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Abstract: At this moment, many special vehicles are engaged in illegal activities such as illegal
mining, oil and gas theft, the destruction of green spaces, and illegal construction, which have serious
negative impacts on the environment and the economy. The illegal activities of these special vehicles
are becoming more and more rampant because of the limited number of inspectors and the high
cost required for surveillance. The development of drone remote sensing is playing an important
role in allowing efficient and intelligent monitoring of special vehicles. Due to limited onboard
computing resources, special vehicle object detection still faces challenges in practical applications.
In order to achieve the balance between detection accuracy and computational cost, we propose a
novel algorithm named YOLO-GNS for special vehicle detection from the UAV perspective. Firstly,
the Single Stage Headless (SSH) context structure is introduced to improve the feature extraction
and facilitate the detection of small or obscured objects. Meanwhile, the computational cost of
the algorithm is reduced in view of GhostNet by replacing the complex convolution with a linear
transform by simple operation. To illustrate the performance of the algorithm, thousands of images
are dedicated to sculpting in a variety of scenes and weather, each with a UAV view of special vehicles.
Quantitative and comparative experiments have also been performed. Compared to other derivatives,
the algorithm shows a 4.4% increase in average detection accuracy and a 1.6 increase in detection
frame rate. These improvements are considered to be useful for UAV applications, especially for
special vehicle detection in a variety of scenarios.

Keywords: drone; special vehicle; object detection; YOLO; SSH; GhostNet

1. Introduction

Special vehicles refer to motorized machines that are distinct from conventional automo-
biles in terms of their physical characteristics, such as shape, size, and weight. Those vehicles
are typically used for a variety of purposes, including traction, obstacle removal, cleaning,
lifting, loading and unloading, mixing, excavation, bulldozing, and road rolling, etc.

The detection of special vehicles in oil and gas pipelines [1], transmission lines [2],
urban illegal construction [3], theft, and excavation scenarios is of great importance in order
to ensure the security of these areas. This is because in the above scenarios, the presence of
special vehicles often represents a high risk that these scenarios will occur, and the nature
of special vehicles may cause damage to important property. The use of unmanned aerial
vehicles to patrol and search for special vehicles in these scenarios has gradually become a
mainstream application trend [4]. However, due to the particular shape of special vehicles,
manual interpretation has low efficiency, high misjudgment, and omission. The application
of a deep neural network in the automatic detection of special vehicles has been applied to
some extent, but it is not mature yet, and the accuracy of existing methods is relatively poor.

Experts and scholars have proposed a variety of depth neural network methods for
target detection in UAV aerial images including various vehicles. Various techniques
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including CNNs, RNNs, autoencoders, and GANs have been used in vehicle detection
and have yielded interesting results for many tasks [5]. To detect small objects, some
techniques divide the last layer of the neural network into multiple variable-sized chunks
to extract features at different scales, while other approaches remove the deeper layers
of the CNN, allowing the number of feature points of the target to increase [6]. Liu W
et al. proposed the YOLOV5-Tassel network, which combines CSPDarknet53 and BiFPN
to efficiently extract minute features and introduces the SimAM attention mechanism in
the neck module to extract the features of interest before each detection head [7]. Zhou
H et al. designed a data augmentation method including background replacement and
noise increase in order to solve the detection of tiny targets such as cars and planes, and
constructed the ADCSPDarkent53 backbone network based on YOLO, which was used to
modify the loss of localization function and improve the detection accuracy [8]. In order to
solve the problems of low contrast, dense distribution, and weak features of small targets,
Wang J et al. constructed corresponding feature mapping relations, solved the level of
adjacency between misaligned features, adjusted and fused shallow spatial features and
deep semantic features, and finally improved the recognition ability of small objects [9].
Li Q et al. proposed a “rotatable region-based residual network (R3-Net)” to distinguish
vehicles with different directions from aerial images and used VGG16 or ResNet101 as
the backbone of R3-Net [10]. Li et al. presented an algorithm for detecting sea targets
based on UAV. This algorithm optimizes feature fusion calculation and enhances feature
extraction at the same time, but the computational load is too large [11]. Wang et al. used
the Initial Horizontal Connection Network to enhance the Feature Pyramid Network. In
addition, the use of the Semantic Attention Network to provide semantic features helps to
distinguish interesting objects from cluttered backgrounds, but how the algorithm performs
as expected in complex and variable aerial images needs further study [12]. Mantau et al.
used visible light and thermal infrared data taken from drones to find poachers. They used
YOLOv5 as their basic network and optimized it using migration learning, but this method
did not work well with the fusion of different data sources [13]. Deng et al. proposed a
network for detecting small objects in aerial images. They designed a Vehicle Proposal
Network, which proposed areas similar to vehicles [14]. Tian et al. proposed a bineural
network review method, which classifies the secondary characteristics of the suspicious
target area in the unmanned aerial vehicle image, quickly filters the missing targets in
one-stage detection, and achieves high-quality detection of small targets [15].

In terms of drone inspection of vehicles, Jianghuan Xie et al. proposed an anchor-free
detector, called residual feature enhanced pyramid network (RFEPNet), for vehicle detec-
tion from the UAV perspective. RFEPNet contains a cross-layer context fusion network
(CLCFNet) and a residual feature enhancement module (RFEM) based on pyramid con-
volution to achieve small target vehicle detection [16]. Wan Y et al. proposed an adaptive
region selection detection framework for the retrieval of targets, such as vehicles in the
field of search and rescue, adding a new detection head to achieve better detection of small
targets [17]. Liu Mingjie et al. developed a detection method for small-sized vehicles in
drone view, specifically optimized by connecting two ResNet units with the same width
and height and adding convolutional operations in the early layers to enrich the spatial
information [18]. Zhongyu Zhang et al. proposed a YOLOv3-based Deeply Separable
attention-guided network (DAGN) that combines feature cascading and attention blocks
and improves the loss function and candidate merging algorithm of YOLOv3. With these
strategies, the performance of vehicle detection is improved while sacrificing some detection
speed [19]. Wang Zhang et al. proposed a novel multiscale and occlusion-aware network
(MSOA-Net) for UAV-based vehicle segmentation, which consists of two parts, including
a multiscale feature adaptive fusion network (MSFAF-Net) and a region-attention-based
three-headed network (RATH-Net) [20]. Xin Luo et al. developed a fast automatic vehicle
detection method for UAV images, constructed a vehicle dataset for target recognition, and
proposed a YOLOv3 vehicle detection framework for relatively small and dense vehicle
targets [21]. Navaneeth Balamuralidhar proposed MultEYE that can detect, track, and
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estimate the velocity of a vehicle in a sequence of aerial images using a multi-task learning
approach with a segmentation head added to the backbone of the object detector to form
the MultEYE object detection architecture [22].

When drones patrol oil and gas pipelines, power transmission lines, urban violations
and other fields, the size of special vehicles in the images change greatly, and there are
many small targets. The feature information carried by camera overhead is limited and
changeable, which increases the difficulty of detection. Secondly, the UAV cruises across
complex and changeable scenes such as cities, wilderness, green areas, bare soil, and
so on. Some areas contain dense targets, which makes it difficult to distinguish some
similar objects. Finally, the shooting angle also brings more noise interference, and the
special vehicle will be weakened, obscured, or even camouflaged, unable to expose the
characteristics of the target. Due to the characteristics of variable target scale, a number
of small targets, and the complex background of special vehicles, it is difficult to meet the
requirements of speed and accuracy for patrol tasks if the above research methods are
directly applied to special vehicle detection from a UAV perspective.

In order to solve the problem of special vehicle detection in complex backgrounds
from the perspective of drones, we propose a deep neural network algorithm (YOLO-GNS)
based on YOLO and optimized by GhostNet (GN) and Single Stage Headless (SSH), which
can be used to detect special vehicles effectively. Firstly, the SSH network structure is
added behind the FPN network to parallel several convolution layers, which enhances the
convolution layer perception field and extracts the high semantic features of the special
vehicle targets. Secondly, in order to improve the detection speed to meet the requirements
of UAV, the GPU version of GN (G-GN) is used to reduce the computational consumption
of the network. Finally, we have searched for a large number of rare places to take aerial
photos and created a dataset containing a large number of special vehicle targets. We have
experimented with YOLO-GS on the special vehicle (SEVE) dataset and public dataset to
verify the effectiveness of the proposed method.

The rest of this paper is arranged as follows. Section 2 describes the proposed tar-
get detection method YOLO-GNS and the necessary theoretical information. Section 3
introduces the special data sets, evaluation methods, and detailed experimental results. In
Section 4, we draw conclusions and determine the direction of future research.

2. Materials and Methods
2.1. Principle of YOLOv7 Network Structure

YOLO (You Only Look Once) is a one-stage target detection algorithm based on regres-
sion method proposed by Redmon et al. It has been developed into several versions [23–29].
As the latest upgrade of YOLO series, YOLOv7 has been improved from data enhancement,
backbone network, activation function, and loss function, so that it has higher detection
accuracy and faster detection speed.

The YOLOv7 algorithm employs strategies such as extended efficient long-range atten-
tion network (E-ELAN), Concatenation-Based models, and convolution parameterization
to achieve a good balance between detection efficiency and accuracy.

As shown in Figure 1, YOLOv7 network is composed of four parts: Input, Backbone,
Neck, and Head.

The Input section scales the input image to a uniform pixel size to meet the input
size requirements of the backbone network. The Backbone part is composed of several
CBS modules, E-ELAN modules, and MP1 modules. The CBS module is composed of
convolution layer, batch normalization layer (BN), sigmoid-weighted linear unit activation
function to extract image features at different scales, as shown in Figure 2.
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ELAN module consists of several CBS modules, whose input and output feature sizes
remain the same. By guiding the computing blocks of different feature groups to learn
more diverse features, the learning ability of the network is improved without destroying
the original gradient path, as shown in Figure 3.
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Figure 3. The structure of E-ELAN module.

MP1 module adds Maxpool layer on the basis of CBS module, which constitutes the
upper and lower branches. The upper branch halves the image length and width through
Maxpool and the image channel through CBS module. The lower branch halves the image
channel through the first CBS module; the second CBS layer halves the image length and
width and finally uses the Cat operation to fuse the features extracted from the upper and
lower branches, which improves the feature extraction ability of the network, as shown in
Figure 4.
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Figure 4. The structure of MP1module.

The Neck part is composed of Path Aggregation Feature Pyramid Network (PAFPN)
structure, mainly including SPPCSPC module, ELAN-H module, and UP module. By
introducing the bottom-up path, the bottom-level information can be easily transferred to
the top level, which enables the efficient fusion of different hierarchical features.

The SPPCSPC module is mainly composed of CBS module, CAT module, and Maxpool
module, which get different perception fields through maximum pooling, as shown in
Figure 5.
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EH-ELAN module is similar to E-ELAN module but slightly different in that it selects
five branches to add up with different number of outputs, as shown in Figure 6.
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The UP module is composed of CBS and up sampling modules, as shown in Figure 7.
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Head adjusts the number of image channels for three different scales of Neck output
through RepVGG Block (REP) structure, and then passes through 1 × 1 Convolution is
used for predicting confidence, category, and anchor frame.

The REP structure is divided into train and deploy versions, as shown in Figure 8. The
train version has three branches. The top branch is 3 × 3 convolution, which is used for
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feature extraction; the middle branch is 1 × 1 convolution, which is used for smoothing
features; and the bottom branch is an Identity, which is moved without convolution and
finally added together. The deploy version contains a 3 × 3 convolution with a stride of 1,
which is converted from the training module parameterization.
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Although the YOLOv7 algorithm framework performs well in common task scenarios,
such as pedestrian and normal vehicle detection, there are still many problems when it
is applied directly to the detection of special vehicles from the perspective of unmanned
aerial vehicles: (1) Compared with common scenarios, the target scale in unmanned aerial
vehicle images changes more, and there are more small targets, which further increases the
difficulty of special vehicle detection; (2) The background of the scene in which the special
vehicle is located is complex, and there is no corresponding context mechanism to handle
the complex background, which results in the inaccurate detection of the special vehicle in
the complex background; (3) UAV images require higher detection speed, but conventional
YOLOv7 does not have the detection acceleration function for UAV. To solve the above
problems, the algorithm in this paper is based on YOLOv7 and improved.

2.2. YOLO-GNS Algorithm

This section introduces the special vehicle target detection algorithm from the per-
spective of UAV, as shown in Figure 9. With YOLOv7 as the framework, the Backbone is
improved based on GhostNet to enhance the feature extraction ability and improve the
detection speed; in the view of UAV, it is beneficial to detect the weakened or occluded
special vehicles from the complex scene. In order to improve the ability to detect small
targets, SSH modules are added behind the pafpn structure of yolov7 to merge context
information. Therefore, the algorithm is named YOLO-GNS. Compared with YOLOv7 and
other derivatives, YOLO-GNS can achieve the best balance between detection accuracy and
calculation cost.

2.2.1. Improvement of Backbone Network Based on GhostNet

In the backbone network of the original YOLOv7, due to the high redundancy of the
intermediate feature map calculated by a large number of conventional convolutional CBS
modules, the computing cost will increase. YOLO-GNS built GhostMP and GhostELAN
modules to form a backbone network to extract UAV image features by drawing on the
ideas of GhostNet [30]. GhostNet has the advantages of maintaining the recognition
performance of similarity and reducing the convolution operation at the same time, which
can greatly reduce the number of model parameters while maintaining high performance.
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The GhostMP module is composed of Maxpool, GhostS2, CBS, CAT. The GhostELAN
module is composed of GhostS1, GhostS2, CBS, and CAT. GhostS1 consists of two stacked
Ghost convolutions (Ghost Conv), the first Ghost Conv increasing the number of channels
and the second Ghost Conv reduces the number of channels to match the shortcut path,
making the number of channels for the input signature map the same as which in the output
signature map for the second Ghost Conv. The shortcut path of GhostS2 is implemented by
depth-wise convolution (DW Conv) with a downsampling layer and a stride = 2 to reduce
the number of channels. Add represents a signature graph addition operation where the
number of channels does not change.

The implementation of GhostConv is divided into three steps: the first step is to use
ordinary convolution calculation to get a feature map with less channel information, the
second step is to use inexpensive operation to generate more feature maps, and the last
step is to connect different feature maps to form a new output.

In ordinary convolution, given input data X ∈ Rc×h×w, c denotes the number of input
channels; h and w denote the height and width of the input data, respectively, and are used
to generate any convolution layer of N feature map, as shown in Equation (1):

Y ∈ X∗ f + B (1)

where: * is a convolution operator, B is a deviation term, Y ∈ Rh′×w′×n represents the output
feature map of N channels, f ∈ Rc×k×k×n is the convolution kernel size in a convolution
layer, h′ and w′ represent the height and width of the output data, respectively, k × k
denotes the size of the convolution kernel f . In ordinary convolution operations, because
the number of convolution cores n and channel c is very large, the number of FLOPs
required is n · h′ · w′ · c · k · k.

Thus, the parameters to be optimized for operation ( f and B) are determined by the
size of the input and output feature maps. Since the output feature maps of ordinary
convolution layers are usually redundant and may have similar redundancy to each other,
it is not necessary to use a large number of parameters FLOP to generate redundant
feature maps, which are “Ghost” converted from a few original feature maps by some
inexpensive linear operations. These original feature maps are usually generated by
ordinary convolution kernels and have less channel information. Generally, m original
feature map Y′ ∈ Rh′×w′×m is generated by once convolution:

Y′ = X∗ f ′ (2)
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where: f ′ ∈ Rc×k×k×m is a convolution kernel, m 6 n. To maintain the same spatial size
as the output feature map, the hyperparametric (convolution size, stride, padding) is the
same as the ordinary convolution. To further obtain the required n feature maps, a series of
inexpensive linear operations are used for each original feature in Y′, resulting in s Ghost
feature maps, as shown in Formula (3):

yij = φi,j

(
y
′
i

)
; ∀i = 1, 2, · · · , m, j = 1, 2, · · · , s (3)

where:yij represents the first primitive feature map in Y′. φi,j represents the jth linear
operation used to generate the jth Ghost feature graph. By using inexpensive linear
operations, we can get n = m · s feature maps as output of the Ghost module, as shown in
Formula (4):

Y = [y11, y12, · · · , yms] (4)

The Ghost module divides the original convolution layer into two phases, as shown in
Figure 10. The first phase uses a small number of convolution cores to generate the original
feature map, and the second phase uses inexpensive transformation to generate more Ghost
feature maps. Linear operations are used on each channel to reduce computational effort.
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2.2.2. Prediction Optimization Based on SSH Structure

In order to improve the small target detection ability and further shorten the inference
time, Single Stage Headless (SSH) algorithm [31] is introduced into the network, which is a
single-stage context network structure. The two-stage context network structure combines
more context information by increasing the size of the candidate box. Nevertheless, SSH
combines context information through a single convolution layer, where the Context-
Network structure of the SSH detection module is shown in Figure 11, which requires less
memory to detect and locate more accurately.
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In YOLO-GNS, add the SSH context network structure before the REP structure. First,
reduce the number of channels to X/2 through 3 × 3 convolution layer and SILU activation
function (3C-SILU), and then send this result to two branches. One branch contains only
one 3C-SILU operation, which results in the feature that the channel is X/2. The other
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branch contains two consecutive 3C-SILU operations, which also results in the feature that
the channel is X/2. Finally, concatenate the two feature maps to get the final output of the
SSH context network structure.

The SSH context network structure incorporates more context information and is
approximated by increasing the sensory field of the feature maps. For example, a small
field can only see the special vehicle itself, while a larger field can see the excavator head,
caterpillar, and other places.

Generally, deeper feature layers contain more abstract semantic information to facili-
tate classification, while shallow features have more specific information, such as edges,
angles, and so on, to facilitate the positioning of bounding box.

Therefore, the SSH context network structure integrates the current and high-level fea-
ture information, effectively improves the detection ability of the weakened and obstructed
special vehicles in complex environments, helps to improve the accuracy of the algorithm,
and does not significantly increase the additional computational load.

3. Results

In order to evaluate the special vehicle detection performance of YOLO-GNS algorithm
in this paper, this experiment conducts training and testing on special vehicle (SEVE)
dataset. Additionally, to evaluate the general performance of the algorithm, this experiment
adds training and testing on the Microsoft COCO dataset.

3.1. Special Vehicle Dataset

Heretofore, there is no public data set of special vehicles from the perspective of
drones. Therefore, from January 2021 to June 2022, we used UAV to shoot a large number
of videos at multiple heights and angles over construction areas, wilderness, building sites,
and other areas. After that, frames are extracted and labeled from these videos to form a
special vehicle dataset. This dataset contains 17,992 pairs of images and labels, including
14,392 training sets, 1800 validation sets, and 1800 test sets. The image resolution in SEVE
dataset is 1920 × 1080. The types of special vehicles include cranes, traction vehicles, tank
trucks, obstacle removal vehicles, cleaning vehicles, lifting vehicles, loading and unloading
vehicles, mixing vehicles, excavators, bulldozers, and road rollers. The different scene types
include urban, rural, arable, woodland, grassland, construction land, roads, etc. Some
examples of the dataset are shown in Figure 12.

3.2. Experimental Environment and Settings

The experiment is based on 64-bit operating system Windows 10, the CPU is Intel Xeon
Gold 6246R, the GPU uses NVIDIA GeForce RTX3090, and the deep learning framework is
Pytorch v1.7.0. We use Frames Per Second (FPS) to measure the detection speed, which
indicates the number of images processed by the specified hardware per second by the
detection model. In the experiment, the FPS for each method is tested on a single GPU
device. IOU is set to 0.5, The mAP (mean Average Precision), an index related to the
IOU threshold, was used as the standard of detection accuracy. In multi-category target
detection, the curve drawn by each category based on its accuracy (Precision) and recall
(Recall) is called a P-R curve, in which the average recognition accuracy of a category
is equal. AP@0.5 (Average Precision, IoU threshold greater than 0.5) is the size of the
area below the P-R curve of this category. mAP@0.5 Average recognition accuracy by all
categories AP@0.5 add up to get the average.
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Precision and recall are defined as:

Recall =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

AP =
∫ 1

0
P(R)dR (7)

mAP =
1
c

c

∑
i=1

APi (8)

Among them, TP was the real case, FP was the false positive case, FN was the false
negative case, and C was the total number of categories detected for the target.

Due to the limitation of the experimental device, the input image size is scaled to
800 × 800 pixels. The optimizer uses SGD; the learning rate is 1 × 10−2; the momentum
is 0.9; the weight decay is 5 × 10−4, using the Cosine Annealing algorithm to adjust the
learning rate; the batch size is 8; and the training durations are 300 epochs, 10 training
epochs, and 1 test epochs alternately.

3.3. Experimental Results and Analysis

This paper conducts experiments on the open dataset COCO and the SEVE dataset
created in this paper to verify the validity of the proposed methods. The experiment is
divided into three parts:

(1) Experiments are carried out on the SEVE dataset to verify the feasibility of the
proposed method, and to compare the results with those of other target detection methods
on this dataset to illustrate the advantages of this method;

(2) Verify the universality of this method on COCO datasets;
(3) Designing an ablation experiment further demonstrates the validity of the method.

3.3.1. Experiments on SEVE Dataset

In this experiment, the YOLO-GNS algorithm is compared with the prevailing target
detection algorithms in the SEVE dataset created in this paper. The experimental results
are shown in Table 1. Table 1 contains nine categories: C, L, T, M, F, P, R, EL, and EX,
corresponding to the SEVE dataset and referring to cranes, loader cars, tank cars, mixer
cars, forklifts, piling machines, road rollers, elevate cars, and excavators. The resulting
data AP@0.5 represent the average recognition accuracy of this category under different
methods, while data in column mAP@0.5 represents the average recognition accuracy of all
categories. Params represent the size of the paraments of each method. The resulting data
represent the average recognition accuracy for all categories for different datasets under
different methods.

Table 1. Comparison of Detection Accuracy of Different Target Detection Algorithms on SEVE dataset.

Methods
AP@0.5(%) mAP@0.5

(%) Params(M) FPS
C L T M F P R EL EX

Faster-
RCNN 73.2 75.5 76.1 80.2 78.1 81.3 56.3 45.5 21.3 65.3 186.3 16.8

RetinaNet 77.5 78.6 85.1 82.3 81.5 80.6 57.6 49.1 23.5 68.4 28.5 19.5
YOLOV4 78.7 80.1 82.3 83.5 82.6 78.3 60.5 55.8 30.3 70.2 64.4 25.6

YOLOV5-X 79.8 78.1 85.6 83.9 83.1 82.5 59.1 58.3 32.5 71.4 86.7 29.2
YOLOV7 80.5 82.3 86.4 88.6 85.3 86.4 65.3 60.8 45.8 75.7 36.9 31.5

YOLO-GNS 85.9 86.9 89.4 91.3 90.1 89.6 69.5 67.3 50.8 80.1 30.7 33.1
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In the SEVE dataset, special vehicle targets vary greatly in scale and there are mostly
small targets. The image background is complex and volatile, and it is difficult to distinguish
the targets into the background, and some targets are also obscured, which brings some
difficulty to the detection. The improved network in this paper has significant accuracy
advantages compared with other mainstream target detection algorithms. The method in
this paper achieves the best results on the SEVE dataset with 80.1%, which is 4.4% higher
accuracy compared to YOLOV7; meanwhile, the mAP is 14.8%, 11.7%, 9.9%, and 8.7%
higher compared to four target detection algorithms, namely Faster R-CNN, RetinaNet,
YOLOV4, and YOLOV5, respectively; although the YOLOv7 and YOLOv5 detection speeds
are close to that of YOLO-GNS, the mAPs are all lower than the methods in this paper.
Owing to GhostNet applied in the backbone section, the parameters of YOLO-GNS are
reduced by 6.2M. In the case of low differentiation of YOLO series backbone networks, the
mAP of this paper’s method is higher and the detection speed is faster, which indicates that
this paper’s method makes up for the difference of backbone networks and reflects greater
advantages. Due to the reconstructed backbone network and the parallel SSH context
network that makes the network structure of this paper in the case of increasing complexity,
the detection speed is not reduced and can meet the needs of engineering applications.

The detection results of YOLOV7 and this paper’s method YOLO-GNS are shown in
Figures 13–15. Column (a) shows the recognition results of the YOLO-GNS network, and
column (b) shows the recognition results of the original YOLOV7 network. A comparison
of the results of the two networks shows that the YOLO-GNS network in this paper has
improved accuracy in terms of bounding box and category probabilities. On the other
hand, the recognition of special vehicles, such as cranes, loader cars, tank cars, mixer cars,
forklifts, and excavators, and their differences from ordinary vehicles are improved in the
proposed model.
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In Figure 13, it is shown that in crowded environments such as cities and roads, YOLO-
GNS can identify obscured special vehicles and does not cause false detections, while
YOLOV7 produces false detections and missed detections and has lower class probability
values than the modified model. In Figure 14, it is shown that YOLO-GNS distinguishes
special vehicles from ordinary vehicles by extracting smaller and more accurate features in
environments with camouflage characteristics, such as construction sites, and can identify
special vehicles that are highly similar to the background. In Figure 15, it is shown that
the YOLO-GNS network is able to identify different special vehicle types in complex and
challenging conditions under poor lighting conditions and bad weather, while the original
YOLOV7 model would show quite a few missed and false detections. In conclusion,
the YOLO-GNS proposed in this paper is able to identify targets with a high prediction
probability under a variety of complex scenarios. In some cases, the base model YOLOV7
cannot accurately identify special vehicles, or it has a lower probability than YOLO-GNS.
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of the YOLO-GNS network; (b) Recognition results of the YOLO-V7 network.

3.3.2. Experiments on COCO Datasets

The evaluation metrics are mAP0.5, mAP0.75, and mAP0.5:0.95. mAP0.5 and mAP0.75
are the average accuracy of all target categories calculated at IOU thresholds of 0.5 and 0.75.
mAP0.5:0.95 is the average accuracy of 0.5 to 0.95 at 0.05 intervals of 10. mAP0.5:0.95 is the
average accuracy at 10 threshold values from 0.5 to 0.95 at 0.05 intervals.

As shown in Table 2, the experimental data show that the method in this paper also
works well on the COCO dataset. The mAP0.5:0.95 is improved by 0.1% for YOLO-GNS
compared to the original method with a similar speed. The mAP0.5 of YOLOV4 reaches
65.7% under this dataset; the mAP0.5 of YOLOV5-X is 68.8% under this dataset, but both
networks are based on Darknet and its improvements with complex structures, and the
detection speed is slightly lower than that of the present method. YOLO-GNS has 0.2%
lower mAP0.75 than YOLOV7 on the COCO dataset but 0.1% higher mAP0.5; YOLO-GNS
has improved detection speed and higher mAP than YOLOV4 and YOLOV5-X methods,
indicating that the method in this paper is still effective on the public dataset COCO.
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Table 2. Experimental results on coco dataset.

Methods Backbone mAP0.5:0.95 mAP0.5 mAP0.75

Faster-RCNN ResNet50 36.2 59.2 39.1
RetinaNet ResNet50 36.9 56.3 39.3
YOLOV4 CSPDarknet-53 43.5 65.7 47.3

YOLOV5-X Modified CSP v5 50.4 68.8 -
YOLOV7 E-ELAN 51.4 69.7 55.9

YOLO-GNS GhostELAN 51.5 69.8 55.7

3.3.3. Ablation Experiment

Ablation experiments were conducted on the SEVE dataset to verify the effect of
different network structures on the final detection results, and the experimental results are
shown in Table 3.

Table 3. Results of ablation experiments.

Methods Backbone GhostNet SSH mAP@0.5(%)

YOLOV7 E-ELAN × × 75.7
YOLOV7 E-ELAN ×

√
78.9

YOLOV7 E-ELAN
√

× 79.2
YOLOV7 E-ELAN

√ √
80.1

“×” means no addition, “
√

” means addition.

With the addition of GhostNet in YOLOV7, the mAP value is improved by 3.5%.
GhostNet forms the backbone network by forming GhostMP and GhostELAN modules,
which has the advantages of maintaining the recognition performance of similarity and
reducing the convolution operation at the same time and continuing to effectively increase
the exploitation of feature maps, which is beneficial to the recognition of small targets. The
addition of SSH structure in YOLOV7 improves the mAP value by 3.2%. SSH contextual
network structure incorporates more concrete information and enhances the recognition of
multiple details of special vehicles by increasing the perceptual field of the features, thus
improving the detection performance. After adding both GhostNet and SSH structures
in YOLOV7, the AP increases by 4.4%, further demonstrating that GhostNet and SSH can
improve detection accuracy.

4. Discussion

The evaluation metrics examined in this study were AP and mAP. In the modified
network, the values obtained from these criteria were as follows. The AP of cranes was
85.9%, the AP of loader cars was 86.9%, the AP of tank cars was 89.4%, the AP of mixer cars
was 91.3%, the AP of forklifts was 90.1%, the AP for piling machines is 89.6%, the AP for
road rollers is 69.5%, the AP for elevate cars is 67.3%, and the AP for excavators is 50.8%.
Based on the basic results of the YOLOv7 network, it can be said that the proposed network
has improved on average by 4.4% in accuracy and 1.6 in FPS, indicating that the improved
network has improved speed to some extent with improved accuracy.

In recent years, the employment of artificial intelligence and deep learning methods
has become one of the most popular and useful approaches in object recognition. Scholars
have made many efforts to better detect vehicles in the context of UAV observations.
Jianghuan Xie et al. proposed the residual feature enhanced pyramid network (RFEPNet),
which uses pyramidal convolution and residual connectivity structure to enhance the
semantic information of vehicle features [16]. One of the problems of these studies is
the inability to detect small vehicles over long distances. Zhongyu Zhang et al. used
a YOLOv3-based deep separable attention-guided network (DAGN), improved the loss
function of YOLOv3, and combined feature tandem and attention blocks to enable the
model to distinguish between important and unimportant vehicle features [19]. One of
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the limitations of this study is the lack of types of vehicles and the lack of challenging
images. Wang Zhang et al. helped the feature pyramid network (FPN) to handle the scale
variation of vehicles by using the multi-scale feature adaptive fusion network (MSFAF-
Net) and the region attention-based three-headed network (RATH-Net) [20]. However,
the study did not address the crowded background images, hidden regions, and vehicle
target-sensor distance, etc. Xin Luo et al. constructed a vehicle dataset for target recognition
and used it for vehicle detection by an improved YOLO [21], but the dataset did not include
special vehicles.

Previous research has focused on general vehicle detection, with a few studies examin-
ing the identification of different types of vehicles. In addition, the challenges of specialty
vehicle identification, such as the small size of vehicles, crowded environments, hidden
areas, and confusion with contexts such as construction sites, have not been comprehen-
sively addressed in these studies. Thus, it can be argued that the unauthorized presence of
specialty vehicles in challenging environments and the inaccurate identification of sensitive
infrastructures remain some of the most important issues in ensuring public safety. The
main goal of this study is to identify multiple types of specialty vehicles and distinguish
them from ordinary vehicles at a distance, despite challenges such as the small size of
specialty vehicles, crowded backgrounds, and the presence of occlusions.

In this study, the YOLOV7 network was modified to improve the challenges of spe-
cialty vehicle identification. A large number of visible images of different types of special
vehicles and ordinary vehicles at close and long distances in different environments were
collected and labeled to identify multiple types of special vehicles and distinguish them
from ordinary vehicles. Considering the limited computational power of the airborne
system, GhostNet is introduced to reduce the computational cost of the proposed algorithm.
The proposed algorithm facilitates the deployment of airborne systems by using linear
transformation to generate feature maps in GhostNet instead of the usual convolutional
computation and requires less FLOP. On the other hand, the SSH structure is shown to
have the ability to improve the detection accuracy of the algorithm. The context network
is able to compute the contexts of pixels at different locations from multiple subspaces,
which facilitates YOLO-GNS to extract important features from large-scale scenes. For
example, in Figure 13, there are examples of special vehicles that the basic model cannot
recognize in some cases. However, the modified model is able to recognize them; moreover,
in other cases, they operate with lower accuracy than the modified network. This result
indicates that the current network has improved in identifying special vehicles compared
to the basic network. By applying these changes in the network structure and using a wide
range of data sets, the proposed method is able to identify all specialty vehicle types in
challenging environments. In Figures 14 and 15, examples of difficult images and poor
lighting conditions are provided, all of which have higher recognition accuracy in the
modified network than in the basic network.

5. Conclusions

As already pointed out, specialty vehicle recognition in various scenarios is a complex
process; the usual approaches and even traditional deep learning network methods do
not work well in some cases. When using UAVs to detect small or obscured specialty
vehicles from large-scale scenes, both detection accuracy and computational consumption
need to be considered. In this work, we propose a novel UAV-based algorithm for special
vehicle target detection that enhances feature extraction while optimizing the feature fusion
computation. A dedicated dataset of 17,992 UAV image datasets including multiple types
of special vehicles is introduced, and extensive comparative experiments are conducted to
illustrate the effectiveness of the proposed algorithm. The results show that the AP and FPS
are improved by 4.4% and 1.6, respectively, compared to the primary YOLOv7. It can be
demonstrated that the algorithm provides a single optimal solution for UAV-based target
detection in the field of special vehicle identification. In the next work, the special vehicle
detection method with visible and infrared fusion will be investigated.
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