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Abstract: With multi-sensors embedded, flexible unmanned aerial vehicles (UAVs) can collect sensory
data and provide various services for all walks of life. However, limited computing capability and
battery energy put a great burden on UAVs to handle emerging compute-intensive applications,
necessitating them to resort to innovative computation offloading technique to guarantee quality of
service. Existing research mainly focuses on solving the offloading problem under known global
information, or applying centralized offloading frameworks when facing dynamic environments. Yet,
the maneuverability of today’s UAVs, their large-scale clustering, and their increasing operation in the
environment with unrevealed information pose huge challenges to previous work. In this paper, in
order to enhance the long-term offloading performance and scalability for multi-UAVs, we develop a
decentralized offloading scheme named DELOFF with the support of mobile edge computing (MEC).
DELOFF considers the information uncertainty caused by the dynamic environment, uses UAV-
to-everything (U2X)-assisted heterogeneous networks to extend network resources and offloading
flexibility, and tackles the joint strategy making related to computation mode, network selection,
and offloading allocation for multi-UAVs. Specifically, the optimization problem of multi-UAVs
is addressed by the proposed offloading algorithm based on a multi-arm bandit learning model,
where each UAV itself can adaptively assess the offloading link quality through the fuzzy logic-based
pre-screening mechanism designed. The convergence and effectiveness of the DELOFF proposed
are also demonstrated in simulations. And, the results confirm that DELOFF is superior to the four
benchmarks in many respects, such as reduced consumed energy and delay in the task completion
of UAVs.

Keywords: unmanned aerial vehicle; computation offloading; heterogeneous networks; multi-arm
bandit; fuzzy logic

1. Introduction

With the popularization of the Internet of Things (IoT), massive applications brought
by the proliferation of intelligent terminals are emerging, changing people’s production and
lifestyles [1,2]. As typical use cases, cutting-edge applications of popular unmanned aerial
vehicles (UAVs) driven by IoT play an indispensable role in transportation systems [3],
agriculture 4.0 [4], environmental monitoring [5], etc. As a result, the computational
requirements for processing these novel applications are rapidly increasing [6]. However,
to maintain lightweight and maneuverability properties, most UAVs are limited by their
local computation and battery capacity, and in most cases, they cannot effectively compute
for these latency-sensitive IoT applications [7]. Thus, how to utilize external network
resources to process computation tasks efficiently and in a timely manner for intelligent
mobile UAVs is a critical challenge that needs to be addressed urgently.

Fortunately, computation offloading as a novel technique is proposed, which can
effectively support the applications of UAVs and assist in processing the tasks generated [8].
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Several studies are devoted to offloading and recommend task offloading from limited
terminals to remote cloud or edge servers. Particularly, mobile edge computing (MEC),
as a novel paradigm, has received extensive attention [9,10]. This can provide powerful
external computing capability to UAVs at the network edge, which improves the offloading
efficiency [11]. For example, by using computation offloading, Liu et al. [12] proposed a
delay optimization approach to reduce the computing delay greatly. And, Bacanin et al. [13]
designed an offloading method dedicated to optimizing energy to minimize the energy
consumed during task computation effectively.

These works alleviate, to some extent, the performance issues caused by the limited
endurance and restricted computational capabilities of UAVs. Still, they only focus on
offloading tasks over a single network, which ignores the potential advantages of current
heterogeneous network architecture and limits the available network options for UAV
offloading, hindering the flexibility and adaptability of flying UAVs in heterogeneous
network environments. In addition, most existing approaches rely on offloading tasks to
fixed servers, which may introduce latency and dependency on a central infrastructure.
This can create significant pitfalls when dealing with latency-sensitive applications or in
situations when the server becomes inaccessible or experiences failures.

Therefore, in this paper, to support massive access and service requests, we consider
the impact of network heterogeneity on offloading performance. The popular 5G introduces
and deploys different radio access technologies, including cellular base stations (BSs)
and WiFi access points (APs) [14,15]. By allowing UAVs to offload computation tasks
over heterogeneous networks, UAVs can take advantage of different network options.
Furthermore, differently from previous works, we consider the original UAV-to-everything
(U2X) paradigm that enables UAVs to offload tasks to various entities, including other
UAVs, ground-based vehicles, infrastructures, and IoT devices [16]. The popularity of
UAVs and other smart terminals make it possible to offload among terminals, which will
effectively reduce the risk of network congestion in data-intensive areas, and extend the
service coverage of edge network in remote areas with few infrastructures. This enhances
the flexibility and adaptability of UAV offloading, resulting in improved performance and
reliability.

However, in the proposed U2X-assisted MEC scenario, there are some key issues that
have not been effectively researched, which pose significant challenges to optimizing the
offloading performance of UAVs, including:

(a) Unstable offloading links: Differently from previous studies in which servers are fixed
by default and devices are assumed to be stationary, in U2X networks, offloading links
may not be always stable due to the movement of UAVs or even offloading entities.
This may cause link disconnections, frequent network switching and even ping-pong
effects, greatly affecting offloading performance.

(b) Centralized offloading frameworks: Much of the existing work relies on central-
ized frameworks to address the offloading problem, which may not be suitable for
UAV systems in such a scenario. Additionally, centralized approaches can introduce
communication overhead, scalability issues, and a single point of failure.

(c) Environmental information uncertainty: Most existing work often assumes that in-
formation about the environment is all known in advance. However, in real-world
scenarios, this assumption is unrealistic due to the large-scale network environment,
which makes it difficult for UAVs to obtain all of the information. The uncertainty of
global state information limits the applicability of previous solutions, posing brand-
new challenges to the effectiveness of UAV offloading.

In response to the aforementioned challenges, this paper formulates the optimization
problem of UAV offloading in heterogeneous networks as the utility maximization for
multi-UAVs through making the joint strategy related to the computation mode, network
selection, and offloading allocation, and then proposes a decentralized offloading scheme
using a U2X-assisted MEC named DELOFF to solve it. The DELOFF proposed achieves the
following aims, including:
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(1) Offloading quality enhancement: By perceiving the motion state of the UAV and the
quality of wireless links approximately, a fuzzy logic-based pre-screening mechanism
is devised and executed on the UAV side, so as to assess and identify the potential
stable offloading nodes dynamically in U2X networks.

(2) Decentralized offloading framework: The offloading problem for multi-UAVs is
transformed into a multi-arm bandit (MAB) learning model in the paper, where
the UAV plays the role of agent, and the arm machine is the strategy of the UAV
for task offloading allocation. And, DELOFF can adaptively acquire the optimal
offloading solution by relying on UAVs to make task offloading decisions locally in a
decentralized manner.

(3) Offloading under information uncertainty: By balancing the exploration–exploitation
trade-off and utilizing bandit feedback to derive an offloading strategy that can
achieve higher potential rewards, DELOFF dynamically adjusts the computation
offloading optimization for multi-UAVs in a decentralized manner, and UAVs do not
need to communicate with each other for certain information.

Overall, our contributions are summarized as follows:

• Unlike the previous works that consider the scene with only one network or fixed
offloading server, we introduce a UAV offloading model in the U2X-assisted heteroge-
neous networks to improve the efficiency and flexibility of offloading. Furthermore,
to avoid additional centralized management that increases overhead, we propose
a decentralized offloading scheme named DELOFF, which can acquire the optimal
solution by leveraging the feedback of empirical reward of task offloading.

• To adaptively evaluate potential offloaded nodes in the dynamic U2X-assisted scenario,
a lightweight pre-screening mechanism is designed to perform on the UAV. The
mechanism can guarantee stable offloading of mobile UAVs and evaluate service
nodes at the risk of disconnection or poor offloading quality such as unexpected
packet loss rate (PLR), without extra demand for information interaction between
UAVs and numerous nodes over heterogeneous networks.

• By considering the uncertainties associated with UAV mobility and environment, the
DELOFF proposed decouples the learning process into exploration, assignment, and
exploitation, further coping effectively with the dynamic offloading and enabling
more robust strategy making for UAVs. Further, the UAV swarm can be scaled up
at will, and the UAVs no longer need to communicate internally or be aware of the
presence of each other in our model, which has great scalability.

• We implement simulations to verify the rationality and effectiveness of the DELOFF
proposed. The results demonstrate that DELOFF can achieve steady convergence, and
show superiority in various scenarios compared to the other four benchmarks.

The rest of the paper is organized as below. Section 2 overviews the related work.
In Section 3, we depict the system model, introduce the task computation models, and
further formulate the optimization problem of task offloading allocation for multi-UAVs.
Moreover, Section 4 shows the proposed offloading pre-screening mechanism, and Section 5
elaborates the details of the developed DELOFF scheme. Finally, Section 6 implements
simulations to demonstrate the DELOFF and Section 7 concludes this paper.

2. Related Work

Nowadays, more and more UAVs can access the infrastructures wirelessly. The MEC
paradigm offers more possibilities for the implementation of novel computation-intensive
or delay-sensitive applications for UAVs at the edge. Effective task offloading through MEC
can ease resource constraints on UAVs and support the requirements of applications [17].
As a result, a series of research on computation offloading has been carried out, and we
briefly outline the related work.

Some studies consider centralized controllers to achieve offloading decisions. Li
et al. [18] considered that the tasks executed by UAVs have demands for delay, and ex-
ploited a genetic-based offloading scheme for the energy-limited UAVs, which optimizes
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the consumed energy under delay constraint. Alfakih et al. [19] designed an offloading
algorithm based on reinforcement learning to make appropriate offloading decisions and
minimize system costs. These methods are poorly adapted to non-centralized computing in-
frastructures [20]. And, they require complete information collection for offloading, which
further increases the delay. In addition, the offloading approaches proposed in [21–24]
through centralized manners are difficult to manage and control when the system scale
expands continuously, and they also have undesirable scalability and robustness.

Therefore, some research is carried out in a distributed architecture. Dai et al. [25] de-
signed a matching-based offloading framework for UAVs in smart cities, which can utilize
resources at the network edge and improve offloading efficiency for UAVs. Xu et al. [26]
used a distributed game approach to accomplish the computation offloading, balancing
the benefits of satisfying the application and relieving the pressure on the server. Nguyen
et al. [27] designed a UAV offloading scheme to improve task completion time by virtue of
reinforcement learning, in which each UAV can only make strategies independently and
offload to the fixed MEC server without sharing information and potential cooperation.
However, these studies [25–29] only use a single network, ignoring the complementarity of
hybrid network resources to single cellular resources in heterogeneous network environ-
ments. Therefore, some studies have tried to consider the effect of network heterogeneity
in offloading. In the reference [30,31], the offloading mechanisms proposed all consider
preferential offloading through WiFi AP when WiFi is available; otherwise, the offloading
will take place over the cellular BS. These mechanisms are carried out through a fixed
network selection mode, which can cause wastage of cellular resources accompanied by
WiFi transmission blockage due to the lack of flexibility.

In addition, existing offloading studies [32,33] ignore the idle resources in neighbors
and the assumed environment is mostly static, without taking the uncertain and stochastic
dynamic environment into account. In fact, UAVs need shared edge resources to process
tasks, but they are unclear with both the information of the system and the demands of
other UAVs. In addition, to avoid the potential risks caused by poor transmission, it cannot
be overlooked how to evaluate each available service node and establish an appropriate
offloading link for mobile UAVs in this densely covered network environment, which is
also a key issue that is not considered in previous studies.

In this paper, an offloading mechanism is considered to make appropriate decisions for
multi-UAVs with different motion states in uncertain environments, which has a joint mea-
sure of service capability, velocity, and transmission link quality. Furthermore, to achieve
decentralized offloading for numerous coexisting UAVs in such stochastic and complex
environments, a learning-based adaptive approach is designed, in which heterogeneous
applications vary in demands, and the exploration–exploitation trade-off is well balanced.

3. System Model and Problem Formulation
3.1. System Model

We consider a U2X-assisted MEC system in heterogeneous networks, as shown in
Figure 1, where the fixed APs and BSs are spatially distributed and fitted with a set of MEC
servers. Within the available service capacity of the servers, they can provide radio access
and computing services for the computational intensive or delay sensitive application tasks
generated by the flying UAVs in the radio range. In addition, considering the availability
of the common edge infrastructures, any widely deployed smart terminals in the scenario
such as vehicles and UAVs can act as offloading nodes or service helper terminals to help
perform certain services for the UAVs within their communication range.
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Figure 1. Multi-UAV task offloading in U2X-assisted heterogeneous networks.

There is a set of UAVs H = {1, ..., H}, and N servers, which is collected in a set
N = {1, ..., N}, and let the set of smart terminals beM = {1, ..., M}. For ease of analysis,
we refer to all edge offloading nodes in the system as the set S , S = N ∪M. The
task from UAV h is typically expressed by a tuple ψh = {dψh , cψh}, in which dψh and
cψh represent the data size and the computation amount required to accomplish task ψh,
respectively. UAVs have differentiated quality of service (QoS) requirements that may
vary for diverse application requests. Specifically, to ensure satisfactory QoS support,
the maximum thresholds tolerable to the critical attributes, including delay and PLR, are
considered when evaluating the normal execution for the applications, which are defined
as dmax and pmax, respectively.

We further consider a slotted scenario for the system, where each UAV h ∈ H generates
a computing task at any time slot t ∈ {1, 2, ..., T} and can choose to process the task locally,
offload through heterogeneous RATs to execute at an edger server, or perform the task
by transferring to a smart terminal through U2X communication. Within the entire time
period, the above different strategies for processing a computation task are accordingly
represented using variable ah. Specifically, ah = 0 indicates that local computing is adopted;
ah = 1 represents that the UAV chooses to offload the task to an edge server n ∈ N ; and
ah = 2 signifies that the task is executed at a terminal mM. As a result, these task offloading
allocation strategies that UAV h can adopt are included in a set A = {ah|ah = 0, 1, 2}, and
each computation task ψh can finally be processed by, at most, one of the strategies.

The system information associated with the CPU processing speed of each edge node
s ∈ S is usually undisclosed to UAVs. Moreover, the communication links between
UAVs and edge nodes may be affected by various factors, such as network congestion,
signal interference, etc. These factors lead to changes and instability in transmission rates,
which may vary even within the same time period. Consequently, the uncertainty and
variability of system information including the processing speed and transmission rate pose
significant challenges for UAVs when making network selection and offloading strategies,
which facilitates us to devise a decentralized task offloading mechanism without involving
information interchange, where all UAVs make offloading strategies locally.
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To facilitate easy referencing, Table 1 provides the definitions for the essential symbols.

Table 1. Key Symbol Definitions.

Symbols Definition

H = {1, ..., H} The set of UAVs
N = {1, ..., N} The set of servers
M = {1, ..., M} The set of helper terminals
S = N ∪M The set of edge offloading nodes
ψh = {dψh , cψh} The computation task of each UAV h ∈ H
dψh The size of task data
cψh The required computation amount to accomplish task
t ∈ {1, 2, ..., T} The time slot
A = {ah|ah = 0, 1, 2} The set of offloading strategies
fuav,h The computation capability of UAV h
fuav,n The computation capability of server n
fuav,m The computation capability of terminal m
dloc,exe

ψh
The local computing time of UAV h

eloc,exe
ψh

The energy consumption of UAV h in local computing
dtr

ψh ,n The transmission time from UAV h to terminal m
dexe

ψh ,n The task execution time on server n
etr

ψh ,n The energy consumption of UAV h for transmitting data to server n
γ0

h The energy coefficient of UAV h
dtr

ψh ,m The task transmission time from UAV h to terminal m

etr
ψh ,m

The energy consumption of UAV h for transmitting task data to
terminal m

dexe
ψh ,m The task execution time on terminal n

Bc The channel bandwidth for cellular network
Pc

h The transmission power of UAV via cellular link
Drc

h The data transmission rate from UAV h to server n via cellular link
Gc

h,n The channel gain from UAV h to the BS
loch = [xh, yh, zh] The position coordinates of UAV h
locn = [xn, yn] The position coordinates of server n
(σc)2 The variance associated with the additive white Gaussian noise
Bw The channel bandwidth for WiFi link
Drw

h The data transmission rate from UAV h to server n via WiFi link
Pw

h The transmission power of UAV via WiFi link
Gw

h,n The channel gain from UAV h to the WiFi AP
ehover

ψh
The hovering energy consumption of UAV h

Phover The hovering power of UAV h

dψh
total

The time of UAV for computation offloading under different
strategies

eψh
total

The energy consumption of UAV under different offloading
strategies

Drm
h

The data transmission rate of the wireless link from UAV h to
terminal m

Bh,m The bandwidth of the wireless link between UAV h and terminal m

Ph,m
The transmission power for offloading task from UAV h to
terminal m

Gh,m The channel gain of the wireless link between UAV h and terminal m
uh,ah

The utility of UAV for processing computation task ψh
δψh ,d, δψh ,e The delay and energy weight factors

3.2. Multi-Mode Task Computation

(1) Local Computing: Let us define fuav,h as the computation capability of UAV h,
representing the CPU chip’s clock frequency (i.e., G cycles/s), and denote cψh as the required
computation resources (i.e., G cycles) to finish task ψh of UAV h, which indicates the total
number of clock cycles to compute the task. UAVs can flexibly consider the use of CPUs or
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GPUs to perform task computations, depending on the computational requirements of the
specific task [34].

Therefore, when task ψh is computed by UAV h locally, the computation execution
time can be given by

dloc,exe
ψh

=
cψh

fuav,h
, ∀h ∈ H (1)

The energy consumption of UAV h in local computing is mainly dominated by the
CPU computation process. Let eloc,exe

ψh
define the energy consumption of UAV h if its task

ψh is computed locally, which can be calculated as in [35]:

eloc,exe
ψh

= γ0
h f 3

uav,h · d
loc,exe
ψh

= γ0
h f 2

uav,h · cψh , ∀h ∈ H (2)

where γ0
h indicates the energy coefficient related to the CPU chip architecture of UAV h,

and γ0
h = 10−26. γ0

h f 3
uav,h expresses the computation power of UAV h. Further, given the

local computing time dloc,exe
ψh

according to Equation (1), the energy consumption of UAV h
for executing the task locally is further expressed as γ0

h f 2
uav,h · cψh .

(2) MEC Offloading: The computation task data can be transmitted from UAVs to edge
nodes via wireless channel. As previously mentioned, the AP in wireless communication
can be either cellular BS or WiFi AP. The channel from the flying UAV h ∈ H to an AP
follows quasi-static block fading [36,37]. By using the Shannon formula, the expected data
transmission rate of UAV h for offloading the task ψh via the orthogonal channel of the
cellular BS to an edge server n ∈ N can be represented as [38,39]

Drc
h = Bc · log2(1 +

Pc
hGc

h,n

(σc)2 ) (3)

where Bc denotes the channel bandwidth for cellular access, the transmission power of
UAV via cellular link is Pc

h , (σc)2 indicates the variance associated with the additive white
Gaussian noise, and Gc

h,n is the channel gain from UAV h to the BS n when offloading task
ψh, Gc

h,n = λc
h,n|χh,n|2. Further, χh,n represents a small-scale fading coefficient, which is a

random variable that follows the Gaussian distribution, i.e., χh,n ∼ CN (0, 1); on the other
side, according to theoretical analysis and empirical measurement, the path loss model for
the large-scale fading gain can be represented as λc

h,n = 128.1 + 37.6 log10 lh,n(dB) [40], in
which lh,n is the transmission distance between UAV h and server n. We define the position
of UAV h ∈ H and server n ∈ N as loch = [xh, yh, zh] and locn = [xn, yn], respectively,
thereby the distance is calculated by lh,n =

√
|zh|2 + ‖[xh, yn]− [xh, yn]‖2.

Likewise, the data rate for offloading task over WiFi connectivity can be expressed as

Drw
h = Bw · log2(1 +

Pw
h Gw

h,n

(σw)2 ) (4)

Similar to many studies such as [36], the variables in Equation (4) have the same
meaning as those in Equation (3). However, there are distinct differences in the values
of the channel bandwidth and path loss model for the two communication technologies
when estimating the transmission rate. Particularly, in Equation (4), Gw

h,n = λw
h,n|χh,n|2,

where the path loss model for the large-scale fading gain is calculated as λc
h,n = 89.5 +

10 log10 lh,n(dB).
Based on Equations (3) and (4), let Drh ∈ {Drc

h, Drw
h } be the data rate for the offloading

task from UAV h to a server n ∈ N through cellular or WiFi wireless link. Accordingly, the
transmission time dtr

ψh ,n of the wireless link between UAV h and server n can be expressed by

dtr
ψh ,n =

dψh

Drh
, Drh ∈ {Drc

h, Drw
h }, ∀h ∈ H, ∀n ∈ N (5)
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Further, we define the computation capability of server n ∈ N as fser,n, then the
execution time spent on server n is

dexe
ψh ,n =

cψh

fser,n
, ∀h ∈ H, ∀n ∈ N (6)

Let Ph ∈ {Pc
h , Pw

h } be the transmission power of UAV h via cellular or WiFi link, then
given the transmission time dtr

ψh ,n, the amount of energy consumed by UAV h during data
transmission can be calculated by

etr
ψh ,n = Phdtr

ψh ,n, ∀h ∈ H, ∀n ∈ N (7)

The offloading nodes have the ability to efficiently transmit results, leading to a
considerable decrease in downloading time compared to offloading time. As a result, it is
acceptable to neglect the time duration and energy usage involved in downloading.

(3) U2X Offloading: In addition to establishing wireless connections and exchanging
data with ground-based infrastructure like cellular BS or WiFi AP, UAVs also can commu-
nicate with the smart terminals such as other UAVs, vehicles, and IoT devices. When UAV
h ∈ H offloads its task ψh to a smart terminal m ∈ M over an orthogonal channel, the data
transmission rate Drm

h can be given by [41,42]

Drm
h = Bh,m · log2(1 +

Ph,mGh,m

(σh,m)2 ) (8)

where Bh,m indicates the bandwidth of the wireless link between UAV h and terminal m, Ph,m
and (σh,m)

2 represents the transmission power and additive white Gaussian noise power
for offloading data from UAV h to terminal m. Further, the channel gain Gh,m = λh,m|χh,m|2,
in which the path loss model for the large-scale fading gain is calculated as λh,m = 133.06 +
31 log10 lh,m(dB), where lh,m represents the physical distance from UAV h to terminal m;
and the random variable χh,m indicates a small-scale fading coefficient, χh,m ∼ CN (0, 1).

Therefore, when task ψh is offloaded to the target smart terminal m, the transmission
time is given by

dtr
ψh ,m =

dψh

Drm
h

, ∀h ∈ H, ∀m ∈ M (9)

If UAV h offloads the computation task ψh to terminal m and successfully obtains the
feedback associated with the computation results, denote etr

ψh ,m as the energy consumption
of UAV h for uploading the task, which can be expressed by

etr
ψh ,m = Phdtr

ψh ,m, ∀h ∈ H, ∀m ∈ M (10)

Further, let us define fter,m as the computation capability of terminal m, the execution
delay on terminal m for computing task ψh can be written as

dexe
ψh ,m =

cψh

fter,m
, ∀h ∈ H, ∀m ∈ M (11)

Consequently, when UAV h performs its task ψh using any of the strategies considered
in this paper, we define the total time experienced by the UAV h as dψh

total for ease of
expression. Specifically, dψh

total can be given by

dψh
total =


dloc,exe

ψh
, if ah = 0, local computing

dtr
ψh ,n + dexe

ψh ,n, if ah = 1, MEC offloading

dtr
ψh ,m + dexe

ψh ,m, if ah = 2, U2X offloading

(12)
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In the system, prior to executing the offloading algorithm, UAVs can serve as data
acquisition terminals for gathering sensor data within designated target regions. The energy
consumed by the UAVs for hovering in these regions and executing data collection tasks
precedes the offloading decisions made by the UAVs. However, the focus of this paper
is not to investigate the energy consumed per se, but rather to explore the optimization
of computational task offloading for UAVs, taking into account the energy consumption
that directly impacts the offloading process. Consequently, UAVs have the option to
offload computational tasks while continuing their predetermined operations. Similarly
to the previous UAV offloading studies [25,36], during this stage, our attention is solely
directed towards the energy consumed during the transmission process resulting from
UAV offloading as described in Equations (7) and (10).

Thereby, when UAV h performs its task ψh using any of the involved strategies, our
focus is on factors that affect UAV offloading, specifically the energy consumption of local
computing on the UAV and the energy consumption of transmitting task data during
offloading. In this case, the energy consumption for computation offloading denoted as
eψh

total can be calculated as

eψh
total =


eloc,exe

ψh
, if ah = 0, local computing

etr
ψh ,n, if ah = 1, MEC offloading

etr
ψh ,m, if ah = 2, U2X offloading

(13)

As an additional extension, we have also taken into consideration the scenario in
which the UAV hovers and waits for the offloading process to be completed, which results
in hovering energy consumption. This hovering energy consumption has a significant
impact on the optimization of the offloading process. In this case, the time that the UAV
hovers in the region is considered to be the offloading time; let us denote the hovering
time as dhover

ψh
, thereby, dhover

ψh
∈ {dtr

ψh ,n, dtr
ψh ,m}. And, the hovering energy consumption is

proportional to the hovering time dhover
ψh

, which is given by [43]

ehover
ψh

= Phoverdhover
ψh

=
ν
√

ν

pe

√
1
2 πωhhr

2D0

dhover
ψh

(14)

in which Phover =
ν
√

ν

pe

√
1
2 πωhhr

2D0

represents the power required to keep the UAV hovering,

taking into account the effects of factors such as air density D0, power efficiency pe, and the
number ωh and diameter hr of the rotors. Additionally, ν denotes the total thrust generated
by the UAV to counteract gravity and drag forces.

As a result, when considering the hovering energy consumption during offloading,
using any of the computation offloading strategies involved, the energy consumption of
the UAV can be calculated as

eψh
total =


eloc,exe

ψh
, if ah = 0, local computing

etr
ψh ,n + ehover

ψh ,n , if ah = 1, MEC offloading

etr
ψh ,m + ehover

ψh ,m , if ah = 2, U2X offloading

(15)

3.3. Utility Function Design

For the applications executed, the utility of UAVs depends significantly on the utility
of the attributes in terms of delay dψh

total and energy consumption eψh
total . In order to effectively

assess the delay and energy consumption generated by UAV h ∈ Hwhen adopting different
strategies, we utilize utility theory to design a utility function that maps these attributes
to corresponding utility metrics, which will further account for the performance of the
computation offloading. Considering that both delay and energy consumption are expected
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to be as small as possible, a large delay will lead to poor performance, thus resulting in
low utility, and it is also the same situation for the energy consumption. Therefore, we
use z to denote the value of the generated delay dψh

total or energy consumption eψh
total , i.e.,

z ∈ {dψh
total , eψh

total}.
According to the utility theory, the designed utility function is required to satisfy the

properties of twice differentiable, monotonic, and concave-convex; in this case, the optimal
point of the utility can be obtained. Moreover, when z starts to reduce from its maximum
value within an allowable range, the utility function presents high sensitivity to the change
in z , resulting in the utility rising significantly. Conversely, as the z gradually decreases
towards the ideal value, typically zero, based on the marginal utility theory, the sensitivity
of the utility to the change in the z diminishes, and the utility is becoming slower and
slower. We define the maximum tolerable threshold of the attribute as zmax, considering the
delay requirement dmax and energy limitation emax of the UAV, here zmax ∈ {dmax, emax};
further, the minimum value is zmin and zmid = (zmin+zmax)

2 is the intermediate value. The
utility function denoted as y(z) should satisfy three additional conditions:

y(z) = 1, ∀z ≤ zmin (16)

y(z) = 0, ∀z ≥ zmax (17)

y(zmid) = 0.5, ∀z = zmid (18)

Let ηz (ηz ≥ 2) signify the application’s sensitivity to the attribute value, which has
obvious impacts on the value of y(z), then y(z) can be formally given as

y(z) =



1 z = zmin
1

1+( z
zmid−zmin

)ηz zmin < z ≤ zmid

( zmax−z
zmax−zmid

)ηz

1+( zmax−z
zmax−zmid

)ηz zmid < z < zmax

0 z ≥ zmax

(19)

In the following, we will conduct a theoretical analysis and proof for the properties of
the utility function illustrated in Equation (19).

Proof. Firstly, we can observe from Equation (19) that y(z) satisfies the three constraints
presented in Equations (16)–(18). Next, we demonstrate the three properties of the y(z).
The differentiability of the y(z) can be proved through deriving the relationship between
the left (right) derivative and the left (right) limit of the y(z) on zmid. Thus, we have

lim
z→zmid

+
y′(z) = lim

z→zmid
+

dy(z)
dz

= − ηz

4(zmid − zmin)
(20)

lim
z→zmid

−
y′(z) = lim

z→zmid
−

dy(z)
dz

= − ηz

4(zmax − zmid)
(21)

Since zmid = (zmin+zmax)
2 , it can be deduced that

lim
z→zmid

+
y′(z) = lim

z→zmid
−

y′(z) = − ηz

2(zmax − zmin)
(22)

Therefore, y(z) is differentiable.
Subsequently, we validate the monotonicity and concavity-convexity for y(z). When

zmin < z ≤ zmid, the first and second derivatives of y(z) can be represented, respectively, as
follows:
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y′(z) =
dy(z)

dz
=
−ηz ·

(
z

zmid−zmin

)ηz−1
· 1
(zmid−zmin)[

1 +
(

z
zmid−zmin

)ηz]2 =
−ηz · zηz−1

(zmid − zmin)ηz
[
1 +

(
z

zmid−zmin

)ηz]2 (23)

y′′(z) =
dy′(z)

dz
=
−ηz · zηz−2

[
ηz − 1− (ηz + 1)( z

zmid−zmin
)ηz
]

(zmid − zmin)
ηz
[
1 +

(
z

zmid−zmin

)ηz]3 (24)

In this case, y′(z) ≤ 0 and y′′(z) ≥ 0. Meanwhile, when zmid < z < zmax, y′(z) and
y′′(z) can be represented by Equations (25) and (26).

y′(z) =
dy(z)

dz
=

−ηz · (zmax − z)ηz−1

(zmax − zmid)
ηz
[
1 +

(
zmax−z

zmax−zmid

)ηz]2 (25)

y′′(z) =
dy′(z)

dz
=

ηz · (zmax − z)ηz−2
[
ηz − 1− (ηz + 1)

(
zmax−z

zmax−zmid

)ηz]
(zmax − zmid)

ηz
[
1 +

(
zmax−z

zmax−zmid

)ηz]3 (26)

In this situation, y′(z) < 0 and y′′(z) < 0 are still satisfied. Consequently, y(z)
will monotonically decrease with the variable z. In addition, y(z) is concave when
zmin < z ≤ zmid; conversely, when zmid < z ≤ zmax, y(z) is convex.

The proof is accomplished.

To this end, the delay and energy consumption utilities can be acquired according to
Equation (19), which are represented as y(dψh

total) and e(dψh
total), respectively.

3.4. Problem Formulation

As stated above, no matter which strategy the UAV h adopts, based on multi-attribute
utility theory, the utility of UAV h for processing task ψh can be expressed as the weighted
utility accounting for y(dψh

total) and y(eψh
total), i.e.,

uh,ah
= δψh ,d · y(d

ψh
total) + δψh ,e · y(eψh

total) (27)

in which δψh ,d and δψh ,e signify the trade-off factors between delay and energy consumption.
Therefore, the objective of the UAV is to maximize its utility for processing a computa-

tion task through searching the optimal task offloading allocation strategy. Mathematically,
the problem can be formulated as

max
ah

H

∑
h=1

uh,ah

=max
ah

H

∑
h=1

(δψh ,d · y(d
ψh
total) + δψh ,e · y(eψh

total))

s.t. C1 : ∑ ah = 1, ah ∈ {0, 1}
C2 : C′ser,n(t) ≤ Cser,n, n ∈ N
C3 : C′ter,m(t) ≤ Cter,m, m ∈ M

C4 :
H

∑
h=1

αh,m(t) ≤ 1

(28)

where C1 illustrates that the UAV h can select one of the available offloading nodes to
process its task or choose to compute locally, and the problem is constrained by the bi-
nary offloading decisions. Further, C2 and C3 imply, respectively, that the computational
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resources the offloading node n ∈ N and m ∈ M can provide at a certain time are limited
by their computation capacity. C4 indicates that the terminal m ∈ M is specified to provide
computing services for, at most, one UAV within a certain time.

However, the UAV cannot be aware of the strategies of other UAVs; in addition, the
servers’ available computation capacity and the channel conditions are commonly unclosed
to UAVs. As a result, the optimization problem should resort to a learning-based approach
to solve.

3.5. A Preliminary Discussion on UAV Retransmission

Furthermore, if the UAV is processing a computation task that places stringent de-
mands on the data transmission reliability, or is highly sensitive to precise decision making,
a data retransmission check model can also be considered in the system to address this
challenge and ensure data integrity and normal task execution. Due to space limitations, a
preliminary and brief discussion of this topic will be presented in this paper.

Within the retransmission check model, the selected offloading node can send ac-
knowledge character (ACK) messages to the UAV with service requests over a wireless link.
These ACK messages serve as a feedback mechanism, allowing the UAV to ascertain the
receiving status of the offloading target node. In particular, for maintaining the reliability
and timeliness of the task data, and striking a balance between ensuring timely data recep-
tion and minimizing unnecessary retransmissions, each UAV imposes a delay constraint
on the ACK messages and packages the information into time-stamped packets before
uploading to its offloading target to verify whether the offloading target has successfully
received the transmitted data within a predefined time window. If an offloading target fails
to transmit the ACK message within the designated time window, it triggers the initiation
of data retransmission. This mechanism enables the UAV to resend the unacknowledged
data associated with the computation task, thereby guaranteeing the successful reception
of the task data by the offloading target node. At this point, the time and energy consumed
by the UAV retransmission will have an impact on the performance of UAV offloading.

4. Fuzzy Logic-Based Offloading Pre-Screening

Considering the movement of UAVs in system and the impact of transmission quality
when offloading data, in this section, by leveraging the strengths of fuzzy logic theory on
the adaptiveness to the varying environment and dealing with the uncertainty information
through fuzzy inference, we devise a task offloading pre-screening mechanism that em-
powers UAVs to adaptively screen out the available offloading nodes from multiple servers
and helper terminals.

As illustrated in Figure 2, the fuzzy logic-based pre-screening framework processes the
UAV velocity relative to the potential offloading nodes and PLR generated during offload-
ing with three procedures, i.e., fuzzification, fuzzy inference and defuzzification [44,45],
and finally outputs a scalar value Prs ∈ [0, 1]. The Prs indicates the probability of se-
lecting the offloading node s, representing adaptability degree of the task to node s ∈ S ,
S = N ∪M.

Particularly, the PLR generated in wireless transmission is evaluated by [46]

ptr
ψh ,s = φ1 · dψh · exp(−φ2 ·

PRss

σ2 · l2
h,s

), ptr
ψh ,s ≤ pmax (29)

where 0 < φ1, φ2 < 1, both are the tunable parameters, PRss indicates the received signal
strength, σ2 ∈ {(σc)2, (σw)2, (σm)2} is the noise power, and lh,s denotes the distance from h
to the node s.

Further, on the basis of the designed framework, a fuzzy logic-based offloading
pre-screening scheme is devised to improve the transmission quality, and its detailed
procedures are illustrated in Algorithm 1.
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Figure 2. Fuzzy logic-based offloading pre-screening framework in DELOFF.

Algorithm 1 Fuzzy logic-based offloading pre-screening

Input: Potential offloading nodes set S =M∪N .

Output: Available offloading nodes set S for UAV h.

1: while each sense stage do

2: UAV h ∈ H senses existing offloading nodes;

3: for s = 1 : S do

4: UAV h evaluates the velocity relative to node s ∈ S ;

5: UAV h measures the PLR ptr
ψh ,s by using Equation (29);

6: Prs ←− f uzzy(velocity and ptr
ψh ,s);

7: if Prs < P̂rs then

8: UAV h updates its available offloading node in S

9: end if

10: end for

11: end while

The offloading pre-screening algorithm runs on each UAV in a decentralized manner,
which takes the set S =M∪N of all of the potential offloading nodes, including MEC
servers and helper terminals, as the inputs for the purpose of previously evaluating and
choosing available offloading nodes. In the algorithm proposed, in lines 2 to 5, each UAV h
equipped with sensors periodically monitors the potential offloading nodes, samples the
velocity relative to a specific offloading node, and measures the PLR in data transmission
if assuming the task will be offloaded through the wireless link correspondingly. Then,
in line 6, the algorithm proceeds to the developed fuzzy logic model. Particularly, in the
fuzzification stage, the measured data in terms of velocity and PLR are first mapped to
fuzzy sets based on the corresponding velocity and PLR, respectively. Afterward, the
fuzzy inference operation analyzes the fuzzified inputs and generates the fuzzy output
according to a series of fuzzy rules in the form of IF-AND-THEN that can express the
relationship between the input variables and output. Furthermore, the defuzzification
procedure acquires a scalar value Prs for each node s ∈ S by applying the centroid
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defuzziffer method [47] under the triggered fuzzy rule. The Prs ∈ [0, 1] can be regarded
as the adaptability degree of node s to task ψh, and a higher Prs means better adaptability.
Thereby, finally, in lines 7 to 9, Prs is compared with a permitted threshold P̂rs, and if the
Prs > P̂rs holds, then the node is selected as the available offloading node for UAV h.

5. Decentralized Bandit Learning Solution for Task Offloading

In this section, we resort to the multi-arm bandit (MAB) learning to design a decentral-
ized computation offloading framework for maximizing the long-term rewards of UAVs.
Further, the procedures and learning regret of the algorithm are discussed, respectively.

5.1. Bandit Learning-Based Task Offloading Model

In particular, the optimization problem defined in Equation (28) is regarded as a MAB
learning problem by modeling the UAVs as agents. For ease of illustration, we define the
strategy space of the UAVs as K = {1, 2, ..., K}; once the UAV choose one of the strategies,
it is regarded as pulling an arm k ∈ K, and the expected reward can be considered as uh,k
according to uh,ah

in Equation (28). Thereby, the problem in Equation (28) is transformed
into the following:

max ∑
h∈Nk

uh,k , s.t. C1 − C4 (30)

where Nk indicates the set of UAVs that choose to pull arm k ∈ K.
Our formulated optimization problem belongs to a Generalized Assignment problem

(GAP), it is commonly difficult for the algorithms with polynomial time complexity to find
the optimal task offloading allocation strategies for UAVs. In addition, the suboptimal solu-
tion to our defined problem resulted from a centralized approach and only guarantees that
(1 + β)-approximate utility, i.e, ∑Hh=1 uh,ah

≥ 1
1+β ∑Hh=1 uh,a∗h

, in which β is the approximate
ratio, β ≥ 1, and a∗h is the oracle strategy to the GAP problem. As a result, in the MAB
model, let rh,ah

be the reward perceived by the UAV for making an offloading strategy at
time slot t in a decentralized manner, and E[rh,ah

(t)] = uh,ah
when the computation task is

accomplished, otherwise rh,ah
= 0. Furthermore, by utilising the highest suboptimal utility

T
2 ∑Hh=1 uh,a∗h

, i.e., β = 1, for the bandit learning based task offloading model, the learning
regret can be represented as

R(T) = T
2

H
∑
h=1

uh,a∗h
−

T

∑
t=1

H
∑
h=1

E[rh,ah
(t)] (31)

To achieve desirable service performance or minimize the learning regretR(T), the
trade-off between the exploration and exploitation should be effectively considered in the
design of the DELOFF scheme. Thereby, in DELOFF scheme, we divide the entire time
domain T into an epoch sequence {1, ..., IT} during the learning process, where each epoch
consists of a varying number of time slots, and the index IT represents the final epoch in the
epoch sequence. Moreover, to facilitate the trade-off between exploration and exploitation,
the learning process within each epoch is decomposed into three stages: exploration,
assignment, and exploitation. Specifically, in the i-th epoch, the exploration procedure
occupies the initial T1 time slots, and the assignment stage requires the subsequent T2 time
slots, where T1 = K, and T2 are at most equal to S. Finally, the exploitation stage extends
for the remaining time slots within the epoch, and the number of it is 2i. This means the
exploitation dominates the exploration and assignment procedures; thus, the exponential
time slots are taken.

(1) Exploration: In this stage, each UAV h ∈ H traverses the available offloading
nodes in S , screened by performing the proposed offloading pre-screening mechanism
and offloading its task, so as to obtain the reward r̃(i)h,k , which represents an empirical
(sample-mean) estimation of the reward rh,ah

for pulling arm k from the beginning to the
current time slot during the learning process. In more detail, if arm k has been selected
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Nt(k) times up until the end of time T, the empirical mean reward for pulling arm k can

be represented as

Nt(k)
∑

j=1
rh,ah

[j]

T , where
Nt(k)

∑
j=1

rh,ah
[j] indicates the sum of the reward rh,ah

for

selecting arm k with Nt(k) times.
(2) Assignment: This stage mainly aims to achieve the (1 + β)-approximate task

offloading assignment for the problem defined in Equation (28). To achieve a 2-approximate
assignment, we initially decouple the assignment problem into S knapsack sub-problems,
and subsequently obtain the optimal solution for each sub-problem by using the branch-
and-bound (BnB) approach as the (1+ β) approximation oracle to create matching between
the tasks of UAVs and offloading node s ∈ S sequentially. Specifically, we use an indicator
function ξ = {ξh, h ∈ H} to store the current assignment results of the computation task
for each UAV h. For the ξh, ξh = 0 means, the UAV h chooses to computing its task locally,
and ξh = k′ implies that UAV h will change its matching to k′. During this stage, we define
a function as ∆r̃(i)h,k to characterize the performance improvement of the computation task
for the UAV, i.e.,

∆r̃(i)h,k =

{
r̃(i)h,k ξh = 0

r̃(i)h,k′ − r̃(i)h,k ξh = k′
(32)

Accordingly, given the performance improvement ∆r̃(i)h,k, through continuously updat-
ing the assignment ξh based on the BnB, the final assignment ξ can achieve a 2-approximate
when all of the sub-problems can be processed optimally.

(3) Exploitation: Exploitation enables the agent to focus on arms that have historically
provided higher rewards. Therefore, this stage dominates the exploration and assignment
procedures, thus the exponential time slots are taken, and all UAVs will offload their
computation tasks by exploiting the assignment ξ to maximize the overall cumulative
rewards over time.

5.2. The Proposed DELOFF Algorithm

The details of the proposed decentralized offloading scheme is summarized in
Algorithm 2.

In the MAB-based DELOFF algorithm, each UAV initially filters the available offload-
ing nodes using Algorithm 1, based on the quality of wireless links transmission to reduce
the strategy space of the learning scheme. Then, the algorithm proceeds to the bandit
learning procedures. During the learning process, the algorithm enables each UAV h to
keep track of the empirical mean reward r̃(i)h,k for pulling each arm k ∈ K. Furthermore,
as outlined in Section 5.1, the DELOFF algorithm consists of three different stages, which
are exploration (lines 6∼11), task offloading assignment (lines 12∼20), and exploitation
(lines 21∼24). In the exploration stage, all UAVs will pull the arm k ∈ K at least once.
Afterward, each UAV m observes the reward rh,ah

(t) and updates r̃(i)h,k with rh,ah
(t) obtained

for selecting arm k. Next, the algorithm proceeds to the assignment stage, where all UAVs
locally calculate the performance improvement of the reward using Equation (32), i.e., ∆r̃(i)h,k,

and send ∆r̃(i)h,k to the corresponding offloading node s ∈ S to execute the BnB algorithm.
Further, if the task of UAV h is allocated to the offloading node s to process, we need to
update ξh. When the exploitation stage starts, all UAVs exploit the assignment result ξ to
process their tasks for 2i time slots. Finally, the optimal task allocation a = {ah, h ∈ H} for
computation offloading can be derived if the learned r̃(i)h,k approximately approaches to the
expected reward uh,ah

, corresponding to the arm k.
The complexity of Algorithm 1 is O(S), which results from the loop of scanning the

potential offloading nodes. And, the complexity of Algorithm 2 is O(HS) due to the
complexity of implementing assignments between multi-UAVs and their filtered available
nodes, while the reward update procedures only take constant time. Hence, the complexity
of DELOFF is O(HS) in the worst case.
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Algorithm 2 MAB-based Decentralized Offloading Algorithm

Input: {Cser,n , n ∈ N}, {Cter,m , m ∈ M}, {cψh , h ∈ H}

Output: the optimal allocation for computation offloading a = {ah , h ∈ H}

1: Initialize S = N ∪M, {r̃(i)h,k = 0, ∀h ∈ H, k ∈ K};

2: for each UAV h ∈ H do

3: Obtain all the available offloading nodes S by executing Algorithm 1;

4: end for

5: for epoch i = 1 : IT do

6: #Exploration stage

7: Set T1 ← K

8: for t = 1 : T1 do

9: For each UAV h, traverses all the available strategies in K at least once;

10: Update r̃(i)h,k by rh,ah
(t) obtained for playing arm k;

11: end for

12: #Assignment stage

13: Set the assignment indicator ξ = {ξh = 0 h ∈ H};

14: Set T2 ← S;

15: for s = 1 : S do

16: Set k← s;

17: Each UAV calculates ∆r̃(i)h,k using Equation (32);

18: Execute BnB for node s ∈ S with the inputs {Cser,n , n ∈ N}, {Cter,m , m ∈ M},

{cψh , h ∈ H}, and {∆r̃(i)h,k , h ∈ H};

19: Each UAV h updates ξh if its task is assigned to the node s;

20: end for

21: #Exploitation stage

22: for the rest 2i time slots do

23: Each UAV h offloads task by following the assignment results ξ and update r̃(i)h,k by

rh,ah
(t).

24: end for

25: end for
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5.3. Regret Analysis

The upper bound of learning regret is demonstrated in this subsection, so as to
measure performance loss, and show robustness of the proposed MAB-based decentralized
offloading scheme.

According to Equation (32), we denote two types of the instant reward gap between
two UAVs h and h′ i.e., g(1)min and g(1)min, which can be given by

g(1)min = min
h,h′∈H

min
j,k∈K

|uh,j − (uh′ ,j − uh′ ,k)|, h 6= h′ ∈ H (33)

g(2)min = min
h,h′∈H

min
j,j′ ,k∈K

|(uh,j − uh,j′)− (uh′ ,j − uh′ ,k)|, h 6= h ∈ H, j 6= j′ 6= k ∈ K (34)

We then define the minimum reward gap of UAV h for pulling arms k and k′ as gmin,
i.e., g(3)min = min

h∈H
min

k,k′∈K
{|uh,k − uh,k′ |}. Further, a reward gap denoted by gmin is given by

gmin = min{g(1)min , g(2)min , g(3)min} (35)

In addition, the ratio between the maximum capacity Cs = max{Cser,n, Cter,m, ∀n ∈
N , m ∈ M} and the minimum computation requirement of the tasks can be represented
as Hmax = Cs

min
h∈H
{cψh}

, which also indicates the maximum number of UAVs for which the

system can provide the computing service at a certain time slot.
Next, on the basis of the above definitions, Theorem 1 reveals that the learning regret

presented in Equation (31) has a tight upper bound.

Theorem 1. Let us denote T1 ≈ dK 25H2
max∆2

r
2(gmin)2 e when the number of UAVs is less than that of their

available offloading nodes, i.e., H < K; otherwise, T1 ≈ d(K + H) 25H2
max∆2

r
2(gmin)2 e, where ∆r = r̄− r

indicates the difference between the upper and lower bound of the reward obtained by the UAV in
system. The upper bound of the regret in DELOFF can be expressed by

R̃(T ) ≤ (T1
Hr̄
2

+ T2
Hr̄
2
) · log2(T + 2) + 4H2Kr̄ = O(log2 T) (36)

Proof. Firstly, in the exploration stage, we establish an upper limit on the exploration error
probability, i.e., ε = {|r̃(i)h,k − uh,k| >

gmin
5Hmax

}. After conducting the i-th exploration, any
UAV h ∈ H would perceive reward for pulling arm k ∈ K by at least ρmin times, here

ρmin = T1
K · i = d

25H2
max∆2

r
2(gmin)2 e · i. Thereby, the probability ε follows

Pr(ε|ρmin) ≤
H⋃

h=1

K⋃
k=1

Pr(|r̃(i)h,k − uh,k| >
gmin

5Hmax
)

≤ H · K · max
h∈H, k∈K

Pr(|r̃(i)h,k − uh,k| >
gmin

5Hmax
)

(37)

According to Chernoff–Hoeffding inequality, Equation (37) satisfies that

Pr(ε|ρmin) ≤ 2H · K · e
− 2(gmin)

2

25H2
max∆2

r
ρmin ≤ 2H · K · e−i (38)

In the assignment stage, according to Equation (38), it has |r̃(i)h,k − uh,k| ≤
gmin

5Hmax
at

least with a probability of 1 − 2H · K · e−i. Let ξ(u) = {ξ(u)h , h ∈ H} be the indicator
that determines the matching strategy a(u) for the optimization problem described in
Equation (28) based on the expected rewards {uh,k}. For the subproblem described in
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Equation (30) that corresponds to the offloading node k ∈ K under optimal matching, we
denote

opt1
k(a

(u)) =
H

∑
h=1

∆uh,k =
H

∑
h=1

(uh,k − u
h,ξ(u)h

) (39)

opt2
k(a

(u)) =
H

∑
h=1

∆r̃(i)h,k =
H

∑
h=1

(r̃(i)h,k − r̃(i)
h,ξ(u)h

) (40)

Then, it can be deduced that

opt1
k(a

(u))− opt2
k(a

(u)) =
H

∑
h=1

[(uh,k − r̃(i)h,k)− (u
h,ξ(u)h

− r̃(i)
h,ξ(u)h

)] (41)

Let ζh,k = (r̃(i)h,k − uh,k), considering that each offloading node can host a maximum of

Hmax UAVs, and |r̃(i)h,k − uh,k| ≤
gmin

5Hmax
; thereby, we have

opt1
k(a

(u))− opt2
k(a

(u)) ≤ Hmax ·max{|ζh,k|+ |ζh,ξ(u)h
|} ≤ 2gmin

5
(42)

Further, given the optimal matching a∗, as similar to Equations (39) and (40), we have

opt1
k(a
∗) =

H

∑
h=1

∆uh,k =
H

∑
h=1

(uh,k − uh,ξh
) (43)

opt2
k(a
∗) =

H

∑
h=1

∆r̃(i)h,k =
H

∑
h=1

(r̃(i)h,k − r̃(i)h,ξh
) (44)

Hence, similarly to Equation (42), it can be deduced that

opt1
k(a
∗)− opt2

k(a
∗) ≤ Hmax ·max{|ζh,k|+ |ζh,ξh

|} ≤ 2gmin
5

(45)

Moreover, opt2
k(a

(u)) ≤ opt2
k(a
∗) due to a∗ is the optimal matching for the offloading

node k ∈ K given the rewards {∆r̃(i)h,k , h ∈ H}. In this case, the following inequality can be
derived,

opt1
k(a

(u))− opt1
k(a
∗)

= opt1
k(a

(u))− opt2
k(a

(u)) + opt2
k(a

(u))− opt1
k(a
∗)

≤ [opt1
k(a

(u))− opt2
k(a

(u))] + [opt2
k(a
∗)− opt1

k(a
∗)]

≤ 4gmin
5

(46)

Moreover, opt1
k(a

(u))− opt1
k(a) ≥ gmin, ∃k ∈ K. If opt1

k(a
(u))− opt1

k(a
∗) ≤ 4gmin

5 , ∀k ∈
K, it is highly likely that opt1

k(a
(u)) = opt1

k(a
∗) for each k ∈ K, i.e., ξ = ξ(u). Conse-

quently, we can assure that a∗ is the 2-approximate strategy for our optimization problem
in Equation (28).

Finally, the exploitation stage lasts for 2i time slots and exploits the optimal indicator
ξ(u) to maximize the overall cumulative rewards over time.

For the existence of the exploration, assignment, and exploitation stages in the pro-
posed DELOFF, the cumulative regret R̃(T) in Equation (31) can mainly be determined by
the time slots corresponding to different stages, the inequalities given in Equation (38), the
number of UAVs, and the upper bound reward r̄ of the UAV. To sum up, R̃(T) satisfies the
following expression:
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R̃(T) ≤
IT

∑
i=1

(T1
Hr̄
2

+ T2
Hr̄
2

+ 2HKe−i · T3 ·
Hr̄
2
)

≤
IT

∑
i=1

(T1
Hr̄
2

+ T2
Hr̄
2

+ 2HKe−i · 2i · Hr̄
2
)

=
IT

∑
i=1

(T1
Hr̄
2

+ T2
Hr̄
2
) + H2Kr̄ ·

IT

∑
i=1

(
2
e
)i

≤ (T1
Hr̄
2

+ T2
Hr̄
2
)IT + H2Kr̄ · 2

e− 2

≤ (T1
Hr̄
2

+ T2
Hr̄
2
) log2(T + 2) + H2Kr̄ · 2

e− 2

≤ (T1
Hr̄
2

+ T2
Hr̄
2
) log2(T + 2) + 4H2Kr̄

= O(log2 T )

(47)

which accomplishes the proof.

6. Simulation Results

In this section, we evaluate the performance of the DELOFF mechanism from multi-
ple aspects. The task offloading scenario is covered by heterogeneous networks over an
800 m × 800 m × 800 m area, where multi-UAVs are randomly distributed. The communi-
cation radius of cellular and WiFi networks are 400 m and 200 m, respectively, and the U2X
communication radius is 30 m [48–50]. The bandwidths Bc and Bw for cellular and WiFi
access are set to 10 MHz and 20 MHz, respectively, as well as the bandwidth Bm,h, which is
5 MHz [51–53]. The transmission power Pc

h , Pw
h , and Ph,m are set to be the same value, i.e.,

15 W, and the noise (σc)2, (σw)2 and (σh,m)
2 are −89 dBm [54]. Moreover, the computation

capacity of server n ∈ N , helper terminal m ∈ M, and UAV h ∈ H, denoted by fser,n,
fter,m, and fuav,h, follow the uniform distribution in [8, 10] G cycles/s, [3, 4] G cycles/s, and
[1, 2] G cycles/s, respectively. Meanwhile, the edge servers and helper terminals endow
maximum computation capacity denoted as Cser,n, Cter,m, which are uniformly distributed
in [18, 20] and [2.5, 3] G cycles. In addition to the performance comparison performed in
the scenario of varying task data size in Section 6.5, in other simulations for generated
computation tasks, the data size dψh is randomly distributed in [2.8, 3] MB. Similarly, in
scenarios that do not consider the impact of changing computation resource demands, the
required computation resources cψh are set to be randomly distributed in [2, 2.5] G cycles.
Note that these values represent a typical range of data and computational workloads
commonly encountered in UAV tasks. The actual data size depends on factors such as
the data format, while the computational workload depends on the complexity of the
algorithms applied. To create a balance between delay and energy consumption when
evaluating the offloading performance, both δψh ,d and δψh ,e are set to be 0.5 accordingly.
Finally, Table 2 lists all of the key parameters used in the simulations.

Table 2. Parameter Settings.

Symbol Value Symbol Value

Bc (MHz) 10 Bw (MHz) 20
Bm,h(MHz) 5 (σc)2, (σc)w, (σh,m)

2 (dBm) −89
Pc

h , Pw
h ,Ph,m(W) 15 fuav,h(G cycles/s) [1, 2]

fter,m(G cycles/s) [3, 4] fser,n (G cycles/s) [8, 10]
Cter,m(G cycles) [2.5, 3] Cser,n (G cycles) [18, 20]
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6.1. Probability Analysis of Offloading Nodes

We first present the offloading probability to any of the potential offloading nodes
for the UAV under different relative velocities and PLRs in Figure 3. We discover that the
probability declines with the increment of the velocity and PLR as expected; this situation
demonstrates that our designed offloading pre-screening scheme is correct and effective for
assisting and screening the potential offloading nodes in the system.

Figure 3. Offloading probability under different velocities and PLRs.

6.2. Convergence Evaluation

Figure 4 shows the time accumulated reward of DELOFF proposed over the iteration
times when varying the number of UAVs. It can be seen that the curves of all accumulated
rewards present an upward trend with the increase in iterations. This situation demon-
strates the effectiveness of the DELOFF scheme. Furthermore, as shown in Figure 5, we
introduce the DEL-WF as a baseline and make a convergence comparison when varying
the number of UAVs; the DEL-WF scheme is originated from the DELOFF but without
considering the fuzzy logic-based pre-screening mechanism proposed in DELOFF. It can be
observed that the reward of DELOFF can stabilize over the time iterations rapidly, and the
convergence performance of the DELOFF proposed is better than that of the DEL-WF as
expected. This validates that the DELOFF can eliminate many offloading nodes according
to service performance of the potential nodes to search for the optimal solution, which also
promotes convergence effectively.
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Figure 4. Time accumulated reward when varying number of UAVs.
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Figure 5. Convergence comparison on time-average reward.

6.3. Performance Comparison with Varying Number of Tasks

We carry out a series of performance comparisons between the DELOFF proposed
and existing mainstream offloading schemes. For comparison, four comparative algo-
rithms are considered including (1) An upper confidence bound-based task offloading
scheme (UCBTO) [55]; (2) A weight improvement-based particle swarm optimization of-
floading algorithm (IWPSO) [56]; (3) A task offloading based on an improved genetic
algorithm (IGATO) [57]; (4) A greedy-based sequential tuning computation offloading
scheme (STCO) [58].

As depicted in Figures 6–10, we investigate the achieved performance of different
offloading schemes in terms of different performance metrics for UAVs during offloading
tasks, where the delay and energy consumption of each UAV to complete the computation
offloading are calculated accordingly using Equations (12) and (15). In Figure 6, it is
observed that the delay realized in different approaches raises with the increment of the
tasks. This is because the increase in tasks at a certain time causes high computation
demands and high delay. However, this upward trend is moderate for the DELOFF
proposed in contrast to other schemes. And, the delay is reduced up to 12.05% over the
IWPSO algorithm, which demonstrates that the DELOFF scheme can adaptively achieve
the optimal computation offloading when considering U2X offloading and MEC offloading.
On the other side, the IGATO wants to minimize its overall task offloading cost rather than
taking the cost minimization into account for individual UAVs with computation tasks,
and the average delay performance consequently performs more poorly than others.
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Figure 6. Average delay versus the number of tasks.
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From Figure 7, we can find that the average energy consumed by each UAV in five
algorithms increases with the increment of number of tasks. This is because with the
increase in tasks processed, the UAVs need more energy to process the data in local, or
offload them to the helper terminals or MEC servers according to the designed strategies.
However, the consumed energy of the proposed DELOFF scheme rises gradually and is
lower than that of the other comparative methods by at least 17.09%. It occurs because our
mechanism explicitly and effectively minimizes the time of processing the tasks through
adopting appropriate offloading strategies, and facilitates the reduction in the energy
consumption of UAVs. Moreover, we observe that the performance achieved by the
UCBTO algorithm and the IWPSO algorithm in Figures 6 and 7 is relatively similar when
the number of tasks is small. However, as the number of tasks increases, the IWPSO
algorithm shows potential for relatively superior performance. This can be attributed
to the advantage of IWPSO in the swarm-based optimization capability. As the number
of tasks increases, the IWPSO algorithm has more opportunities to efficiently explore
various solutions and discover a more optimal strategy that minimizes delay and energy
consumption. Compared to the UCBTO algorithm, the IWPSO algorithm achieves relatively
improved task allocation and resource utilization in scenarios with a higher number of
tasks, effectively reducing delay and energy consumption. Consequently, the performance
trends of IWPSO exhibit a relatively gradual change as the number of tasks increases.

In general, our DELOFF proposed performs better than other methods by distributing
the tasks of UAVs to the available offloading nodes through bandit feedbacks.
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Figure 7. Average energy consumption versus the number of tasks.

Additionally, the overall PLR that occurred during the data transmission process is
measured in Figure 8. It reflects that the DELOFF proposed outperforms the other four
task offloading approaches in terms of PLR performance. This is because our devised task
offloading model can always make the most effective strategy through fully considering
the impact of PLR on the integrity of the transmitted data compared with other schemes.
The numerical results indicate that the total PLR during offloading in our DELOFF scheme
is lower than that in other algorithms by at least 12.99%.

In the model considered, when the DELOFF scheme violates at least one constraint,
we treat it as task failure. Figure 9 shows the overall task failures under different numbers
of tasks during the task offloading process; we observe that our mechanism can always
keep task failure at a lower level. The DELOFF takes advantage of the fuzzy logic-based
policy on conducting effective filtering to offloading nodes by deriving a self-adapting
probability of accessing the link according to the PLR and velocity, which is helpful for
avoiding disconnection or poor transmission quality. On this basis, our proposed DELOFF
attentively offloads the tasks by jointly considering the delay and energy, and can satisfy
the multiple constraints of a higher number of UAVs with computation tasks to process.
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In contrast, the other schemes neglect the relationship between task failure and other
performance indicators, leading to more task failures as compared to the proposed DELOFF.
In summary, the DELOFF can reduce the number of task failures by at least 15.83%.
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Figure 8. Packet loss rate versus the number of tasks.
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Figure 9. Task failures versus the number of tasks.

Figure 10 displays the average utility with respect to the different number of tasks. As
can be seen, the average utilities in different schemes are almost close to each other when
the number of tasks processed is small, while the DELOFF scheme is able to achieve the
highest utilities for UAVs in the four benchmark schemes. This is because the designed
mechanism of DELOFF can derive optimal task offloading strategies by identifying the
available offloading nodes as well as benefiting from the bandit learning with implicit
feedback. Accordingly, more tasks of UAVs are facilitated to be effectively processed to
obtain higher utility under the capacity constraints of servers. As a summary, the DELOFF
improves up to 11.82% utility over the four schemes, respectively.

In addition, we preliminarily explore the impact of retransmissions on the offload-
ing performance of the DELOFF proposed. Specifically, we investigate the influence of
increasing the maximum allowed number of retransmissions on the delay and energy
consumption of the UAV offloading as the number of computational tasks increases, fol-
lowing the similar approach described in [59]. Based on the results shown in Figure 11a,b,
it is evident that increasing the maximum allowed number of retransmissions leads to
elevated data transmission latency and increased energy consumption. In particular, ex-
cessive retransmissions can cause significant delays in data transmission, being especially
worse for time-sensitive tasks. Additionally, even with multiple retransmissions, there
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is still a possibility of unsuccessful transmission if the distance between the offloading
node and the UAV exceeds a certain communication range. Consequently, unnecessary
retransmissions can negatively affect the performance of UAV offloading and the overall
operational efficiency of the UAV network. Therefore, in order to adaptively adjust the
retransmission strategy for computation task data, we can further consider the sensitivity of
different computational tasks to data loss and the impact of retransmissions on offloading
performance. This issue will be addressed as part of our future work.
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Figure 10. Average utility versus the number of tasks.
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Figure 11. Average delay and energy consumption considering the maximum allowable number of
retransmission times.

6.4. Performance Comparison with Varying Task Computation Demands

Figure 12 exhibits the performance comparison of the DELOFF and four other ap-
proaches with the increasing needs for computation resources, including the average delay,
energy consumption, and utility, where the total number of UAVs is set to be 25. As
depicted in Figure 12a,b, the average delay and energy consumption increase with the
growth of the required computation resources. This is because high computation demands
will consume more computing delay and energy, which certainly degrades the average
utility shown in Figure 12c. The delay and energy consumption of our scheme raise much
more slowly when the average CPU cycles required by tasks is less than 2.5, and the
utility shows the opposite trend, correspondingly. It occurs because our scheme has the
ability to choose the best offloading target for each UAV from the available action space
through decentralized repetition learning. The UCBTO algorithm always presents a certain
performance gap with the DELOFF. On the other side, the performance of IWPSO in terms
of delay, energy consumption, and utility is very close to UCBTO, which is because UAVs
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in IWPSO can converge to the relative optimal solution in some cases. Finally, based on
the above observations, our proposed DELOFF outperforms four other mechanisms and
reduces delay and energy consumption by up to 7.13% and 14.44%, respectively. At the
same time, the average utility is improved by at least 11.97%.
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Figure 12. Impact of computation resource demands on offloading performance. (a) Average delay
versus computation resource demands. (b) Average energy consumption versus computation resource
demands. (c) Average utility versus computation resource demands.

6.5. Performance Comparison with Varying Task Data Size

The impact of the varying data size of tasks is demonstrated in Figure 13 in terms of
average delay, average energy consumption, and average utility on a fixed number of UAVs
(which is 25). In Figure 13a,b, the average delay and energy consumed by each UAV present
a rising trend, because the larger the data size of tasks, the more communication delay and
energy cost when tasks are offloaded. In this case, the average utility obtained by each
UAV, depicted in Figure 13c, consequently decreases as the data size increases. Particularly,
due to the efficient use of the offloading pre-screening mechanism and the exploitation
of the best response of each UAV, our devised scheme provides the best performance
results with the increment of the data size. Using the model of IGATO, optimal offloading
strategies cannot be extensively derived. It is due to this that the IGATO may fail to deal
with the offloading problem with constrained optimization. Additionally, in the scenario
of increasing the data size of computation tasks, the performance discrepancy between
UCBTO and IWPSO varies compared to that observed when the number of tasks changes.
As depicted in Figure 13, as the task size increases, the IWPSO algorithm performs more
poorly than the UCBTO algorithm in terms of delay, energy consumption, and utility.
This can be attributed to the fact that, unlike scenarios where the number of tasks varies,
maintaining a fixed number of tasks as the data size expands leads to a more complex
solution space. As a result, the IWPSO scheme may face challenges in exploring the global
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optimal solution and may become trapped near local optima. In general, as the data size
increases, the average delay and energy consumption in our proposed DELOFF decreases
by at least 6.58% and 26.18% by comparing with four other schemes, and the average utility
can be optimized by up to 4.74%.
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Figure 13. Impact of task data size on offloading performance. (a) Average delay versus data size.
(b) Average energy consumption versus data size. (c) Average utility versus data size.

6.6. Discussion on UAV Hovering

We further investigate the scenario in which UAVs hover and wait for the completion
of offloading, considering the energy consumption associated with hovering, as defined in
Equation (14). Figure 14a,b demonstrate that the average delay and energy consumption
exhibit no variation with the increasing number of tasks, resulting in a constant utility,
depicted in Figure 14c. This observation indicates that all algorithms consistently opt for
local computing to execute tasks. The rationale behind this is that the significant energy
consumption required for the UAVs to hover and wait for offloading completion, which
far exceeds the energy consumed during offloading transmission, so the UAVs choose to
process tasks locally to avoid excessive energy consumption. Hence, it can be observed
that it is unnecessary for UAVs to offload computation tasks while hovering, as this would
result in excessive energy consumption for the UAVs. This would mean that, in most
cases, the computation offloading of UAVs would be ineffective, as the UAVs, at this point,
undergo offloading but cannot necessarily achieve the expected performance improvement.
Instead, they would consume excessive energy by hovering. On the other hand, performing
local computing on the UAVs would greatly deplete their limited onboard capabilities.
Furthermore, this validates the effectiveness of the proposed DELOFF scheme as it takes
into account the ability of UAVs to offload computation tasks in dynamic scenarios, allowing
them to continue their scheduled operations while offloading. By offloading tasks in such
a scenario, UAVs not only conserve battery life, but also process computation tasks in a
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timely manner, significantly extending their onboard resources through the utilization of
available network resources.
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Figure 14. Impact of UAV hovering on computation offloading performance.

In addition, we extend to investigate the impact of UAVs with time-sensitive tasks on
the energy consumption for computation offloading in scenarios where the UAVs hover and
wait for offloading to be completed. Specifically, the delay weighting factor δψh ,d is set to 0.9,
indicating that the UAVs prioritize timely task processing and increase their sensitivity to
the delay associated with task processing. As depicted in Figure 15, the generated average
delay, energy consumption and, utility achieved by the UAVs concerning the number
of tasks are recorded, respectively. From Figure 15a,c, it can be seen that our proposed
DELOFF mechanism achieves the lowest delay and the highest utility. This demonstrates
that DELOFF can adaptively trade off low task computation time for high energy costs, as
shown in Figure 15b, in scenarios with high real-time task requirements. Conversely, it
can be inferred that our algorithm proactively optimizes offloading to save energy under
conditions of limited UAV energy and that the task does not have high time requirements.
In this study, we conduct an investigation into the energy consumption associated with the
hovering behavior of the UAV while waiting for offloading to be completed. We evaluate
the influence of hovering energy through simulations and validate the effectiveness of the
DELOFF proposed on this extended energy model. To further explore the applicability
of the proposed offloading scheme, future research can incorporate more detailed energy
modeling, as exemplified by the works referenced in [60,61].
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(a) Average delay.
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(b) Average energy consumption.
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Figure 15. Impact of UAV hovering on time-sensitive task offloading.

7. Conclusions

In this paper, to provide massive access and differentiated service requests for UAVs
with heterogeneous application tasks to execute, we study the computation offloading of
multi-UAVs by extending the problem to complicated U2X-assisted heterogeneous net-
works, and propose a decentralized optimization framework to tackle the joint decision
making associated with the selection of network access, computation mode, and offloading
allocation for UAVs. Specifically, a fuzzy logic-based offloading pre-screening scheme is
devised, which is managed on the UAV side for the purpose of adaptively identifying
the available offloading targets that can achieve stable offloading performance during
wireless connection. Further, by resorting to the multi-arm bandit learning framework,
the dedicated exploration, assignment, and exploitation mechanisms are designed in the
DELOFF proposed to search for the optimal solution for keeping utility maximization
for UAVs via observing the bandit feedbacks locally without introducing extra informa-
tion interaction. The comprehensive simulation results show that the proposed DELOFF
demonstrates its effectiveness and superior performance over the mainstream schemes in
various scenarios, and shows efficient convergence and adaptability. Consequently, the
DELOFF can be applied broadly in the universal and scalable scenario for UAVs to perform
compute-intensive applications and enhance operational efficiency. In future research,
we will extend the investigation of the proposed DELOFF framework by deploying it
in the FlockAI platform, which has proven effective in modeling and testing for UAV
applications [62,63]. This deployment will enable us to explore the usage of resources,
network overhead, and power consumption more accurately in different scenarios. By
doing so, we aim to identify performance inefficiencies and potential trade-offs in UAV
applications and task offloading. And, we will examine how different configurations and
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computation offloading models impact the overall system. This approach will provide
a comprehensive understanding of the framework’s capabilities and its implications in
practical settings. Furthermore, we will conduct real-world experiments and ensure that
the experiments cover a wide range of characteristics to capture the diversity of scenarios
and potential challenges. By varying parameters such as environmental conditions and
input data characteristics, we aim to investigate the behavior of the methodology and its
applicability to UAV offloading in different contexts.
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