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Abstract: A well-organized path can assist unmanned aerial vehicles (UAVs) in performing tasks
efficiently. The artificial fish swarm algorithm (AFSA) is a widely used intelligent optimization
algorithm. However, the traditional AFSA exhibits issues of non-uniform population distribution
and susceptibility to local optimization. Despite the numerous AFSA variants introduced in recent
years, many of them still grapple with challenges like slow convergence rates. To tackle the UAV
path planning problem more effectively, we present an improved AFSA algorithm (IAFSA), which
is primarily rooted in the following considerations: (1) The prevailing AFSA variants have not
entirely resolved concerns related to population distribution disparities and a predisposition for local
optimization. (2) Recognizing the specific demands of the UAV path planning problem, an algorithm
that can combine global search capabilities with swift convergence becomes imperative. To evaluate
the performance of IAFSA, it was tested on 10 constrained benchmark functions from CEC2020;
the effectiveness of the proposed strategy is verified on the UAV 3D path planning problem; and
comparative algorithmic experiments of IAFSA are conducted in different maps. The results of the
comparison experiments show that IAFSA has high global convergence ability and speed.

Keywords: UAV 3D path planning; improved artificial fish swarm algorithm; refractive opposition
learning; adaptive spiral search

1. Introduction

UAVs have received significant attention and utilization in both civilian and military
domains [1]. UAVs are autonomous or remotely controlled aircrafts that offer numerous
advantages over manned aircraft, including cost-effectiveness, flexibility, and the ability to
operate in challenging or hazardous environments. In the civilian sector, UAVs have revo-
lutionized various fields, such as agricultural crop protection [2,3], aerial photography [4],
express transportation [5,6], and ocean remote sensing [7]. In the military sector, they have
become vital assets for intelligence gathering [8], reconnaissance surveillance [9], and other
complex and dangerous missions. The role of UAVs in the delivery of essential supplies
during seismic disaster relief operations in mountainous areas is of particular interest.
Mountainous regions often involve challenges such as complex geological conditions and
limited transportation options, which impede traditional supply/delivery methods. UAVs,
with their speed and agility, can effectively transport relief materials to disaster-stricken
areas, providing crucial support for rescue operations [10].

One fundamental requirement for a UAV to effectively accomplish its intended mission
is effective path planning [11]. The path planning problem for UAVs involves generating
a collision-free trajectory from the starting point to the target point that accounts for the
given flight conditions and environmental constraints. The planned path should minimize
the cost and comply with the relevant constraints. Due to the complexity of optimization
problems with multiple constraints, traditional optimization strategies often face challenges
in finding the best solution [12].
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Sampling-oriented path planning algorithms have been widely studied and applied
because of their low computational complexity when solving complex, high-dimensional
problems. Tan Liguo uses the RRT algorithm to extend the node to address the time
consumption and low success rate of UAV path planning in complex blockage environ-
ments [13]. The path planning solutions of RRT have better adaptability than traditional
strategies, allowing them to cope with obstacle changes in dynamic environments and find
feasible paths more quickly [14,15], but these methods may run indefinitely when paths do
not exist.

In contrast, nature-inspired optimization algorithms offer distinct advantages when
addressing intricate optimization problems like path planning. Unlike traditional gradient-
based algorithms, natural heuristic algorithms do not rely on the gradient information
of the objective function but search by directly evaluating the objective function values.
These algorithms are not constrained by mathematical conditions such as continuous
differentiability and can be applied to discrete optimization problems such as integer
programming [16]. Even in nonlinear control systems, natural heuristic algorithms are
effective for parameter estimation and control optimization [17,18]. Notable examples of
these common heuristic algorithms encompass particle swarm optimization (PSO) [19–21],
ant colony optimization (ACO) [22,23], artificial bee colony (ABC) [24–26], the genetic
algorithm (GA) [27–29], beetle antennae search algorithm (BAS) [16], and Harris hawks
optimization (HHO) [30], among others. Ref. [31] proposes a novel path planning approach
integrating Voronoi diagram generation and Dijkstra’s shortest path algorithm, introducing
an efficient PSO metaheuristic algorithm that improves solution quality compared to
traditional PSO by simulating real-world scenarios, with enhancements ranging from
5% to 22% under different wind conditions. Ref. [32] explores the impact of common
U-shaped obstacles in 3D space on path planning for UAVs and presents a self-heuristic
ACO-based method. This method defines the entire space by constructing a grid workspace
model and designing two different search strategies for selecting the next path node to
avoid ACO algorithm deadlock, effectively addressing the path planning problem for
UAVs encountering U-shaped obstacles in 3D space. Ref. [25] proposes an improved
ABC algorithm based on multi-strategy synthesis for UAV path planning in complex
urban environments and provides rapid and optimal paths. A feasible approach was
proposed in [33] to solve the real-time path planning problem for UAVs, which meets the
requirements of flight safety and improves the efficiency of path planning, especially in
dynamic obstacle avoidance.

The methods proposed in the above literature include problems such as unrealistic
map settings, ease of falling into local optimums, and unreasonable path optimization.
Notably, the artificial fish swarm algorithm (AFSA) in the population intelligence algorithm
is widely used for optimization because of its flexibility, insensitivity to initial parame-
ter settings, and global search capability [34]. It stimulates the preying, following, and
swarming behaviors of fish, utilizing multiple fish to collaboratively search and optimize
functions or solve problems. Within AFSA, each fish makes various behavioral decisions
based on the objective function information within their field of vision. Different fish
interact through information exchange to achieve synergy, ultimately leading the fish pop-
ulation toward the optimal state. In comparison to the BAS algorithm, AFSA offers greater
flexibility in adjusting search step lengths and striking a balance between local and global
search through various behaviors. BAS, on the other hand, relies more on antenna length
parameters. In contrast to HHO, AFSA features autonomous individuals within the fish
population and lacks a distinct tracking-evading relationship, which helps prevent falling
into local optima. In the context of the problem at hand, AFSA achieves collaborative
search through information dissemination, while PSO depends on velocity to maintain
search direction. The local interactions within AFSA can provide richer search information.
Ref. [35] proposed incorporating directional operators and probabilistic weighting factors
to enhance the path quality of autonomous surface vessels (ASVs). Ref. [36] addresses the
path planning problem of ASVs under complete constraints by employing a cost expansion
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strategy. Ref. [37] introduces a novel approach combining an artificial fish school algorithm
with continuous segmented Bessel curves to generate low-precision, high-quality paths
with minimal inflection points and reduced length for robots.

However, relatively few reports discuss applying AFSAs to the path planning problem
of UAV 3D environments. By analyzing and organizing the above literature, an improved
artificial fish swarming algorithm (IAFSA) is proposed to address this problem and obtain
the optimal path more effectively than other algorithms. The following are the contributions
to this paper:

1. A multi-strategy fusion IAFSA is proposed to improve the original AFSA. Specifically,
the refractive opposition learning (ROL) strategy is introduced to address the issue of
the uneven distribution of the fish swarm. Then, the adaptive spiral strategy (ASS)
is employed to balance the trade-off between exploration and exploitation of the
algorithm. Finally, the adaptive elimination and regeneration (AER) mechanism is
implemented to effectively prevent the algorithm from converging to local optima.
Through the integration of these strategies, the improved algorithm achieves superior
performance compared to the original AFSA.

2. The proposed algorithm is compared on the cec2020 benchmark function with PSO, the
original AFSA, the improved strategy IAFSA1 proposed in Ref. [35], and the improved
strategy IAFSA2 proposed in Ref. [38], and the experimental results are analyzed.

3. Experiments on the effectiveness of the strategy are performed for the UAV path
planning issue, and the experimental results are analyzed. Then, the suggested
algorithm is compared with itself in maps of different complexity to explore the effect
of the algorithm.

This manuscript is structured as follows: Section 2 describes the problem of UAV path
planning. Section 3 introduces the standard AFSA, the proposed optimization idea, and
the improvement method of the IAFSA. Section 4 presents the validation experiment, the
strategy effectiveness experiment, and the algorithm comparison experiment on the test
function. Section 5 presents the conclusions.

2. Problem Description for Path Planning

In this section, a mountainous environment model for UAVs is established, along with
a corresponding UAV path planning model. A dual-objective model is formulated that
accounts for both the minimization of UAV path length and the optimization of flight energy
consumption. Additionally, trajectory optimization methods for UAVs are introduced.

2.1. 3D Scene Setting

UAVs often operate in complex terrains in practical scenarios such as coastal search
and disaster relief. The terrain model serves as a fundamental basis for UAV path planning.
To better simulate real-world conditions, the complex 3D terrain can be described using the
following exponential (1) function [39]:

Z(x, y) =
N

∑
i=1

hi exp

[(
x− xic

xsi

)2
−
(

y− yic
ysi

)2
]

(1)

The coordinates (x, y) are utilized to represent the position in the two-dimensional
plane. N denotes the number of generated peaks, where hi, (xic, yic) correspond to the
height control parameter and central coordinates of the respective peak. xsi represents the
rate of change in the peak along the x-axis, while ysi denotes the rate of change along the
y-axis. Additionally, exp denotes the exponential function.

This formulation enables multiple peaks to be created and manipulated within the
given plane. The parameters hi, xic, yic, xsi, and ysi collectively contribute to the diverse
and intricate landscape generated by the peaks.

Based on the model (1) formulation, ten randomly generated peaks were created
within a 3D space of dimensions 100 m × 100 m × 100 m, as illustrated in Figure 1.
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2.2. Establishment of the Multiobjective Fitness Function

Let the coordinates of the starting point S in the aforementioned complex 3D envi-
ronment be (x0, y0, z0) and the coordinates of the destination point G be (xn, yn , zn). The
coordinates of the intermediate node Ui are denoted as (xi, yi, zi), where i = 1, 2, · · · , n− 1.

The objective function is to minimize the cost of the drone’s travel and energy con-
sumption while executing the mission. Assuming that the total cost of completing a single
mission by the drone is C, the following equation is obtained.

min C = α1L + α2E (2)

where L, E represent the cost of travel and energy consumption, respectively. α1 and α2
denote the weights assigned to these costs and satisfy the condition α1 + α2 = 1.

2.2.1. Cost of Travel

The flight distance covered by a UAV while completing each mission is determined by
summing the Euclidean distances between adjacent path nodes, denoted as Ui, Ui+1. The
UAV departs from the starting point S, passes through node Ui, and reaches the destination
point G, with the expression of the cost of flight distance denoted as L.

L = {
−−→
SU1 ,

−−−→
U1U2 , · · · ,

−−−−→
Un−1G} (3)

Equation (3) can be reformulated as follows:

L =
n

∑
i=1

√
(xi − xi−1)

2 + (yi − yi−1)
2 + (zi − zi−1)

2 (4)

2.2.2. Energy Consumption

Under constant velocity, power is primarily proportional to weight. Weight consists
of three main components: airframe, battery, and payload. Therefore, increasing payload
increases the overall weight of the aircraft, resulting in higher power consumption. Energy
consumption is a crucial factor that limits the performance of UAVs as different behaviors
of the aircraft result in differing amounts of power consumption. If the payload influence
is not accounted for, the planned flight path may not be achievable in practical missions.
Hence, an effective payload penalty coefficient, denoted as ℘E, is introduced.

According to research conducted by Song et al. [40], the flight time and energy con-
sumption of UAVs increase linearly with the mass of the loaded product. Therefore, the
effective payload penalty coefficient ℘E for logistics UAVs during delivery missions is
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assumed to be directly proportional to the payload quantity γ. γk represents the maximum
payload capacity of the logistics UAVs, while ℘E(n) represents the maximum value of the
effective payload penalty coefficient.

Then, the effective payload penalty coefficient is expressed as follows:

℘E =
℘E(n) − 1

γk
× γ + 1 (5)

The energy cost E can be described as follows:

E = ℘E(E1 + E2) (6)

E1 =
n

∑
i=1

ξ1(|xi − xi−1|+ |yi − yi−1|) (7)

E2 =
n

∑
i=1

ξ2|zi − zi−1| (8)

where E1 and E2 indicate the energy spent by UAVs during horizontal and vertical flight,
respectively. The number ξ1 represents the energy consumption per unit distance for
horizontal flight. ξ2 denotes the energy consumption generated per unit distance for
vertical height. It is worth noting that in this model, a simplification of the same power
consumption for ascent and descent has been made for the sake of reserving safe power.

2.3. Restrictions and Path Smoothing

To guarantee that the UAV’s flight route remains within the defined airspace, the
following constraints must be satisfied:

xmin ≤ xi ≤ xmax
ymin ≤ yi ≤ ymax
zmin ≤ zi ≤ zmax

(9)

where xmin, ymin, zmin, xmax, ymax, zmax is the restricted space range.
In drone path planning, it is common to impose navigation angle constraints on

unmanned aerial vehicles to restrict their flight direction and orientation [41–43].

γi = cos−1

 (xi − xi−1)(xi+1 − xi) + (yi − yi−1)(yi+1 − yi)√
(xi − xi−1)

2 + (yi − yi−1)
2
√
(xi+1 − xi)

2 + (yi+1 − yi)
2

, (zi = zi+1) (10)

ϑi = tan−1

 |zi − zi−1|√
(xi − xi−1)

2 + (yi − yi−1)
2

, (zi 6= zi+1) (11)

The current position of the UAV is (xi, yi, zi), and under the condition zi = zi+1, the
UAV following the turning angle γi can be described by Equation (10). In Equation (11), ϑi
is the climb angle of the current position.{

0 ≤ γi ≤ γmax
0 ≤ ϑi ≤ ϑmax

(12)

where γi is the maximum angle of turning, and ϑmax is the maximum climb angle.
The use of mathematical expression constraints in UAV path planning poses signif-

icant challenges. These constraints make it challenging to precisely describe complex
paths, often resulting in path discontinuities and a lack of smoothness. Simultaneously
satisfying various constraints becomes a complex task, ultimately restricting path choices
and hindering optimization. In contrast, spline curve methods offer a more optimized,
smoother, and continuous approach to path planning. Spline curves reduce UAV vibrations
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and bumps, enhancing comfort and stability. They also provide a better simulation of
natural curves, ensuring path harmonization. Utilizing optimization algorithms, these
methods can efficiently identify optimal paths within specified constraints, significantly
improving efficiency.

Spline Function Definition: Given an existing function S(x), S(x) ∈ C2[a, b], which sat-
isfies a third-degree polynomial definition within each interval [xi, xi+1], where
a = x0 < x1< · · · < xn = b. The function S(x) is referred to as a spline function with
nodes x0, x1, · · · , xn. If at the node xi, there exists an equation yi = f (x), (i = 0, 1, · · · , n)
and the equation S(xi) =yi, (i = 0, 1, · · · , n) holds true throughout, then S(x) is termed a
spline interpolation function.

In each subinterval [xi, xi+1] satisfying the following:

S(x) = aix3 + bix2 + cix + di, i = 0, 1, 2, . . . , n− 1 (13)

where ai, bi, ci, di are the coefficient to be determined.
Faction S(x) has second-order continuous derivatives in the interval [a, b] and thus

satisfies at the xi nodes. 
S(xi − 0) = S(xi + 0)
S′(xi − 0) = S′(xi + 0)
S′′ (xi − 0) = S′′ (xi + 0)

(14)

The boundary condition can be described as follows:
S′′ (x0) = y′′ (x0)
S′′ (xn) = y′′ (xn)
y′′ (x0) = y′′ (xn) = 0

(15)

3. Algorithm Description

In the previous section, we built a 3D environment and established a fitness function
that considers UAV path planning. We also proposed using spline interpolation to generate
a smooth path. Among these, the process points between the start and end points are
especially important, because the process points directly affect the final path quality. In
order to obtain optimized process points, this section will introduce an IAFSA.

In this section, an overview of the traditional AFSA is provided, followed by a discus-
sion on the four key improvements made in the IAFSA for UAV trajectory planning. The
improvements include generating the initial population using an ROL strategy, enhancing
convergence speed through adaptive spiral vision, incorporating social experience locations
to reinforce following behavior, and implementing population regeneration to avoid local
optima. Finally, the specific implementation steps of the IAFSA for UAV path planning
are presented.

3.1. Traditional AFSA

The AFSA is a population intelligence algorithm that seeks optimization by imitating
the feeding behavior of fish in a specified search area space. The AFSA uses a local-to-whole
optimization approach. First, each artificial fish in a group of artificial fish performs a
local optimization search and information transfer according to a set perceptual range and
behavioral mechanism. Then, the overall optimization is achieved based on the distribution
of fish locations.

In a school of n fish, Xi = [x1i, x2i, . . . , xDi]
T represents the state of the fish, and D de-

notes the dimension of each individual. Yi = C(Xi) denotes the current food concentration,
and two-norm dij = ||Xi − Xj|| represents the distance between two fish.

The AFSA consists of four main behaviors: prey behavior, swarming behavior, follow-
ing behavior, and random behavior. Figure 2 shows the main behavioral mechanisms of a
traditional AFSA. These behaviors are specifically described as follows:
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3.1.1. Preying Behavior

In the traditional AFSA algorithm, the artificial fish randomly chooses a position
Xj within the visual range (dij ≤ Visual) based on the current position Xi. If the food
concentration Yj > Yi, the artificial fish moves one step size Step toward Xj. Otherwise,
it randomly chooses another position to compare the food concentration. After explor-
ing for the maximum number of preying attempts Try_Num times, if the conditions for
advancement are not met, a random step is taken.

The position Xj can be defined as (16) and provides a random position state in the
visual range next to the current fish.

Xj = Xi + Visual × rand(0, 1), if Yi > Yj (16)

The fish moves toward Xj if the food concentration Yj > Yi. This is accomplished by
the following:

Xi(t + 1) = Xi(t) +
Xj(t)− Xi(t)∣∣∣∣Xj(t)− Xi(t)

∣∣∣∣ × Step× rand(0, 1) , if Yi < Yj (17)

3.1.2. Following Behavior

In the Xi field of view, position Xj corresponds to the food concentration Yj, and the
state of the position satisfies Yi < Yj. This indicates that a fish in the school finds a better
position, assuming that there are n f artificial fish in the Xi field of view where n f /n < δ,
indicating that the position is not crowded. Xi then moves toward (18).

Xi(t + 1) = Xi(t) +
Xj(t)− Xi(t)∣∣∣∣Xj(t)− Xi(t)

∣∣∣∣ × Step× rand(0, 1), Yj > Yi (18)

The AFSA will engage in prey behavior if no neighbors are located in the field of view
or the requirements are not met.

3.1.3. Swarming Behavior

The behavior of the artificial fish mimics the natural aggregation patterns observed in
real fish, where they strive to move toward a central location during each iteration. This
movement strategy enables artificial fish to concentrate in areas with high food density,
facilitating efficient local exploitation. One method used to determine the central location
is illustrated in Equation (19):

Xc(t) =
1
n

n

∑
i=1

Xi(t) (19)
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The artificial fish moves toward the central position as expressed in (20) if the food
concentration Yc > Yi and n f /n < δ.

Xi(t + 1) = Xi(t) +
Xc(t)− Xi(t)
||Xc(t)− Xi(t)||

× Step× rand(0, 1), Yc > Yi (20)

Otherwise, the artificial fish executes prey behavior.

3.1.4. Random Behavior

To mitigate the risk of becoming trapped in local optima, the artificial fish adopts a
random behavior when it is unable to execute other predefined behaviors. This random
behavior involves the artificial fish randomly selecting a state or position within its visual
field and then swimming toward the chosen location. This procedure can be expressed
as follows:

Xi(t + 1) = Xi(t) + Step× rand(0, 1) (21)

3.2. Improved AFSA
3.2.1. ROL Initialization Strategy

In the context of UAV path planning, finding the globally optimal path faces challenges
in complex environments. During the early stages of algorithm evolution, exploration
takes precedence over exploitation, as global exploration of the search space helps prevent
premature convergence or becoming trapped in local optima. Therefore, to address this
issue, the ROL strategy was introduced, aiming to expand the search range and prevent
the algorithm from prematurely converging to local optima.

The ROL strategy is a mathematical idea inspired by the natural phenomenon of
light deflection in the propagation direction due to different refractive indices in two
media [44,45]. In the analogy between ray refraction and path planning, both involve the
process of finding the optimal path in a target space. During light propagation, refraction
occurs when interfaces with different refractive indices are encountered, thus changing the
direction of propagation. Similarly, in path planning, when a better path is found, the path
direction needs to be adjusted in time. The “refraction effect” occurs when an unobstructed
region of space exists when generating the initial school of fish. This effect refracts the
initial set of points as a target into a new set of points, ensuring correlation between the old
and new sets of points. In contrast, randomized methods do not ensure this correlation
because the new points may not be correlated at all. This helps avoid revisiting previously
explored regions and extends the path to unexplored regions. This ensures that a more
evenly distributed initial population of fish is generated, thus improving the performance
of the algorithm.

An optimization method is used to retain the more adaptive individual from the
current set of solutions and from the set of opposing solutions. The concept of the ROL
initialization strategy is illustrated in Figure 3a.

In Figure 3a, the x-axis depicts the division between two distinct media, while the
y-axis represents the normal direction perpendicular to the x-axis. The search range is
denoted as [xa, xb], and the angles of incidence and refraction are represented by α and
β, respectively, while l1 and l2 denote the lengths of the incident and refracted light,
respectively. The point x symbolizes a position within the incident region [xa, xb], while x∗

denotes the position of point xa after refraction. The lines depicted in Figure 3a illustrate
the following geometric relationships:

sinα =
xa + xb − 2x

2l1
(22)

sinβ =
(2x∗ − xa − xb)

2l2
(23)
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Equation (24) defines the refraction rate η.

η =
sinα

sinβ
=

l2(xa + xb − 2x)
l1(2x∗ − xa − xb)

(24)

Given χ = l1/l2, combining (24), we obtain the following, as shown in (25):

x∗ =
xa + xb

2
+

xa + xb
2χη

− x
χη

(25)

By taking η = 1 in the general case and modifying Equation (25) to address the
D-dimensional space problem, we obtain the following:

x∗i,j =
xaj + xbj

2
+

xaj + xbj

2χ
−

xi,j

χ
, j = 1, 2, · · · , D (26)

where xi,j ∈ [xaj, xbj] is the position of the jth dimension of the ith individual. x∗i,j is refracted
by xi,j through the refractive opposition method.

In the initialization process of the algorithm, the generated initial population
P1 = [X1, . . . , XN ] is considered the incident light, and the population P∗1 = [X∗

1
, . . . , X∗N ]

after refraction, where N is the population size. The composition of the initial population P
can be expressed by (27):

P = {P1 ∪ P∗1 } (27)

The fitness of P1 and P∗1 is calculated to filter out the iterative population P∗ with high
fitness, thereby improving global search ability and population diversity.

3.2.2. ASS Strategy

In UAV path planning, the path needs to be quickly adjusted in complex and dy-
namic environments. The IAFSA simulates the intelligent behaviors of fish in different
environments, enabling dynamic path adjustments to suit various scenarios.

In this subsection, the ASS strategy is introduced to enhances the algorithm’s adapt-
ability and improve the convergence speed and accuracy of the AFSA. This strategy adopts
a spiral-shaped search path, which gradually decreases the step size in the search process
and helps to approach the optimal solution quickly. This strategy has a large field of view
in the initial search phase, and the field of view gradually decreases as the search proceeds
striking a balance between global optimality and real-time responsiveness.

The ASS strategy is unique because it combines the characteristics of randomness and
determinism, thus maintaining diversity in the search process. It can not only perform an
accurate local search but also step out of local optimal solutions and search in the direction
of the global optimal solution. Figure 3b shows a schematic diagram of the spiral field
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of the visual range. Figure 4a illustrates the preying behavior of the spiral field of the
ASS strategy.
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The ellipse in Figure 4a indicate that the range of an individual’s visual field varies
in a spiral pattern. In the early stage of the algorithm, the range of field of view is larger,
which is favorable for global search; in the later stage, the range of field of view gradually
decreases, which is favorable for local fine search, and as the number of iterations increases,
the range of the field of view and the step size of the fish individuals will gradually decrease
when they are close to the local optimal solution. This realizes the adaptive transformation
from global to local. In Figure 4b, the traditional AFSA fish will move directly toward
the position closest to the food in the field of view. In IAFSA, the effect of the current
global optimal solution (social experience position) is introduced while moving toward the
optimal position in the field of view. The fish will move in the direction of the synthesis of
the optimal position in the field of view and the socio-experiential position. This increases
the ability to utilize global information.{

Visual = Dis× ebω × cos(2πω) + V0
Dis =

∣∣∣∣Xi − Xgm
∣∣∣∣ (28)

Dis represents the distance from the current artificial fish Xi to the global optimum
Xgm, and the value of the global optimum decreases as the exploration deepens. It is worth
noting that the global optimal mentioned here refers to the optimal algorithm within the
explored solution space, not the absolute optimal mathematical solution. b is the spiral-
shaped parameter, ω is the random number between [−1, 1], and V0 is the initial field of
view value.

3.2.3. Behavioral Enhancement

In the original pursuit behavior, the pursuit relied solely on the information of artificial
fish within its visual range. However, when the visual range is limited, the artificial fish are
prone to becoming trapped in local optima. In contrast, incorporating the social experience
location XIgm broadens the search range, facilitating global exploration for the fish swarm.
The social experience position XIgm refers to the potential global optimal solutions in the
current number of iterations. These positions are selected based on the number of iterations
of the algorithm and the current search state, one position at a time.

Compared to local information within the visual range, social experience offers com-
prehensive spatial distribution information. Therefore, by incorporating social experience
positions into the pursuit behavior and integrating local and global information, fine-
grained and broad-scale searches are combined.

Additionally, introducing moderate random perturbations enhances exploratory be-
havior, effectively improving the algorithm’s capability for global optimization. This
modification adapts to the optimization needs of complex multimodal problems better
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than the original pursuit behavior that relied solely on local information. The enhanced
following behavior is shown in Figure 4b.

The updated equation for the improved pursuit behavior’s position update is as follows:

R = rand(0, 1) (29)

Xi(t + 1) = Xi(t) + Step×
[

R×
Xj(t)− Xi(t)∣∣∣∣Xj(t)− Xi(t)

∣∣∣∣ + (1− R)
Xgm(t)− Xi(t)∣∣∣∣Xgm(t)− Xi(t)

∣∣∣∣
]

, Yj > Yi (30)

Step =
Visual

} (31)

where } denotes the adaptive step factor.

3.2.4. AER Mechanism

In UAV planning, aiming for a global optimal path instead of a local one is essential, but
achieving a globally optimal path search in complex environments is notably challenging.

During the search process, the mechanism randomly updates individual positions,
preserving differentiation among individuals in the fish population. This approach prevents
the algorithm from prematurely converging to a specific local optimum, enabling a balanced
exploration of the entire search space. Maintaining diversity allows the algorithm to
adapt better to complex problems and diverse environments, thereby improving global
search effectiveness.

Specifically, this mechanism is triggered when the algorithm reaches a threshold value
of k iterations being trapped in local optima during the optimization process. The total
number n of individuals to be replaced is calculated according to Equation (32).

n = round(c1 + iter/c2) (32)

Here, the round(·) operation is used to round a number to the nearest integer. iter
represents the current iteration count, and c1, c2 represents two positive real numbers.
These parameters determine the proportions for updating the population.

Using the logistic mapping method shown in Equation (33), a random number se-
quence between [0, 1] is generated and mapped to integers in the range [0, N], where N
represents the population size, to determine which populations will be replaced.{

x(m) = r0 × x(m− 1)× [1− x(m− 1)], m = 2, . . . , n
x(1) = x0

(33)

x0, r0 represents the initial value.
The population is updated with the new generation using Equation (34).{

Xold = X(x)
Xnew = Xgm(1 + z)

(34)

where Xold denotes the position of the xth individual, while Xnew denotes the updated
position of the population. The random operator z is generated using the t-distribution,
and the global best value is denoted as Xgm.

3.2.5. IAFSA Implementation in UAV Path Planning

The previous section introduced the UAV route planning issue and the improvement
strategy of IAFSA. This section discusses how to tackle the path planning problem using
IAFSA in conjunction with the spline curve approach. To be more specific, the path
comprises a series of interpolation points and control points, forming an ordered spline
curve. The sequence starts from the initial point, followed by interpolation points, then
control points, followed by interpolation points, then control points, and finally ends with
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interpolation points. These control points are determined through an iterative optimization
process of the algorithm. The following is the specific interpolation process for generating
a path:

1. Use IAFSA to obtain M interpolating nodes (x′1, y′1, z′1), (x′2, y′2, z′2), · · · , (x′M, y′M, z′M),
and the sequence is given as an equivalent sequence K = {0, k1, k2, · · · , kM, 1}.

2. Split the coordinates of the M interpolated points into three sequences
A =

{
x0, x′1, x′2, · · · , x′M, xn+1

}
, B =

{
y0, y′1, y′2, · · · , y′M, yn+1

}
, C = {z0, z′1, z′2, · · · ,

z′M, zn+1}
3. Find the coordinate set {(0, x0), (k1, x′1), · · · , (kM, x′M), (1, xn+1)}, {(0, y0), (k1, y′1), · · · ,

(kM, y′M), (1, yn+1)} and set
{
(0, z0), (k1, z′1), · · · , (kM, z′M), (1, zn+1)

}
, and calculate

the corresponding spline interpolation function S1(x), S2(y), and S3(z).
4. Calculate the corresponding values of S1(x), S2(y), and S3(z) on {1, 2, · · · , n} to

achieve values (x1, x2, · · · , xn), (y1, y2, · · · , yn), (z1, z2, · · · , zn).
5. (x0, y0, z0)→ (x1, y1, z1)→ · · · → (xn, yn, zn)→ (xn+1, yn+1, zn+1) is the desired path.

In the algorithm implementation, individual fish are defined with attributes, including
position, path, and fitness. Position represents the location information of control points,
and the initial positions are selected through the ROL strategy. Path represents the candidate
path, which is obtained through the methods described above. Fitness indicates the fitness
value, and once the path is obtained, we calculate the fitness value for each fish based
on the objective function and accordingly update their fitness. The detailed steps of the
algorithm are as follows:

1 Given the initial position and the end position, generate the complex landscape map.
2 Set the initialization parameters, including the number of fish N, the initialization

factor χ, the initial field of view V0, the adaptive step factor }, the maximum num-
ber of preying tries Try_Num, the crowding factor δ, and the maximum number of
iterations MaxIter.

3 Randomly generate the artificial fish population P1 = {X1, X2, . . . , Xn} according to
Equation (26) to generate the opposing population P∗1 , where Xi(xi, yi, zi) represents
the location information. Calculate the fitness value of each artificial fish correspond-
ing to the path, filter the iterative population P∗, and update the global optimal
position Xgm.

4 Calculate the field of view of the spiral search using Equation (28), with Step deter-
mined by Equation (31).

5 Execute the swarming behavior; select each artificial fish in turn, and determine
the number of artificial fish within the current artificial fish field of view and find
the central location Xc. Determine whether the location is crowded. If it is not
crowded according to Equation (20), move one step toward Xc; otherwise, execute
preying behavior.

6 Perform the following behavior; determine the social experience position Xgm and the
local optimal position Xj. Determine whether the position Xj is crowded. If it is not
crowded according to Equation (30), update the current position; otherwise, perform
foraging behavior.

7 Compare the swarming behavior with the following behavior: update the optimal
position, and obtain the target path.

8 Determine whether collision occurs with the mountain. If collision occurs, expand the
fitness value appropriately.

9 Determine whether the population regeneration threshold is reached. If not, reach
the threshold by Formulas (32)–(34) to update the population, and continue from step
4; otherwise, continue to execute steps 4–8 until the maximum number of iterations
pass. End the iterations to find the optimal path.

10 The IAFSA pseudocode is shown in Algorithm A1, Appendix A.
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3.2.6. Time Complexity

The time complexity of this algorithm primarily consists of two main components: the
ROL initialization strategy and the original AFSA. As previously explained, N represents
the population size, D denotes the number of decision variables in the problem being
solved, and MaxIter represents the maximum number of algorithm iterations.

In the ROL initialization strategy, an opposing population is generated for the orig-
inal population, and the N individuals with the lowest fitness values are selected as the
initial population. The time complexity of the initialization process comprises two parts:
computing fitness values and sorting the population. Therefore, the time complexity of the
initialization process can be expressed as 2O(ND) + O(2N log(2N)).

The time complexity of the original AFSA mainly consists of three parts: the move
step, the neighborhood search, and the fitness evaluation. In one iteration, both the moving
step and the neighborhood search have a worst-case time complexity of O(N), while the
fitness evaluation has a time complexity of O(ND). Therefore, the time complexity of the
original AFSA can be calculated as (MaxIter− 1)[2O(N) + O(ND)].

In summary, the time complexity of this algorithm is 2O(ND) + O(2N log(2N))+
(MaxIter− 1)[2O(N) + O(ND)].

4. Experimental Results and Analysis

In this section, the effectiveness of the proposed IAFSA algorithm is evaluated using
the 10 benchmark functions in CEC2020. The strategy effectiveness of the algorithm is also
evaluated. In addition, the proposed model is simulated using the improved algorithm;
for comprehensive analysis and validation, this algorithm is compared with various other
algorithms based on the experimental results.

4.1. CEC2020 Experiments

The newest and most challenging numerical optimization contest, the CEC2020 bench-
mark function (see Table 1), was chosen for evaluating the performance of the IAFSA.
This choice allows the capabilities of the proposed algorithm to be further observed. The
benchmark test consists of 10 different functions categorized into single-mode, multimode,
hybrid and combinatorial functions.

Table 1. The CEC2020 benchmark function [46].

No Functions Best

Unimodal Function F1 Shifted and Rotated Bent Cigar Function 100

Multimodal Shifted and Rotated Functions
F2 Shifted and Rotated Schwefel’s Function 1100
F3 Shifted and Rotated Lunacek bi-Rastrigin Function 700
F4 Expanded Rosenbrock’s Plus Griewangk’s Function 1900

Hybrid Functions
F5 Hybrid Function 1 1700
F6 Hybrid Function 2 1600
F7 Hybrid Function 1 2100

Composition Functions
F8 Composition Function 1 2200
F9 Composition Function 2 2400

F10 Composition Function 3 2500

Numerical experiments were performed under Dim = 10 conditions, and the proposed
algorithm was compared with the original AFSA, PSO, IAFSA1 with probability weighting
factors, IASA2 with integrated survey behavior, and IAFSA3 with an initialization strategy
and adaptive strategy [47]. The experiments were conducted under the same conditions
to attempt to provide a fair and reliable assessment of the performance of the algorithms.
The experiments were conducted in a controlled environment using MATLAB 2021b on a
Windows 10 operating system with an Intel(R) Core(TM) i9-12500H @ 3.1 GHz CPU and
16 GB RAM
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The experimental parameters were set as follows: the number of populations was
N = 50, the number of iterations was 1000, the inertia weight of the PSO was set to 1.5, the
social and cognitive weights were set to 2.3, and the particle velocity was set to 0.27. The
following are IAFSA parameter settings: the factor χ = 0.95, initial field of view V0 = 50,
adaptive step factor } = 2, maximum number of preying tries Try_Num = 5, crowding
factor δ = 0.618, and spiral-shaped parameter b = −0.4. The main simulation parameters
of AFSA were set as follows: Step = 6; the field of view Visual = 50; the maximum number
of prey trials Try_Num = 5; and the crowding factor was set to 0.618. The other comparison
algorithms were set to the same level as that of the AFSA, and the parameter settings were
kept the same as those of the AFSA. Figure 5 shows the convergence curve on CEC2020.
Table 2 reflects the experimental results of 30 iterations.
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Table 2. Result of the benchmark function test.

No Metric IAFSA AFSA IAFSA1 IAFSA2 IAFSA3 PSO Is the IAFSA
Optimal?

F1 AVG 2.514× 103 1.443× 106 2.485× 105 1.468× 103 2.981× 103 4.817× 109 0
F2 AVG 1.899× 103 2.491× 103 2.256× 103 2.148× 103 3.022× 103 1.911× 103 1
F3 AVG 733.202 728 721.924 781.316 753.337 742.343 0
F4 AVG 1.902× 103 1.902× 103 1.902× 103 1.915× 103 1.903× 103 2.947× 104 1
F5 AVG 5.061× 103 2.714× 104 8.209× 104 5.067× 103 1.753× 105 3.533× 105 1
F6 AVG 1.602× 103 1.603× 103 1.606× 103 1.602× 103 1.608× 103 1.611× 103 1
F7 AVG 5.552× 103 6.428× 103 7.184× 103 5.552× 103 3.752× 104 1.531× 105 1
F8 AVG 2.306× 103 2.309× 103 2.303× 103 2.306× 103 2.896× 103 2.526× 103 1
F9 AVG 2.745× 103 2.616× 103 2.523× 103 2.821× 103 2.753× 103 2.851× 103 0

F10 AVG 2.919× 103 2.920× 103 2.941× 103 2.932× 103 1.981× 103 3.109× 103 1

4.2. Strategy Validity Experiments

To assess the potential proposed strategy enhancement on the effectiveness of the AFSA
in 3D path planning problems, a systematic investigation was conducted by selectively
retaining specific improvement strategies or mechanisms. The aim of this investigation was
to evaluate the impact of the retained strategies on the overall path planning effectiveness
and to ascertain the individual contributions and significance of each component within
the IAFSA framework.

The following IAFSA variations were considered for evaluation:

IAFSA_S1: Exclusively employing the ROL initialization strategy.
IAFSA_S2: Exclusively employing the ASS strategy.
IAFSA_S3: Incorporating the behavioral reinforcement mechanism.
IAFSA_S4: Implementing the AER mechanisms.

To obtain fair experimental results, the common parameters were set to be consistent
across the variations: the start point coordinates were (1, 1, 1); the end point coordinates
were (100, 100, 20); the number of populations N was 100; the maximum number of itera-
tions MaxIter was 100; the initial field of view range V0 was 50; the maximum number of
preying trials Try_Num was 10; and the crowding degree factor δ was 0.618. The adaptive
step factor } of IAFSA was 20. The spiral-shaped parameter b was 0.4. The inertia weight
of the particle swarm algorithm was 1.5; the social weight and the cognitive weight were
2.3; and the particle velocity was 0.27.

Figure 6 illustrates the comparative effectiveness of the proposed improvement strat-
egy. The introduced strategies exhibit varying degrees of enhancement on the original
algorithm. Among these variations, the IAFSA method, which combines each strategy,
demonstrates the highest convergence speed and the strongest global search capability.
The data on the longest path, shortest path, average path length, and standard deviation
after employing the specified parameters and conducting 20 independent experiments are
tabulated in Table 3.

Table 3. Results of validity verification experiments.

Algorithm Worst Best AVG SD

AFSA 178.6125 131.0654 157.7066 12.9958
IAFSA_S1 150.6914 115.9715 134.6592 10.5942
IAFSA_S2 158.5450 115.9484 136.4199 15.0030
IAFSA_S3 166.7379 115.9719 133.0554 14.1987
IAFSA_S4 166.0142 118.1151 136.7992 12.1650

IAFSA 115.9788 115.9424 115.9603 0.0122
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The performance of the AFSA and the four improved schemes is compared using
the data described in Table 3. The AFSA exhibits relatively large values of 178.6125 and
157.7066 for the worst and average fitness, respectively, with a standard deviation of 12.9958.
This indicates that the algorithm is prone to local optimization, resulting in suboptimal and
unstable path performance.

In contrast, the algorithms in the four improvement schemes exhibit different degrees
of optimization in terms of fitness values and standard deviations. Specifically, the worst
adaptation, the average adaptation, and the standard deviation of IAFSA_S1 are all better
than those of the AFSA. These findings suggest that employing the improvement strategy
enhances the search capability of the algorithm, which improves path quality and stability.
IAFSA_S2, IAFSA_S2, and IAFSA_S4 also exhibit some reduction in adaptation, but the
standard deviation is not significantly impacted.

Ultimately, the IAFSA incorporates multiple improvement strategies and exhibits the
best performance, with the average path length reduced to approximately 26.5% of the
AFSA value and the standard deviation reduced to 0.012. These results highlight that
integrating these strategies significantly enhances the performance of the algorithm, which
significantly increases the probability of finding the optimal path.

Synergy exists among the various mechanisms of the IAFSA; the optimal effect cannot
be achieved by using only one mechanism. The design of the IAFSA is reasonable and
necessary for its performance. The adopted comprehensive improvement strategy effec-
tively enables the algorithm to achieve excellent performance and discover solutions with
high stability.

4.3. Algorithm Comparison Experiment

In the previous section, the effectiveness of the proposed strategy was experimentally
verified. To better present the advantages of the improved algorithm, it is compared with
the AFSA, AFSA1, IAFSA2, and PSO in this section.

To verify the stability and effectiveness of the proposed algorithm parameters, three
landscapes with different levels of complexity were selected for testing: scenario 1, scenario
2, and scenario 3. The parameter settings of IAFSA1 and IAFSA2 follow those of the
previous section. The inertia weight of the particle swarm algorithm was 1.5; the social
weight and the cognitive weight were 2.3; and the particle velocity was 0.27.

Figures 7–9 reflect the path planning capabilities of each algorithm in different scenar-
ios. It can be intuitively observed that all tested algorithms are capable of accomplishing the
path planning task. However, the proposed IAFSA exhibits superior performance under all
scenario maps, indicating that the algorithm is more robust and converges faster than the
comparison algorithms in all tested cases.
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The data in Table 4 illustrate that IAFSA consistently outperforms other methods in
all scenarios, as it exhibits the lowest mean fitness values and standard deviations. This
signifies that IAFSA excels at finding optimal solutions with high stability. In the simple
scenario, IAFSA achieves a mean fitness of 111.9639, with its best and worst results recorded
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as 111.9465 and 112.0492, respectively, as well as a relatively low standard deviation of
0.0217. In contrast, AFSA achieves a higher mean fitness value of 134.9919 and a larger
standard deviation of 1.3386.

Table 4. Comparative results of the algorithms for each scenario.

Method Results Scenario 1 Scenario 2 Scenario 3

IAFSA

AVG
Best

Worst
SD

111.9639
111.9465
112.0492

0.0217

114.9252
110.9471
117.9821

2.9398

112.6264
112.6187
112.6554

0.0095

AFSA

AVG
Best

Worst
SD

134.9919
129.7068
136.4065

1.3386

126.2389
111.0396
134.9915

6.4789

130.0024
123.8530
138.5517

6.3140

IAFSA1

AVG
Best

Worst
SD

128.6006
112.1087
143.4317
11.0993

135.2185
112.5275
145.4529

8.2513

137.3709
113.2307
165.9980
17.6507

IAFSA2

AVG
Best

Worst
SD

114.3446
111.9820
138.9630

6.3499

119.4322
111.5637
144.9824
10.0452

120.7378
112.6493
188.1241
17.7984

PSO

AVG
Best

Worst
SD

129.6669
120.4343
138.7015

5.5776

133.6039
128.1859
142.3501

3.3460

138.0377
122.9173
148.7028

6.1642

IAFSA continues to demonstrate its effectiveness in the relatively complex scenario,
where it yields a mean fitness of 114.9252. The best and worst results obtained are
110.9471 and 117.9821, respectively, and the standard deviation increases to 2.9398. Con-
versely, AFSA exhibits a lower mean fitness of 126.2389 but a higher standard deviation
of 6.4789.

In complex scenarios, IAFSA maintains its strong performance, achieving a mean fit-
ness of 112.6264. The best and worst results obtained are 110.9471 and 112.6554, respectively,
with an impressively low standard deviation of 0.0095.

IAFSA1 performs well in simple scenarios, but its performance deteriorates signifi-
cantly in complex scenarios, resulting in a mean path length of 137.3709 and a high standard
deviation of 17.6507. These findings suggest that IAFSA1 is less adaptable to complex prob-
lems. Conversely, IAFSA2 demonstrates superior average fitness and standard deviation
values, delivering competitive results. Additionally, PSO maintains stable performance
across all scenarios, exhibiting mean path lengths ranging from 129.6669 to 138.0377 and
moderate standard deviations.

5. Conclusions

In this study, 3D path planning optimization for UAVs is addressed, and an IAFSA
that integrates four improvement strategies is proposed. Introducing the ROL strategy
generates a better-distributed initial population. Integrating the ASA mechanism and
improving the following behavior accelerates the convergence speed of the algorithm
and balances the exploration and exploitation of the fish swarm. Meanwhile, introducing
population regeneration avoids the algorithm becoming trapped in local optima. To verify
the superiority of the IAFSA, three sets of experiments were designed. The first set was the
benchmark test on the CEC2020 test set. The results show that the IAFSA outperforms the
other IAFSAs, having better current performance on most test functions. The second set of
experiments was designed to verify the effectiveness of the strategies. The results indicate
that the proposed four strategies enhance the performance of the algorithm. Finally, in
the comparative experiments on 3D path planning cases with different complexities, the
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simulation results demonstrate the prominent performance of the IAFSA on the 3D path
planning problem for UAVs and the high quality of the flight paths generated by the IAFSA.

Future research directions include continuing to investigate different strategies for
improving algorithm performance and path planning in dynamic obstacle environments
and at the online level.
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Appendix A

Algorithm A1 Pseudocode of Simulated Annealing Operation

Input: Number of fish N, Initial visual range V0, Crowding factor δ, Maximum number of preying
at tempts for a single fish Try_Num, Total number of iterations MaxIter, Learning rate χ.

Ensure: Path L
1 Set the map range and starting point S, end point G
2 Initialize artificial fish population P1 = {X1, X2, . . . , Xn} Initialize Xgm = in f
3 for i = 1→ N do //ROL population initialization
4 x∗i,j =

xaj+xbj
2 +

xaj+xbj
2χ − xi,j

χ , j = 1, 2, · · · , D
5 x∗i,j ∈ X∗i , ROL population X∗1 ∈ P∗1
6 if C(Xi) > C(X∗i ) then X∗i ∈ P∗

7 else Xi ∈ P∗

8 end if
9 end for //Get the iterative population P∗

10 for iter = 1→ MaxIter do
11 Calculating Visual using Equation (28)
12 Step = Visual

}
13 Execute swarming behavior ⇒ C(S)
14 Perform following behavior ⇒ C(F)
15 Run preying behavior ⇒ C(P)
16 Select minC(S), C(F), C(P) Update fish swarms ⇒ C(Fs)
17 while a collision has occurred do
18 C(Fs) = C(Fs) ∗ zoom f actor
19 end while
20 if trapped in a local optima and reaches a threshold value of k then
21 n = round(c1 + iter/c2)//The total number to be replaced
22 for m = 1→ n do

23
{

x(m) = r0 × x(m− 1)× [1− x(m− 1)]
x(1) = x0

//Determining which fish undergoes

regeneration

24
{

Xold = X(x)
Xnew = Xgm(1 + z)

//Regenerated fish population

25 end for
26 end if
27 end for
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