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Abstract: In the context of difficulty in detection problems and the limited computing resources of
various fault scales in aerial images of transmission line UAV inspections, this paper proposes a
TD-YOLO algorithm (YOLO for transmission detection). Firstly, the Ghost module is used to lighten
the model’s feature extraction network and prediction network, significantly reducing the number of
parameters and the computational effort of the model. Secondly, the spatial and channel attention
mechanism scSE (concurrent spatial and channel squeeze and channel excitation) is embedded
into the feature fusion network, with PA-Net (path aggregation network) to construct a feature-
balanced network, using channel weights and spatial weights as guides to achieving the balancing of
multi-level and multi-scale features in the network, significantly improving the detection capability
under the coexistence of multiple targets of different categories. Thirdly, a loss function, NWD
(normalized Wasserstein distance), is introduced to enhance the detection of small targets, and the
fusion ratio of NWD and CIoU is optimized to further compensate for the loss of accuracy caused by
the lightweightedness of the model. Finally, a typical fault dataset of transmission lines is built using
UAV inspection images for training and testing. The experimental results show that the TD-YOLO
algorithm proposed in this article compresses 74.79% of the number of parameters and 66.92% of the
calculation amount compared to YOLOv7-Tiny and increases the mAP (mean average precision) by
0.71%. The TD-YOLO was deployed into Jetson Xavier NX to simulate the UAV inspection process
and was run at 23.5 FPS with good results. This study offers a reference for power line inspection and
provides a possible way to deploy edge computing devices on unmanned aerial vehicles.

Keywords: TD-YOLO; Ghost module; feature-balanced network; NWD loss

1. Introduction
1.1. Research Background

Due to the complex and diverse environments in which transmission lines are erected,
they are exposed to the wind, sun, rain, snow, and ice all year round, which can easily
cause different degrees of failure and damage to power equipment [1,2]. In recent years,
UAV inspection has been an important mode of inspection of transmission lines at home
and abroad. This inspection mode can effectively overcome the disadvantages of manual
inspection, such as “expensive, slow, difficult, and dangerous”, and has the advantages of
safety, high efficiency, flexible control, fewer restricted conditions, and low cost. However,
UAV inspections are bound to generate a large number of inspection images [3,4]. For the
inspection of electrical equipment in a large number of UAV aerial images, the method of
manually checking the fault results is mainly used, which consumes a lot of labor costs
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and is likely to cause missed inspections or false inspections. Therefore, it is of great
significance to carry out research on artificial intelligence-based inspection methods under
the background of UAV inspection big data. At present, target detection based on deep
learning is an important research direction in the field of computer vision. While the drone
is inspecting the transmission line, the deep learning algorithm carried out by the drone is
used to detect faults in the aerial images, which saves time. The human work conducted
after the drone inspection also ensures the accuracy of the inspection [5,6].

1.2. Methods Based on Deep Learning and Its Limitations

Typical fault detection algorithms for transmission lines in UAV inspection, based on
deep learning, are divided into two categories [7]: one is the two-stage detection algorithm,
and representative algorithms include R-CNN [8], Fast R-CNN [9], Faster R-CNN [10], and
Cascade R-CNN [11]. Compared with the traditional algorithm, the two-stage detection
algorithm has significantly improved accuracy. However, because the detection process
needs to be completed in two steps, the speed could be faster, and the application range
could be narrower. The other is a one-stage detection algorithm, which directly predicts the
category and location of the target through the target detection network. Representative
algorithms include SSD (single-shot multibox detector) [12] and the YOLO series (You
Only Look Once) [13–19]. The SSD algorithm has contributed to the idea of a one-stage
detection algorithm. Still, because it does not have an FPN (feature pyramid network), the
accuracy is not enough. At present, the most researched one-stage algorithm is mainly the
YOLO series.

However, the current typical fault detection of transmission lines based on deep learn-
ing still has three limitations. The first limitation is the lack of detection accuracy due to
aerial scale shifts during drone inspections, resulting in seriously missed inspections. To
address this problem, literature [20] proposed three improved strategies based on Faster
R-CNN for transmission line multi-target detection, including the adaptive image pre-
processing algorithm, area-based non-maximum suppression algorithm, and cut detection
scheme, to achieve accurate localization and recognition of multiple targets in complex
backgrounds. Literature [21] introduced a Gaussian function to improve the non-maximum
value suppression method and reduce the missed detection of partially occluded fault tar-
gets. Literature [22] introduced YOLOv5 to detect 12 types of fault samples in transmission
lines and adopted CBAM (convolutional block attention module) and bi-FPN (bi-directional
feature pyramid network) improvement strategies to integrate target multi-scale features
effectively. This method can accurately detect multi-scale fault targets in transmission
lines in complex environments. Based on YOLOv5, literature [23] proposed a transmission
line small-target fault detection network that integrates prior knowledge and an attention
model. Compared with the literature [21], a more advanced target detection model is used
to enhance the precise detection of small targets. The parameters of the improved models
in the above literature are large, which is inconvenient for deployment and application
on UAVs.

The second limitation is the large number of parameters derived while improving the
model’s accuracy, making it difficult to deploy on UAVs. In response to this problem, the
literature [24] proposed a lightweight model embedded in the double attention mechanism
combined with MobelieNetV2 to detect multiple foreign objects on the transmission line.
This method has high accuracy and detection speed, and its lightweight model idea lays
the groundwork for model deployment. Literature [25] replaced the backbone network
of YOLOv4 with a lightweight network, MobileNetV3, which is used to detect insulators
and their damage in transmission lines. Literature [26] selects the pruned YOLOv4-Tiny
model and combines the attention mechanism to realize the insulator research and defect
detection under the hardware end. The lightweight improvement strategies for the model
in the above literature are mainly divided into replacing the lightweight backbone, using
lightweight convolution, and model pruning. However, the selected basic algorithm is
relatively backward, with room for improvement.
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The third limitation is that the single detection object leads to low inspection efficiency.
Literature [27] improved Faster R-CNN (FPN). It proposed Pin-FPN, which uses various
data-enhancement methods to detect pin defect faults in transmission lines and can achieve
the accurate detection of small targets. Literature [28] improved YOLOv5 to detect bird
nests in transmission lines and improved the detection effect of bird nests in complex
backgrounds through the attention mechanism. Literature [29] combines the feature pyra-
mid structure based on R-CNN to position insulators in complex backgrounds accurately.
Literature [30] improves YOLOv5 to detect insulators and their damage in transmission
lines and uses a lightweight network to reduce the model’s size and increase the speed.
Literature [31] adds CAT-BiFPN and ACmix attention mechanisms based on YOLOv7 to
detect various defects of insulation, and the detection effect is better for targets of different
scales. Judging from the current research results, the detection objects are only faults of
insulators, bird’s nests [32], and fittings, and there are few kinds of research on multiple
types of fault inspections. The efficiency is low if applied to actual transmission line UAV
inspections. Therefore, there is an urgent need for a typical fault detection algorithm for
transmission lines with the advantages of convenient deployment, fast inference speed,
high precision, and high inspection efficiency.

1.3. This Work

Based on the above problem analyses, this paper proposes a TD-YOLO algorithm (a
lightweight object detection network that can detect multi-scale faults in real-time). The
network adopts a structure combining the context lightweight structure and the feature-
balanced network, which effectively solves the problems that different faults are difficult
to detect simultaneously, occupy too many computing resources, and the detection speed
is too slow in the detection process. Specifically, the innovations and contributions of this
paper are as follows:

(1) To solve the problem that the calculation resources of the algorithm carried by the
UAV are limited and the fault cannot be accurately detected, this paper proposes a new
context lightweight structure (C2fGhost) from the perspective of the model lightweight,
which will be calculated. While the volume is compressed by 43%, the mAP is increased by
0.14%. In addition, we combine the advantages of the Ghost module, SPPCSPC structure,
and convolution, and propose two lightweight structures, GhostSPPCSPC and GhostConv.
Compared with the original model, the calculation amount of the improved model is
reduced by 69%, and the number of parameters is reduced by 75.7%.

(2) To solve the problem that it is difficult to detect different fault scales during the
UAV inspection process, a feature-balanced network is proposed. Based on the attention
mechanism and PA-Net, the network can better integrate deep information and shallow
information and effectively improve the problem that it is difficult to detect targets of
different scales at the same time.

(3) To solve the problem that it is difficult to detect small targets in aerial images,
NWD was initially used to replace the positioning loss function in the model, and it was
found that the calculation amount of the model increased suddenly, and the training time
was greatly increased. Then, a loss function was proposed for the fusion of NWD and
CIoU in proportion, and the best fusion ratio (70%NWD + 30%CIoU) was found. While
reducing the number of parameters and training time, the accuracy is higher than that of
all NWD loss functions. By using the missed detection rate to measure the detection effect
of small targets, the test results show that the missed detection rate of the defects decreased
by 6.76%, and the missed detection rate of anti-vibration hammer corrosion decreased
by 14.61%.

(4) Deploy the algorithm in this paper to the embedded device Jeston Xavier NX to
simulate the UAV inspection process and put forward the deployment condition limit
index. The accuracy of the algorithm in the embedded device reached 93.5%, and the
detection speed reached (23.5 ± 2.2) FPS. Meet the accuracy and real-time performance of
drone inspections.
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2. Materials and Methods
2.1. Datasets

The dataset used in this paper is provided by the State Grid Corporation of China.
The dataset records fault images of transmission lines taken by M300-RTK. There are 3824
pictures in total. Each picture contains one or more targets. The target labels include
four types of typical faults of transmission lines: Corrosion of insulators, insulator defects,
bird’s nests, and anti-vibration hammers, corresponding to ‘Insulator’, ‘Defect’, ‘Nest’, and
‘Fzc_xs’ in the first row of Table 1. At the same time, the number of labels corresponding to
each category is shown in the second row of Table 1. LabelImg software is used to label the
image, and the dataset is divided by a ratio of 8:1:1 (training set: validation set: test set).
The number of categories in each group is higher than that of the standard VOC2017 dataset
in the production of the VOC format dataset; therefore, this dataset has the same training
ability as the standard dataset in the sample size. Some faults are shown in Figure 1.

Table 1. Fault abbreviation and quantity.

Fault Abbreviation Insulator Defect Nest Fzc_xs

Numbers 4556 1333 1525 7287
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2.2. Overview of YOLOv7 Methods

The YOLOv7 algorithm is a new YOLO series algorithm proposed after the YOLOv4
and YOLOv5 algorithms. The detection speed and accuracy of YOLOv7, in the range of
5FPS to 160FPS, are ahead of the current mainstream target detection algorithms. YOLOv7-
Tiny is a lightweight version of YOLOv7. The overall structure is shown in Figure 2. The
model structure consists of three parts: feature extraction network (backbone), feature
fusion network (neck), and prediction network (head).

For the feature extraction network, YOLOv7-Tiny adopts the ELAN (efficient layer
aggregation networks) structure, which is an efficient layer aggregation network. ELAN
is mainly composed of VOV-Net and CSP-Net. Its function is to avoid using too many
transition layers and reduce those that are unnecessary. The necessary parameters shorten
the feature extraction path and increase the extraction efficiency.

The feature fusion network still uses the PA-Net structure in YOLOv5. The top-down
and bottom-up paths can extract multi-scale features from feature maps at different levels,
capturing rich semantic and spatial information.
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The prediction network consists of three convolution modules that output target
classification information, localization information, and confidential information, and three
prediction heads with different detection scales (80 × 80, 40 × 40, 20 × 20). Through
three pieces of information, the model’s loss function can make better predictions on the
classification and location of the target. The model loss calculation formula is as follows:

Lcls =
S×S
∑

t=0

B
∑

j=0
Iobj
ij ∑

c∈classes
[pi
′(c) log(pi(c))]

+
S×S
∑

t=0

B
∑

j=0
Iobj
ij ∑

c∈classes
[(1− pi

′(c)) log(1− pi(c))]
(1)
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Equation (1) is the classification loss function of the model, denoted as Lcls. Where
S × S is the image input size 640 × 640, i represents the i-th square of the feature map, j
represents the j-th prediction box predicted by the square, c ∈ classes represents the correct
category, pi (c) and pi’ (c) represent the predicted confidence score and the actual confidence
score, respectively.

SIoU = A∩B
A∪B

v = 4
π2

(
arctan wgt

hgt − arctan w
h

)2

α = v
(1−SIoU)+v

Lbox = 1− SIoU + ρ2(A,B)
c2 + αv

(2)

Equation (2) is the locus loss function of the target box, also known as the regression
loss, notated as Lbox, which is mainly used as the CIoU loss function [33]. In Figure 3, box
A is the real box, box B is the prediction box, and SIoU is the intersection ratio between
the real box and the prediction box; box M is the smallest external rectangle containing
box A and box B. Where ρ2(A, B) is the Euclidean distance between the centroids of the
real box and the predicted box, i.e., the length of d in the diagram; c in Equation (2) is the
diagonal length of the smallest outer matrix M that encloses box AB; wgt and hgt are the
width and height of box A of the real box, and w and h are the width and height of box B of
the predicted box. Compared with the traditional IoU, the CIoU introduces a penalty term
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v, which can better handle targets with different aspect ratios; it can measure the distance
between the predicted box and the real box more accurately and improve the accuracy of
target detection for the situation that boxes of different sizes have different overlap when
the IoU values are the same, i.e., the problem of scale sensitivity.

Lcon f =
S×S
∑

i=0

B
∑

j=0
Iobj
ij [C′ i log(Ci) + (1− C′ i) log(1− Ci)]

-
S×S
∑

i=0

B
∑

j=0
Inobj
ij [C′ i log(Ci) + (1− C′ i) log(1− Ci)]

(3)
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Equation (3) is the confidence loss function of the target, denoted as Lconf. Among
them, obj and nobj represent the presence or absence of the target in the grid, and Ci and
Ci
′ represent the categories of the real box and the predicted box. Then, the total loss

function of YOLOv7-Tiny is composed of the addition of the three according to a certain
ratio, such as Equation (4).

Ltotal = 0.5× Lcls + 0.05× Lbox + Lcon f (4)

Finally, during prediction, a large number of redundant prediction frames are elimi-
nated after non-maximum value suppression and other processing operations, and finally,
the prediction category with the highest confidence score is output, and the coordinate
information of the target is returned by positioning the target.

2.3. The Overall Architecture of TD-YOLO

During the test, it was found that YOLOv7-Tiny runs at a slow speed on the embedded
device. The detection of complex and variable-scale faults and tiny target faults in the
transmission line inspection process has missed detection and false detection, and the
accuracy is low. Therefore, this paper proposes a TD-YOLO algorithm. The structure is
shown in Figure 4.
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2.3.1. Various Improvements of Model Lightweight Based on the Ghost Module

Due to the limited computational resources required for UAV-carried embedded
devices, the deployment of a model with many parameters to the UAV for detection is slow.
It cannot meet the real-time detection requirements of this paper. Therefore, the approach
of this paper is to consider the characteristics of each part of the YOLOv7 model, combined
with the Ghost lightweight module (the Ghost structure is shown in Figure 5), and design a
light optimization strategy that is best suited to fit with each part of the network. Based
on the above analysis, this paper proposes the C2fGhost structure in the feature extraction
network, the GhostSPPCSPC structure in the feature fusion network, and the Ghost (head)
part combined with the Ghost module in the prediction part.

Drones 2023, 6, x FOR PEER REVIEW 8 of 23 
 

of residuals combined with a lightweight module. The original C2f structure (shown in 
Figure 6b) continues the advantages of the ELAN structure of multi-gradient triage while 
adding the residual branch of BottleNeck to enable the model to learn a richer feature 
representation. Based on the Ghost module for C2f, this paper is further improved by re-
placing BottleNeck with Ghost BottleNeck (shown in Figure 7). 

 
Figure 5. Ghost module structure. 

 
  

(a) (b) (c) 

Figure 6. (a) ELAN module structure diagram; (b) C2f module structure diagram; (c) C2fGhost 
structure diagram. 

 
Figure 7. Ghost bottleneck structure. 

Figure 5. Ghost module structure.

Compared with the unnecessary, redundant feature maps generated in the normal
convolution process, the Ghost module uses simple and easy-to-operate linear operations
to enhance features and increase channels’ mining information from original features with
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a small computational cost, which is a lightweight and efficient convolution module. The
principle of the Ghost module is shown in Equation (5) [34]:

Y = X× f , X ∈ RC×H×W , Y ∈ RC′×H′×m

yij = φij(yi), ∀i = 1, · · ·, m, j = 1, · · ·, s
(5)

As can be seen from Equation (5), the Ghost module operates by first generating
m original feature maps using fewer convolution kernels in the common convolution
way (*) and later generating the remaining n feature maps by performing a simple linear
transformation Φ on the already developed, m ≤ n.

Firstly, to address the problem of information redundancy caused by the multi-layer
intersection of ELAN modules, this paper designs a C2fGhost structure based on the idea
of residuals combined with a lightweight module. The original C2f structure (shown in
Figure 6b) continues the advantages of the ELAN structure of multi-gradient triage while
adding the residual branch of BottleNeck to enable the model to learn a richer feature
representation. Based on the Ghost module for C2f, this paper is further improved by
replacing BottleNeck with Ghost BottleNeck (shown in Figure 7).

Drones 2023, 6, x FOR PEER REVIEW 8 of 23 
 

of residuals combined with a lightweight module. The original C2f structure (shown in 
Figure 6b) continues the advantages of the ELAN structure of multi-gradient triage while 
adding the residual branch of BottleNeck to enable the model to learn a richer feature 
representation. Based on the Ghost module for C2f, this paper is further improved by re-
placing BottleNeck with Ghost BottleNeck (shown in Figure 7). 

 
Figure 5. Ghost module structure. 

 
  

(a) (b) (c) 

Figure 6. (a) ELAN module structure diagram; (b) C2f module structure diagram; (c) C2fGhost 
structure diagram. 

 
Figure 7. Ghost bottleneck structure. 

Figure 6. (a) ELAN module structure diagram; (b) C2f module structure diagram; (c) C2fGhost
structure diagram.

Drones 2023, 6, x FOR PEER REVIEW 8 of 23 
 

of residuals combined with a lightweight module. The original C2f structure (shown in 
Figure 6b) continues the advantages of the ELAN structure of multi-gradient triage while 
adding the residual branch of BottleNeck to enable the model to learn a richer feature 
representation. Based on the Ghost module for C2f, this paper is further improved by re-
placing BottleNeck with Ghost BottleNeck (shown in Figure 7). 

 
Figure 5. Ghost module structure. 

 
  

(a) (b) (c) 

Figure 6. (a) ELAN module structure diagram; (b) C2f module structure diagram; (c) C2fGhost 
structure diagram. 

 
Figure 7. Ghost bottleneck structure. 

Figure 7. Ghost bottleneck structure.

The C2fGhost structure connects features at different levels to achieve multi-scale per-
ception and strengthen the model’s ability to detect targets with medium-scale changes in
transmission lines. At the same time, through the residual branch of Ghost BottleNeck, the
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model can learn richer feature representations and still, the advantages of low complexity
and a small amount of calculation of the Ghost module are retained. Then, while retaining
the original structure of SPP, the ghost replacement is performed on some convolutions
to achieve the purpose of lightweighting the model, which is denoted as GhostSPPCSPC.
Finally, the convolution module that is in front of the three different scale detection heads in
the head part is replaced by the Ghost module, and the model is further simplified, which
is recorded as GhostConv(Head), and the calculation amount and model parameters are
significantly reduced.

2.3.2. Improvement of Multi-Scale Feature Fusion Based on Feature-Balanced Network

In the inspection of transmission lines, the scale of fault targets spans large scales, and
it is challenging to detect multi-type faults and multi-scale features. Different detection
targets can be effectively identified if a higher weight ratio is assigned to the detection
targets, improving detection accuracy. The attention mechanism refers to the behavior of
human beings to selectively pay attention to the important parts of the received information.
It can assign different proportions of weights according to different detection objects and
solve the problem that multi-scale features are challenging to identify. However, a single
spatial or channel attention mechanism has limitations, and it is stretched in target detection
tasks with frequent scale changes. Therefore, this paper chooses the currently widely
used attention mechanism, scSE [35], that combines spatial and channels. Compared
with the attention mechanism CBAM [36], which also belongs to the combination of
spatial and channel mechanisms, it is primarily used in the medical field of high-precision
segmentation. It has the advantage of accurate recognition of fault multi-scale information.
Its structure is shown in Figure 8.
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The scSE process principle is shown in Equation (6). The calculation of the scSE
attention mechanism consists of two steps, cSE and sSE. In cSE, the input feature map U is
transformed into a feature map of 1 × 1 × C after global pooling Z. It is then normalized
using a sigmoid function, noted as activations σ (Zi), and these activations are adaptively
adjusted to ignore the less important channels and emphasize the important ones, and
finally, the calibrated feature map (U’cSE) is obtained by channel-wise multiplication. In
the sSE part, U undergoes a 1 × 1 × 1 convolution into a 1 × H ×W feature map, with
each value σ(qi, j) corresponding to the relative importance of the spatial information (i, j)
for a given feature map. This recalibration provides the more important relevant spatial
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locations and ignores the irrelevant ones. The final output of the two is summed to obtain
scSE [35].

U =[u1, u2, · · ·, uC], ui ∈ RH×W

Zk = AvgPool2D(U) = 1
H×W

H
∑
i

W
∑
j

uk(i, j), Z ∈ R1×1×C

U′cSE = FcSE(U) = [σ(Z1)u1, σ(Z2)u2, · ··, σ(ZC)uC]
q = Wsq·U, Wsq ∈ R1×1×C×1, q ∈ RH×W

U′sSE = FsSE(U) =
[
σ(q1,1)u1,1, · · ·, σ

(
qi,j
)
ui,j, · · ·, σ(qH,W)ui,j], ui,j ∈ R1×1×C

U′scSE = U′cSE + U′sSE

(6)

However, there is still the problem of the complex fusion of features at different scales
in the model. Hence, this paper addresses the problem by proposing a feature-balanced
network (FBN) that combines PA-Net with the scSE attention mechanism. The feature-
balanced network forms the neck part of the improved algorithm, and the structure is
shown in Figure 9.
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The entire network takes the high-level feature map H and the low-level feature map L
as output and fuses the output features of the two branches. In the channel attention branch,
high-level feature maps guide low-level features with channel attention masks. The channel
attention cSE enhances the network’s feature extraction in transmission lines, leading to a
low-level feature map L′ with rich semantic information. In the spatial attention branch, a
spatial attention mask guides the high-level feature map using the low-level feature map.
The spatial attention module sSE strengthens the capture of spatial information, resulting
in a high-level feature map H′ with spatial information. Finally, after the two are fused, a
feature quantity containing spatial and channel information is output, and then the deep
and shallow features are fused through PA-Net to balance the multi-scale features.

2.3.3. Small Target Detection Optimization Based on NWD Loss Function

When the object-to-image ratio is less than 0.1, it can be called a small object, a relative
definition of small objects [34]. The anti-vibration hammer corrosion and insulator damage
in the detection objects of this paper can be divided into small target ranges, as shown
in Figure 9. Also, in Table 2 of 4.5, the results show that the detection accuracy of the
anti-vibration hammer is the lowest. Hence, the detection optimization for small targets
is the focus and difficulty of this paper. To solve this problem, TD-YOLO first introduces the
NWD loss function for small object detection to replace part of the CIoU of the localization loss in
the YOLOv7-Tiny loss function. Secondly, it explores the fusion ratio of NWD and CIoU so that
the algorithm can improve the detection accuracy of small objects while retaining the advantage of
the fast training speed of CIoU, effectively reducing the amount of calculation of the model.
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Table 2. Comparison of lightweight ablation experiments based on Ghost modules.

mAP (%) FLOPs (G) Params (MB)

YOLOv7-Tiny 92.79 13 12.3
YOLOv7-Tiny-C2fGhost 92.93 7.5 7.3

YOLOv7-Tiny-GhostSPPCSPC 92.84 10.3 9.5
YOLOv7-GhostConv(Head) 92.81 10.3 9.3

YOLOv7-Tiny-C2fGhost
-GhostSPPCSPC 92.55 7 6.15

YOLOv7-Tiny-C2fGhost
-GhostConv(Head) 92.74 4.7 4.3

YOLOv7-Tiny-C2fGhost-
GhostSPPCSPC-GhostConv(Head) 91.98 4.1 3

CIoU is very sensitive to the position deviation of small targets that occupy fewer
pixels [37]. If there is a slight position deviation in the position of the tiny target, the
intersection of union (IoU) will drop significantly, greatly affecting the model accuracy.
Taking Figure 10a as an example, damaged insulators belong to small objects, while insula-
tors belong to ordinary objects, and the bounding boxes generated by them are shown in
Figure 11. Box A represents the ground-truth bounding box, and boxes B and C represent
the predicted bounding boxes with 1-pixel and 4-pixel diagonal deviation, respectively;
thus, the corresponding intersection ratios can be calculated.
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Figure 11. (a) IoU transformation of small targets; (b) IoU transformation of normal targets.

For the small target in Figure 11a, the IoU changes as follows:

IoU =
|A ∩ B|
|A ∪ B| = 0.53⇒ IoU =

|A ∩ C|
|A ∪ C| = 0.06 (7)
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For the normal target in Figure 11b, the IoU changes as follows:

IoU =
|A ∩ B|
|A ∪ B| = 0.9⇒ IoU =

|A ∩ C|
|A ∪ C| = 0.65 (8)

It can be seen from Equations (7) and (8) that for small targets, a minor position
deviation leads to a significant IoU drop (from 0.53 to 0.06). The IoU drop (from 0.9 to 0.65)
is not evident for ordinary objects under the same position deviation. This means that the
CIoU is very sensitive to the position deviation of small targets that occupy fewer pixels.
If there is a slight position deviation in the position of the tiny target, the IoU will drop
significantly, which will greatly affect the model’s accuracy.

Therefore, TD-YOLO chooses the NWD loss function that is insensitive to objects
of different scales. NWD uses a two-dimensional Gaussian distribution to model the
peripheral bounding box of the object, which can better describe the weight of different
pixels, where the importance of pixels decreases from the center to the boundary. Bounding
box A and bounding box B can be converted into the distribution distance between two
Gaussian distributions. This new measurement method can evaluate the similarity between
the model boundary and the Gaussian distribution and can more accurately judge the
position information between the two boxes. To continuously improve the performance of
the detector, the principle of NWD is shown in Equation (9) [38].

µ =

[
cx
cy

]
, Σ =

[
w2

4
0

0
h2

4

]

W2
2 (Na, Nb) =

∥∥∥∥∥
([

cxa, cya,
wa
2 , ha

2

]T
,
[
cxb, cyb, wb

2 , hb
2

])T
∥∥∥∥∥

2

2

NWD(Na, Nb) = exp
(
−
√

W2
2 (Na ,Nb)

C

) (9)

In Equation (9), cxa, cya, wa, ha, cxb, cyb, wb, and hb are the center coordinates, height,
and width of bounding boxes A and B, and according to box A = (cxa, cya, wa, ha), box
B = (cxb, cyb, wb, hb) can construct the inscribed ellipse of frame A and frame B; then, model
the two-dimensional Gaussian distribution N (µ, Σ) according to the Gaussian density, and
the Gaussian distribution of frame A and frame B is Na, Nb; C is the constraint quantity
of the dataset, and the calculation of NWD is realized through this process. NWD is a
better way to measure the similarity between two frames, and its insensitivity to differently
scaled targets makes it more suitable for detecting small targets, which improves the
accuracy of detecting anti-vibration hammer corrosion and insulator breakage significantly
in this paper.

3. Experimental Results
3.1. Experimental Environment

This paper adopts the deep learning framework based on the PyTorch 1.7.1 environ-
ment; the environment is Ubuntu 20.04, python 3.7.11, CUDA = 11.4, and the training
graphics card is configured as an NVIDIA RTXA6000/48 G graphics card. The processor is
an Intel Xeon Platinum 8171 M CPU@2.60 GHz. The RAM is 96 G. The graphics card used
by the local test computer is an NVIDIA RTX 3060 Ti, the processor is an AMD Ryzen5 5600
X, and the RAM is 32 G.

3.2. Training Process and Parameter Settings

In this paper, the backbone network is significantly modified in the improvement
process; therefore, pre-training weights are not applicable. To reduce the likelihood of the
model falling into a local optimum, a stochastic gradient descent (SGD) optimizer is used.
The training batch was set to 8, and 300 rounds were trained. A cosine annealing learning
rate was used, and a decaying learning rate was applied to the bias layer to improve the
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convergence speed of the model to enhance the diversity of the data with the robustness
of the model itself. Figure 12a–c show the three loss curves before and after the model’s
improvement. It can be seen that the improved model has improved compared to the
original model, especially in Figure 12b. For the dataset containing more small targets
in this paper, the improvement of the localization loss effect after replacing the NWD
is particularly obvious. From Figure 12d, it can be seen that the improved model has a
significant improvement in mAP, which verifies the feasibility of the improved algorithm
in this paper.
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3.3. Performance Evaluation Indicators

To better evaluate the missed detection of small targets caused by the difference in
scale transformation, this paper introduces the missed detection rate (miss rate) [39] and the
indicators for the conventional evaluation of the advantages of target detection algorithms:
mean average precision (mAP), inference delay (speed), model size (params), and number
of floating point operations (FLOPs).

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

missRate =
FN

TP + FN
(12)

mAP =
∑N

i APi

N
(13)
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In Equations (10)–(13): TP, FP, and FN represent the number of correct detections,
false detections, and missed detections; AP is the integral of the P–R curve; and N is
the detection category. Figure 13 is the mAP curve drawn by the improved algorithm
in this paper.
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4. Experimental Discussion
4.1. Validation of Model Lightweight Effects

To evaluate the impact of different improvement strategies on the detection perfor-
mance of YOLOv7-Tiny, comparative experiments are carried out on the typical fault dataset
of transmission lines. First, the model is improved based on Ghost Module lightweight,
and the test results are shown in Table 2.

From Table 2, it can be seen that the C2fGhost improvement, due to its structural
excellence, still improves mAP by 0.14% compared to YOLOv7-Tiny, with a reduced
number of parameters and computation, and the GhostSPPCSPC and GhostConv(Head)
improvements only replace part of the ordinary convolution, with a reduced number of
parameters and computation and a slight accuracy. The three Ghost-based lightweight
improvements were then subjected to ablation experiments, and after ablation for the latter
two, while retaining C2fGhost, it was found that the replaced convolution in YOLOv7-
C2fGhost-GhostConv(Head) involved a change in the number of channels of the three
scale detection heads, the computational power decreased by 63.9%, and the number of
parameters decreased by 65.1%. In terms of accuracy (mAP), since the convolution in the
prediction part mainly generates a series of feature mappings that contain information on
the position, category, and size of the object, and the ones in the Ghost module can obtain
this information through another residual branch, then, based on this, the decrease in
accuracy is not significant with fewer convolution layers, and the mAP decreases by 0.05%.
The final three-improvement ablation experiment, therefore, results in a 67.7% decrease in
model computation, a 76.7% decrease in the number of parameters, and a 0.81% decrease
in accuracy.

4.2. Validation of Feature-Balanced Network Validity and Comparison of Similar
Attention Mechanisms

The impact of feature-balancing networks on model size, computational effort, and
accuracy, as well as a comparison of the attention mechanism scSE used in the FBN with



Drones 2023, 7, 638 15 of 23

CBAM, which is also a combination of spatial and channel attention, previously used, is
shown in Table 3 [39].

Table 3. Experimental results of feature-balanced networks embedding different attention mechanisms.

Models Map (%) FLOPs (G) Params (MB)

YOLOv7-Tiny-Ghost 91.98 4.1 3
YOLOv7-Tiny-Ghost-FBN(CBAM) [40] 92.18 4.4 3.1

YOLOv7-Tiny-Ghost-FBN(scSE) 92.31 4.2 3.1

It can be seen in Table 3 that based on YOLOv7-Tiny-Ghost, CBAM and scSE are,
respectively, added to form a feature-balanced network with different attention mechanisms.
The mAP of the former increased by 0.2%, and the latter increased by 0.33%; the amount of
calculation and the amount of parameters increased by 0.3 G, 0.1 G, and 0.1 MB, respectively.
While the accuracy improved, the amount of calculation and the number of parameters
did not increase significantly; however, the reason why scSE is ahead of CBAM is its better
channel-attention mechanism structure and its parallel connection method. The former
increases the accuracy, and the latter reduces the amount of calculation, which is why scSE
is chosen in this paper.

To further verify its effectiveness, this paper visualizes the Grad-CAM heat map for
the following typical situations, and the test results are shown in Figure 14. It can be seen in
Figure 14 that in Figure 14a,b, the thermal region of the improved model is enlarged, which
means that the model assigns more weights to the targets to be detected, and the darker the
color, the more weights are allocated. Figure 14c shows that the model before the improvement
assigns incorrect weights to areas with no detection target. Although the improved model has
fewer thermal areas than before, it accurately identifies the thermal area.
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4.3. Validation of the Effect of NWD Loss Function and the Effect of NWD on the Model with
Different Fusion Ratios

In this paper, CIou is replaced with an NWD loss function with better detection
accuracy for small targets, and the training time is found to increase substantially after
training. Then, an improvement strategy of mixing different proportions of NWD with
CIoU is proposed to retain the accuracy of NWD while speeding up the training time.
Finally, the models with loss functions fused in different proportions are retrained and
tested on a typical fault dataset of transmission lines. The proportion of NWD loss functions
in the experiments was set to 100%, 90%, 80%, 70%, and 60%, respectively, and the model
performance for different fusion proportions is shown in Table 4. The 90% NWD + 10%
CIoU in the table is the localization loss function consisting of 90% of the NWD loss function
and 10% of the CIoU loss function together, and the others are similar.

Table 4. Experimental results after fusion of NWD with CIoU at different ratios.

Models Training Time
/(h)

mAP
/(%)

Miss Rate
(Fzc_xs)/(%)

Miss Rate
(Defect)/(%)

YOLOv7-Tiny-Ghost 11.2 91.98 16.96 23.07
−(100%NWD) 24.5 92.92 11.03 10.24

−(90%NWD + 10%CIoU) 23 92.53 14.23 13.84
−(80%NWD + 20%CIoU) 21.5 92.83 14.35 11.31
−(70%NWD + 30%CIoU) 20 93.18 10.20 8.46
−(60%NWD + 40%CIoU) 18.5 92.5 13.04 12.3
−(50%NWD + 50%CIoU) 17 91.8 13.99 14.6

Figure 15 shows the test results of models with different fusion ratios on the dataset. It
can be seen in Table 4 and Figure 16 that as the proportion of NWD decreases, the training
time also gradually increases, and mAP presents a process of rising first and then falling,
and 70% is the critical value. The mAP is 1.2% higher than the initial model; the training
time decreases as the proportion of NWD decreases. This study adopts a fusion ratio model
of (70%NWD + 30%CIoU) to balance the training time and model accuracy. The detection
effect of small targets is improved, the missed detection rate of anti-vibration hammer
corrosion is reduced by 6.76%, and the missed detection rate of insulator damage is reduced
by 14.61%, proving the method’s effectiveness and feasibility in this paper.



Drones 2023, 7, 638 17 of 23

Drones 2023, 6, x FOR PEER REVIEW 17 of 23 
 

detection effect of small targets is improved, the missed detection rate of anti-vibration 
hammer corrosion is reduced by 6.76%, and the missed detection rate of insulator damage 
is reduced by 14.61%, proving the method’s effectiveness and feasibility in this paper. 

 

 
Figure 15. Test results of models with different fusion proportions on datasets. 

4.4. Comparison of Ablation Experiments 
Table 5 is based on YOLOv7-Tiny and the comparison of the experimental results 

before and after adding the improvement strategy proposed in this paper. Among them, 
YOLOv7-Tiny is recorded as Algorithm 1. 

It can be seen in Table 5 that Algorithm 1 is the initial YOLOv7-Tiny, and Algorithm 
2 optimizes the lightweight structure of the Ghost module based on Algorithm 1, the 
amount of calculation is reduced by 67.7%, the amount of parameters is reduced by 75.6%, 
and mAP is only reduced by 0.81%. For Algorithm 3 and Algorithm 4, based on Algorithm 
2, the scSE attention mechanism is added to form a feature-balanced network and the 
NWD loss function is added to enhance the detection effect of small targets. Compared 
with Algorithm 2, Algorithm 3 has improved AP values for all detected objects. The prob-
lem of low accuracy, caused by scale transformation in the detection process, has been 
greatly improved; compared with Algorithm 2, Algorithm 4 has greatly improved the ac-
curacy of small-target anti-vibration hammer corrosion and insulator damage, which also 
verifies the effectiveness of NWD for small target detection. Algorithm 5 is TD-YOLO, 
which combines three improvement strategies. The accuracy of each type of detection ob-
ject is improved. Compared with Algorithm 2, the number of parameters remains un-
changed, and the amount of calculation only increases by 0.1 G. 

Table 5. Ablation experiment results. 

Models Ghost FBN NWD Fzc_xs 
(AP%) 

Defect 
(AP%) 

Insulator 
(AP%) 

Nest 
(AP%) 

mAP 
(%) 

Parmas 
(MB) 

FLOPs 
(G) 

Algorithm 1    90.81 94.67 92.85 92.84 92.79 12.3 13 
Algorithm 2 √   89.35 92.87 93.15 92.55 91.98 3 4.2 
Algorithm 3 √ √  89.38 93.4 93.9 92.71 92.31 3.1 4.2 
Algorithm 4 √  √ 89.7 95.94 93.18 91.07 92.47 3 4.2 
Algorithm 5 √ √ √ 90.7 96.1 93.7 93.7 93.5 3.1 4.3 

  

Figure 15. Test results of models with different fusion proportions on datasets.

Drones 2023, 6, x FOR PEER REVIEW 18 of 23 
 

4.5. Horizontal Comparison of Experimental Results 
To verify the model’s performance and detection effect of the algorithm (TD-YOLO) 

in this paper, the original model and the other eight models were selected for comparison, 
as shown in Table 6. 

Table 6. Comparison of various indicators of different models on the test set. 

Models 
Fzc_xs 
(AP%) 

Defect 
(AP%) 

Insulator 
(AP%) 

Nest 
(AP%) 

mAP 
(%) 

Inference 
(ms) 

Params 
(MB) 

Faster R-CNN 55.72 85.76 89.34 80.18 77.75 78 114 
YOLOv4 83.74 86.48 91.87 81.89 86 22.8 256 

YOLOv4-Tiny 62.58 75.33 84.15 71.18 73.31 6.28 23.6 
YOLOv5s 87.86 83.94 91.33 82.05 86.3 13 28.5 
YOLOXs 90.84 95.42 96.18 88.63 92.77 15 36 
YOLOv6s 89.6 88.1 92.6 88.8 89.8 9 18.5 

YOLOv7-Tiny 90.81 94.67 92.85 92.84 92.79 5 12.3 
YOLOv8n 90.6 93.8 92.8 90.9 92 4 6.2 
TD-YOLO 90.7 96.1 93.7 93.7 93.5 3.5 3.1 

It can be seen in Table 5 that the accuracy and speed of the second-stage algorithm 
Faster R-CNN have a significant gap compared with the first-stage algorithm YOLO se-
ries, especially for tiny target anti-vibration hammer corrosion, with only a 55.72% mAP. 
From the algorithm extension of YOLOv4 to YOLOv4-Tiny, the YOLO series algorithms 
are developing towards becoming lightweight. In the table, YOLOv5s, YOLOXs, 
YOLOv6s, YOLOv7-Tiny, and YOLOv8n are all their corresponding lightweight versions, 
and the accuracy is gradually increasing. For the model, the number of parameters grad-
ually decreases; TD-YOLO compares with the original algorithm, mAP is improved by 
0.71%, and the number of model parameters is reduced by 74.8%. Further, we analyzed 
the position of the improved algorithm in the current mainstream lightweight algorithm 
and drew the data as a parameter-precision floating-point diagram, as shown in Figure 
16. It can be seen from the verification results on the transmission line fault detection data 
that the performance of TD-YOLO is in a leading position compared with the other YOLO 
series lightweight algorithms in various indicators. 

 
Figure 16. mAP-Params scatter plots of different models. Figure 16. mAP-Params scatter plots of different models.

4.4. Comparison of Ablation Experiments

Table 5 is based on YOLOv7-Tiny and the comparison of the experimental results
before and after adding the improvement strategy proposed in this paper. Among them,
YOLOv7-Tiny is recorded as Algorithm 1.

Table 5. Ablation experiment results.

Models Ghost FBN NWD Fzc_xs
(AP%)

Defect
(AP%)

Insulator
(AP%)

Nest
(AP%)

mAP
(%)

Parmas
(MB)

FLOPs
(G)

Algorithm 1 90.81 94.67 92.85 92.84 92.79 12.3 13
Algorithm 2

√
89.35 92.87 93.15 92.55 91.98 3 4.2

Algorithm 3
√ √

89.38 93.4 93.9 92.71 92.31 3.1 4.2
Algorithm 4

√ √
89.7 95.94 93.18 91.07 92.47 3 4.2

Algorithm 5
√ √ √

90.7 96.1 93.7 93.7 93.5 3.1 4.3

It can be seen in Table 5 that Algorithm 1 is the initial YOLOv7-Tiny, and Algorithm 2
optimizes the lightweight structure of the Ghost module based on Algorithm 1, the amount
of calculation is reduced by 67.7%, the amount of parameters is reduced by 75.6%, and
mAP is only reduced by 0.81%. For Algorithm 3 and Algorithm 4, based on Algorithm 2,
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the scSE attention mechanism is added to form a feature-balanced network and the NWD
loss function is added to enhance the detection effect of small targets. Compared with
Algorithm 2, Algorithm 3 has improved AP values for all detected objects. The problem
of low accuracy, caused by scale transformation in the detection process, has been greatly
improved; compared with Algorithm 2, Algorithm 4 has greatly improved the accuracy of
small-target anti-vibration hammer corrosion and insulator damage, which also verifies
the effectiveness of NWD for small target detection. Algorithm 5 is TD-YOLO, which
combines three improvement strategies. The accuracy of each type of detection object is
improved. Compared with Algorithm 2, the number of parameters remains unchanged,
and the amount of calculation only increases by 0.1 G.

4.5. Horizontal Comparison of Experimental Results

To verify the model’s performance and detection effect of the algorithm (TD-YOLO) in
this paper, the original model and the other eight models were selected for comparison, as
shown in Table 6.

Table 6. Comparison of various indicators of different models on the test set.

Models Fzc_xs
(AP%)

Defect
(AP%)

Insulator
(AP%)

Nest
(AP%)

mAP
(%)

Inference
(ms)

Params
(MB)

Faster R-CNN 55.72 85.76 89.34 80.18 77.75 78 114
YOLOv4 83.74 86.48 91.87 81.89 86 22.8 256

YOLOv4-Tiny 62.58 75.33 84.15 71.18 73.31 6.28 23.6
YOLOv5s 87.86 83.94 91.33 82.05 86.3 13 28.5
YOLOXs 90.84 95.42 96.18 88.63 92.77 15 36
YOLOv6s 89.6 88.1 92.6 88.8 89.8 9 18.5

YOLOv7-Tiny 90.81 94.67 92.85 92.84 92.79 5 12.3
YOLOv8n 90.6 93.8 92.8 90.9 92 4 6.2
TD-YOLO 90.7 96.1 93.7 93.7 93.5 3.5 3.1

It can be seen in Table 5 that the accuracy and speed of the second-stage algorithm
Faster R-CNN have a significant gap compared with the first-stage algorithm YOLO series,
especially for tiny target anti-vibration hammer corrosion, with only a 55.72% mAP. From
the algorithm extension of YOLOv4 to YOLOv4-Tiny, the YOLO series algorithms are
developing towards becoming lightweight. In the table, YOLOv5s, YOLOXs, YOLOv6s,
YOLOv7-Tiny, and YOLOv8n are all their corresponding lightweight versions, and the
accuracy is gradually increasing. For the model, the number of parameters gradually
decreases; TD-YOLO compares with the original algorithm, mAP is improved by 0.71%,
and the number of model parameters is reduced by 74.8%. Further, we analyzed the
position of the improved algorithm in the current mainstream lightweight algorithm and
drew the data as a parameter-precision floating-point diagram, as shown in Figure 16. It
can be seen from the verification results on the transmission line fault detection data that
the performance of TD-YOLO is in a leading position compared with the other YOLO series
lightweight algorithms in various indicators.

To further verify the advantages of the proposed algorithm, three representative
scenarios are selected to verify the model, namely, target faults under shadow occlusion,
multi-scale target faults, and multiple small target faults [41,42]. In the experiment, it was
compared with Faster R-CNN, the mainstream lightweight algorithm in Table 6, and our
TD-YOLO algorithm. The detection results are shown in Figure 17.
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5. Edge-Side Deployment

The edge deployment object uses Jetson Xavier NX, which has 384 CUDA cores,
48 Tensor cores, and two NVIDIA engines. It can run multiple modern neural networks
in parallel, processing high-resolution data from multiple sensors simultaneously. It can
be mounted onto a UAV to simulate the inspection conditions of UAVs. Real-time data
collection is performed by calling the hardware camera, and the test results are shown in
Table 7. It can be seen in Table 7 that the improved model reduces the inference delay by
12 ms compared with the original YOLOv7-Tiny, and the real-time detection speed increases
by 4.8 FPS, reaching 23.5 ± 2.2 FPS. The simulation of the live drone inspection image
is shown in Figure 18. The detection results meet the typical faults of transmission lines
in the process of UAV inspection testing requirements. Finally, we explored whether the
hardware parameters met the conditions for UAV deployment, and the test results are
shown in Table 8 [43].

Table 7. Test results on the Jetson Xavier NX before and after the improved model.

Models Inference (ms) NMS (ms) Speed (FPS) mAP (%)

Algorithm 1 50 ± 4 4.5 ± 1.5 18.3 ± 1.8 92.79
Algorithm 2 33 ± 3 4.5 ± 1.5 26.7 ± 2.3 91.98
Algorithm 3 35.7 ± 2.8 4.5 ± 1.5 24.8 ± 2.4 92.31
Algorithm 4 34.9 ± 2.1 4.5 ± 1.5 25.3 ± 2.2 92.47
Algorithm 5 38 ± 3 4.5 ± 1.5 23.5 ± 2.2 93.5
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Table 8. Comparison of indicators of Jeston Xavier NX and M300-RTK.

Indicators Jeston Xavier NX M300-RTK Effective

Weight 260 g Maximum load of 2.7 kg
√

Form Factor 70 mm × 45 mm 180 mm × 130 mm
√

Power Consumption Maximum 15 W Rated power 17 W
√

Frame Rate 23.5 ± 2.2 FPS Maximum 30 FPS
√

The name of the algorithm in Table 7 is the same as that in Table 5. Algorithm 1 is the
YOLOv7-Tiny model, and Algorithm 5 is TD-YOLO after the ablation experiment.

As can be seen from Table 8, the embedded devices tested in this paper are all suitable
for deployment in the UAVs used for transmission line inspection, which further validates
the feasibility of the algorithms in this paper.

6. Conclusions

1. This paper proposes a typical fault detection algorithm for transmission lines
based on a lightweight module and a feature-balanced network. Through the Ghost
module, YOLOv7-Tiny is reorganized in a lightweight way to reduce the parameters and
computation of the model so that it can meet the deployment conditions. Through the
introduction of the scSE attention mechanism and PA-Net to form a feature-balancing
network, the information of the upper and lower layers is better integrated, which, to a
certain extent, reduces the missed detection caused by the insufficient feature expression
capability during the scale transformation process of faults. The NWD loss function is used
to replace part of the CIoU to improve the detection of small target faults while ensuring
the training speed of the model.

2. Based on the self-built dataset, the model designed in this paper has obvious advan-
tages in terms of detection accuracy and detection speed compared with the lightweight
models of the same stage, and the effectiveness of the model’s improvement is verified by
the mobile hardware.

3. The self-built dataset in this paper mainly includes transmission line equipment
faults (typically broken insulators), transmission line foreign object faults (typically bird’s
nests), and transmission line metalwork faults (typically anti-vibration hammer corrosion),
and the fault types are not limited to these typical faults. Further research will be carried
out by adding fault-type detection to make the model more universal.
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