomial coefficients corresponding to the mth segment. The construction of the Hessian
matrices Qσm is omitted for brevity but follows from the differentiation of the square of
the mth polynomial with respect to each element of its coefficient vector cσm [35]. We can
solve this quadratic programming problem efficiently with traditional convex optimization
solvers provided in commercial software packages as in the MATLAB optimization toolbox.

arg min
cσ

J =

cσ1
...

cσm


TQσ1 · · · 0

...
. . .

...
0 · · · Qσm


cσ1

...
cσm


s.t. AT

eqcσ = beq

AT
i−eqcσ < bi−eq (14)

Another important element in this approach to solve the optimization problem for
trajectory generation is the effect of time corresponding to each segment of the planned
path. Changing the time ∆tm = tm − tm−1 corresponding to a segment not only changes
the velocity of the robot at that segment but also the path of the trajectory. We simulated
the waypoint trajectory generation optimization problem in [9] and found results depicted
in Figure 10 by varying the time allocations for the single segment in the piece-wise linear
path while keeping other segment times constant. Our simulation contains three segments
and we vary the segment times of the middle segment. We can see considerable trajectory
variation in Figure 10. It is important to mention that our approach of obstacle-free corridors
may considerably avoid the obstacle overlapping problem in Figure 10 but time allocation
is still important because of finite thrust forces in robotic vehicles. We used the trapezoidal
velocity profile method to allocate time to each segment while taking into consideration the
map of our environment and the robotic thrust thresholds. We use static starting and goal
states with zero velocity, acceleration, and jerk to ensure safety. The vehicle is supposed to
accelerate at the start position and decelerate while reaching the goal position.

Figure 10. Trajectory optimization problem solved with the same objective and constraints but with
different segment times for the middle segment. Corresponding average vehicle velocities during the
segment passage are shown in the figure.



Drones 2023, 7, 122 18 of 24

5. Trajectory Tracking and Control

We now present a geometric tracking control of a quadrotor to follow specified trajecto-
ries [36]. We assume that we are provided with a time-varying reference trajectory in terms
of flat outputs as σT(t) = [rT(t)T , ψT(t)]T , where rT(t) = [x(t), y(t), z(t)]T is the desired
position as a function of time in the world frame of reference and ψT(t) is the desired yaw
profile. We also assume that this time-varying reference trajectory is smooth enough to be
tracked via a nonlinear controller. First, we define position error as ep = rT(t) − r and
velocity error as ev = ṙT(t)− ṙ. If we want our robot to follow a desired position profile
rT(t), we need these errors ep and ev to exponentially go to zero as.

(r̈T(t)− r̈c) + Kdev + Kpep = 0 (15)

Here, r̈c is the commanded acceleration required such that the position and velocity
errors may exponentially go to zero. We may also calculate the desired force Fdes required
by the controller by multiplying Equation (15) with the mass of the vehicle and considering
acceleration applied to the vehicle by force due to gravity.

Fdes = Kpep + Kdev + mgzW + mr̈T(t) (16)

where Kp and Kd are positive definite gain matrices. Since quadrotor propellers are fixed to
the body of the quadrotors and may only apply forces along the z-axis of the body frame of
reference, we need to find the projection of the desired force vector onto the body frame’s
z-axis in order to compute the first element of the control input vector as u1 = Fdes · zB.

To determine the other three control input elements [u2, u3, u4]
T as shown in Equation (4),

we must consider the attitude tracking error, eR and angular velocity error, eΩ. We may give
similar treatment to these errors as we did to position and velocity errors. We assume that we
know the current orientation, RWB, of the quadrotor in the world frame and we need to know
the desired orientation, Rdes, of the quadrotor in the world frame. Once we know Rdes, we
may compare it with RWB to find the attitude tracking error eR and the angular velocity error
eΩ. Rdes is comprised of three unit vectors Rdes = [xB,des, yB,des, zB,des]. First, we observe that
the zB,des direction should be along the desired thrust vector to maximize the effect of the
force applied by propellers as:

zB,des =
Fdes
‖Fdes‖

(17)

Knowing the specified yaw angle along the trajectory, ψT(t), we may compute xB,des
and yB,des as:

xmid = [cos ψTτ, sin ψT , 0]T (18)

yB,des =
zB,des × xmid∥∥zB,des × xmid

∥∥ (19)

xB,des = yB,des × zB,des (20)

provided zB,des × xmid 6= 0. This defines the desired rotation matrix Rdes. Next we define
the attitude tracking error, eR, and angular velocity error, eΩ as:

eR =
1
2

(
RT

desRWB − RT
WBRdes

)∨
(21)

eΩ = Ω− RT
WBRdesΩdes (22)

where ∨ represents the vee map which takes elements of so(3) to R3, and Ω is the angular
velocity of the quadrotor. Now the desired moments [u1, u2, u3] required by the controller



Drones 2023, 7, 122 19 of 24

such that the attitude tracking and angular velocity error exponentially go to zero are
computed as:

[u2, u3, u4]
T = −KReR − KΩeΩ (23)

where KR and KΩ are diagonal gain matrices. This allows unique gains to be used for roll,
pitch, and yaw angle tracking. Finally, we compute the desired rotor speeds to achieve the
desired control vector [u1, u2, u3, u4]

T by using Equation (4). When controlling position and
attitude together, we use a cascade control loop where attitude is controlled in the inner
loop while the position is controlled in the outer loop as shown in Figure 11.

Figure 11. Cascade control loops for position and attitude control of quadrotor. Inner loop takes
commanded orientation, Rdes = [φdes, θdes, ψdes], as input and current attitude with angular velocities
R, Ω from feedback to provide control signal, [u2, u3, u4], for attitude tracking. Outer loop takes
desired trajectory, σT(t), as input and current trajectory σ(t) from feedback to provide desired
orientation, Rdes, and desired force Fdes = u1

6. Results and Discussion

We use five different scenarios to test the run time of our algorithm by generating
trajectories through them. These five scenarios are shown in Figure 12 and named (a)
vertical boxes, (b) vertical columns, (c) multiple stories, (d) multiple rooms, and (e) long
corridor. These scenarios vary in terms of volume, obstacle density, and obstacle size.
These maps may be considered as typical for different environments in real-life scenarios.
To evaluate the computational expense of our algorithm, we split the complete process
into five parts: path planning, path relocation (PR), obstacle-free corridor generation,
trajectory optimization, and trajectory tracking. The time cost for the first four components
while generating trajectories is shown in Table 1. Results for the trajectory tracking are
presented in Table 2. For path planning, we compared both GSBA and SBA methods. While
planning our path using grid-based maps, we used JPS-3D for GSBA and RRT∗ for SBA.
We simulated our concept on MATLAB environment using Intel(R) Core(TM) i7-9700KF
CPU running at 3.60 GHz with an installed memory of 32 GB. As can be seen from the
results, we are able to generate trajectory through multiple indoor scenarios in under a few
hundred milliseconds.

We can see from Table 1 that the volume of our environment varies from 9 cubic meters
to 400 cubic meters. The first thing we may infer from the results concerns the planning
times using the sampling-based algorithm called RRT∗. We can see that the planning time
while using RRT∗ has no relevance to the size of the map. Instead, it has some relevance to
the obstacle density and the distribution of those obstacles in the environment. RRT∗ path
planning through ‘Multiple Floors’ takes maximum time because our starting and ending
locations are blocked by two obstacles and there are very small openings to reach the goal
position. Path planning through graph-search-based methods somewhat depends upon the
size of the map and the distribution configuration of the obstacle inside that map. Therefore,
it is better to use the sampling-based method for relatively bigger maps and search-based
methods for small maps. Another thing to notice is the importance of the path relocation
step before we can find obstacle-free corridors and optimize our generated trajectory. It
is pertinent to mention that we can skip the path relocation step altogether and perform
the obstacle-free corridor and trajectory optimization steps. However, as is evident from
the results in Table 1, the path relocation step provides two benefits. First, it reduces the
time required to find obstacle-free corridors as well as trajectory optimization. Second, it



Drones 2023, 7, 122 20 of 24

improves the chances of obtaining a solution to the trajectory optimization problem. Safety
corridors produced after the path relocation step are farther from the obstacles and may be
relatively wider. While solving the trajectory optimization problem in the Multiple Rooms
scenario, our solver failed to provide a solution when we skipped the path relocation step
in our pipeline. On the other hand, it provided a good solution while solving the problem
with the path relocation step included. After we generate the trajectory, the last step is to
track the trajectory with the control algorithm. Trajectory tracking performance is tested
with the full trajectory generation pipeline and is listed in Table 2.

Figure 12. Trajectories simulated with different scenarios. Optimized reference trajectories are presented
in blue while trajectories tracked with a controller are presented in red. We used five different scenarios
for the simulation of our navigation algorithm. Each scenario represents ellipsoids generated for
Obstacle-Free Corridor (OFC) construction for corresponding path segments. Scenarios are named (a)
Vertical boxes, (b) Vertical columns, (c) Multiple floors, (d) Multiple rooms, and (e) Long Corridor.

Lastly, we tested the optimization performance of our trajectory planning pipeline.
The path relocation step in the trajectory planning pipeline is the unique feature of our
algorithm as compared to state-of-the-art methods to the best of our knowledge. To evaluate
the effect of the Path Relocation (PR) step on optimization performance, we simulated our
system with this step and without this step. Based on the results of this evaluation, it is
evident that our algorithm solves the optimization problem in relatively fewer iterations.
Secondly, we observe that the value of the objective function at the end of the optimization
considerably decreases by including the path relocation step in the trajectory planning
pipeline. Finally, we found that the inclusion of the path relocation step in the trajectory



Drones 2023, 7, 122 21 of 24

generation pipeline increases the chances of providing the optimal solution. Results for the
optimization evaluation are presented in Table 3.

Table 2. Control errors for different scenarios.

Trajectory Tracking Errors (m)

Scenario Position Error Velocity Error

(X) (Y) (Z) (X) (Y) (Z)

(a) Vertical
Boxes

Avg 0.0004212 0.0003679 −0.000943 −0.00011 −0.000128 −5.9 × 10−5

Std 0.0043779 0.0010597 0.0006761 0.006752 0.001215 0.0014844

(b) Vertical
Columns

Avg 0.0020147 0.0016125 −0.002118 −0.00012 0.000418 −0.000220
Std 0.0078534 0.0033446 0.0015237 0.015492 0.006828 0.0042388

(c) Multiple
Floors

Avg 0.0010556 −2.6 × 10−6 −0.000627 −3.21 × 10−5 −5.76 × 10−6 −3.62 × 10−6

Std 0.0026302 0.0003872 0.0005803 0.002554 0.000284 0.0007287

(d) Multiple
Rooms

Avg −0.000168 0.0003581 −0.000636 −0.000158 5.586 × 10−5 −1.09 × 10−5

Std 0.0015317 0.0017368 0.0004299 0.001163 0.00131 0.0004918

(e) Long
Corridor

Avg −5.88 × 10−5 0.00010533 −0.000768 −0.000411 −5.73 × 10−5 −3.03 × 10−5

Std 0.0022831 0.0004938 0.0006614 0.0029307 0.0003791 0.0007432

Table 3. Optimization performance of our algorithm for different scenarios with and without the
Path Relocation (PR) step in trajectory planning pipeline.

Scenario Map Size (m)
No. of Iterations Objective Function Value

w/o PR with PR w/o PR with PR

(a) Vertical Boxes 3 × 3 × 3 9 8 447.88 0.9492
(b) Vertical Columns 3 × 3 × 3 11 9 574.15 109.33
(c) Multiple Floors 6 × 6 × 10 2000 8 Failure 1 3.1678
(d) Multiple Rooms 10 × 10 × 4 2000 8 Failure 1 0.9492
(e) Long Corridor 10 × 6 × 2.5 2000 7 Failure 1 1.3553

1 Solver stopped prematurely after reaching the maximum iteration limit of 2000 iterations. A probable cause for
solver failure is the presence of at least one extra-small segment in the path close to the edge of a thin wall.

7. Conclusions and Future Work

Motion planning for dynamical systems through a cluttered indoor environment is a
challenging problem because of (a) the constraints on dynamics that have to be incorporated
into motion planning; (b) the constraint on the environment that needs to be considered
for obstacle-free navigation; (c) the limited computation resources for planning. In this
paper, we describe a trajectory generation and optimization algorithm that derives kino-
dynamic-feasible, collision-free, and optimal trajectories for quadrotor navigation through
cluttered indoor environments. We used different geometric techniques to define obstacle-
free corridors inside obstacle-cluttered environments and used those corridors as geometric
constraints to optimize trajectories with respect to the fourth derivative of position (snap).
Our method is able to generate optimal trajectories within a few hundred milliseconds and
is suitable for its implementation in real-time applications. We tested our algorithm in five
different indoor settings with varying degrees of obstacle density and environment volume.
We analyzed the effect of novel features of our method on optimization performance and
found that our method provides much better optimization performance as compared to
standard techniques.

In this paper, we solved the problem of inefficient path generation by a path planner
by adding a path relocation step in our trajectory planning pipeline. We post-processed the
generated path provided by the path planner to make it more feasible and a better guide
for obstacle-free corridor generation. However, this step of path relocation increased the
execution time of the pipeline by 50 ms to 100 ms. In practice, there is a trade-off between
speed and optimization performance of the trajectory planning pipeline. In our future work,
we intend to exploit the structures of the algorithm that can be executed in parallel and



Drones 2023, 7, 122 22 of 24

formulate our trajectory generation problem with parallel computing architecture specifi-
cally for multicore computers. Secondly, our current algorithm infers segment times from
segment lengths and does not pay any attention to obstacle density around that segment.
We also intend to improve the path planning stage of the algorithm such that we may infer
the segment time of each segment of the generated path directly from the path planner.
By doing so, we may take into consideration the obstacle density around segments while
deciding about segment times because obstacle density considerably impacts quadrotor
velocity during navigation. The study of the whole system and the balance between the
subsystems may further improve our procedure. We expect the speed of navigation to im-
prove with future research, particularly in the path-planning stage of our pipeline. We also
expect that our research will lead to more generalized methods for robotic motion planning
that can be equally applied to outdoor, indoor, and underground robotic applications.

Author Contributions: Conceptualization, M.A.A. and H.B.; methodology, M.A.A. and H.B.; software,
M.A.A. and J.A.; validation, M.A.A. and J.A.; formal analysis, M.A.A. and J.A.; investigation, M.A.A. and
J.A.; resources, H.B.; data curation, M.A.A. and J.A.; writing—original draft preparation, M.A.A. and J.A.;
writing—review and editing, M.A.A. and J.A.; visualization, M.A.A. and J.A.; supervision, H.B.; project
administration, H.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) Grant
funded by the Ministry of Science and ICT (NRF-2017R1A5A1015311).

Institutional Review Board Statement: Not applicable for studies not involving humans or animals.

Informed Consent Statement: Not applicable for studies not involving humans.

Data Availability Statement: Not applicable.

Acknowledgments: Authors would like to thank Natnael S. Zewge at Aerospace Systems and
Control Laboratory of KAIST for his time and technical support in this research work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

QP Quadratic Programming
OFC Obstacle-Free Corridor
GSBA Graph Search Based Algorithms
SBA Sampling-Based Algorithms
MILP Mixed Integer Linear Programming
MIQP Mixed Integer Quadratic Programming
JPS Jump Point Search
SFC Safe Flight Corridor
A∗ A-Star
LPA∗ Lifelong Planning A-Star
D∗ Dynamic A-Star
RRT Rapid-exploring Random Trees
PRM Probabilistic Road Maps
PR Path Relocation

References
1. Leonard, J.J.; Durrant-Whyte, H.F. Mobile robot localization by tracking geometric beacons. IEEE Trans. Robot. Autom. 1991, 7, 376–382.

[CrossRef]
2. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D mapping framework

based on octrees. Auton. Robot. 2013, 34, 189–206.
3. Pomerleau, F.; Colas, F.; Siegwart, R. A review of point cloud registration algorithms for mobile robotics. Found. Trends® Robot.

2015, 4, 1–104.
4. Aurenhammer, F.; Klein, R. Voronoi Diagrams. Handb. Comput. Geom. 2000, 5, 201–290.

http://doi.org/10.1109/70.88147


Drones 2023, 7, 122 23 of 24

5. Oleynikova, H.; Taylor, Z.; Fehr, M.; Siegwart, R.; Nieto, J. Voxblox: Incremental 3D euclidean signed distance fields for
on-board mav planning. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1366–1373.

6. Han, L.; Gao, F.; Zhou, B.; Shen, S. Fiesta: Fast incremental euclidean distance fields for online motion planning of aerial robots.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 4423–4430.

7. González, D.; Pérez, J.; Milanés, V.; Nashashibi, F. A review of motion planning techniques for automated vehicles. IEEE Trans.
Intell. Transp. Syst. 2015, 17, 1135–1145.

8. Van Nieuwstadt, M.J.; Murray, R.M. Real-time trajectory generation for differentially flat systems. Int. J. Robust Nonlinear Control.
IFAC-Affil. J. 1998, 8, 995–1020. [CrossRef]

9. Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the 2011 IEEE International
Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 2520–2525.

10. Mellinger, D.; Kushleyev, A.; Kumar, V. Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor
teams. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May
2012; IEEE: Piscataway, NJ, USA, 2012; pp. 477–483.

11. Culligan, K.F. Online Trajectory Planning for UAVs using Mixed Integer Linear Programming. Ph.D. Thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2006.

12. Deits, R.; Tedrake, R. Efficient mixed-integer planning for UAVs in cluttered environments. In Proceedings of the 2015 IEEE International
Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 42–49.

13. Richter, C.; Bry, A.; Roy, N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In
Robotics Research; Springer: Cham, Switzerland, 2016; pp. 649–666.

14. Chen, J.; Liu, T.; Shen, S. Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments.
In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May
2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1476–1483.

15. Gao, F.; Shen, S. Online quadrotor trajectory generation and autonomous navigation on point clouds. In Proceedings of the 2016
IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Lausanne, Switzerland, 23–27 October 2016;
IEEE: Piscataway, NJ, USA, 2016; pp. 139–146.

16. Deits, R.; Tedrake, R. Computing large convex regions of obstacle-free space through semidefinite programming. In Algorithmic
Foundations of Robotics XI; Springer: Cham, Switzerland, 2015; pp. 109–124.

17. Karaman, S.; Frazzoli, E. High-speed flight in an ergodic forest. In Proceedings of the 2012 IEEE International Conference on
Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 2899–2906.

18. Liu, S.; Watterson, M.; Mohta, K.; Sun, K.; Bhattacharya, S.; Taylor, C.J.; Kumar, V. Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-d complex environments. IEEE Robot. Autom. Lett. 2017, 2, 1688–1695.

19. Harabor, D.; Grastien, A. Online graph pruning for pathfinding on grid maps. Proc. AAAI Conf. Artif. Intell. 2011, 25, 1114–1119.
[CrossRef]

20. Zhou, B.; Gao, F.; Wang, L.; Liu, C.; Shen, S. Robust and efficient quadrotor trajectory generation for fast autonomous flight. IEEE
Robot. Autom. Lett. 2019, 4, 3529–3536. [CrossRef]

21. Tordesillas, J.; Lopez, B.T.; How, J.P. Faster: Fast and safe trajectory planner for flights in unknown environments. In Proceedings
of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 1934–1940.

22. Tordesillas, J.; How, J.P. MADER: Trajectory planner in multiagent and dynamic environments. IEEE Trans. Robot. 2021, 38, 463–476.
23. Zhou, X.; Wen, X.; Wang, Z.; Gao, Y.; Li, H.; Wang, Q.; Yang, T.; Lu, H.; Cao, Y.; Xu, C.; et al. Swarm of micro flying robots in the

wild. Sci. Robot. 2022, 7, eabm5954. [CrossRef] [PubMed]
24. Zhou, X.; Zhu, J.; Zhou, H.; Xu, C.; Gao, F. Ego-swarm: A fully autonomous and decentralized quadrotor swarm system in

cluttered environments. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an,
China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 4101–4107.

25. Wang, H.; Yu, Y.; Yuan, Q. Application of Dijkstra algorithm in robot path-planning. In Proceedings of the 2011 Second
International Conference on Mechanic Automation and Control Engineering, Hohhot, China, 15–17 July 2011; IEEE: Piscataway,
NJ, USA, 2011; pp. 1067–1069.

26. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.
Cybern. 1968, 4, 100–107. [CrossRef]

27. Pivtoraiko, M.N. Differentially Constrained Motion Planning with State Lattice Motion Primitives. Ph.D. Thesis, Carnegie Mellon
University Pittsburgh, PA, USA, 2012.

28. Pivtoraiko, M.; Kelly, A. Kinodynamic motion planning with state lattice motion primitives. In Proceedings of the 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; IEEE: Piscataway,
NJ, USA, 2011; pp. 2172–2179.

29. Stentz, A. Optimal and efficient path planning for partially known environments. In Intelligent Unmanned Ground Vehicles;
Springer: Boston, MA, USA, 1997; pp. 203–220.

30. Koenig, S.; Likhachev, M.; Furcy, D. Lifelong planning A*. Artif. Intell. 2004, 155, 93–146.

http://dx.doi.org/10.1002/(SICI)1099-1239(199809)8:11<995::AID-RNC373>3.0.CO;2-W
http://dx.doi.org/10.1609/aaai.v25i1.7994
http://dx.doi.org/10.1109/LRA.2019.2927938
http://dx.doi.org/10.1126/scirobotics.abm5954
http://www.ncbi.nlm.nih.gov/pubmed/35507682
http://dx.doi.org/10.1109/TSSC.1968.300136


Drones 2023, 7, 122 24 of 24

31. Belanová, D.; Mach, M.; Sinčák, P.; Yoshida, K. Path planning on robot based on D* lite algorithm. In Proceedings of the
2018 World Symposium on Digital Intelligence for Systems and Machines (DISA), Košice, Slovakia, 23–25 August 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 125–130.

32. Quan, L.; Han, L.; Zhou, B.; Shen, S.; Gao, F. Survey of UAV motion planning. IET Cyber-Syst. Robot. 2020, 2, 14–21. [CrossRef]
33. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894.
34. Burke, D.; Chapman, A.; Shames, I. Generating minimum-snap quadrotor trajectories really fast. In Proceedings of the 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January
2021; IEEE: Piscataway, NJ, USA, 2020; pp. 1487–1492.

35. De Almeida, M.M.; Akella, M. New numerically stable solutions for minimum-snap quadcopter aggressive maneuvers. In Proceedings
of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1322–1327.

36. Lee, T.; Leok, M.; McClamroch, N.H. Geometric tracking control of a quadrotor UAV on SE (3). In Proceedings of the 49th IEEE
conference on decision and control (CDC), Atlanta, GA, USA, 15–17 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 5420–5425.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1049/iet-csr.2020.0004

	Introduction
	System Model
	Path Planning
	Trajectory Planning
	Path Relocation
	Define Margin Spheres
	Margin Spheres Update
	Path Update
	Extra-Small Segment Removal
	Handling Locked Segments

	Obstacle-Free Corridor Construction
	Find Ellipsoid
	Find Polyhedron
	Cuboidal Bonding

	Trajectory Generation and Optimization

	Trajectory Tracking and Control
	Results and Discussion
	Conclusions and Future Work
	References

