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Abstract: In recent years, the rise of low-cost mini rotary-wing drone technology across diverse
sectors has emphasized the crucial role of object detection within drone aerial imagery. Low-cost
mini rotary-wing drones come with intrinsic limitations, especially in computational power. Drones
come with intrinsic limitations, especially in resource availability. This context underscores an
urgent need for solutions that synergize low latency, high precision, and computational efficiency.
Previous methodologies have primarily depended on high-resolution images, leading to considerable
computational burdens. To enhance the efficiency and accuracy of object detection in drone aerial
images, and building on the YOLOv7, we propose the Efficient YOLOv7-Drone. Recognizing the
common presence of small objects in aerial imagery, we eliminated the less efficient P5 detection head
and incorporated the P2 detection head for increased precision in small object detection. To ensure
efficient feature relay from the Backbone to the Neck, channels within the CBS module were optimized.
To focus the model more on the foreground and reduce redundant computations, the TGM-CESC
module was introduced, achieving the generation of pixel-level constrained sparse convolution
masks. Furthermore, to mitigate potential data losses from sparse convolution, we embedded the
head context-enhanced method (HCEM). Comprehensive evaluation using the VisDrone and UAVDT
datasets demonstrated our model’s efficacy and practical applicability. The Efficient Yolov7-Drone
achieved state-of-the-art scores while ensuring real-time detection performance.

Keywords: object detection; drone aerial imagery; feature fusion; small object

1. Introduction

With their compact size and ease of operation, drones have become indispensable.
They offer high flexibility and affordability. These devices are widely used in various sectors.
They span from military operations to civilian tasks. Examples include disaster relief and
traffic monitoring [1–3]. A critical technology supporting these diverse applications is
object detection in drone-captured imagery.

In the field of object detection, deep neural networks have brought significant ad-
vancements. Their recent progress has markedly improved performance metrics. Notable
benchmarks include MS COCO [4] and PASCAL VOC [5]. However, the majority of these
deep CNNs were designed for natural scene images [6–8]. Drone-captured imagery is quite
different from natural scene imagery. Thus, these networks often do not perform as well
when applied to drone-captured content.

Designing object detectors for low-cost mini rotary-wing drone platforms is challeng-
ing. This challenge is distinct from conventional datasets.As shown in Figure 1, several
challenges arise when adapting drone aerial images for object detection [9]:
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• Resource Limitations: Low-cost mini rotary-wing drones have inherently limited
computational capabilities. Specifically, these drones are constrained in terms of data
processing and memory capacity. To equip these drones with real-time, high-precision
object detection capabilities, there is an urgent need for a solution that ensures high
accuracy and low latency while minimizing computational overhead.

• Prevalenceof Small Objects: Drone images often feature small, densely populated objects.
• LimitedForeground Proportion: The actual subjects of interest, or foreground objects,

typically constitute a minor portion of the entire image.

Thesechallenges highlight the need for advanced, low-latency detection systems for
drone imagery.

Figure 1. Visualization of the characteristics of drone-captured imagery. The first column illustrates
the low proportion of foreground regions, while the second column emphasizes the prevalence of
numerous and densely packed small objects.
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Most research favors complex models to improve small object detection in aerial
images. These models often rely on high-resolution inputs, consuming significant computa-
tional resources. This approach is misaligned with the inherent computational limitations
of drone platforms. There is a highlighted need for efficient, lightweight models. How-
ever, complex object detection models offer high precision but are often unsuitable for
edge device deployment due to their computational demands.In contrast, lightweight
detectors might not maintain the same level of accuracy [10–12]. In an attempt to address
this trade-off, numerous studies have focused on optimizing the primary network using
methods such as network pruning [13,14] and structural redesign [15,16]. Though these
methods prove effective for conventional images, their direct applicability to drone imagery
remains questionable due to the distinct differences between conventional images and
drone-captured scenes. Traditional detection strategies for aerial imagery often adopt
a coarse-to-fine approach [17–20]. These methods use coarse detectors to discern larger
instances and regions densely populated with smaller instances. Fine detectors are then
applied to these highlighted regions for accurate identification of the small instances. While
precise, the computational demands of these strategies make them less suitable for real-time
drone applications.

Recognizing the limitations of existing object detection models in handling drone-
captured images, we propose the Efficient YOLOv7-Drone, specifically designed to enhance
object detection efficiency and accuracy in drone aerial imagery. Considering the dominance
of smaller objects in aerial images and model efficiency, we removed the underperforming
P5 detection head and introduced the P2 detection head, specifically to improve the detec-
tion of tiny objects. To ensure efficient feature relay from the Backbone to the Neck, we
conducted channel optimization for the CBS module. Additionally, we made adjustments
to other network components to boost the model’s performance.

As the foreground often occupies only a small fraction of aerial images, the CEASC [21]
module utilizes sparse convolution techniques [22,23], which narrows the network’s at-
tention, diminishing superfluous computations on background elements. It achieves this
by generating a learnable mask. This ensures convolutions are performed only on select
sparse sampling areas, optimizing computational efficiency. However, the performance
of sparse convolution heavily depends on the quality of the generated mask. Traditional
methods often employ fixed mask ratios to guide mask generation, presenting its own
set of challenges. A mask ratio that is too small might lead to overly extensive sparse
sampling regions, incurring unnecessary computations on the background and potentially
compromising both efficiency and accuracy. Conversely, an excessively large ratio could
shrink the sparse sampling areas too much. This risks omitting crucial foreground and
contextual information, which in turn hampers detection performance. To address this, [21]
introduced the adaptive multi-layer masking (AMM) scheme. It optimizes mask ratios
across different feature pyramid network (FPN) levels using a custom loss function, thus
balancing detection accuracy with efficiency. However, relying on the mask ratio to control
mask generation could introduce significant uncertainties. Therefore, we proposed a novel
module, TGM-CESC. Central to this approach is the target-guided mask approach, which
leverages object labels to create foreground and background binary maps. By computing a
particular loss with masks corresponding to sparse convolution, we achieved pixel-level
guidance for generating sparse convolution masks.Subsequently, we integrated the TGM-
CESC module into the Efficient YOLOv7-Drone, replacing the original re-parameterized
convolution (RepConv) module.

To capture rich semantic information, we introduced the head context-enhanced
method (HCEM). This method capitalizes on fusing feature maps from adjacent layers,
compensating for the potential information loss at lower resolutions due to the mask quality
in sparse convolution.
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The main contributions of our work are as follows:
(1) The Efficient YOLOv7-Drone. In drone-captured images, we often observe objects

that are small, densely packed, and of varied scales. To address these challenges, we
present the Efficient YOLOv7-Drone. By omitting the P5 detection head, incorporating
the P2 detection head, and fine-tuning the CBS module’s channels, our model skillfully
narrows the divide between performance and computational efficiency. This results in
significant performance enhancements in object detection for drone-captured images.

(2) Target-Guided Mask Strategy. Recognizing the inherent sparsity of foreground
elements in aerial images, we proposed the context-enhanced sparse convolution with
target-guided masking(TGM-CESC) module. Central to this module is our target-guided
mask strategy.By producing ground truth binary maps that correspond to the masks, we
establish pixel-level constraints for generating sparse convolution masks. This offers an
accurate and efficient solution for detecting sparsely scattered objects in aerial imagery,
further sharpening detection precision amidst vast backgrounds.

(3) Head Context-Enhanced Method. To compensate for potential information loss
induced by sparse convolution, we introduced the head context-enhanced method (HCEM).
This strategy exploits the synergistic effect between feature map layers, merging features
from adjacent levels, effectively countering the information loss due to the quality of masks
in sparse convolution.

(4) We conducted comprehensive experiments on two popular datasets, VisDrone
and UAVDT. The results decisively demonstrate that the methodologies we introduced for
drone platforms can achieve real-time detection while maintaining a high level of accuracy.

2. Related Work
2.1. General Object Detection

Traditional object detection techniques, such as the scale-invariant feature transform
(SIFT) [24], histogram of oriented gradients (HOG) [25], and deformable parts models
(DPM) [26], predominantly employ the sliding window approach on images. Initially,
these techniques recognize candidate regions within images, subsequently extract pertinent
features, and employ the support vector machine (SVM) [27] classifier for categorization.
Despite the accuracy of these conventional approaches, they grapple with issues of high
computational complexity, sluggish processing speed, limited adaptability, and compro-
mised robustness. However, given the swift evolution of machine and deep learning,
deep-learning-driven object detection algorithms are increasingly overshadowing these
traditional methodologies.

The general object detection methods based on deep learning are primarily concerned
with natural images and can be broadly divided into multi-stage and single-stage detectors.
Multi-stage detectors, like R-CNN [28], Faster-RCNN [29], Mask-RCNN [30], and Cascade
R-CNN [31], begin with the generation of proposal regions through a region proposal
network (RPN). Subsequently, objects within these proposed regions are classified and
localized. On the other hand, single-stage detectors, such as the YOLO series [8,15,32–36],
RetinaNet [7], GFL [37], and FCOS [38], classify and localize objects directly on the overall
feature map, bypassing the step of using proposal regions. As a result, single-stage detectors
are typically faster and are especially suitable for real-time object detection. With the rapid
advancements in deep convolutional neural networks (DCNNs), the efficiency of single-
stage detectors has also seen continuous improvement. However, while these methods
have achieved commendable results in the general object detection domain, adapting them
directly to UAV aerial image detection is not always ideal.

2.2. Object Detection in Aerial Images

Object detection in drone aerial imagery differs significantly from its counterpart
in general imagery in three fundamental ways: (1) Aerial photographs predominantly
feature small, densely packed objects. (2) Compared to general pictures, the proportion
of the foreground in aerial images is relatively lower. (3) The resource limitations inher-
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ent to drone platforms demand an optimized trade-off between detection accuracy and
operational efficiency.

Much of the previous research has predominantly focused on enhancing the detection
accuracy of small objects, with a coarse-to-fine strategy being commonly adopted. Initially,
a coarse detector is designed to locate large-scale targets. For densely distributed small
objects, methods such as clustering are employed to segment them into multiple sub-regions.
Subsequently, a fine detector is used to further identify objects within these sub-regions.
ClusDet [20] begins with a coarse detector to extract cluster proposals, then leverages the
ScaleNet for refined detection. DMNet [19] uses density maps to fine-tune region selections.
UFPMPDet [17] employs the Mosaic method to merge subregions identified by the coarse
detector suppressing the background, and further introduces the multi-proxy detection
network (MP-Det) to enhance small-object detection accuracy. HRDNet [39] combines
image pyramids with feature pyramids to improve the accuracy of detecting small objects.
However, the multi-staged nature of many such strategies means they are computationally
intensive, rendering them sub-optimal for drone platforms constrained by resources.

2.3. YOLO Architectures Adapted to Aerial Imagery

In recent years, the YOLO algorithm has cemented its position as a frontrunner
in single-stage object detection, receiving widespread recognition for its unmatched
detection efficiency. Since the introduction of YOLOv4 [15], the YOLO series has con-
sistently improved in accuracy and has started to outpace select two-stage detection
techniques. Given the demands of drone-based object detection, where striking a balance
between accuracy and efficiency is paramount, the YOLO algorithm emerges as the
optimal choice. TPH-YOLOv5 [40], addressing the unique challenges of aerial imagery
such as notable scale variations and high-density scenes, incorporates self-attention
modules into its YOLOv5 prediction head. Furthermore, it integrates the CBAM at-
tention module to bolster detection capabilities. Vit-YOLO [41] focuses on enhancing
the detection of small objects by integrating a multi-head self-attention block and the
BiFPN module. Building on this, TPH-YOLOv5++ [42] introduces the CA-Trans module,
ensuring improved detection efficiency while maintaining performance levels. However,
while these models achieve enhanced detection precision, the integration of transformer
modules increases computational demands, leading to a significant drop in detection
efficiency. This trade-off falls short of meeting the real-time detection demands of drone
platforms. The latest in the YOLO series, YOLOv7 [36], brings notable enhancements
in detection accuracy and computational efficiency. Its outstanding balance between
precision and detection speed positions YOLOv7 as an optimal choice for drone aerial
object detection. Thus, this research has selected YOLOv7 as the foundational model for
further exploration and optimization.

3. Method

As illustrated in Figure 2, we specifically designed the Efficient YOLOv7-Drone
model for drone-captured aerial imagery. This model incorporates the P2 detection layer.
To achieve the optimal balance between detection accuracy and efficiency, we removed the
underperforming P5 detection layer and adjusted the network structure accordingly. We in-
troduced the TGM-CESC strategy to focus more on the foreground of aerial images. Finally,
we integrated the TGM-CESC approach into the framework of the Efficient YOLOv7-Drone.
Enhancing the framework further, we applied the head context-enhanced method (HCEM),
ensuring both precision and efficiency in detection.
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Figure 2. TheArchitecture of Efficient YOLOv7-Drone. In Efficient YOLOv7-Drone, we introduced
the P2 detection head while discarding the less efficient P5 detection head. Additionally, the TGM-
CESC module replaced the RepConv module, and the head context-enhanced method (HCEM) was
incorporated in the detection head section.

3.1. Overview of YOLOv7

Consistently at the forefront of single-stage object detection, the YOLO series expertly
balances detection accuracy with computational efficiency. In its most recent version,
YOLOv7 introduces several innovative techniques, including re-parameterized convolu-
tions, an efficient layer aggregation network, and a novel dynamic label assignment strategy.
These advancements propel YOLOv7 beyond other detection algorithms in both accuracy
and detection speed. Among the different variants of YOLOv7, such as YOLOv7-tiny
and YOLOv7-X, we have chosen the standard YOLOv7 as our benchmark model, with an
emphasis on its efficiency and real-time performance. However, its inherent design for
general images suggests potential shortcomings when applied to aerial imagery. Acknowl-
edging this, we have undertaken specific optimizations to the YOLOv7 architecture to
better address the unique challenges posed by aerial imagery.
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3.2. Efficient YOLOv7-Drone

Prior methods of object detection in aerial imagery predominantly adopted a coarse-to-
fine strategy [17,19,20,39]. With transformers becoming increasingly popular in the realm of
computer vision, recent studies [40–42] have sought to infuse self-attention mechanisms into
the aerial image detection process. Although this integration elevates detection accuracy,
the added stages and self-attention modules contribute to computational overhead, often
making real-time detection elusive for many algorithms. Furthermore, the conventional
practice of utilizing high-resolution images exacerbates this computational burden—a
significant constraint for resource-limited drone platforms. In light of the challenges, we
introduce the Efficient YOLOv7-Drone model, specifically optimized for low-resolution
images. These are images resized to dimensions such as 640× 640 pixels from their original
high-resolution captured by drones. While such reduced pixel dimensions inherently offer
fewer details compared to their original high-resolution state, they bring computational
benefits crucial for real-time processing. With this approach, our model ensures real-time
detection while still delivering outstanding detection accuracy.

Introductionof the P2 Detection Head. In drone aerial imagery, extremely small
instances are prevalent. With low-resolution images as our input, the problem exacerbates
as image scaling further reduces objects sizes. To mitigate this, we implemented the P2
detection head, designed explicitly for detecting minuscule objects. Figure 2 (P2 Prediction
Head) illustrates this detection head sourcing feature maps from the Backbone’s second
stage. Distinct for its low-level and high-resolution qualities, this feature map retains
more detailed information of tiny objects. Designed following conventions from other
detection heads, this structure offers heightened sensitivity to tiny objects. Although this
enhancement may pose greater computational requirements, the detection efficacy for tiny
objects is markedly improved.

P5Detection Head Omission and Network Refinements. In aerial imagery with
low-resolution inputs, there is often a prevalence of numerous small objects. The P5
detection head, which processes feature maps in the YOLO model, is subjected to a 32-fold
down-sampling, emphasizing its high-level and low-resolution features. Such aggressive
down-sampling considerably degrades object details, causing the P5 head to frequently
misidentify small objects. This error in identifying small objects negatively impacts the
overall accuracy of the detection. While the primary intent behind the P5 detection head
was to detect larger objects, our observations reveal that eliminating it allows the P4
detection head to not only take over its responsibilities but also to enhance detection
accuracy for smaller targets. In pursuit of greater model efficiency, we deemed Stage 5 of
the Backbone superfluous and subsequently removed it. These modifications resulted in a
56.29% reduction in network parameters.

CBSModule Channel Optimization. As illustrated in Figure 2, the CBS module
serves as an integral connector between the network’s Backbone and Neck. The Backbone
primarily extracts foundational features from the input images, while the Neck refines
these features, enhancing their discriminatory power for object detection. By bridging
these two components, CBS plays an essential role in reducing the dimensionality of
feature maps and ensuring a smooth flow of information from the Backbone to the Neck.
Specifically, the CBS module processes the feature maps extracted by Stage2 and Stage3 of
the Backbone, and through a 1× 1 convolution with a stride of 1, it reduces the channel
count to a quarter of its original value, maintaining its spatial dimensions. Although this
strategy improves computational efficiency, a significant reduction in channel count might
lead to a loss of both detailed and high-level semantic information. To address this, we
optimized the channel configuration of the CBS, ensuring that after processing, the channel
count is only halved, preserving more information. In response to this adjustment in the
CBS, discrepancies in channel count arose in the Neck section. Consequently, we made
corresponding structural and channel count modifications to the Neck section, with details
depicted in Figure 2 (Neck).
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3.3. Context-Enhanced Sparse Convolution with Target-Guided Masking
3.3.1. Overview of Sparse Convolution

Given the inherent hardware limitations of drone platforms, contemporary research
endeavors to strike an optimal balance between accuracy and efficiency for aerial image
object detection. Sparse convolution emerges as a viable solution to this predicament. This
method emphasizes sparsely sampled regions via pixel-level masks, thereby mitigating
the computational overhead associated with intricate backgrounds. In standard convo-
lution operations, all pixels in a feature map receive uniform treatment, irrespective of
their affiliation to either the foreground or background. Yet, in object detection, the focus
predominantly rests on the target and its immediate vicinity. As depicted in Figure 1,
the foreground usually constitutes a minor fraction of aerial images, implying that con-
ventional convolution techniques engage in superfluous computations over expansive
background regions. As underscored in [43], these background segments frequently harbor
considerable noise, thereby undermining detection precision. Theoretically, sparse convolu-
tion can adeptly navigate these impediments. However, the success of sparse convolution
greatly depends on the generated pixel-level masks. If these masks are inaccurately gener-
ated, the vital information contained within the omitted regions can significantly hamper
the detection accuracy.

DynamicHead [44] leverages spatial gates to efficiently merge features across various
scales. QueryDet [45] designed a cascade sparse query structure to reduce the model’s
complexity. However, most of these methods employ a fixed mask ratio to generate pixel-
level masks. Given the significant variability in the pitch angle and altitude of aerial
imagery, the proportion of the image foreground can vary significantly. Relying on a
fixed mask ratio could lead to the loss of vital target information, consequently decreasing
detection accuracy. Addressing this concern, CEASC [21] introduced the adaptive multi-
layer masking (AMM) strategy. This strategy dynamically adjusts the mask ratio, striking
a balance between detection precision and computational efficiency. However, the AMM
strategy continues to rely on the mask ratio to dictate the generation of sparse convolution
masks, using only this ratio as a constraint might introduce a high degree of randomness,
potentially masking out vital information. To address this challenge, we introduce the
TGM-CESC module in this study. Utilizing the target-guided mask methodology, we
impose pixel-level constraints on the formation of sparse convolution masks.

3.3.2. Target-Guided Mask in CESC Implementation

As described in [46], the surrounding background information of an instance plays a
crucial role in object detection tasks. Therefore, [21] introduced the context enhancement
(CE) module, which leverages both focal information and global context for feature en-
hancement, subsequently improving computational stability. Recognizing the efficiency of
the CE module, we retained it along with its corresponding Lnorm loss function. Integrating
this with our innovative target-guided mask strategy, we named the newly-formed module
as TGM-CESC.

For the mask generation in sparse convolution, we followed [21] and employed the
Gumbel-Softmax trick [47], formulated as follows:

Pi =

{
σ(Gumbel(Fi)) > 0.5, For training
Fi > 0, For inference

(1)

Here, σ denotes the sigmoid function, and Gumbel(·) refers to the addition of Gaus-
sian noise to its inner value. The feature Fi has the shape RB×1×H×W and is obtained
through convolution with Wmask of dimension RC×1×3×3. In accordance with Equation (1),
only the sampling regions with a mask value of 1 are subjected to convolution during
the inference phase, which results in decreased computational overhead and enhanced
detection efficiency.



Drones 2023, 7, 616 9 of 22

A critical aspect of sparse convolution lies in mask generation. Relying purely on
ratios can yield unpredictable mask outcomes. To address this concern, we introduced the
target-guided mask approach, as detailed in Algorithm 1. Specifically, after generating the
masks, we use the label values from the corresponding original image to produce a pixel-
wise binary map distinguishing foreground and background. This binary map corresponds
pixel by pixel with the generated masks, allowing for more precise and efficient constraints
on mask generation (as shown in Figure 3). We employ the following loss:

Lmask(P, T) =
1
L

L

∑
i=1

(
1− 2× Intersection(Pi, Ti) + ε

Union(Pi, Ti) + ε

)
(2)

where L denotes the amount of layers in Neck(FPN-PAN). Pi represents the mask prediction
for the ith layer, while Ti corresponds to the ground truth for that mask. The functions
Intersection(·) and Union(·) compute the intersection and union between the predicted
mask and the ground truth, respectively.

As depicted in Figure 3, TGM-CESC operates as follows. Initially, the input feature
value Fi undergoes sparse convolution, yielding the feature value Si and a binary mask
Pi. Using the label associated with the input feature, a binary mask Ti is generated via
the target-guided mask technique. Subsequently, Ti with the Lmask loss imposes pixel-
level restrictions on the sparse convolution mask creation. To counteract the omission of
background details around the target, Fi is processed using PW convolution, securing its
comprehensive information Gi. The mean and variance of the global feature Gi facilitate
the group normalization of Si, intended to recover absent contextual data.

Si = w× Si −mean[Gi]

std[Gi]
+ b (3)

where mean[·] and std[·] denote the mean and standard deviation, respectively, and w and
b are learnable parameters.

Figure 3. Operation of TGM-CESC in Efficient YOLOv7-Drone. TGM-CESC produces a distinct mask
map for each layer in the Neck (FPN-PAN). Corresponding ground truth binary masks (GT_mask)
are derived from object labels. By computing the loss between each mask map and its respective
GT_mask, we achieve pixel-level constrained generation of sparse convolution masks.
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Algorithm 1 Target-Guided Mask Generation

Require: mask_map M, targets T
Ensure: GT_mask

1: GT_mask ← []
2: for each feature layer L in M do
3: binary_map_layer ← new zero tensor with shape of L
4: for each image I in batch of L do
5: this_target ← get targets for current image from T
6: if this_target is empty then
7: continue
8: end if
9: txywh ← scale target coordinates using dimensions of I

10: txyxy ← convert txywh to top-left and bottom-right coordinates
11: binary_map ← new zero tensor with shape of I
12: for each box B in txyxy do
13: convert B to integer coordinates
14: set pixels in binary_map inside B to 1
15: end for
16: append binary_map to binary_map_layer
17: end for
18: append binary_map_layer to GT_mask
19: end for
20: return GT_mask

To diminish the data loss from sparse convolution and stabilize training, we employ
both sparse and traditional dense convolutions during training. The feature map is derived
as Ci when input through dense convolution. Thereafter, Ci augments the sparse feature
map Si by optimizing the MSE loss.

Lnorm =
1
L

L

∑
i=1
‖Ci × Pi − Si‖2 (4)

where L denotes the number of layers in Neck(FPN-PAN).
By minimizing Lmask, we can impose pixel-wise constraints on the generation of sparse

convolution masks, thereby facilitating the production of more accurate and efficient masks.
When combined with the traditional Ldet loss and the Lnorm loss from CE, the final training
loss function is given by:

L = Ldet + Lnorm + Lmask (5)

To ensure the focus of our model primarily on the foreground of drone-captured
images and to mitigate the influence of background noise on detection precision. As
shown in Figure 2, we have integrated the TGM-CESC module into the detection head
of the Efficient YOLOv7-Drone. Taking into consideration the balance between detection
accuracy and computational efficiency, we adopted the TGM-CESC in place of the original
re-parameterized convolution (RepConv) module.

3.4. Head Context-Enhanced Method (HCEM)

The success of sparse convolution detection is intrinsically linked to the quality of
mask generation. While the TGM-CESC method allows us to impose constraints on the
mask at the pixel level, the intricate backgrounds inherent in aerial imagery may result in
the omission of crucial data. To mitigate this, we introduced the head context-enhanced
method (HCEM), as illustrated in Figure 2. This module, by leveraging feature maps
from TGM-CESC across adjacent layers, strives to glean more comprehensive semantic
insights. Therefore, it alleviates the information loss in low-resolution detection layers
caused by mask generation quality. More specifically, we extract feature maps (P2, P3,
P4) from different layers of the FPN using the TGM-CESC module. Recognizing the
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detailed richness inherent in low-level, high-resolution feature maps, we deploy an upward
propagation mechanism: P2 is first concatenated (Cat(·)) with P3, followed by the upward
propagation of the resultant feature map for further concatenation with P4. Before merging
the adjacent features, we downsampled the feature maps to ensure they have the same
scale. The operation can be represented by the following formula:

Ti = Cat(Downsample(Pi−1), Pi) (6)

where Downsample(·) employs a CBS(·) module with a stride of 2, while Pi represents the
feature map from the ith layer obtained through the TGM-CESC module. Cat(·) denotes the
channel-wise concatenation operation. To avoid additional computational overhead within
HCEM, we exclusively use one CBS module for downsampling and one cat operation for
feature fusion. No other extra computations have been introduced.

4. Experiments
4.1. Datasets and Evaluation Measures

To demonstrate the effectiveness of our proposed method, we conducted extensive
experiments on two primary drone aerial object detection benchmark datasets, namely
Visdrone [48] and UAVDT [49]. These datasets were selected due to their diverse data
representation, encompassing aerial images from various weather conditions, terrains,
and objects spanning different traffic and daily life scenarios. They provide meticulous
annotations for each image and feature challenging scenarios, including object occlusions,
small targets, target overlaps, and intricate backgrounds. Furthermore, their widespread
use in the aerial image detection domain ensures a credible and pertinent evaluation of
our method.

VisDrone dataset. This dataset comprises 288 video clips and 10,209 high-resolution
static images. Of these, 6471 are allocated for training, 548 for validation, and 3190 for
testing. The image resolutions range from 960 × 540 to 2000 × 1500. Captured across 14 dif-
ferent cities, the dataset encompasses a myriad of shooting scenarios, covering 10 distinct
target categories, namely pedestrian, people, bicycle, car, van, truck, tricycle, awning-
tricycle, bus, and motor. Due to its pronounced class and size imbalances, it serves as an
ideal benchmark for studying small object detection challenges. To ensure consistency with
prior research, all test results are based on the validation set.

UAVDT dataset. Compared to the VisDrone dataset, UAVDT offers an even more
extensive collection of drone-captured imagery. It contains 23,258 images for training and
15,069 images for testing, all with a resolution of 1024 × 540. This dataset focuses on three
categories: buses, trucks, and cars.

Evaluation measures. In our study, we adopted mean average precision (mAP),
average precision (AP), and average recall (AR) for accuracy evaluation. For efficiency, we
considered GFLOPs, FPS, and the total parameter count.

4.2. Implementation Details

We implemented our model using PyTorch. All of our experiments were conducted on
a single NVIDIA RTX 3090 GPU for both training and testing. During the training phase,
we leveraged partial weights from a pre-trained YOLOv7 model, considerably reducing
the training time. To ensure consistency and fairness in our experiments, we trained our
model for 200 epochs and fixed the batch size at 8. For efficiency, we standardized the input
width and height to 640. We utilized the SGD optimizer, with all other parameters set to
the default configurations of YOLOv7.

4.3. Comparison with the State of the Art

We conducted experiments on the VisDrone and UAVDT datasets, comparing our
method to state-of-the-art object detectors. To emphasize our method’s detection perfor-
mance efficiency, we refrained from using additional tricks during inference. Our model
employs a backbone named “Modified ELANNet”. Table 1 shows that the Modified
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ELANNet has only 51% of ResNet’s parameters, and its GFLOPs are also lower than those
of ResNet50. Most of the comparative methods rely on high-resolution images and are
multi-stage detectors. To maintain fairness in the experiment, the backbone in the selected
methods was of similar complexity or even more intricate than ours.

On the VisDrone dataset, we compared our method against ten recent popular meth-
ods. Specifically, RetinaNet [7], ClusDet [20], DMNet [19], GLSAN [50], QueryDet [45],
CascadeNet [51], and CascadeNet+MF [51] utilize ResNet-50 as their Backbone. GFL
V1 [37], which incorporates the CEASC [21] structure, employs ResNet-18, while HRD-
Net [39] uses both ResNet-18 and ResNet-101. DFPN [52] chose Modified CSP v5-M as
its Backbone. As shown in Table 2, even though our approach uses a lower resolution
image as input, it achieved the best results across all three main evaluation metrics. This
outcome convincingly demonstrates our technique’s ability to balance detection accuracy
with enhanced efficiency.

To underscore the outstanding performance and resilience of our model, we configured
its input to a resolution of 1280× 1280. Table 3 illustrates that our model attains scores
of 40.9%, 63.5%, and 43.6% across the three key evaluation metrics. This performance
substantially surpasses that of other state-of-the-art methods, even when they utilize more
complex Backbones and superior resolutions.

For the UAVDT dataset, we benchmarked our method against ClusDet [20], DM-
Net [19], DFPN [52], and ARMNet [53]. As demonstrated in Table 4, even when working
with a lower image resolution, our approach excels across all three primary evaluation
metrics. This reaffirms our method’s prowess in seamlessly integrating detection accuracy
with heightened efficiency.

Table 1. Comparative Analysis of Parameters and GFLOPs Among Various Backbone Architectures.

BackBone Param GLOPS

ResNet18 11.18M 29.78
ResNet50 23.50M 67.45
ResNet101 42.50M 128.39

ResNext101_32× 4d 42.13M 131.48
ResNext101_64× 4d 81.41M 254.42
Modified ELANNet 6.02M 59.53

Table 2. Comparison of Efficient YOLOv7-Drone against other state-of-the-art methods using a small
Backbone on the VisDrone validation set.

Method BackBone Resolution AP[%] AP50[%] AP75[%]

RetinaNet [7] ResNet-50 2400 × 2400 26.2 44.9 27.1
ClusDet [20] ResNet-50 1000 × 600 26.7 50.6 24.4
DMNet [19] ResNet-50 1000 × 600 28.2 47.6 28.9
GLSAN [50] ResNet-50 1000 × 600 25.8 51.5 22.9
HRDNet [39] ResNet-18+ResNet-101 2666 × 1600 28.3 49.3 28.2
QueryDet [45] ResNet-50 2400 × 2400 28.3 48.1 28.8

GFL V1 (CEASC) [21] ResNet-18 1333 × 800 28.7 50.7 28.4
CascadeNet [51] ResNet-50 - 28.8 47.1 29.3

DFPN [52] Modified CSP v5-M 768 × 768 30.3 51.9 30.5
AMRNet [53] ResNeXt-50 1500 × 800 31.7 52.6 33.1

Efficient
YOLOv7-Drone(Ours) Modified ELANNet 640 × 640 32.1 53.6 32.5
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Table 3. Comparison of Efficient YOLOv7-Drone against other state-of-the-art methods using a
large backbone on the VisDrone validation set. ’MF’ stands for model fusion. The H denotes the
multi-scale inference.

Method BackBone Resolution AP[%] AP50[%] AP75[%]

ClusDet [20] ResNeXt-101 1000 × 600 28.4 53.2 26.4
ClusDetH [20] ResNeXt-101 1000 × 600 32.4 56.2 31.6

DMNet [19] ResNeXt-101 1000 × 600 29.4 49.3 30.6
HRDNetH [39] ResNeXt-50+ResNeXt-101 3800 × 2800 35.5 62.0 35.1

CascadeNet+MFH [51] ResNet-50 - 30.1 58.0 27.5
AMRNetH [53] ResNeXt-101 1500 × 800 36.7 - -

Efficient YOLOv7-Drone(Ours) Modified ELANNet 1280 × 1280 39.9 62.5 42.1
Efficient

YOLOv7-DroneH(Ours) Modified ELANNet 1280 × 1280 40.9 63.5 43.6

Table 4. Comparison results of Efficient YOLOv7-Drone with other state-of-the-art methods on the
UAVDT dataset.

Method BackBone Resolution AP[%] AP50[%] AP75[%]

ClusDet [20] ResNet-50 1000 × 600 13.7 26.5 12.5
DMNet [19] ResNet-50 1000 × 600 14.7 24.6 16.3
GLSAN [50] ResNet-50 1000 × 600 17.0 28.1 18.8
DFPN [52] Modified CSP v5-M 640 × 640 17.1 29.3 18.1

ARMNet [53] ResNet-50 1500 × 800 18.2 30.4 19.8
Efficient

YOLOv7-Drone(Ours) Modified ELANNet 640× 640 20.0 36.0 20.1

4.4. Ablation Study

To further validate the effectiveness of our proposed model, we conducted an extensive
ablation study on the VisDrone dataset. For brevity and clarity, we labeled our modifications
as: introduction of the P2 detection head as ‘A’, removal of the P5 detection head as ‘B’, CBS
module channel optimization as ‘C’, target-guided context enhancement sparse convolution
(TGM-CESC) as ‘D’, and head context-enhanced method (HCEM) as ‘E’.

4.4.1. Comparison with the Baseline Model

We carried out a comprehensive evaluation on the VisDrone validation set to accurately
assess the performance of each introduced component. Our evaluation took into account
both detection accuracy and efficiency, utilizing a diverse set of metrics: mAP, AP50, AP75,
GPU memory consumption, giga floating-point operations (GFLOPs), and FPS.

As detailed in Table 5 and compared to the baseline model:

• The introduction of the P2 detection head (A) led to improved detection metrics.
Specifically, mAP, AP50, and AP75 increased by 0.7%, 0.8%, and 1.2%, respectively.
However, this also introduced additional memory and computation overhead.

• By removing the P5 detection head (B), we noted improvements in mAP, AP50, AP75,
and AR, which reached 30.0%, 51.5%, 30.1%, and 52.8%, respectively. Additionally,
this change reduced the GPU memory overhead by 56.32% and decreased GFLOPs
from 118.2 to 115.2, resulting in an FPS boost of 29.68%.

• The CBS module channel optimization (C) slightly increased memory and GFLOPs
but boosted the mAP, AP50, and AP75 to 31.0%, 52.2%, and 31.6%, respectively.

• With the integration of the TGM-CESC module (D), the model focused on image
foreground areas, achieving mAP, AP50, and AP75 scores of 31.5%, 52.8%, and 32.1%.
By utilizing the sparse convolution, the GFLOPs was reduced to 133.0. However,
substituting the well-performing RepConv module during the inference phase led to
a slight decrease in FPS.
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Table 5. Ablation study results on the VisDrone dataset. The components are labeled as:
A—Introduction of the P2 detection head, B—Removal of the P5 detection head, C—CBS mod-
ule channel optimization, D—Target-guided context enhancement sparse convolution (TGM-CESC),
and E—Head context-enhanced method (HCEM).

A B C D E mAP[%] AP50[%] AP75[%] AR[%] Param GFLOPs FPS (Frames/sec)

28.6 49.5 28.4 48.9 36.53M 103.3 212.76
X 29.3 50.3 29.6 52.0 40.46M 118.2 136.99
X X 30.0 51.5 30.1 52.8 17.68M 115.2 166.67
X X X 31.0 52.2 31.6 51.9 19.16M 153.1 138.89
X X X X 31.5 52.8 32.1 51.9 29.99M 133.0 96.15
X X X X X 32.1 53.6 32.5 52.2 31.79M 144.6 89.29

Finally, with the introduction of HCEM (E), we achieved significant performance im-
provements while only incurring a slight increase in memory and computational overhead.
Compared to the baseline, there was an uplift in mAP, AP50, AP75, and AR by 3.5%, 4.1%,
4.1%, and 3.3%, respectively.

For performance improvements of less than 1%, it is essential to ensure the reliability
and consistency of these incremental gains. To rigorously ascertain the validity of these
marginal enhancements and to mitigate potential overfitting or random variations, we
utilized k-fold cross-validation with k = 5. This method offers a comprehensive assessment
of the model’s resilience across diverse data subsets. For this validation, we combined the
VisDrone training and validation datasets, resulting in a total of 7019 images, with 5615 im-
ages from the training set and 1404 from the validation set. Specifically, we applied k-fold
cross-validation to models incorporating the TGM-CESC and HCEM modules. For com-
parative analysis, we similarly conducted k-fold cross-validation on models without these
modules. Tables 6–8 display the results, which indicate that the TGM-CESC and HCEM
modules substantially improved the detection accuracy of the model.

Table 6. Detection accuracy results of the model without integrating the TGM-CESC and HCEM
modules, using k-fold cross-validation on the VisDrone Dataset.

Validation Fold mAP[%] AP50[%] AP75[%]

1-Fold 33.2 56.6 33.7
2-Fold 32.2 55.2 32.4
3-Fold 32.5 55.9 32.7
4-Fold 33.0 56.4 33.1
5-Fold 32.3 55.3 32.8

Average 32.6 55.9 33.0

Table 7. Detection accuracy results of the model with the integrated TGM-CESC module using k-fold
cross-validation on the VisDrone Dataset.

Validation Fold mAP[%] AP50[%] AP75[%]

1-Fold 33.6 56.9 34.3
2-Fold 32.7 55.6 33.3
3-Fold 33.0 56.6 33.2
4-Fold 33.4 56.7 33.8
5-Fold 33.1 56.2 33.5

Average 33.1 56.4 33.6
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Table 8. Detection accuracy results of the model with the integrated HCEM module using k-fold
cross-validation on the VisDrone Dataset.

Validation Fold mAP[%] AP50[%] AP75[%]

1-Fold 33.8 57.3 34.6
2-Fold 32.6 55.8 32.9
3-Fold 33.1 56.6 33.3
4-Fold 33.6 57.1 34.2
5-Fold 33.3 56.6 33.9

Average 33.3 56.7 33.8

4.4.2. Visualization between Baseline and the Efficient YOLOv7-Drone

From the experimental data, it is clear that the Efficient YOLOv7-Drone surpasses the
baseline on the VisDrone dataset. To provide a more vivid and direct comparison between
these two models, we have visualized their prediction results on the VisDrone dataset in
Figure 4. The first column displays the ground truths of the images, the second offers
predictions from the baseline, and the third column highlights the predictions from the Effi-
cient YOLOv7-Drone. To emphasize the distinctions, we have magnified the regions with
significant prediction differences. Observing the first rows of the images, it is evident that
our approach has made significant improvements in reducing false detections compared to
the baseline. In the second row, when dealing with scenes filled with small, densely packed
objects, our model clearly outperforms, showcasing superior detection accuracy.

4.4.3. Details of the Efficient YOLOv7-Drone Design

Introduction of the P2 Detection Head. Aerial imagery often contains numerous
small objects. When using low-resolution images as input, these objects can become
extremely minute, commonly referred to as “tiny objects”, which pose detection challenges.
To address this and enhance detection of tiny objects, we incorporated features from the
Stage 2 output of the Backbone, which leverages its rich and comprehensive representation
of small objects. As demonstrated in Table 9, the introduction of the P2 detection head
resulted in a 0.9% improvement in detection accuracy for small objects, highlighting its
crucial role in our model.

Table 9. Comparison of Detection Accuracy between Baseline and the Introduction of the P2 Detection
Head (A).

Method mAP[%] AP50[%] AP75[%] mAPs[%] mAPm[%] mAPl[%]

Baseline 28.6 49.5 28.4 19.4 40.3 59.2
+A 29.3 50.3 29.6 20.3 40.5 58.0

P5 Detection Head Omission: Enhancing Efficiency and Accuracy. As shown in
Table 10, following the introduction of the P2 detection head, we evaluated specific metrics
for various detection heads. Notably, the P2 detection head exclusively focuses on detecting
small objects, which aligns seamlessly with our initial purpose for its inclusion. Compared
to the P4 detection head, the P5 detection head shows only a slight advantage specifically
in the detection of larger objects. This difference arises from the initial allocation of anchors.
In essence, if the P5 detection head were to be removed, the P4 detection head would be
poised to assume its role. Consequently, to balance accuracy and computational efficiency,
we opted to exclude the P5 detection head. As demonstrated in Table 5, this exclusion led
to improvements in our model’s mAP, AP50, and AP75 metrics by 0.7%, 1.2%, and 0.5%,
respectively. Concurrently, the model achieved a significant 56.29% reduction in the number
of parameters, enhancing computational efficiency and improving FPS performance.
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Table 10. Metrics for Various Detection Heads After Introducing the P2 Detection Head.

Method mAPs[%] mAPm[%] mAPl[%]

P5 Detection Head 7.2 32.5 58.2
P4 Detection Head 10.9 35.3 42.3
P3 Detection Head 15.9 21.9 0.8
P2 Detection Head 12.2 8.3 0.0

Table 11 presents a comparison of various metrics for the P4 detection head before
and after the removal of the P5 detection head. As the table illustrates, after removing
the P5 detection head, all metrics associated with the P4 detection head display notable
improvements. Specifically, the mAPl value sees an increase of 10.2%. Although this
metric remains marginally lower than that of the P5 detection head before its removal,
the enhancement in other metrics sufficiently compensates for this difference. These
experimental results confirm that, without the P5 detection head, the P4 detection head can
effectively assume its responsibilities and even surpass its performance.

Table 11. Comparison Between P4 Detection Head and After P5 Removal on the VisDrone dataset.

Method mAP[%] AP50[%] AP75[%] mAPs[%] mAPm[%] mAPl[%]

P4 Detection Head 20.9 32.2 22.8 10.9 35.3 42.3
After P5 Removal (P4 Detection Head) 24.7 38.4 26.4 13.8 38.7 52.5

CBS Module Channel Optimization: To enhance the transfer efficiency of features
from the Backbone to the Neck, we employed the CBS module channel optimization
method. As shown in Table 12, this optimization led to increments of 1.0% in mAP, 0.7%
in AP50, 1.5% in AP75, 0.9% in mAPs, 1.0% in mAPm, and a significant 1.9% in mAPl .
The empirical results underscore the effectiveness of the CBS channel optimization in better
preserving feature information.

Table 12. Ablation on the Impact of CBS Module Channel Optimization. The components are labeled
as: A—Introduction of the P2 detection head, B—Removal of the P5 detection head, C—CBS module
channel optimization.

Method mAP[%] AP50[%] AP75[%] mAPs[%] mAPm[%] mAPl[%]

Baseline + A + B 30.0 51.5 30.1 21.1 41.2 52.2
Baseline + A + B + C 31.0 52.2 31.6 22.0 42.2 54.1

4.4.4. Details of the TGM-CESC Analysis

To ensure our model emphasizes the image’s foreground, we integrated the TGM-
CESC module. Table 13 presents results from two configurations: one adding TGM-
CESC after RepConv and another replacing RepConv entirely with TGM-CESC. The latter
configuration showed slightly better accuracy but experienced a 1% decrease in the AR
score. Nonetheless, considering overall detection efficiency, we chose to substitute RepConv
with TGM-CESC.
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Figure 4. Comparative analysis of baseline vs. Efficient YOLOv7-Drone(Ours) on the
VisDrone Dataset.

Table 13. Ablation study on the placement of the TGM-CESC module.

Method mAP[%] AP50[%] AP75[%] AR[%]

RepConv + TGM 29.2 50.4 29.0 51.4
TGM Only 29.4 50.6 29.4 50.4
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To underscore the significance of pixel-level constraints in TGM for sparse convolution
mask generation, we evaluated its efficacy against the AMM module and another method
with a mask ratio set to zero. As Table 14 indicates, the TGM method surpasses the other
two techniques. Notably, in the AR metric, TGM achieves a 3.5% improvement over AMM.
This improvement results from the pixel-level constraint of TGM, which promotes accurate
mask generation while minimizing the chance of masking crucial details. Both AMM and
TGM markedly outperform the fixed mask ratio approach, emphasizing the significance of
focusing on the image foreground.

Table 14. Comparative Analysis on Constraint Methods for Sparse Convolutional Mask Generation.

Method mAP[%] AP50[%] AP75[%] AR[%]

Mask Ratio = 0 23.3 41.1 22.8 41.9
AMM 28.0 47.4 28.0 46.9
TGM 29.4 50.6 29.4 50.4

To clearly demonstrate our method’s superiority, we visualized the three methods.
As depicted in Figure 5, across different feature layers, the TGM method effectively directs
the model’s focus toward the image’s foreground, outperforming the other two methods.

Figure 5. Heatmaps of Attention Distribution across Layers ’P2’ to ’P4’. Row 1: Mask Ratio=0,
Row 2: AMM, Row 3: TGM.

4.4.5. Details of the HCEM

Table 2 reveals that the introduction of the head context-enhanced method (HCEM)
resulted in noticeable improvements in mAP, AP50, AP75, and AR metrics, increasing by
0.6%, 0.8%, 0.4%, and 0.3%, respectively. To offer a deeper insight into the HCEM’s impact
on our model, we visualized its effects. As shown in Figure 6, the feature information
at each detection layer was substantially enriched with the integration of HCEM. This
underscores HCEM’s potential in counteracting the detail loss that comes with the use of
sparse convolution.
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Figure 6. Heatmaps of Attention Distribution across Layers ’P2’ to ’P4’. Row 1: Without HCEM,
Row 2: With HCEM.

5. Discussion and Conclusions

In this study, we address three of the critical challenges in aerial image object de-
tection. Targeting platforms powered by small drones with constrained computational
capabilities, we present the Efficient Yolov7-Drone—an object detection algorithm boasting
high precision and real-time performance. Unlike previous studies that primarily relied
on computationally intensive high-resolution images, our approach capitalizes on low-
resolution inputs. We surmise that if an algorithm performs effectively on low-resolution
images, it will undoubtedly excel on high-resolution ones. As a result, our proposed algo-
rithm is marked by its low-resolution, low-latency, and high precision and is tailored for
drone platforms.

In our analysis, we observed that the process of downscaling high-resolution images
often reduces small objects to “tiny” objects. This means that aerial images, which originally
have a large number of small targets, now possess an abundance of these tiny objects.
To address this, we integrated the P2 detection head, leveraging the detailed information
from low-level, high-resolution feature maps to enhance the detection accuracy of these tiny
objects. Notably, the P2 detection head introduces computational overhead. Furthermore,
high-level, low-resolution images tend to lose crucial details of tiny objects, a phenomenon
that is particularly pronounced in aerial images. This omission can result in erroneous
object detection, affecting the overall accuracy. Such insights rendered the P5 detection head
superfluous, prompting its removal along with the associated Stage 5 from the Backbone.
Subsequently, we discerned that the CBS module, which bridges the Backbone and Neck,
decreases the feature channel count from the Backbone by a factor of four. To safeguard
against the potential loss of intricate details and semantic richness, we implemented a CBS
channel optimization technique. Following this optimization, the channel count reduced
by half. Additionally, we refined the architecture of the Neck segment to ensure proper
channel alignment.

Given the notably low foreground proportion in drone aerial imagery and the
potential detrimental effects of excessive background details on detection precision, we
integrated the TGM-CESC module. Utilizing the advantages of sparse convolution, this
module directs the model’s attention predominantly towards the image’s foreground.
As part of this approach, the TGM method was developed to refine the generation of
sparse convolution masks.

To address the potential masking of foreground information by sparse convolution, we
devised the HCEM module. This module combines detailed, low-level, high-resolution fea-
ture maps with high-level, low-resolution maps, enhancing semantic comprehension. This
integration helps restore any foreground details potentially masked by sparse convolution.
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We validated the efficacy of our methodology through rigorous experiments using
two popular drone aerial object detection benchmarks: VisDrone and UAVDT. Compared
to other state-of-the-art methods evaluated on these datasets, our approach demonstrated
superior performance.

Our approach is distinguished by its attention to the low foreground proportion in
aerial images and its proficiency in balancing detection precision with efficiency. Notably,
even with lower-resolution images, our method consistently delivers superior detection
results. Additionally, while our enhancements were developed with YOLOv7 in mind, their
applications are broader. Detectors addressing dense environments and numerous small
targets could benefit from integrating our P2 detection head, foregoing the P5 detection
head, and adopting the CBS channel optimization to align detection precision with effi-
ciency. Likewise, detectors employing sparse convolution with an emphasis on foreground
focus might find our TGM-CESC module advantageous.
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