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Abstract: UAVs have been contributing substantially to multi-disciplinary research and around 70%
of the articles have been published in just about the last five years, with an exponential increase.
Primarily, while exploring the literature from the scientific databases for various aspects within the
autonomous UAV path planning, such as type and configuration of UAVs, the complexity of their
environments or workspaces, choices of path generating algorithms, nature of solutions and efficacy
of the generated paths, necessitates an increased number of search keywords as a prerequisite. How-
ever, the addition of more and more keywords might as well curtail some conducive and worthwhile
search results in the same pursuit. This article presents a Systematic Literature Review (SLR) for 20
useful parameters, organized into six distinct categories that researchers and industry practitioners
usually consider. In this work, Web of Science (WOS) was selected to search the primary studies
based on three keywords: Autonomous + Path Planning + UAV and following the exclusion and in-
clusion criteria defined within the SLR methodology, 90 primary studies were considered. Through
literature synthesis, a unique perspective to see through the literature is established in terms of char-
acteristic research sectors for UAVs. Moreover, open research challenges from recent studies and
state-of-the-art contributions to address them were highlighted. It was also discovered that the au-
tonomy of UAVs and the extent of their mission complexities go hand-in-hand, and the benchmark
to define a fully autonomous UAV is an arbitral goal yet to be achieved. To further this quest, the
study cites two key models to measure a drones autonomy and offers a novel complexity matrix to
measure the extent of a drones autonomy. Additionally, since preliminary-level researchers often
look for technical means to assess their ideas, the technologies used in academic research are also
tabulated with references.

Keywords: autonomous path planning; UAV; drone; path planning; systematic review

1. Introduction

Research progress, in terms of published literature, on unmanned aerial vehicles
(UAVs) has observed exponential growth, as shown in Figure 1. The graph depicts the
published literature indexed by the Web of Science for the keyword UAV for the past
20 years, and it shows that more than 70% of the articles on UAVs have been published in
the past five years, hence validating the necessity of a review for the duration.

One of the major factors for such a surge in the published literature is the growing
contributions and collaboration of UAVs in multi-disciplinary research. Data collection op-
erations are the prime motive for most UAV applications. This extends to many disparate
research areas, even geology, chemistry, physical geography, agriculture, water resources,
transportation, and environmental sciences, other than engineering, robotics, telecommu-
nication, and computer sciences, as presented in Figure 2.
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Figure 2. UAVs contributing to multi-disciplinary research in the past two decades (Source: Web of
Science).

One of the most eminent components of any autonomous UAV is its ability to gener-
ate its path or trajectory. From ability, it is referred to as the effectiveness of the mechanism
of generating a path from an algorithm and translating it into maneuvering instructions.
One way to see such autonomy is the mere absence of human intervention in robot opera-
tions. However, the highest level of autonomy for unmanned systems stands as an unclear
goal.

A few possible reasons behind this are the ever-increasing complexity of their appli-
cations, mutual collaborations, workspace structures, environment perception, and per-
formance metrics. Nonetheless, this study attempts to establish and present viewpoints to
categorize and rank the extent of autonomy for unmanned systems.

The outcome of this study can be viewed in a two-fold manner:

• Identify various parameters that are usually considered for the selection of literature
from the primary studies and offer them as a look-up referral for the readers; and
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• Establish research directions, open challenges, and highlight state-of-the-art solutions
through SLR methodology.

The article is organized as the following sequences of sections and subsections. The
SLR starts by refereeing to a study that asserted the importance of the adaptation of SLRs
in engineering and has been the guiding light for this work. Thereafter, a section explain-
ing the deployed SLR methodology with the research questions is presented. There is a
formal emphasis on the fact that there has not been a published SLR on this subject. The
next phase offers the core process of doing SLR through the parametric classification of
the literature with percentages, based on which the research directions, open challenges,
and some worth-mentioning contributions are added in the penultimate section.

Why Systematic Literature Review (SLR)?

An SLR is a structural research study in which the plan and criteria to search, assess,
and analyze the literature against a set of questions are defined before executing the review.
A notable study [1] has emphasized the need and significance of SLRs in engineering and
has also been the guiding light for crafting this SLR. The same study reported that en-
gineering education requires improvements under progression, model publications, and
seminal publications. The study also recommended that SLRs possess the tremendous
potential to become the model and seminal publications for research review.

2. SLR Methodology

An SLR methodology is a standardized process, in general, that comprises the follow-
ing sequence of steps and may also serve as a checklist of the process:

1. Identify the key Research Questions (RQs);
2. Define the Review Protocol (RP) based on the following:

a. Database selection;
b. Inclusion and exclusion Criteria;
c. Quality assurance; and
d. Biased studies identification

3. Related work;
4. Review parameters and synthesis; and
5. Research Directions (RDs)

These steps are organized into three phases: review planning, review execution, and
review documentation. Figure 3 presents the adopted process of the SLR.

Research Questions

The first step in an SLR methodology is to identify the Research Questions (RQs)
that actually are the work objectives and lead to the research directions (RDs). This SLR
addresses the following four RQs while exploring the selected literature through 20 vital
parameters:

RQ1:What are the key research tracks, their open challenges, and their significant contri-
butions to autonomous path planning of UAVs?

RQ2:How the extent of a UAVs autonomy can be or should be measured?
RQ3:What frameworks and technologies have been used by researchers to research au-

tonomous UAVs?
RQ4:What and if there has been a critique or a fundamental challenge that AI faces and

which may affect the future of autonomous systems?
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3. Review Protocol

SLRs are bound to observe a review protocol. The protocol for this study is borrowed
from PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses).
PRISMA is a reporting guideline for systematic reviews and meta-analyses. It provides
a standardized, evidence-based minimum set of items for reporting in this type of study,
aimed at improving the transparency, completeness, and accuracy of their reporting, mak-
ing them more helpful to readers and easier to compare between studies [2]. Moreover,
PRISMA recommends following a checklist adopted and outlined under the SLR method-
ology. It comprises the following steps and subsections: employed database for the selec-
tion of primary studies, inclusion criteria, exclusion criteria to filter the primary studies
search results, and quality assurance to identify and overcome any bias in the selection of
primary studies.

This SLR was not registered anywhere, and the protocol for this study has not been re-
ported as well, as is how it is practiced in health and social science research. However, the
adopted methodology followed the recommended guidelines published under [1]. More-
over, SLRs have just started to gain acceptance in the engineering disciplines. The selection
criteria are presented in Figure 4.
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3.1. Employed Database

The following criteria were used to collect the initial set of primary studies:

Database: Web of Science Core Collection
Keywords set: Autonomous + path planning + UAV
Search Field: All Fields

3.2. Inclusion Criteria
Duration: 5 years approx. (2017–2022).
Publications Type: Journal Articles.
Journals Credibility: Q1–Q4 (JCR 2020).
Access Consideration: Open access

3.3. Exclusion Criteria
Publication Type: Review Articles.
Meetings: Conference Proceedings.
Language: Other than the English language.
Access Consideration: Early Access.

3.4. Quality Assurance

The quality measures applied to the collected articles after the exclusion and inclusion
criteria were based on the following steps:

3.5. Bias Evasion

Bias reflects the influence on the exclusion or inclusion criteria from the author. This
can also come from research areas or any particular interest or research focus. Therefore, it



Drones 2023, 7, 118 6 of 19

becomes essential to mention any bias in an SLR. However, all the retrieved studies were
included in this study, as shown in Figure 4.

3.6. Internal Peer Review

The SLR methodology recommends the addition of research peers to coordinate and
verify the process, as per SLR guidelines, for collecting primary studies and reviewing
synthesis. Therefore, peer researchers regularly compared and cross-checked the collected
studies and data through shared spreadsheets.

4. Related Work

The all field search category of the Web of Science (WOS) database search engines
seeks to find the given keywords in many fields, including title, abstract, and topic. How-
ever, the search results against the query UAV + (AND) Systematic Literature Review did
not retrieve any single article for the search query. Henceforth, this is the first SLR on
autonomous path planning of UAVs as per the search criteria mentioned in the review
protocol.

5. Review Parameters and Synthesis

Ninety studies were filtered and distributed to the reviewers to be reviewed inde-
pendently according to the parameters shown in Figure 5 that were identified through
certain aspects of a UAV application and research. This study covers six diverse aspects:
UAVs workspace or environment, type of UAVs design, flight configurations, nature of
path computing algorithms, and type of solutions they offered. However, the parameters
are not limited to only these. Furthermore, the findings from the literature were orga-
nized into six groups with their parameters and percentages. The primary studies were
skimmed through independently and assorted according to 20 parameters in a spread-
sheet. To ensure consistency in reviewing the primary studies, results were shared with
peer researchers periodically to confirm and validate.
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5.1. Metrics for Workspace and Environment Configuration

The workspace or environment directly influences the algorithms complexity govern-
ing the UAVs path computations. The most challenging factors in an environment are its
size, the nature of obstacles, whether dynamic or static and their predictability. However,
addressing the workspace complexity was not a concern in some studies. Therefore, those
have not been listed, while the rest are summarized in Table 1.

Table 1. Classification based on the environment/workspace knowledge and nature.

Parameter References %Age

Predictable (with prior knowledge) [3–61] 80%

Unpredictable [62–78] 20%

Static [4–9,11,13–21,23,25,28–40,42–44,46–51,62,64,68,69,72,73,79–85] 77.6%

Dynamic [3,10,12,22,26,27,45,63,65–67,70,71,86,87] 22.4%

Indoor [8,14–17,19–22,24–26,28,30,31,33,42,49,50,64,66,68,73,79,82,83] 40%

Outdoor or unspecified or Both [4,5,7,9,10,12–16,18–24,27–32,34–40,43,44,46,47,62,65,66,69–72,79–82,84–87] 60%

5.2. Trajectory Modes and Dimensions

Adding an extra dimension adds a significant computing constraint to onboard path
computing resources. Therefore, it was thought to be helpful to add this category so that
readers can pick from Table 2 according to their trajectory preference.

Table 2. Categorization based on the modes of trajectory and path dimensions.

Parameter References %Age

2D [6,8,9,11,14,15,20,22,31–36,38–40,42,47,50,62,65,67,72,81,85–88] 41.5%

3D [3–5,7,10,12,13,16–19,21,23–30,37,43–46,48,49,51,63,64,66,68–71,73,79,80,82–84] 58.5%

Offline [4–6,11,15,33,36,42,47,49–51,68,69,73,87,88] 24.3%

Online [3,7–10,12–14,16–32,34,35,37–40,43–46,48,62–67,70–72,79–86] 75.7%

5.3. Nature of Computation

Many path-planning solutions studied in the literature combine heuristics and deter-
ministic or stochastic methods. As these computing modes are fundamentally different,
it is suggested that an algorithms computing nature should be assessed based on the na-
ture of the dominating component of an algorithm. For example, the well-known particle
swarm optimization is initially based on randomness and starts to converge at a specific
point; however, it is regarded as a meta-heuristic approach because of the conditions that
help the method to converge. Hence, it is graded as a meta-heuristic approach rather than
stochastic alone. However, this may also be regarded as a hybrid algorithm. The general-
ized illustrations are shown in Figure 6, demonstrating the meta-heuristics possibility.

As mentioned, a computational algorithm can be deterministic, stochastic, or heuris-
tic. Deterministic algorithms guarantee an exact solution that may or may not be optimal
based on the model selection. Stochastic and heuristics can solve more complex problems
whose solutions are usually approximate and optimal in general. Table 3 presents refer-
ences based on the nature of the computation.
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Table 3. Classification based on the nature of computing algorithms.

Parameter References

Deterministic [4–6,8,10,12–17,19–22,24,26–28,30–33,35–37,39,40,42–51,62,64,66–69,71–73,79–88]

Stochastic [4,9,13,18,20,23,25,29,35,37,63,65,70,79]

Heuristic [7,8,12,15,16,18–20,22,23,25,26,28,29,35,38,44,63,83]

Hybrid [3,6,7,13,15–17,19–21,23–26,28–30,35,37–39,41,43–46,63,64,66,79,81–83,86]

5.4. Solution Characterization

Due to the arbitrarily complex nature of specific path planning problems, there ap-
pears to be a trade-off among the solutions choices. These include completeness, speed,
exactness, approximate, optimal, sub-optimal, etc. Therefore, these may sometimes be-
come necessary conditions to hold, and researchers may look for them from Table 4. In the
optimality row of Table 4, only those studies are cited where the researchers considered
optimality a necessary part of their path-planning solution.

Table 4. Characterization based on the type of solutions.

Parameter References

Complete [3,5,7–9,18,19,25,30,38,45,47,51,84]

Exact [3,5,9,10,13,14,18,19,21,28,30,32,33,38,39,41,43–45,49,50,66,71,72,82,86,87]

Approximate [4,7,12,13,15–17,20,23–25,27,29,31,35,37,40,46,48,62,63,65,67–70,73,79–81,83,84]
Optimality [12,13,16,17,21,24,25,27–29,32,33,37,39,43,44,51,63,66,67,69–71,79–84,88]

5.5. Testing and Validation

Generally, a solution is preferred to meet certain computing constraints that may be
conducted within the simulation frameworks rather than validation through hardware.
However, some researchers prefer hardware validation. Based on this idea, Table 5 distin-
guishes between studies with and without hardware validations.
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Table 5. Testing and validation of results on HW/SW or HITL.

Parameter References %Age

Simulation Only or Hardware In The
Loop (HITL) Simulation [3–5,8–14,16–18,21,24–30,32–34,36,38–42,45,47,51,63,66,67,70,71,79–81,85–88] 60%

Simulation with Hardware or real
environment Validation [7,19,20,22,23,31,35,37,43,44,46,48,50,62,64–66,68,69,72,73,82–84] 32%

5.6. UAV Configuration by Flight & Design

The structure and formation of UAVs in action mainly depend on mission objectives
and applications. Therefore, we offer a summary of this need, presented in Table 6. How-
ever, some work addressed problems irrelevant to the UAVs structural or flight
configurations.

Table 6. UAV configuration by design and flight.

Parameter References %Age

Single [3,4,6–8,11–13,15–19,21,23–29,33,35,37,38,40–44,46,48–50,62,63,65,67,68,73,79,81–84,87] 63%

Multiple [5,9,10,14,20,22,30–32,34,36,39,45,66,80,85,86,88] 24%

Fixed Wing [5,12,13,16,18,20,23,27–29,32,34,38–40,62,63,81,84,85,87] 29%

Rotary [3,5,7,8,10–22,24–26,30,31,35–37,39,41–46,49,50,65–68,73,79–83,86] 60%

6. Research Directions (RD)
6.1. RD1: Research Sectors and Challenges in Autonomous Path Planning
6.1.1. Research Sectors

While reviewing primary studies, it was inferred from the specific problem domains
in autonomous UAV research. Four distinct research sectors, each had four more sub-
sectors, were established to identify a research stream, as presented in Figure 7.

Drones 2023, 7, x FOR PEER REVIEW  10  of  20 
 

whether it is generated offline, online, 2D, 3D, or a combination of these. Third and fourth 

are the nature of computing algorithms and the solutions they offer, respectively. 

 

Figure 7. Problem domains in autonomous path planning of unmanned systems. 

 Nature of computational algorithm and the type of its solution 

The nature of computing algorithms  is essential; for example, heuristic algorithms 

would demand a higher computational requirement because the solution they offer must 

be complete. Accordingly, such algorithms are also graded as exhaustive; for example, a 

grid‐search algorithm on a 2D map  that goes  through every  location to reach  the goal. 

Another  stream  of  algorithms  falls  under  the  stochastic  nature, with  the  element  of 

randomness in their search. This would iteratively improve the solution till it converges 

on one. Therefore, if the nature of a computational algorithm is already known, a tentative 

perspective  for  the solution may also be perceived. Hence, viewing  the  literature with 

these aspects or  classifying  it  in  these perspectives may help and  serve  the process of 

reviewing the published research more efficiently. 

6.1.2. Current Challenges and Significant Contributions 

This part of the work highlights some significant contributions under open research 

challenges; however, it is not limited to the following studies. 

 Large and complex Environment 

One of  the challenges, particularly  for  learning‐based  technologies,  is a  large and 

dynamic environment in which the computational requirement of training is arbitrarily 

high. This challenge remains open, and some recent approaches are presented. 

o Machine learning‐based approaches: 

In  machine  learning  techniques,  the  training  overhead  can  increase  for  larger 

environments. One of cited works [9] demonstrated that deploying multiple homogenous 

UAVs could be decentralized with centralized training. Considering larger environments, 

this approach reduces  the  training overhead.  In reinforcement  learning, an agent must 

explore  or  exploit  an  environment.  Focusing  on  reducing  the  training  time,  the work 

presented  in  [24]  offered  a  deep  RL‐based  methodology  to  reduce  meaningless 

exploration in large workspaces. However, the risk of reducing the exploration may affect 

missing  the valuable data, as  it might have been  left meaningless and may  lead  to an 

inefficient global path. To address this problem, the research by [69] proposed a solution 

by establishing an upfront information structure that is incrementally updated during the 

exploration. Another unique approach was presented by [9]  in which the intent was to 

imitate  the  environment  as  closely  as  possible  to  reality  using  gaming  engines.  The 

Figure 7. Problem domains in autonomous path planning of unmanned systems.

The driving factor for the first research sector comes from the complexity of the
workspace or environment. The more complex the environment is, the higher efficacy
of the computational algorithms would be needed. Or, interchangeably, it can be put like
this: the higher the complexity, the greater the performance would be; hence, establishing
a parameter to measure the extent of UAV autonomy. Second is the trajectory of the UAV,
whether it is generated offline, online, 2D, 3D, or a combination of these. Third and fourth
are the nature of computing algorithms and the solutions they offer, respectively.
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• Nature of computational algorithm and the type of its solution

The nature of computing algorithms is essential; for example, heuristic algorithms
would demand a higher computational requirement because the solution they offer must
be complete. Accordingly, such algorithms are also graded as exhaustive; for example,
a grid-search algorithm on a 2D map that goes through every location to reach the goal.
Another stream of algorithms falls under the stochastic nature, with the element of ran-
domness in their search. This would iteratively improve the solution till it converges on
one. Therefore, if the nature of a computational algorithm is already known, a tentative
perspective for the solution may also be perceived. Hence, viewing the literature with
these aspects or classifying it in these perspectives may help and serve the process of re-
viewing the published research more efficiently.

6.1.2. Current Challenges and Significant Contributions

This part of the work highlights some significant contributions under open research
challenges; however, it is not limited to the following studies.

• Large and complex Environment

One of the challenges, particularly for learning-based technologies, is a large and
dynamic environment in which the computational requirement of training is arbitrarily
high. This challenge remains open, and some recent approaches are presented.

◦ Machine learning-based approaches:

In machine learning techniques, the training overhead can increase for larger environ-
ments. One of cited works [9] demonstrated that deploying multiple homogenous UAVs
could be decentralized with centralized training. Considering larger environments, this
approach reduces the training overhead. In reinforcement learning, an agent must explore
or exploit an environment. Focusing on reducing the training time, the work presented
in [24] offered a deep RL-based methodology to reduce meaningless exploration in large
workspaces. However, the risk of reducing the exploration may affect missing the valu-
able data, as it might have been left meaningless and may lead to an inefficient global path.
To address this problem, the research by [69] proposed a solution by establishing an up-
front information structure that is incrementally updated during the exploration. Another
unique approach was presented by [9] in which the intent was to imitate the environment
as closely as possible to reality using gaming engines. The simulated climate should offer
sufficient data to train ML agents. Once trained, agents with pre-learned experience may
exhibit the desired performance.

◦ Efficient Mapping Techniques:

Another way to address the problem of large environments is efficiently mapping
the environment for the computation-friendly navigation of UAVs. One such effort was
presented by [64], where a mapping framework comprised three layers: awareness, local,
and global. This study is also offered as an open source for the research community.

• Perception Problems in Cooperative UAVs:

One or more UAVs in a swarm or collaboration structure might generate an incorrect
perception, leading to critical mistakes in path planning or decision-making. This usually
occurs for numerous reasons, such as sensor inefficiency, noisy communication, data lag,
or loss. Ref. [22] proposed the use of cooperative UAVs to track and localize intermittent
radio frequencies. However, ref. [34] attempted to solve it through a cooperative percep-
tion approach for a group of UAVs; however, this solution is at the stage of proving its
concept and remains open. Similarly, ref. [88] presented a solution for cellular-connected
UAVs to manage their interference based on the optimal path, transmission power, and
associated cells. Another domain under this category is UAV-to-UGV cooperation, where
either or both assist the other in carrying out a ground or aerial operation. Another no-
table attempt was made by [45,72], that also attempted to settle the coordination problems
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among heterogeneous unmanned systems. However, both efforts were successful efforts
to localize the sources of radiation using different approaches though.

• Tracking targets with moving obstacles:

The challenge of collision avoidance in a highly dynamic environment and tracking
has many applications; therefore, it is significant. A novel control framework in this regard
was proposed by [81] that decomposes the task into subtasks and efficiently transfers the
pre-learned decision-making capabilities of a UAV to track a moving target. There has
also been another notable contribution based on robust control where a 250 gm quadrotor,
equipped only with a monocular camera and IMU, was able to perform aggressive flights,
developed by [49]. The quadrotor recorded a speed of 4.5 m/s with accelerations over
1.5 g roll and pitch angles of up to 90. Hence, set a high-performance benchmark for
autonomous trajectory generation.

• Remote Sensing and Inspections in unknown environments:

Proximity inspections in cluttered environments are among the open challenges, and
some excellent solutions have been offered. A deep learning-based technique was crafted
by [82] for the object detection and localization of a target through multi-sensor fusion.
The mission objective was to carry out proximity inspections. This technique does not re-
quire prior information regarding the environment. Another approach, developed by [89],
is a distributed deep RL framework that divides the navigation tasks into subtasks and
solves them individually. The sub-solutions were integrated to establish the navigation
paths to avoid data loss through a data-loss computing function.

• Collaboration with heterogeneous robots in complex/hazardous scenarios:

In a disastrous situation, the collaboration of UAVs with heterogeneous groups of
robots with objectives like search and rescue, search, and track, establishes an ad-hoc com-
munication network that is critically essential. Such robots real-time information exchange
and coordination come with strict timing constraints. A simulated collaboration between
as fixed and rotary wind was developed by [71] to identify victims in a disastrous sce-
nario. The data were taken from the Haiti earthquake in 2010, and it was claimed that the
presented technique was 25% efficient compared to the state-of-the-art.

Similarly, another such coordination was performed by [72], where a coordinated
mission was performed using a UAV and a UGV. The purpose of UGV was to search for
radiation hotspots. At the same time, UAV was utilized to capture and process aerial
imagery data into object identification like roads, buildings, vehicles, grass, and shadows
from the images. The information was further passed to the UGV for its navigation.

6.2. RD2: The Measure of Autonomy among Autonomous Systems

An arbitrary question has been coined over the years regarding the extent of being
autonomous for an autonomous system. Different models have been proposed, and it is an
arbitrary stage to comprehend because of the increasing abilities of artificial intelligence.
One such model was proposed by the National Institute of Standards and Technology
(NIST) and is known as ALFUS (Autonomy Levels For Unmanned Systems), illustrated in
Figure 8 [90].

According to this model, the operator to UMS (Units of Meaningful Semantics) ratio
refers to the ratio of the number of control or command operators used to control the
unmanned system, to the number of UMS units required to achieve a desired outcome.
This ratio is used to determine the level of autonomy of the unmanned system, with a
higher ratio indicating a higher level of autonomy, as the system requires fewer control
operators to achieve its goals.
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Other than the ALFUS model, North Atlantic Treaty Organization (NATO), a military
alliance, published a pre-feasibility study for autonomous UAV operations [90], where the
autonomy was graded into four levels, as depicted in Figure 9. These levels provide a stan-
dardized framework for evaluating and comparing the level of autonomy of unmanned
systems across different domains and applications.
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However, if we further ponder the possible complexities and dynamics of an envi-
ronment, an autonomous system and the amount of information available to the system
play a crucial role in the extent of autonomy. Therefore, a novel approach is presented in
this study that is based on the nature of the UAVs environment. A complexity matrix is
presented in Figure 10. It is stated that any autonomous UAV operating successfully in
an entirely unknown workspace should be regarded as operating at the highest level of
autonomy.
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This offers a choice to see autonomy through the complexity and nature of obsta-
cles in the environment or workspace of the unmanned systems. Though the measure of
autonomy is not restricted only to this perspective, Figures 9 and 10 are offered here to
express how complexity and autonomy go hand in hand with the futuristic applications
of unmanned systems. The readers are invited to walk through this gateway of research
direction, and the scale to the true or absolute measure of the extent of the autonomy in
unmanned systems is yet far from clear.

6.3. RD3: Employed Technologies

Dedicated open-source and closed-source projects have been observed to work inde-
pendently or collaboratively to address a specific set of UAV applications. A few leading
platforms, summarized in Table 7, were collected from the literature used in drone re-
search. As evident from Table 7, MATLAB and Robot Operating System (ROS) have been
the most dominating platforms for UAVs path simulations, followed by V-REP for envi-
ronment mapping. The rest of the software included Kestral, Air-Learning, Unreal Engine
(UE), QGroundControl, and ArduPilot. Among the hardware controllers for UAVs, PIX-
HAWK was used by most of the researchers. The rest included HK Pilot, Raspberry Pie,
ODroidXU, and Beaglebone.

Table 7. Technologies (hardware/software, opens-source/closed source) in active research.

Tool/Platform (SW/HW) References

ROS GAZEBO [9,17,19,21,26,30,54,56,64,74,83]

MATLAB/Simulink [13,14,30,33,50,53,57,58,67,75,79,80,85,87]

Python (2.×, 3.×, PyCharm etc.) [55]

V-REP [17,24,26]

Kestrel (ViDAR) [50]

Air-Learning [9]

AirSim (Unreal Engine) [9,52]

Flight Gear Simulator [58]

QGroundControl [30]

ArduPilot [32,62]

PIXHAWK [21,30,62,64,83]

HK Pilot 32 [85]

RaspberryPie [35]

ODroidXU [43]

Beaglebone [62]
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Though all these resources are mentioned here to help readers with the selection of
various platforms used by many, a unified ecosystem dedicated to autonomous unmanned
systems is still required in which different standards and regulations can interoperate.
ROS, one of the leading platforms for programming autonomous, heterogeneous robots,
has been working on and developing the project through an open-source believing ROS
community. ROS is a standing-out candidate where the challenges in the interoperability
of autonomous robots can be handled.

6.4. RD4: The Explain-Ability in AI Decisions (XAI)

As discussed in RD1, ML-based methods are the largest contributors to solving au-
tonomous path-planning challenges, and a fundamental critique of the ML technique
is worth mentioning here. Researchers have posed questions regarding the reasons be-
hind decisions made by machine learning (ML) algorithms. As ML models are trained
over massive datasets to obtain better approximations, estimations, or classifications, this
has led to a question on the inconsistencies while fitting the data curves, especially in
precision-critical decisions. Researchers want to measure the level of trust behind a ma-
chines decisions. Thus, tossing a new coin that a machine should be able to explain the
reasons for the inconsistencies in its decisions, which is Explainable Artificial Intelligence
(XAI).

XAI suggests modifications to existing ML architectures that may offer reasons or
explanations behind its decisions. XAI also promises to make these reasons visible to
the user, proposing a Whitebox process. The U.S.s Defense Advanced Research Projects
Agency (DARPA), although in the development phase, currently leads this project. This
can be expected to be a potential replacement or modification of the current ML architec-
ture [91]. Identifying and addressing the same problem of explain-ability, an open-source
framework named ECCO, a python library for explaining Natural Language Processing
models, has been launched [92]. This comprises a set of tools that help to capture, analyze,
and explore the inner mechanisms of machine learning. However, this toolset is limited to
natural language processing (NLP) applications and neural network architectures.

7. Discussion

It is important to mention that UAVs and Unmanned Aircrafts (UAs) fall under Un-
manned Aerial Systems (UAS). Therefore, the directions provided in this SLR, for instance,
the nature of computing algorithms and the type of solutions they offer, can also facilitate
the researchers seeking the literature resources for UAS and UAs. One of the key strengths
of the SLR methodology is that it recommends future work as a continuation of an existing
one. Since this study covers a broad range of parameters for literature synthesis, presented
under Section 5, alongside highlighting the key research sectors under Section 6.1, by cit-
ing the literature only for UAVs. Therefore, it is recommended as one of the future works
for researchers to establish an SLR on UAS to cater other forms of autonomous systems
under systematic reviews as well.

We believe that the methodology to examine the literature on robotics, specifically
UAVs, can be improved by proposing a parametric approach that can offer a cross-sectional
view of the primary studies. The rationale behind this confidence is that the role of AI
and Robotics in multi-disciplinary research has increased more than ever, due to which
the amount of research published each year only related to UAVs is exponentially rising.
Moreover, while searching through online databases, the search queries and their combi-
nations for a specific set of primary studies must be kept generic to fetch good results.
Therein, adding more keywords tends to curtail the results, which is undesirable.

The research subjects like UAVs have numerous distinct aspects, from their design
philosophies, flight configurations, path planning algorithms, and types of onboard com-
puting resources to the nature of their environments to be deployed. Multi-disciplinary
research applications often demand critical conditions to hold. These conditions can in-
clude the sensory perceptions of robots of their environment, path planning limitations,
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and the nature of robust solutions. Therefore, looking through the literature with these
perspectives has been made possible with the literature synthesis phase of this work.

There has also been a debate for quite some time on the extent of the UAVs auton-
omy. Although this arbitrarily complex goal is still unclear, autonomy has always been
observed as a subsystem, primarily through the measure of human involvement in their
flight path. Another perspective that enforces human intervention for autonomous sys-
tems is the impact of the size and dynamics of a robots environment on the usefulness of
the information from the environment. A highly efficient autonomous UAV can get chal-
lenged in an unknown cluttered environment with randomly flying objects or obstacles.
Therefore, a parallel perspective offered in this study helps the researchers see autonomy
through the dynamics of a robots environment rather than entirely as the robots ability.

We, at this stage, speculate what can be an expected higher level of intelligence con-
sidering the current state of the art about the future of UAVs. We infer that soon, AI and
robotics will look forward to pre-trained, model-free, and model-based learning technolo-
gies to possess the autonomous ability to select those data-processed models that fit the
need of their current state, simply stated as autonomous model selections. A preliminary
approach to mention in this regard is the efficacy of transfer learning technology for a
distributed swarm of robots where the experience of a single entity from its surrounding
can share the experience with the peers in that swarm. Hence, we look forward to more
rapid and runtime training technologies that may open the doors to deploy robots in un-
known dynamic environments. However, at this stage, training the robots in unfamiliar
workspaces demands quite a lot of data at the deployment stage and computational re-
sources.

We learned that the umbrella of machine learning technologies is expanding, espe-
cially for autonomous technologies. However, despite ML algorithms performing well
across many fronts, there is an ongoing debate on the explanation of its decisions, the XAI
factor. Explaining AI is an emerging area of research to establish trust in its decisions. This
came with new gateways for research challenges, primarily when it becomes known why
a machine learning algorithm does not pick a specific competitive solution.

Through this work, we have observed that independent platforms for UAV research
are being established, irrespective of their scopes. This stresses the dire need for inte-
grated consortiums on global level regarding the standards and regulations for civilian
applications. We also believe that accepting UAVs on social and governance levels will
be a great challenge that needs to be addressed. The social implications and the need for
policies would require consortiums from social sciences and technologies to address this
unattended aspect of UAV research.

Lastly, it is important to mention the limitation of this work. As engineering disci-
plines have just started to adopt systematic reviews, this work comes up with limitations
for using statistical or formal methods in data collection, bias removal, and others, as men-
tioned in PRISMA 2020 checklist [2]. The work was carried out independently among the
reviewers, and findings were validated periodically to check for inconsistencies, errors, or
omissions that might be expected due to human nature.

8. Conclusions

The adaptation of systematic reviews for engineering disciplines started to gain ac-
ceptance because of their crucial requirement of transparency and an objective approach
to reviewing the literature. Therefore, this work reviews a set of 20 application-oriented
parameters organized into six distinct categories through the SLR methodology. The cat-
egories are workspace/environment metrics, trajectory modes and dimensions, nature of
computing algorithms, characteristics of the solutions, path validation through simula-
tion or hardware, and UAVs structure and flight configurations. It is concluded to discern
UAVs research knowledge regarding the fundamental differences in its subfields. It is an
opening for the researchers to establish novel knowledge streams under UAV research.
The extent of autonomy for the robots has always been under speculated questions re-
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garding their future, so it was investigated if there is any process or method available to
measure it. The model proposed by NATO was cited, and a fresh approach perspective
to explore this problem has been presented to observe the extent of autonomy based on
the types of UAV environments. This perspective can tap into some overlooked aspects of
autonomous robot research. A segment of the article was dedicated to presenting the top-
notch research and development platforms and the technologies identified through litera-
ture to offer a jump start for young researchers. Their work in terms of tools n technology
selection. It is important to mention the Robot Operating System (ROS) that possesses
an unparalleled and promising future because of its scalability and futuristic integrabil-
ity with heterogeneous robots. UAVs research currently is facing technical challenges to
enhance the modeling of larger, more complex, and unknown environments through on-
board sensors, specifically, the time required to model, effectiveness for the desired ap-
plication, and coordinated modeling. Coordination among autonomous, heterogeneous
robots is also challenging due to the continuous expansion in diversity and differences in
robots.

As the applicability of UAVs for remote sensing and inspection missions is increasing,
so to is the desire to collect more data from multiple perspectives, objectives, locations, and
proximities. As the challenges and the efforts to overcome them are destined to go hand in
hand with research, a few are highlighted here to appeal to extraordinary attention. The
end of every effort in research is bound to bring opportunities to look further ahead of
its time, and it is optimistically stated that this work would serve the need to fulfill this
obligation for peer researchers.
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