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Abstract: Unmanned aerial vehicles (UAVs) have found expanding utilization in smart agriculture.
Path loss (PL) is of significant importance in the link budget of UAV-aided air-to-ground (A2G)
communications. This paper proposes a machine-learning-based PL model for A2G communication
in agricultural scenarios. On this basis, a double-weight neurons-based artificial neural network
(DWN-ANN) is proposed, which can strike a fine equilibrium between the amount of measurement
data and the accuracy of predictions by using ray tracing (RT) simulation data for pre-training and
measurement data for optimization training. Moreover, an RT pre-correction module is introduced
into the DWN-ANN to optimize the impact of varying farmland materials on the accuracy of RT
simulation, thereby improving the accuracy of RT simulation data. Finally, channel measurement
campaigns are carried out over a farmland area at 3.6 GHz, and the measurement data are used for
the training and validation of the proposed DWN-ANN. The prediction results of the proposed PL
model demonstrate a fine concordance with the measurement data and are better than the traditional
empirical models.

Keywords: unmanned aerial vehicle (UAV); path loss (PL); agricultural scenario; artificial neural
network (ANN); ray tracing (RT); channel measurement

1. Introduction

Thanks to their simple maneuverability, high agility, and cost-effectiveness, unmanned
aerial vehicles (UAVs) are assuming a growing importance in agricultural applications
including yield estimation, precision irrigation, and crop surveillance [1–4]. Path loss
(PL) is a crucial large-scale parameter that has a substantial influence on the communi-
cation quality between ground stations and UAVs. Different from traditional terrestrial
communications, the UAV-aided air-to-ground (A2G) channel demonstrates obvious three-
dimensional (3D) characteristics [5,6], and the PL in agricultural scenarios also has some
unique characteristics due to the influence of different farmland materials on the reflection
or scattering process. Therefore, the modeling and accurate prediction of PL is of great
significance in the construction and enhancement of UAV communication systems under
agricultural scenarios.

Traditional PL predictions are primarily categorized into deterministic methods [7–13]
and empirical methods [14–22]. For deterministic methods, PL is typically modeled through
the ray tracing (RT) technique combined with environmental information. The authors
in [7,8] utilized the RT technique to model the PL of urban scenarios, taking into account
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the effects of transceiver locations and antenna heights, respectively. The authors in [9,10]
predicted the PL under urban and forest scenarios, respectively, and both considered
the additional impact of vegetation attenuation. For agricultural scenarios, the authors
in [12] analyzed the channel characteristics of the narrowband internet of things under
a typical rural scenario at 900 MHz by using the RT technique; they obtained the aver-
age PL between transceivers and derived the channel parameters including angular and
delay spread. The authors in [13] developed a channel model for UAV-aided A2G radio
frequency energy transfer based on the RT principle, which considered the influence of
vegetation growth with time on PL in agricultural scenarios. Deterministic methods are
generally considered to have a high accuracy. However, due to the complexity of ground
materials caused by different types of crops in agricultural scenarios, there are inevitable
differences between the reconstructed map materials and the real environment, which will
affect the prediction accuracy. Moreover, deterministic methods normally come with high
computational complexity.

Empirical methods usually model PL as a multi-factorial equation regarding some
channel parameters including arrival angle, path delay, and so on. For example, the authors
in [14,16] modeled the PL in scenarios involving rice and millet fields, respectively, as well
as corn and soybean fields, and studied the effects of different crop growth stages on the PL.
The authors in [17] measured the PL in a citrus plantation, and analyzed the measurement
results based on the two-ray model, close-in (CI) free space reference distance PL model,
and so on. For A2G scenarios, the authors in [20] investigated the effects of different
transmission antenna heights on PL in rural scenarios at 26 GHz using a crane as a research
platform, and analyzed the fitting performance of different empirical models, such as the
CI and alpha-beta-gamma models. The authors in [21,22], respectively, studied channel
parameters such as the received signal strength indicator of ZigBee and the WiFi link in
farmland scenarios based on UAVs. Although empirical methods are relatively simple, they
have poor scenario dependence and usually demand a substantial volume of measured
data to calibrate the model. With the increase in scenario types, it is sometimes challenging
to derive a general analytical equation.

Machine learning (ML) technology has attracted more and more interest in the field of
channel parameter prediction due to its powerful data analysis ability [23–29]. For example,
the authors in [24] evaluated the prediction accuracy of an artificial neural network (ANN)
and various ML methods on PL by combining the measurement data in rural scenarios,
and studied the impact of various neuron quantities and neural network (NN) layers on
prediction performance. The authors in [25] utilized ML regressions to establish a PL model
and investigated the impact of crop height and density at different growth stages of paddy
and sugarcane on PL. The authors in [26] modeled the PL in different vegetation regions
such as orange, cherry, pine, and walnut by using several ML methods such as recurrent
NN. The authors in [28] applied different ensemble models to predict PL in rural scenarios
for the first time, and designed the best ensemble technique. The authors in [29] predicted
the PL in rural scenarios by using the k-nearest neighbor and random forest methods,
and compared the predicted results with the conventional particle swarm optimization
algorithm. ML methods typically demand a substantial volume of measured data during
the training stage, which are rarely applied in rapidly moving UAV-aided A2G scenarios.
In the case of insufficient measurement data, RT simulation data are usually employed
as a substitute. Due to the complexity of ground materials and the limitation of map
reconstruction accuracy in agricultural scenarios, there may be a certain disparity between
RT simulation data and the actual results, which causes a decrease in the accuracy of the
prediction results and greatly increases the limitations of NN applications. This study
endeavors to fill this gap. The innovations and contributions are outlined as follows.

• A novel ML-based PL model with double-weight-neurons for UAV-aided A2G commu-
nications under agricultural scenarios is firstly proposed in this paper. The proposed
model takes into account the main factors affecting PL, including signal propagation
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distance, UAV height, and carrier frequency, and can accurately predict the PL of the
line-of-sight (LoS) and non-LoS (NLoS) paths in the scenarios.

• A new ANN structure named double-weight neurons-based ANN (DWN-ANN)
is designed for the PL model, which can solve the problem of large measurement
data requirements in traditional ANNs and achieve accurate PL prediction through
two-step training. Moreover, an RT pre-correction module is introduced to solve the
problem of insufficient RT simulation accuracy caused by complex ground materials
in agricultural scenarios.

• Channel measurement campaigns are carried out over a farmland area with different
ground materials at 3.6 GHz. The measurement data are obtained for the training
and validation of the proposed model. Moreover, the ground material parameters
for RT simulations are modified. The prediction results demonstrate a fine concor-
dance with the obtained data and achieve higher accuracy compared to the empirical
models, which indicates that the proposed model can accurately predict the PL under
agricultural scenarios.

The rest of the paper is structured as follows. Section 2 proposes the ML-based PL
model under agricultural scenarios. In Section 3, the PL prediction scheme and the details
of the DWN-ANN are introduced. Section 4 provides the channel measurement campaigns
and a verification and comparison of the proposed PL model. Finally, the conclusions are
summarized in Section 5.

2. Proposed ANN-Based PL Model

Numerous empirical and standardized models regarding PL prediction have been
proposed, among which the third generation partnership project (3GPP) and CI models are
particularly renowned. The CI model enhances PL prediction accuracy by introducing the
PL exponent (PLE) based on the free-space PL (FSPL) model, which can be formulated as

PLCI( f , d) = 10nlog10(d/d0) + PLFS( f , d0) + XCI
λ (1)

where d and f , respectively, represent the propagation distance and carrier frequency, d0
represents the referenced distance which is typically set to 1 m, and n is the PLE of the CI
model. XCI

λ characterizes the shadow fading (SF), which follows a Gaussian distribution
with a mean of zero and standard deviation of λ [30]. PLFS( f , d0) represents the FSPL,
which can be further expressed as

PLFS( f , d0) = 20log10( f ) + 20log10(d0) + 32.45 (2)

The 3GPP model is considered to be a relatively authoritative PL model [31]. Taking
the typical rural macro (RMa) scenario as an illustration, the 3GPP model under LoS and
NLoS paths can be, respectively, expressed as

PLLoS
3GPP =

{
PL1

3GPP, 10m ≤ d ≤ dP

PL2
3GPP, dP ≤ d ≤ 10km

(3)

PLNLoS
3GPP = max

(
PLLoS

3GPP, PL3
3GPP

)
(4)

where PL1
3GPP, PL2

3GPP, and PL3
3GPP can be further expressed as

PL1
3GPP = log10(d)×min

(
10, 0.03hB

1.72
)
−min

(
14.77, 0.044hB

1.72
)

+ 20log10(40πd f /3) + 0.002d× log10(hB)
(5)

PL2
3GPP = PL1

3GPP(dP) + 40log10(d/dP) (6)
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PL3
3GPP =

(
log10(d)− 3

)
×
(
43.42− 3.1log10(hBS)

)
− 7.1log10(wS)

− log10(hBS)×
(

24.37− 3.7(hB/hBS)
2
)
+ 7.5log10(hB)

−
(

3.2
(
log10(11.75hUT)

)2 − 4.97
)
+ 20log10( f ) + 161.04

(7)

where dP represents the breakpoint distance, hB represents the average height of buildings,
wS represents the average width of streets, and hUT and hBS, respectively, represent the
antenna heights of the user terminal and base station.

Drawing inspiration from the principles of supervised learning in ML, we integrate
traditional empirical models with ANN. By employing network architectures in place of
explicit mathematical expressions, we aim to achieve more accurate predictions. Traditional
NNs usually demand a substantial volume of measurement data during the training stage
and it is difficult to acquire measurement data in scenarios like farmlands. Inspired by the
NN’s capability for second training, we designed a two-step training network named DWN-
ANN. This network can conduct separate pre-training and optimized training by using RT
simulation and measurement data to achieve a balance between prediction accuracy and
the required amount of measurement data.

Farmland scenarios are typically characterized by open spaces and limited scatters.
Therefore, the A2G channel in the farmland scenario can be modeled as consisting of one
LoS path, one ground specular NLoS path, and some scattering NLoS paths. This paper
aims to achieve the PL prediction of the LoS and NLoS paths separately. The proposed
DWN-ANN-based PL model of LoS/NLoS cases can be formulated as

PLLoS/NLoS
DWN-ANN = FDWN-ANN

(
dLoS/NLoS, hLoS/NLoS, f LoS/NLoS

∣∣∣wTotal, bTotal, σ(·)
)

(8)

where FDWN-ANN(·) is the transfer function of DWN-ANN determined by the network
structure. dLoS/NLoS, hLoS/NLoS, and f LoS/NLoS are the input parameters of DWN-ANN,
representing the propagation distance, UAV height, and carrier frequency, respectively.
wTotal and bTotal are the total weight and bias matrices of DWN-ANN, respectively. σ(·) is
the activation function. More details regarding the DWN-ANN structure will be elaborated
in Section 3.

3. PL Prediction and DWN-ANN Design
3.1. Overview of PL Prediction Scheme

The overall PL prediction scheme is illustrated in Figure 1. In the first step, an A2G
communication scenario is selected, and the measurement campaign is conducted in the
chosen scenario to acquire measurement data, including the propagation distance, UAV
height, carrier frequency, and the corresponding PL. Secondly, digital map reconstruction
and RT simulation are carried out in the chosen scenario, and the RT pre-correction
module is performed. Some of the measurement data are utilized to calibrate parameters
such as the material conductivity for RT simulations. This calibration step aims to
enhance the accuracy of the obtained RT simulation data significantly. Subsequently,
the obtained dataset is split into the training and validation datasets, which are utilized
for training the NN and assessing its performance, respectively. Finally, the DWN-ANN
is constructed and the obtained RT simulation and measurement data are used for the
pre-training and optimization training of the network, respectively. The trained DWN-
ANN can accurately predict the PL by inputting a new propagation distance, UAV height,
and carrier frequency.
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Figure 1. PL prediction scheme.

3.2. Network Structure

The proposed DWN-ANN consists primarily of a pre-training module (PTM) and an
optimization training module (OTM), as illustrated in Figure 2. The PTM can utilize RT
simulation data for preliminary training to learn the approximate relationship between the
PL and other channel parameters. This enables the network to attain an initial stable state,
reducing the required amount of measurement data and accelerating the network’s conver-
gence rate. After pre-training, the network parameters of PTM are assigned to the OTM.
The OTM can utilize a modest quantity of measurement data for fine-tuning, leading to the
further optimization of the network parameters and enhancement of prediction accuracy.

However, when conducting RT simulations in farmland scenarios, due to the limitation
in the accuracy of reconstruction ground material, there might be significant disparities
between the RT simulation data and the actual results. In such cases, relying solely on
optimization with a small amount of measurement data might not be sufficient for error
correction and achieving accurate PL prediction. Therefore, we also introduce an RT pre-
correction module, utilizing the acquired measurement data to pre-correct parameters,
such as the conductivity and relative dielectric constant of the ground material during RT
simulations, so as to enhance the RT simulation accuracy.

During the pre-training phase, the network’s input is the RT simulation data. In this
phase, only the weight and bias matrices of PTM within the DWN-ANN are updated, while
the weight and bias matrices of OTM remain constant. The predicted results of PTM can be
formulated as

PLLoS/NLoS
PTM = FDWN-ANN

(
dLoS/NLoS

RT-Train , hLoS/NLoS
RT-Train , f LoS/NLoS

RT-Train

∣∣∣wPTM, bPTM, σ(·)
)

(9)

where dLoS/NLoS
RT-Train , hLoS/NLoS

RT-Train , and f LoS/NLoS
RT-Train are the training set of propagation distance,

UAV height, and carrier frequency obtained through the RT method, respectively. wPTM

and bPTM are the weight and bias matrices of PTM, respectively.
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Figure 2. Network structure of proposed DWN-ANN.

After pre-training, the network proceeds to the optimization training phase, with the
network’s input changing to the training set of measurement data. At this point, the weight
and bias matrices of PTM retain the pre-trained values and are assigned to the OTM.
Subsequently, the network performs optimization training using the measurement data,
fine-tuning the weight and bias matrices of OTM. The predicted results of OTM can be
formulated as

PLLoS/NLoS
OTM = FDWN-ANN

(
dLoS/NLoS

Mea-Train , hLoS/NLoS
Mea-Train , f LoS/NLoS

Mea-Train , wPTM, bPTM
∣∣∣wOTM, bOTM, σ(·)

)
(10)

where dLoS/NLoS
Mea-Train , hLoS/NLoS

Mea-Train , and f LoS/NLoS
Mea-Train are the training set of propagation distance,

UAV height, and carrier frequency obtained through channel measurement, respectively.
wOTM and bOTM are the weight and bias matrices of OTM, respectively.

Taking the classic three-layer NN structure, including an input layer, a single hidden
layer comprising N neurons, and an output layer as an illustration, the final prediction
results of the DWN-ANN-based PL prediction algorithm can be formulated as

PLLoS/NLoS
DWN-ANN = FDWN-ANN

(
dLoS/NLoS

Train , hLoS/NLoS
Train , f LoS/NLoS

Train

∣∣∣wTotal, bTotal, σ(·)
)

= σO

(
N

∑
n=1

(
wPTM(2)

n1 wOTM(2)
n1 σH

(
wPTM(1)

1n wOTM(1)
1n dLoS/NLoS

Train + wPTM(1)
2n wOTM(1)

2n hLoS/NLoS
Train +

wPTM(1)
3n wOTM(1)

3n f LoS/NLoS
Train + bPTM(1)

n bOTM(1)
n

))
+ bPTM(2)

1 bOTM(2)
1

) (11)

where wPTM(1/2)
pq ∈ wPTM and bPTM(1/2)

q ∈ bPTM represent the connection weights and

biases of the hidden/output layer neurons in the PTM, respectively. wOTM(1/2)
pq ∈ wOTM

and bOTM(1/2)
q ∈ bOTM represent the connection weights and biases of the hidden/output

layer neurons in the OTM, respectively. σH/O(·) ∈ σ(·) represents the activation functions
of the hidden/output layer. wTotal and bTotal can be calculated as the product of the
corresponding elements in wPTM and wOTM, as well as the product of the corresponding
elements in bPTM and bOTM, respectively.
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N, which represents the neuron quantity of the hidden layer, significantly impacts the
prediction performance and can be calculated as

N =
√

NI + NO + aNeuron (12)

where NI and NO are the neuron quantity of the input and output layer, respectively.
aNeuron is typically a constant with a value within the range of [1, 10].

The introduction of activation functions enables the NN to exhibit non-linearity.
The hidden layer applies the leaky rectified linear unit (LeakyReLU) function [32], which
can solve the “neuron death” problem in the traditional rectified linear unit (ReLU) function
and has a faster convergence rate, as shown in (13). The output layer applies the Purelin
function, as illustrated in (14).

σLeaky Re LU(x) = max(x, 0) + aLeakyReLU min(x, 0) (13)

σPurelin(x) = x (14)

where aLeakyReLU is a non-zero slope, typically set to 0.01.
The essence of network training is to minimize the loss function value as much

as possible by continuously iterating and adjusting the network parameters. Therefore,
the design of the loss function directly impacts the training performance. The introduction
of L2 regularization in loss functions makes the network more inclined to use smaller and
more dispersed weight vectors, ensuring that all input features are considered during
training, which can enhance the model’s generalization ability and reduce the risk of
overfitting. The loss function of PTM and OTM based on the mean square error and adding
L2 regularization can be, respectively, expressed as

LLoS/NLoS
PTM =

1
I

I

∑
i=1

PLLoS/NLoS
PTM

dLoS/NLoS
RT-Train,i , hLoS/NLoS

RT-Train,i , f LoS/NLoS
RT-Train,i∣∣∣wPTM, bPTM, σ(·)

− PLLoS/NLoS
RT-Train,i

2

+
1
2

µ
K

∑
k=1

∥∥∥wPTM(k)
∥∥∥2

(15)

LLoS/NLoS
OTM =

1
I

I

∑
i=1

PLLoS/NLoS
OTM

dLoS/NLoS
Mea-Train,i, hLoS/NLoS

Mea-Train,i, f LoS/NLoS
Mea-Train,i,

wPTM, bPTM
∣∣∣wOTM, bOTM, σ(·)

− PLLoS/NLoS
Mea-Train,i

2

+
1
2

µ
K

∑
k=1

∥∥∥wOTM(k)
∥∥∥2

(16)

where I represents the quantity of samples within the training dataset, K represents the
quantity of layers within the NN, and µ represents the regularization factor of L2 regular-
ization.

The update of network weights and biases during each iteration can be, respectively,
expressed as

wPTM/OTM(k)
pq = wPTM/OTM(k)

pq − η
∂LLoS/NLoS

PTM/OTM

∂wPTM/OTM(k)
pq

+ ω∆wPTM/OTM(k)
pq (17)

bPTM/OTM(k)
q = bPTM/OTM(k)

q − η
∂LLoS/NLoS

PTM/OTM

∂bPTM/OTM(k)
q

+ ω∆bPTM/OTM(k)
q (18)

where ∂(·) represents the partial derivative, η represents the learning rate of the NN, and ω
represents the momentum factor, which can prevent the network parameters from getting
stuck in local minima during updates. After continuous iterative training, the trained
DWN-DNN can achieve an accurate prediction of the PL.
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3.3. RT Data Pre-Correction

Due to the complex composition of farmland types, which includes a mixture of
crops, earth, and water, it is challenging to accurately reconstruct them for RT simulations.
Consequently, the obtained RT simulation data often exhibit significant discrepancies with
the actual results, leading to the lower training accuracy of the PTM in DWN-ANN. In light
of this, we designed the RT pre-correction module, which utilizes the measurement data to
invert the real conductivity and relative dielectric constant of the ground material during
RT simulation, so as to improve the accuracy of the obtained RT simulation data.

The measured farmland can be further divided into different sub-scenarios, and a
preliminary 3D map reconstruction of the farmland is carried out, where the conductivity
and relative dielectric constant of the ground material are initially set to default values of
the grassland. Then, RT simulations are performed on the farmland scenario to calculate
the NLoS path reflection points corresponding to different UAV locations. Furthermore,
by combining the actual GPS coordinates of the UAV with the calculated reflection point
positions, the measurement data generated by reflections on the ground in different sub-
scenarios are divided into different groups. Finally, the measurement data from different
sub-scenarios are compared with the corresponding RT data, and the ground material
parameters for each sub-scenario are continuously adjusted until the generated RT data
match the measurement data.

After RT pre-correction, more accurate RT simulation data can be obtained in the
farmland scenario, improving the accuracy of the PTM in DWN-ANN and further reducing
the amount of measurement data required by the OTM.

4. Validation and Comparison
4.1. Channel Measurement Campaigns

Most of the existing A2G channel measurement campaigns are predominantly focused
on urban scenarios, with relatively fewer studies conducted in rural farmland scenarios.
Furthermore, only a few of them consider different UAV heights. In this study, we conduct
measurement campaigns of different UAV heights in a farmland scenario.

The developed A2G channel sounder is illustrated in Figure 3, including a UAV-aided
transmitter (TX) and a receiver (RX) fixed on the ground, as shown in Figure 3a and
Figure 3b, respectively. The TX comprises a hexacopter UAV, an omnidirectional antenna,
a global positioning system (GPS) antenna, and a software-defined radio (SDR) signal
transmitting platform comprising a radio frequency (RF) module, a high-power amplifier
(HPA), and a lithium battery. The sounding signal is sent through the RF module, HPA,
and omnidirectional antenna. The independent lithium battery is used for the power
supply for both the HPA and RF modules. The RX consists of an omnidirectional antenna,
a GPS module, an uninterruptible power supply, and an SDR signal processing platform
comprising an RF module and a baseband processing module. The received signal is
captured by the omnidirectional antenna, and then sent into the baseband processing
module through the RF module for data processing. Finally, the measurement data are
stored in the disk. Data transmission between the SDR and disk is realized via the PCIE
bus. The comprehensive specifications of the channel sounder are introduced in Table 1,
and more details about the channel sounder can be found in [33].

Table 1. Hardware parameters of the A2G channel sounder.

System Parameters Values

Supported frequency band 100–6000 MHz
Bandwidth 100 MHz

Transmit power 32 dBm
HPA gain 42 dB

Antenna type Omnidirectional Antenna
Antenna gain 2.5 dBi

Measurement sequence Single-tone signal/Zadoff-Chu (ZC) sequence
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Figure 3. Overview of the (a) TX and (b) RX of the A2G channel sounder.

The channel measurement was conducted on a farmland at 3.6 GHz, and the ZC
sequence is used in the channel sounder. The farmland area was approximately 150 m by
120 m, with sparse roads and low-rise buildings scattered around, resulting in an overall
open environment. The RX was positioned at the edge of the farmland with the antenna
at a height 2.5 m above the ground. The GPS coordinates for the fixed RX point were
118.57402 E 33.09518 N. Since the UAV normally flies at low altitudes for operations like
yield estimation, precise irrigation, and crop monitoring in agricultural scenarios, we
selected the UAV height range of 10 m to 30 m for the channel measurement campaigns.
The UAV, equipped with the TX, took off from one side of the farmland and flew in a
straight line with a 5 m height interval at different heights ranging from 10 m to 30 m
and a flight distance of 100 m for each height, as shown in Figure 4. The GPS coordinates
for the starting point of the horizontal movement of TX were 118.5736 E 33.09546 N. The
receiver only started recording channel data when the UAV flew along the solid yellow line
in the figure and stopped recording when it flew along the dashed yellow line. The PL data
corresponding to different distances and UAV altitudes were obtained.

10m

15m

20m

25m

30m

100m

RX

UAV mission

Take-off 

position

Landing 

position

TX
RX

LoS path

NLoS path

Figure 4. Channel measurement campaigns in the farmland scenario.

4.2. Data Pre-Processing

We further divided the measured farmland into four sub-scenarios: crops with dry
earth, crops with wet earth, paddy fields, and dense crops (without exposed earth),
as shown in Figure 5. After the channel measurement, we corrected the electromagnetic
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parameters of the ground materials for RT simulations based on some of the measurement
data. The modified electromagnetic parameters of different materials are shown in Table 2.

Crops with dry 
earth

Crops with wet 
earth

Paddy fields
Dense crops

 (without exposed 
earth)

Figure 5. Four types of sub-scenarios in the farmland area.

Table 2. Modified electromagnetic parameters of four ground materials.

Ground Material Relative Dielectric Constant Conductivity (S/m)

Crops with dry earth 2.12 0.001
Crops with wet earth 2.2 0.018

Paddy fields 1.85 0.18
Dense crops (without exposed earth) 2.1 0.15

4.3. Prediction Results Analysis

In total, we obtained 10,000 RT simulation data and 5065 measurement data, then
divided the obtained RT data and measurement data, respectively, into the training dataset
and validation dataset in proportions of 80% and 20%. The RT training dataset was utilized
for the initial training of the PTM, followed by the measurement training dataset being
utilized for the optimization training of the OTM. It should be mentioned that, in order
to verify the property that our proposed model can decrease the usage of measurement
data while ensuring the prediction accuracy, only 30% of the measurement training dataset
was utilized to further optimize the OTM. For the network structure, the input parameters
of both PTM and OTM were the propagation distance, UAV height, and carrier frequency,
and the output parameter was the PL. Therefore, the number of nodes in the input and
output layers were set to 3 and 1, respectively. The number of hidden layers was set to
2, with each layer comprising 10 nodes. The PTM and the OTM had the same network
structure in order to ensure the successful transmission of network parameters. The Adam
optimizer was employed in the NN to ensure the correct update of the loss function
parameters with a suitable magnitude, and the learning rate was configured as 0.001.
After training, the prediction results were compared with the remaining 20% validation set.

For the LoS case, the prediction results of the proposed model, 3GPP, and CI model at
UAV heights of 10 m and 20 m are shown in Figure 6. We can see that the PLEs of the CI
model were fitted to 2.15 at a UAV height of 10 m and 2.26 at a height of 20 m, respectively.
The standard deviations of SF were 3.031 dB and 3.279 dB, respectively. The 3GPP model
was obtained through the formula of the LoS case under RMa in [31], where the average
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height of buildings was set to 5 m. For comparison purposes, the RT validation dataset and
measurement validation dataset are drawn in the figure as well.
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Figure 6. DWN-ANN, RT validation dataset, measurement validation dataset, 3GPP, and CI model
of LoS case at UAV heights of (a) 10 m and (b) 20 m.

As shown in Figure 6, since the PL of the LoS path was not affected by the scatterer
materials, the obtained RT simulation data relatively align with the measurement data.
The measured PLs were slightly influenced by the elevation angles of the propagation
paths because the actual antenna pattern was not perfectly isotropic. The predicted PL
of DWN-ANN after pre-training and optimization training were, respectively, consistent
with the RT validation dataset and measurement validation dataset, which demonstrates
the accuracy of the proposed model. Moreover, the predicted values of our proposed
model were consistent with the 3GPP model and closer to the measurement data than the
CI model, which verifies that the proposed model conforms to the 3GPP standard and is
superior to the traditional empirical model, allowing for the accurate prediction of the PL
of the LoS path in the farmland scenario.

For the NLoS case, the prediction results of the proposed model, 3GPP, and CI model
at UAV heights of 15 m and 30 m are given in Figure 7. Here, default grassland ground
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material parameters were utilized to acquire RT simulation data without RT pre-correction.
The 3GPP model was obtained through the formula of NLoS case under RMa in [31], where
the average height of buildings was set to 5 m, the average width of streets was set to 4 m,
the antenna height of the user terminal was set to 2.5 m, and the antenna height of the
base station was set according to the different UAV heights. The PLEs of the CI model at
UAV heights of 15 m and 30 m were, respectively, fitted to 2.79 and 2.88, which are slightly
smaller than the PLE in urban scenarios. The standard deviations of SF were 3.652 dB and
4.112 dB, respectively.
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Figure 7. DWN-ANN (without RT pre-correction), RT validation dataset, measurement validation
dataset, 3GPP and CI model of NLoS case at UAV height of (a) 15 m, (b) 30 m.

Due to the complexity of the ground materials and the significant influence of ground
materials on the ground reflection path, without RT pre-correction, there is a relatively
significant difference between the obtained RT simulation data and the measurement data.
It can be found that, the prediction results of DWN-ANN after pre-training still match the
RT validation dataset, but the corresponding results after optimization training are slightly
lower than the measurement data, which has a decreased prediction accuracy than the
LoS case. However, the predicted PL are still close to the 3GPP and CI model, indicating
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Figure 7. DWN-ANN (without RT pre-correction), RT validation dataset, measurement validation
dataset, 3GPP, and CI model of NLoS case at UAV heights of (a) 15 m and (b) 30 m.

Due to the complexity of the ground materials and the significant influence of ground
materials on the ground reflection path, without RT pre-correction, there was a relatively
significant difference between the obtained RT simulation data and the measurement data.
It was found that the prediction results of DWN-ANN after pre-training still matched
the RT validation dataset, but the corresponding results after optimization training were
slightly lower than the measurement data, which demonstrates a decreased prediction
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accuracy in comparison to the LoS case. However, the predicted PL was still close to the
3GPP and CI model, indicating the validity of the proposed model. Even when using
default RT material parameters and with limited measurement data, the DWN-ANN can
still improve prediction accuracy through joint training with RT and measurement data,
achieving similar prediction results to traditional models.

After RT pre-correction, the corresponding prediction values are illustrated in Figure 8.
As depicted in the figure, after correcting ground material parameters of the farmland
using measurement data, the obtained RT simulation data of NLoS path were in better
agreement with the measurement data. The predicted PL of DWN-ANN after pre-training
and optimization training, respectively, aligned with the RT validation dataset and mea-
surement validation dataset, and were closer to the measurement data than 3GPP and CI
model, which indicates the superiority of our proposed model in the NLoS case, which can
accurately predict the PL of the NLoS path in the farmland scenario. Furthermore, it also
proves the necessity of the RT pre-correction module in scenarios with complex materials.
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Figure 8. DWN-ANN (with RT pre-correction), RT validation dataset, measurement validation
dataset, 3GPP, and CI model of NLoS case at UAV heights of (a) 15 m and (b) 30 m.
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In order to intuitively demonstrate the prediction accuracy of different models, the root
mean square error (RMSE) between the measurement data and the CI model, 3GPP model,
and the proposed DWN-ANN model is shown in Table 3. According to the above analysis,
it can be concluded that the ground materials of farmland scenarios significantly impact
the RT simulation accuracy. Our proposed model can achieve similar prediction accuracy
to traditional CI and 3GPP models when using default ground materials in RT simulation.
After the pre-correction of the ground material parameters, the prediction values are
consistent with the measurement data and superior to traditional models. In summary,
the proposed model can achieve a favorable equilibrium between prediction accuracy and
the required amount of measurement data through joint training with RT and measurement
data. Moreover, it can enhance prediction accuracy via RT pre-correction, achieving accurate
PL prediction under LoS and NLoS paths in farmland scenarios. The proposed model
solves the issue of PL prediction in the case of insufficient measurement data and inaccurate
RT simulation in the farmland scenario.

Table 3. The RMSE of CI model, 3GPP model, and the proposed DWN-ANN model.

Figure 6a Figure 6b Figure 7a Figure 7b Figure 8a Figure 8b

CI model 2.1912 2.3071 3.4089 2.8562 3.4089 2.8562
3GPP model 2.2732 3.1757 4.1951 4.1922 4.1951 4.1922
DWN-ANN 2.1727 2.2877 4.0231 3.5267 3.2425 2.7330

5. Conclusions

This paper has proposed an ML-based PL model under agricultural scenarios. A new
network structure named DWN-ANN has been developed to predict the PL of the LoS
and NLoS paths, which can be pre-trained and further optimized by using RT simulation
and measurement data, respectively. Furthermore, an RT pre-correction module has been
introduced to optimize the RT simulation accuracy, and modified material electromagnetic
parameters have been given. To thoroughly analyze and appraise the proposed model,
extensive channel measurement campaigns have been conducted over farmland areas at
3.6 GHz. Through a comparison with the measurement data, our proposed model has been
proven to be more accurate than traditional models. This suggests that our model is better
suited for UAV-aided A2G communications in agricultural scenarios. In the future, it is
envisaged that measurement campaigns will be conducted on diverse farmland areas with
the aim of substantiating the proposed model’s universality.

Author Contributions: Conceptualization, H.L. (Hanpeng Li) and Q.Z.; funding acquisition, Q.Z.
and F.A.; investigation, K.M. and X.Y.; methodology, H.L. (Hanpeng Li); software, H.L. (Hanpeng Li)
and X.Y.; data acquisition, Y.G. and H.L. (Hangang Li); supervision, Q.Z. and F.A.; validation, T.Z.
and M.W.; writing—original draft, H.L. (Hanpeng Li) and K.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported, in part, by the National Natural Science Foundation of China
under Grant No. 62271250; in part by the Natural Science Foundation of Jiangsu Province, No.
BK20211182; in part by the Key Technologies R&D Program of Jiangsu (Prospective and Key Tech-
nologies for Industry) under Grants BE2022067, BE2022067-1, and BE2022067-3; and in part by
the open research fund of the National Mobile Communications Research Laboratory, Southeast
University, No. 2022D04.

Data Availability Statement: The datasets collected and generated in this study are available upon
request to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Drones 2023, 7, 701 15 of 16

References
1. Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M.

Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access 2019, 7, 48572–48634.
[CrossRef]

2. Galán-Jiménez, J.; Vegas, A.G.; Berrocal, J. Energy-efficient deployment of IoT applications in remote rural areas using UAV
networks. In Proceedings of the WMNC’22, Sousse, Tunisia, 17–19 October 2022; pp. 70–74. [CrossRef]

3. Shi, M.; Yang, K.; Niyato, D.; Yuan, H.; Zhou, H.; Xu, Z. The meta distribution of SINR in UAV-assisted cellular networks. IEEE
Trans. Commun. 2023, 71, 1193–1206. [CrossRef]

4. Hayat, S.; Yanmaz, E.; Muzaffar, R. Survey on unmanned aerial vehicle networks for civil applications: A communications
viewpoint. IEEE Commun. Surv. Tutor. 2016, 18, 2624–2661. [CrossRef]

5. Hua, B.; Ni, H.; Zhu, Q.; Wang, C.-X.; Zhou, T.; Mao, K.; Bao, J.; Zhang, X. Channel modeling for UAV-to-ground communications
with posture variation and fuselage scattering effect. IEEE Trans. Commun. 2023, 71, 3103–3116. [CrossRef]

6. Mao, K.; Zhu, Q.; Song, M.; Li, H.; Ning, B.; Pedersen, G.F.; Fan, W. Machine-learning-based 3-D channel modeling for U2V
mmWave communications. IEEE Internet Things J. 2022, 9, 17592–17607. [CrossRef]

7. da Silva, H.T.P.; de Alencar, M.S.; Assis, K.D.R. Path loss and delay spread characterization in a 26 GHz mmWave channel using
the ray tracing method. In Proceedings of the IMOC’19, Aveiro, Portugal, 10–14 November 2019; pp. 1–3. [CrossRef]

8. Ravuri, V.; Subbarao, M.V.; Terlapu, S.K.; Ram, G.C. Path loss modeling and channel characterization at 28 GHz 5G micro-cell
outdoor environment using 3D ray-tracing. In Proceedings of the ICAECT’22, Bhilai, India, 21–22 April 2022; pp. 1–7. [CrossRef]

9. Mani, F.; Vitucci, E.M.; Barbiroli, M.; Fuschini, F.; degli Esposti, V.; Gan, M.; Li, C.; Zhao, J.; Zhong, Z. 26GHz ray-tracing pathloss
prediction in outdoor scenario in presence of vegetation. In Proceedings of the EuCAP’18, London, UK, 9–13 April 2018; pp. 1–5.
[CrossRef]

10. Leonor, N.R.; Sánchez, M.G.; Fernandes, T.R.; Caldeirinha, R.F.S. A 2D ray-tracing based model for wave propagation through
forests at micro-and millimeter wave frequencies. IEEE Access 2018, 6, 32097–32108. [CrossRef]

11. Wang, J.; Zhu, Q.; Lin, Z.; Wu, Q.; Huang, Y.; Cai, X.; Zhong, W.; Zhao, Y. Sparse bayesian learning-based 3D radio environment
map construction—Sampling optimization, scenario-dependent dictionary construction and sparse recovery. IEEE Trans. Cogn.
Commun. Netw. 2023, Accepted. [CrossRef]

12. Mei, S.; Zhang, M.; Zhang, S.; Yu, C.; Luo, J.; Fu, Q.; Hu, S.; Liu, Y.; Wang, C.X. Characteristics analysis on NB-IoT channels
in rural scenario for smart grid communications. In Proceedings of the ISAPE’21, Zhuhai, China, 1–4 December 2021; pp. 1–3.
[CrossRef]

13. Suman, S.; Kumar, S.; De, S. Path loss model for UAV-assisted RFET. IEEE Commun. Lett. 2018, 22, 2048–2205. [CrossRef]
14. Pal, P.; Sharma, R.P.; Tripathi, S.; Kumar, C.; Ramesh, D. 2.4 GHz RF received signal strength based node separation in WSN

monitoring infrastructure for millet and rice vegetation. IEEE Sens. J. 2021, 21, 18298. [CrossRef]
15. Phaiboon, S.; Phokharatkul, P. An empirical model for 433 MHz LoRa-WAN in ruby mango plantation. In Proceedings of the

ICEAST’23, Vientiane, Laos, 20–23 March 2023; pp. 25–28. [CrossRef]
16. Vuran, M.C.; Lunar, M.M.; Nie, S.; Ge, Y.; Pitla, S.; Bai, G.; Koksal, C.E. Millimeter-wave agricultural channel measurements in

corn and soybean fields at different growth stages. In Proceedings of the AP-S/URSI’22, Denver, CO, USA, 10–15 July 2022; pp.
1686–1687. [CrossRef]

17. Juan-Llácer, L.; Molina-García-Pardo, J.M.; Sibille, A.; Torrico, S.A.; Rubiola, L.M.; Martínez-Inglés, M.T.; Rodríguez, J.V.;
Pascual-García, J. Path loss measurements and modelling in a citrus plantation in the 1800 MHz, 3.5 GHz and 28 GHz in LoS. In
Proceedings of the EuCAP’22, Madrid, Spain, 27 March–1 April 2022; pp. 1–5. [CrossRef]

18. Nie, S.; Lunar, M.M.; Bai, G.; Ge, Y.; Pitla, S.; Koksal, C.E.; Vuran, M.C. mmWave on a farm: Channel modeling for wireless
agricultural networks at broadband millimeter-eave frequency. In Proceedings of the SECON’22, Stockholm, Sweden, 1–3 June
2022; pp. 388–396. [CrossRef]

19. Liu, J.; Yu, J.; Niyato, D.; Zhang, R.; Gao, X.; An, J. Covert ambient backscatter communications with multi-antenna tag. IEEE
Trans. Wirel. Commun. 2023, 22, 6199–6212. [CrossRef]

20. Saba, N.; Mela, L.; Sheikh, M.U.; Salo, J.; Ruttik, K.; Jäntti, R. Rural macrocell path loss measurements for 5G fixed wireless access
at 26 GHz. In Proceedings of the 5GWF’21, Montreal, QC, Canada, 13–15 October 2021; pp. 328–333. [CrossRef]

21. HJawad, H.M.; Jawad, A.M.; Nordin, R.; Gharghan, S.K.; Abdullah, N.F.; Ismail, M.; Abu-AlShaeer, M.J. Accurate empirical
path-loss model based on particle swarm optimization for wireless sensor networks in smart agriculture. IEEE Sens. J. 2020, 20,
552–561. [CrossRef]

22. Supramongkonset, J.; Duangsuwan, S.; Promwong, S. A WiFi link budget analysis of drone-based communication and IoT ground
sensors. In Proceedings of the ICEAST’21, Pattaya, Thailand, 1–3 April 2021; pp. 234–237. [CrossRef]

23. Alnatoor, M.A.A.; Omari, M.; Kaddi, M. Modeling losses of mobile networks using artificial intelligence techniques. In
Proceedings of the ICMIT’20, Adrar, Algeria, 18–19 February 2020; pp. 212–215. [CrossRef]

24. Moraitis, N.; Tsipi, L.; Vouyioukas, D.; Gkioni, A.; Louvros, S. Performance evaluation of machine learning methods for path loss
prediction in rural environment at 3.7 GHz. Wirel. Netw. 2021, 27, 4169–4188. [CrossRef]

25. Pal, P.; Sharma, R.P.; Tripathi, S.; Kumar, C.; Ramesh, D. Machine learning regression for RF path loss estimation over grass
vegetation in IoWSN monitoring infrastructure. IEEE Trans. Ind. Inform. 2022, 10, 6981–6990. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2909530
http://dx.doi.org/10.23919/WMNC56391.2022.9954292
http://dx.doi.org/10.1109/TCOMM.2022.3233064
http://dx.doi.org/10.1109/COMST.2016.2560343
http://dx.doi.org/10.1109/TCOMM.2023.3255900
http://dx.doi.org/10.1109/JIOT.2022.3155773
http://dx.doi.org/10.1109/imoc43827.2019.9317662
http://dx.doi.org/10.1109/ICAECT54875.2022.9808027
http://dx.doi.org/10.1049/cp.2018.0384
http://dx.doi.org/10.1109/ACCESS.2018.2836223
http://dx.doi.org/10.1109/TCCN.2023.3319539
http://dx.doi.org/10.1109/ISAPE54070.2021.9753543
http://dx.doi.org/10.1109/LCOMM.2018.2863389
http://dx.doi.org/10.1109/JSEN.2021.3083552
http://dx.doi.org/10.1109/ICEAST58324.2023.10157266
http://dx.doi.org/10.1109/AP-S/USNC-URSI47032.2022.9887346
http://dx.doi.org/10.23919/EuCAP53622.2022.9769016
http://dx.doi.org/10.1109/SECON55815.2022.9918595
http://dx.doi.org/10.1109/TWC.2023.3240463
http://dx.doi.org/10.1109/5GWF52925.2021.00064
http://dx.doi.org/10.1109/JSEN.2019.2940186
http://dx.doi.org/10.1109/iceast52143.2021.9426305
http://dx.doi.org/10.1109/ICMIT47780.2020.9047001
http://dx.doi.org/10.1007/s11276-021-02682-3
http://dx.doi.org/10.1109/TII.2022.3142318


Drones 2023, 7, 701 16 of 16

26. Kayaalp, K.; Metlek, S.; Genç, A.; Dogan, H.; Basyigit, I.B. Breaking the uncertainty of path loss in coastal and vegetative
environments with deep learning at 5g band. SSRN Electron. J. 2022. [CrossRef]

27. Pan, J.; Ye, N.; Yu, H.; Hong, T.; Al-Rubaye, S.; Mumtaz, S.; Al-Dulaimi, A.; Chih-Lin, I. AI-driven blind signature classification for
IoT connectivity: A deep learning approach. IEEE Trans. Wirel. Commun. 2022, 8, 6033–6047. [CrossRef]

28. Moraitis, N.; Tsipi, L.; Vouyioukas, D.; Gkioni, A.; Louvros, S. On the assessment of ensemble models for propagation loss
forecasts in rural environments. IEEE Wirel. Commun. Lett. 2022, 11, 1097–1101. [CrossRef]

29. Duangsuwan, S.; Maw, M.M. Comparison of path loss prediction models for UAV and IoT air-to-ground communication system
in rural precision farming environment. J. Commun. 2021, 16, 60–66. [CrossRef]

30. Rappaport, T.S. Wireless Communications: Principles and Practice; Prentice Hall PTR: Hoboken, NJ, USA, 2002.
31. Zhu, Q.; Wang, C.; Hua, B.; Mao, K.; Jiang, S. 3GPP TR 38.901 Channel Model; Wiley Press: Hoboken, NJ, USA, 2021; pp. 1–35.
32. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the

ICML’13, Atlanta, GA, USA, 16–21 June 2013.
33. Mao, K.; Zhu, Q.; Qiu, Y.; Liu, X.; Song, M.; Fan, W.; Kokkeler, A.B.J.; Miao, Y. A UAV-aided real-time channel sounder for highly

dynamic non-stationary A2G scenarios. IEEE Trans. Instrum. Meas. 2023, 8, 1–15. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2139/ssrn.4045869
http://dx.doi.org/10.1109/TWC.2022.3145399
http://dx.doi.org/10.1109/LWC.2022.3157520
http://dx.doi.org/10.12720/jcm.16.2.60-66
http://dx.doi.org/10.1109/TIM.2023.3301592

	Introduction
	Proposed ANN-Based PL Model
	PL Prediction and DWN-ANN Design
	Overview of PL Prediction Scheme
	Network Structure
	RT Data Pre-Correction

	Validation and Comparison
	Channel Measurement Campaigns
	Data Pre-Processing
	Prediction Results Analysis

	Conclusions
	References

