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Abstract: When employing remote sensing images, it is challenging to classify vegetation species and
ground objects due to the abundance of wetland vegetation species and the high fragmentation of
ground objects. Remote sensing images are classified primarily according to their spatial resolution,
which significantly impacts the classification accuracy of vegetation species and ground objects.
However, there are still some areas for improvement in the study of the effects of spatial resolution
and resampling on the classification results. The study area in this paper was the core zone of the
Huixian Karst National Wetland Park in Guilin, Guangxi, China. The aerial images (Am) with
different spatial resolutions were obtained by utilizing the UAV platform, and resampled images (An)
with different spatial resolutions were obtained by utilizing the pixel aggregation method. In order
to evaluate the impact of spatial resolutions and resampling on the classification accuracy, the Am
and the An were utilized for the classification of vegetation species and ground objects based on the
geographic object-based image analysis (GEOBIA) method in addition to various machine learning
classifiers. The results showed that: (1) In multi-scale images, both the optimal scale parameter
(SP) and the processing time decreased as the spatial resolution diminished in the multi-resolution
segmentation process. At the same spatial resolution, the SP of the An was greater than that of the
Am. (2) In the case of the Am and the An, the appropriate feature variables were different, and
the spectral and texture features in the An were more significant than those in the Am. (3) The
classification results of various classifiers in the case of the Am and the An exhibited similar trends
for spatial resolutions ranging from 1.2 to 5.9 cm, where the overall classification accuracy increased
and then decreased in accordance with the decrease in spatial resolution. Moreover, the classification
accuracy of the Am was higher than that of the An. (4) When vegetation species and ground objects
were classified at different spatial scales, the classification accuracy differed between the Am and
the An.

Keywords: GEOBIA; UAV; spatial scale; aerial images; resampled images; machine learning classifier

1. Introduction

Wetlands are transition zones between terrestrial and aquatic ecosystems and are
considered one of the three major ecological systems along with forests and oceans [1].
Moreover, they play a critical role in water conservation, water purification, flood storage,
drought resistance, and the protection of biodiversity. Over the past half-century, excessive
human activity has had a significant adverse impact on wetland ecosystems [2], with a
large number of wetlands being converted into cropland, fishponds, and construction sites,
resulting in a significant reduction in wetland areas [3,4]. In addition, the proliferation of
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croplands and fishponds contributes significantly to the pollution of wetland ecosystems
through rivers and groundwater, posing a threat to biodiversity and destroying the natural
habitats of wetland species [5]. As of today, up to 57% of the world’s wetlands have been
converted or eliminated, with Asia experiencing the greatest decline in the number of
wetlands [6]. Therefore, it is imperative to accurately comprehend the spatial distribution
and change characteristics of wetland vegetation species and ground objects in order to
accurately evaluate and take advantage of wetland resources, as well as to provide data
support for wetland vegetation restoration technology and research on regional biodiversity
and its formation mechanism [7,8].

As a primary technical means for regional ecological environment monitoring, satellite
remote sensing technology is widely used in extracting wetland data, monitoring dynamic
changes, resource surveys, etc. [9]. Using satellite data from MODIS [10], WorldView-2 [11],
and ALOS PALAR [12], scholars have worked extensively on wetland classification. Due to
limitations in spectral and spatial resolutions, these research projects in the field of wetland
classification were mostly concentrated on the vegetation community or major ground
object types. There are still substantial constraints in the classification of wetland vegetation
species, making it difficult to manage and assess wetland areas.

In recent years, due to the rapid advancement and popularity of unmanned aerial ve-
hicles (UAV), it has been possible to provide technical support for the detailed management
and assessment of these ecological environments [13,14]. UAVs are widely utilized for
monitoring ecological environments due to their low cost, simple operation, and minimal
dependence on landing and takeoff sites and weather conditions [15]. In addition, UAVs
are also capable of acquiring multi-angle and high spatial resolution remote sensing data
according to specific user requirements, which compensates for the application limita-
tions of satellite images [16–18]. However, the spatial resolution of images can have a
significant impact on several UAV-related studies, including fractional vegetation cover
evaluation [19], vegetation species identification [20], disease detection [21], etc. Changes
in spatial resolution will result in a difference in the expression of information content,
which causes spatial scale effects for pertinent results. Acquiring images with different
spatial resolutions through resampling is the major method used in the present study
on the spatial scale effect of remote sensing. To explore the impact of spatial resolution
on classification results, many researchers have mimicked the image acquisition of UAV
platforms at various heights using resampling techniques such as pixel aggregation and
cubic interpolation algorithms. The findings suggested that the effect of spatial resolution
on classification accuracy was related to the mixed-pixel effect in addition to the nature of
per-pixel classification [22]. More pixels were mixed up when spatial resolution decreased.
However, the spatial resolution of the UAV image is not necessarily better the higher it
is [23]. Although increasing the spatial resolution of the UAV image will not necessarily in-
crease classification accuracy, it will cost more and present more difficulties. In cases where
there is excessively high spatial resolution and rich image information of the UAV image,
certain vegetation features (such as shadows, gaps, etc.), may also be captured, resulting in
a more complex image and a reduction in the classification accuracy [24]. Additionally, in
ultra-high spatial resolution images, the difference between spectral and texture features of
the same vegetation species or ground objects becomes larger, while that of the different
vegetation or ground objects becomes smaller. As a result, it makes it more challenging
to capture unique spectral or texture features for the classification model [25]. Therefore,
recent research has focused on how to balance spatial resolution and image feature data
while effectively identifying vegetation species and ground objects. However, the images
obtained only by resampling will bring uncertainty to the spatial scale effect of remote
sensing, thus affecting the assessment of the classification accuracy of wetland vegetation
species and ground objects.

The classification accuracy of vegetation species and ground objects is directly influ-
enced by image data sources as well as classification methods. At present, the classification
methods of vegetation species and ground objects in remote sensing images are primarily
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pixel-based and object-based. Using pixel-based image analysis technology, land cover
features are extracted from individual pixels or from adjacent pixels and are classified
accordingly. It should be noted that since pixel-based analysis technology does not take the
spatial or texture information of pixels into consideration, the classification of ultra-high
spatial resolution images results in the “pepper and salt” phenomenon [26,27]. Geographic
object-based image analysis (GEOBIA) technology combines raster units with the same
semantic information into an object, which contains information on texture, spectrum, posi-
tion, and geometry features. Information extraction is carried out following the creation of
classification rules by utilizing the feature information [28]. According to previous research
results, it was evident that the classification accuracy of object-based methods was signifi-
cantly higher than that of pixel-based methods [29,30]. In light of the abundance of wetland
vegetation species and the high fragmentation of ground objects, object-based machine
learning algorithms are currently one of the most effective tools for the classification of
wetland vegetation species and ground objects. Nevertheless, the current research on the
classification of wetland vegetation species and ground objects is primarily focused on the
comparison of classification algorithms; however, insufficient research has been conducted
on how classification algorithms respond to the spatial resolution of images.

In order to solve the aforementioned problems, this study obtained aerial images
(Am) and resampled images (An) with different spatial resolutions by employing a UAV
platform and classified wetland vegetation species and ground objects based on GEOBIA in
addition to four machine learning classifiers (random forest (RF), support vector machine
(SVM), K-nearest neighbor (KNN), Bayes) for the Am and the An. The main objectives
of this study were: (1) to determine the optimal segmentation scale parameters for the
Am and the An at different spatial scales; (2) to examine the variation law of feature
variables between different images; (3) to reveal the scale effects of the Am and the An on
the classification of wetland vegetation species and ground objects; (4) to determine the
optimal spatial resolution image required to identify different wetland vegetation species
and ground objects.

2. Materials and Methods
2.1. Study Area

Huixian Wetland is located in Huixian Town, Lingui District, Guilin City, Guangxi
Zhuang Autonomous Region, China. The geographical location is 25◦01′30′′ N~25◦11′15′′ N,
110◦08′15′′ E~110◦18′00′′ E, with a length of approximately 6 km from east to west and a
width of 2.8 km from north to south, covering an area of 4.936 km2. The climate in this
region is classified as subtropical monsoon climate, with an average annual precipitation of
1894 mm and an average annual temperature of 19.2 ◦C. The predominant plant species are
shrubs and grasses [31]. The Huixian Wetland is characterized by typical karst peak forest
plain landforms with level topography. It is the largest karst wetland system in China, and
it bridges the gap between the Lijiang River and the Luoqing River, provides a natural
barrier to the fragile karst groundwater environment, and is often known as the “kidneys of
the Li River”. The Huixian wetland was named the Guangxi Guilin Huixian Karst National
Wetland Park by the State Forestry Administration of China in 2012 due to its abundant
tourism resources, rich history and culture, and diverse composite landscape [32].

In recent years, the Huixian wetland area has significantly shrunk, and the biodiversity
has been seriously damaged as a result of the activities of local residents and the invasion
of alien plant species (water hyacinth, Ampullaria gigas, etc.). Consequently, targeted
management and protection of the wetland is essential [5]. The core zone of the Huixian
wetland is less disturbed by human activities. It maintains a complete ecological landscape,
which is crucial for the study and preservation of the Huixian karst wetland. The core
zone of the Huixian wetland was designated as the study area (Figure 1), covering an area
of 77,398 m2.
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Figure 1. Overview of the study area.

2.2. Data Source and Preprocessing
2.2.1. Acquisition of Field Survey and UAV Aerial Images

The UAV aerial images of this study were collected on 1 July 2021, when the vegetation
in the Huixian wetland was flourishing, and the weather was clear and windless during
the data collection period. The UAV model used in this study was DJI Phantom 4 Pro
(DJI, Shenzhen, China), equipped with an OcuSync image transmission system as well as
a 1-inch CMOS sensor (20 million effective pixels), and weighed about 1.4 kg [33]. The
flight was planned and controlled in real time using a tablet equipped with DJI GS Pro
software, with 80% heading overlap and 70% side overlap, and vertical downward aerial
photography at a flight speed of 7 m/s. In order to obtain RGB images with different
spatial resolutions, the UAV was flown at altitudes of 40, 60, 80, 100, 120, 140, 160, 180, and
200 m, respectively (Table 1). The flight mission was conducted under the permission of
the relevant local management.

Table 1. The spatial resolution and the number of aerial pieces corresponding to the flight height of
the UAV.

Height/m 40 60 80 100 120 140 160 180 200

Resolution/cm 1.2 1.8 2.4 2.9 3.6 4.1 4.7 5.3 5.9
Aerial image/piece 640 293 159 110 76 52 48 35 25

2.2.2. UAV Aerial Image Processing

Firstly, POS data such as longitude and latitude coordinates and flight attitude of UAV
aerial images were imported into Pix4D Mapper 4.4.12 software. Subsequently, an image
quality check was carried out in order to remove fuzzy images with heading overlap rates
of less than 80% and side overlap rates of less than 70%. Control points were inserted in
order to correct geometric errors and to re-optimize the images. Afterward, the images
were automatically matched through spatial triad solution and block adjustment in order
to generate dense point cloud data. Finally, the dense point cloud data were utilized to
construct a TIN triangulation network and to generate digital orthophoto maps (DOMs).
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The mosaic of DOMs and the histogram matching homogenization process were
completed in ENVI 5.3 software using the Seamless Mosaic tool. The images were then
cropped in ArcGIS 10.6 in order to obtain nine aerial images (the spatial resolution of the
Am were 1.2, 1.8, 2.4, 2.9, 3.6, 4.1, 4.7, 5.3, and 5.9 cm, respectively). In this study, the image
with the highest resolution (1.2 cm) was resampled in order to examine the differences in
the performance of wetland vegetation species and ground object identification between
aerial images and resampled images. According to previous studies, in cases where
an image was resampled using the nearest neighbor, bilinear, and cubic convolution
methods, their smoothing and sharpening effects may significantly influence the final
results [23]. Therefore, the pixel aggregate method was employed in order to reduce the
spatial resolution of images, thereby generating eight corresponding resampled images
(the spatial resolution of the An were 1.8, 2.4, 2.9, 3.6, 4.1, 4.7, 5.3, and 5.9 cm, respectively).

2.2.3. Reference Data

Based on the image with 1.2 cm spatial resolution and in addition to the field investiga-
tion results and the photographic record data, a detailed reference image of real vegetation
species and ground objects (Figure 2) was obtained by employing the artificial vectorization
method as a means for accuracy verification, and the acreage occupied by each vegetation
species and ground objects within the study area was calculated (Table 2).
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Figure 2. Ground truth reference image.

Table 2. The acreage occupied by each vegetation species and ground object in the study area.

Type Lotus Hyacinth Duckweed Mixed
Forest

Mixed
Grass Bare Water Construction Total

Acreage/m2 5455 20,360 2746 24,914 5565 2008 15,839 511 77,398

2.3. Methods

Based on the Am and the An, GEOBIA was utilized in order to classify wetland
vegetation species and ground objects within the study area (Figure 3). This procedure
involved (1) selecting the appropriate scale parameter for multi-resolution segmentation
through the ESP2 tool; (2) selecting and evaluating feature variables using the feature
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space optimization tool of the eCognition Developer 9.0 software and using the mean
decreased accuracy (MDA) method of RF; (3) classifying vegetation species and ground
objects from multi-scale images using four machine learning classifiers (RF, SVM, KNN,
Bayes); (4) evaluating the accuracy of the classification results based on the overall accuracy,
the Kappa coefficient, the producer accuracy, the user accuracy, and the average accuracy.
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2.3.1. Preparation of Training Samples

The images generated through aerial photography by a UAV at 40 m altitude had a
spatial resolution of 1.2 cm, in which it was possible to identify each vegetation species
and ground object by means of visual interpretation. According to the results of the field
survey and the differences between the characteristics of the UAV images, the vegetation
species within the study area were divided into lotus, hyacinth, duckweed, mixed forest,
and mixed grass, and the ground objects were divided into construction, water, and bare.
In order to produce the training sample dataset, 103 randomly selected points were created
in ArcGIS 10.6 software on 1.2 cm image layers across the study area (Figure 4) and each
point was assigned a value (Table 3).

Table 3. Training sample size in the study area.

Type Lotus Hyacinth Duckweed Mixed
Forest

Mixed
Grass Bare Water Construction Total

Samples size 11 13 10 20 14 11 16 8 103
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2.3.2. Multi-Resolution Segmentation

GEOBIA is primarily based on image segmentation [34]. In this study, the fractal net
evolution approach (FNEA) was employed for the segmentation of the Am and the An.
This method belongs to a multi-resolution segmentation algorithm that merges bottom-up
regions of pixels under the criterion of minimal heterogeneity in order to compose objects
of different sizes. The segmented image objects were located relatively close to the natural
boundaries of vegetation species and ground objects, and each image object contained
spectral information, geometric information, texture information, and position information.

In the multi-resolution segmentation algorithm, the shape parameter is used to cal-
culate the percentage of shape uniformity weighted relative to the spectral value, and
the compactness parameter is a sub-parameter of shape, which is used to optimize the
compactness of image objects. The sum of the weight of color and shape, smoothness and
compactness is 1 [35]. With eCognition Developer 9.0 software, only the shape and com-
pactness parameters are required to be manually configured, and the color and smoothness
parameters are automatically generated.

Based on previous studies and subsequent experiments, the parameter values of
shape and compactness were ultimately determined to be 0.2 and 0.5, respectively. Using
the scale parameter (SP), it was possible to control the internal heterogeneity of detected
objects, which was related to their average size; i.e., the larger the SP, the higher the internal
heterogeneity, which increased the number of pixels per object, and vice versa. Due to
the fact that SP is the most central parameter in multi-resolution segmentation algorithms
and has the greatest impact on classification accuracy, thus it is crucial to determine the
size of SP. The traditional method of calculating the size of SP is trial and error, which is
highly contingent and time-consuming [36]. In this study, the ESP2 tool [37] was used to
determine the optimal SP for multi-resolution segmentation. Since the initial value and step
size in the ESP2 tool were not altered, the obtained results did not reach the peak value,
but rather exhibited a smooth or steep curve. Therefore, it is essential to change the initial
value and step size in ESP2. Table 4 shows the specific parameters that were determined
after several experiments.
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Table 4. Parameters of the ESP2 tool.

Parameters Fine Scale Medium Scale Rough Scale

Initial value 13 23 34
Step size 5 20 40

Number of loops 100 100 100
Shape 0.2 0.2 0.2

Compactness 0.5 0.5 0.5

2.3.3. Feature Selection and Evaluation

The second key step in GEOBIA is feature selection. Features that significantly influ-
ence the classification accuracy give the target object a high separability, i.e., the intra-class
similarity is high, while the inter-class similarity is low. According to the image characteris-
tics of the study area, five types of features were comprehensively considered on the basis
of optimal segmentation, including spectral features, vegetation index [38,39], geometric
features, position features, and texture features [40]. Furthermore, 90 feature variables were
identified to form the initial feature space (Table 5), and the formula was presented for the
calculation of each vegetation index (Table 6).

Table 5. Object features.

Feature Types Description

Spectral feature Mean value of each band, standard deviation, brightness, max_diff

Vegetation
index Blue, green, red, EXG, NGBDI, NGRDI, RGRI, GLI

Geometry
feature

area, length/width, length, width, border length, shape index, density,
compactness, asymmetry, elliptic fit, rectangular fit, main direction

Position feature X center, X max, X min, X center, Y max, Y min, Z center, Z max, Z min, time,
time max, time min, distance to scene border

Texture feature
GLCM mean, GLCM variance, GLCM entropy, GLCM angular second moment

(ASM), GLCM homogeneity, GLCM contrast, GLCM dissimilarity, GLCM
correlation, GLDV ASM, GLDV entropy, GLDV mean and GLDV contrast

Table 6. Vegetation index and calculation formula.

Vegetation Index Calculation Formula

Blue B/(R + G + B)
Green G/(R + G + B)
Red R/(R + G + B)
EXG 2 × G − R − B

NGBDI (G − B)/(G + B)
NGRDI (G − R)/(G + R)
RGRI R/G
GLI (2 × G − R − B)/(2 × G + R + B)

R, G, B represent the red, green, and blue bands, respectively.

Feature optimization is necessary for high-dimensional data, required to reduce data
redundancy and enhance the model’s comprehension of features, thereby improving its
generalization ability [41,42]. The feature space optimization tool in eCognition Developer
9.0 software was utilized to calculate a total of 90 feature variables, and the detailed infor-
mation of the separability between all feature groups and classes was obtained. Taking the
image with a spatial resolution of 1.2 cm as an example, it was evident that the separation
distance between classes changed in accordance with the number of features (Figure 5).
In the case where the feature dimension was 45, the separation distance between sample
classes was the greatest (2.949).
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Although some feature variables were selected after feature optimization, the remain-
ing feature variables still exhibited a certain degree of correlation with one another. In this
study, the mean decreased accuracy (MDA) method of RF was employed in order to further
reduce the dimensions of the feature variables. The principle of the method is to reorder the
original features, and then calculate the impact of sequence change on the model accuracy.
In the case of certain unimportant feature variables, sequence changes have a minimal
impact on the accuracy of the model; however, for certain key feature variables, sequence
changes result in a reduction in the accuracy of the model [43,44]. Based on the results of
MDA, all features were ranked from the largest to the smallest according to their degree of
importance. Consequently, 20 to 30 features remained after the least significant features
were removed. These features were put into RF, SVM, KNN, and Bayes models to identify
wetland vegetation species and ground objects in the resulting UAV images.

2.3.4. Supervised Classification

The machine learning algorithm is a non-parametric supervision method, which
has achieved remarkable success in the classification of remote sensing images in recent
years [45]. The four classifiers used here were employed based on their effectiveness in
previous studies; however, the performance of these algorithms is largely dependent on
their own parameter values [46,47].

RF is an algorithm that integrates multiple trees through the approach of ensemble
learning, and a “decision tree” serves as its basic unit. A forest is represented by many
decision trees, and each tree yields a classification result, and the category with the greatest
number of votes is designated as the classification result [48–50]. In this study, the RF
classifier from the Scikit-Learn library of the Python platform was employed. Firstly, in
order to estimate the overall classification effect, mtry was maintained at the default value,
which was the square root of input feature variables, and then ntree was gradually increased
from 100 to 150, 200, and 500. It was found that the classification effect was highest when
ntree was set to 200. In the case where the value of ntree was set to 200, changing the
value of mtry from the default value to a lower or higher value led to a reduction in the
classification accuracy of the image. Accordingly, when the RF classifier was invoked in the
Scikit-Learn library, mtry was required to be set as the default value, and ntree was required
to be set to 200, which was most conducive to the identification of wetland vegetation
species and ground objects in UAV images.

SVM is a machine learning algorithm derived from statistical learning theory devel-
oped by Vapnik’s team [51]. The prime feature of SVM is its ability to simultaneously
minimize the empirical error and maximize the classification margin of images, i.e., super-
vised learning is accomplished by finding a hyperplane that can ensure both the accuracy
of the classification and also maximize the margin between two types of data [52]. There
are two types of kernels in SVM: the linear kernel and the radial basis function. In this
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work, we initially examined the impact of the radial basis function on the classification,
and discovered that the accuracy of the classification result was insufficient. As a result,
this study tested various penalty coefficients C using the linear kernel. Finally, it had been
determined that in order to achieve the best classification effect, the value of C must be
set to 5.

KNN is a commonly utilized nonlinear classifier in which the classification of an object
depends on its neighboring samples [53]. Furthermore, if the majority of the object’s k
nearest neighboring samples in the feature space belong to one particular class, then the
sample is determined to belong to the same class as well [54]. Therefore, the k value is the
key parameter of KNN. In this study, k values ranging from 1 to 10 were tested, and it was
finally determined that the most accurate classification results could be obtained with the k
value of 2.

Bayes is a simple probabilistic classification model based on Bayes’ theorem and
assumes that features are not correlated with each other. The algorithm utilizes training
samples as a means to estimate the mean vector and covariance matrix for each class and
then incorporates them into the classification process [55]. It is not necessary to set any
parameters for the Bayes classifier.

2.3.5. Accuracy Assessment

In this study, the overall accuracy (OA, Equation (1)) and Kappa coefficient were
used as a means to evaluate the overall classification effects of wetlands on UAV images.
OA represents the probability that the classification result is consistent with the actual
ground object information. The Kappa coefficient (Equation (2)) is obtained through the
statistical calculation of each element in the confusion matrix. The multivariate data
analysis method was adopted, which takes into account the number of samples correctly
classified by the model in addition to the “commission” and “omission” samples of the
model, in order to accurately represent the degree to which the classification results match
actual ground objects [56].

Producer accuracy (PA, Equation (3)), user accuracy (UA, Equation (4)), and average
PA and UA (AA) were employed in order to discern the identification accuracy of wetland
vegetation species and ground objects. PA refers to the percentage of pixels accurately
classified in comparison with the number of pixels of the specific class in the reference data.
UA refers to the percentage of pixels correctly classified in comparison with the number of
all pixels classified into the same class [57].

In this study, each classifier (RF, SVM, KNN, Bayes) contained 9 the Am classification
results and 8 the An classification results, which were compared using ground truth
reference images covering the entire study area for the purpose of conducting a total of 68
accuracy evaluations.

OA =

n
∑

i=1
Xii

N
(1)

Kappa =

N
n
∑

i=1
Xii −

n
∑

i=1
(Xi+ × X+i)

N2 −
n
∑

i=1
(Xi+ × X+i)

(2)

PA =
Xjj

X+j
(3)

UA =
Xii
Xi+

(4)

where N is the total number of evaluation data samples; Xij is the number of samples of

class i in the classification result data and class j in the validation data; Xi+ =
n
∑

j=1
Xij is
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the sum of the class i of the classification result; X+j =
n
∑

i=1
Xij is the sum of class j of the

validation data.

3. Results
3.1. The Optimal SP of the Am and the An

Figure 6 showed the LV and ROC curves of the image with a spatial resolution of
1.2 cm. It was evident that the peak values of the curve were 323, 393, 453, 493, and
543. In cases where the SP was set as 453, 493, and 543, isolated and small vegetation
species, such as lotus and hyacinth, led to incomplete segmentation results. In addition,
various vegetation species may also be included in the same segmented object. The OA
was 83.2, 82.4, and 80.1%, respectively, when we substituted the segmented objects into
the RF classification model, and the classification results showed that the lotus or hyacinth
was integrated into the adjacent large mixed forest. In the case where SP was set as
323, the segmented objects of large and uniform classes such as water, construction, and
mixed forests led to the occurrence of over-segmentation, and the OA was 81.3%. In the
classification results, other isolated and small vegetation species such as mixed grass,
hyacinth, etc., appeared in areas that were originally all mixed forests. With the SP set
to 393, it was possible to effectively segment all vegetation species and ground objects
(Figure 7). The OA was 85.3%, and there were relatively few misclassifications in the
classification results.
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Images with different spatial scales corresponded to different optimal SPs (Figure 8),
and as the spatial resolution decreased, the optimal SP of the image also decreased, as well
as the required segmentation time. In cases where the spatial resolution exceeded 1.8 cm,
the required SP set reached more than 300; moreover, the segmentation process took longer.
In cases where the spatial resolution was in the range of 2.4~5.9 cm, it led to an SP setting
of 90~200, with a relatively shorter segmentation time. Even at the same spatial resolution,
there were some variations in the SP required for the Am and the An.
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3.2. Feature Selection and Evaluation Results
3.2.1. The Importance of the Am Feature Variables

Among the Am, the importance of the feature variables was: vegetation index > position
features > spectral features > texture features > geometric features (Figure 9). According to
the importance evaluation, the red, blue, and EXG indices of the vegetation indices scored
the highest. However, the importance of the three vegetation indices varied according to
the scale of the images. In the information identification of ultra-high resolution images,
X center and Y max were two of the most essential position features and also scored
highly in the important evaluation of multi-scale images. In the case of the image with
a spatial resolution of 1.2 cm, the X center was more crucial than the vegetation index,
which was the most influential feature of the classification procedure. In the case of the
2.9 cm image, Y max served as the feature with the highest importance among the position
features; subsequently, the importance of Y max gradually decreased in accordance with
the decrease in the spatial resolution.
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Spectral features and texture features exhibited a different type of importance in
the case of various images with varying spatial resolutions. In the case of multi-scale
images, mean R, mean G, and stddev B were the most important spectral features for the
classification procedure, and all exhibited a relatively high degree of importance in the
Am. At a resolution of 2.9 cm, the importance of mean R exceeded that of mean G, and
the distinction between the two became more obvious as the spatial resolution decreased.
In the case of the 2.9 cm image, stddev B was the most important spectral feature and
exhibited the most significant impact on the classification accuracy, whereas the importance
of stddev B was relatively reduced in images above or below the same spatial resolution.
The importance of stddev R gradually increased in accordance with the decrease in the
spatial resolution. GLCM mean (0) was one of the most important texture features in the
information identification procedure of ultra-high spatial resolution images; thus, it was
essential in every dataset.

In multi-scale images, geometric features tended to be relatively less important. shape
index and compactness were of minor importance in the case of images with spatial
resolutions ranging from 1.8 to 2.9 cm, and the shape index was the most important
geometric feature in the 1.8 cm image. With the decrease or increase of spatial resolution,
the shape index gradually became less important.

3.2.2. The Importance of the An Feature Variables

Among the An, the importance of the feature variables was: vegetation index > position
features > spectral features > texture features > geometric features (Figure 10), which was
similar to the importance ranking of the feature variables in the case of the Am. In the
case of the An, blue and EXG exhibited the highest degree of importance in the multi-scale
images and had the most significant impact on the identification accuracy of wetland
vegetation species and ground objects. Red was another vegetation index feature with
a high degree of importance in the case of 1.8~3.6 cm images; however, it exhibited low
importance in the case of 4.1~5.9 cm images. The position feature with the highest degree
of importance in the multi-scale images was X center, followed by Y max. All other position
features had little influence on the classification accuracy.

The importance of the spectral features was generally high for mean G, mean B,
and stddev B. Stddev B became more important as the spatial resolution decreased, and
then slightly decreased with fluctuations, reaching its maximum importance in the 2.9 cm
images. The importance of mean B in the 1.8~4.1 cm spatial resolution images was not
very significant; however, it exhibited a very high degree of importance in the case of
4.7~5.9 cm spatial resolution images. In the case of 1.8~3.6 cm images, the importance
of max_diff gradually increased in accordance with the decrease in the spatial resolution.
Thus, max_diff became the most important spectral feature in the case of 3.6 cm images.
The texture features with a generally high degree of importance in the An were GLDV
contrast (135), GLCM dissimilarity (90), and GLCM mean (0). The importance of GLCM
correlation (90) was only significant in the case of the 4.7 cm image, and it exhibited a minor
degree of importance in the case of images with other scales.

Geometric features were less important in the An. In the case of 2.4~4.7 cm images,
compactness was the geometric feature with the highest degree of importance. However,
the shape index exhibited a higher degree of importance in geometric features and exceeded
compactness in the case of the 5.3~5.9 cm images.
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3.3. Overall Classification Accuracy
3.3.1. Overall Classification Accuracy of the Am

In the Am, the OA and Kappa coefficients increased and then decreased in accordance
with the decrease in the spatial resolution, peaking at the resolution of 2.9 cm (Table 7).
The OA and kappa coefficients of the Am classification results indicated the same pattern
of change in the different classifiers. In the case of the resolution interval ranging from
1.2 to 2.9 cm, the results of the OA of RF, SVM, and KNN were comparable (ranging from
85.2 to 88.8%) and were greater than the OA of Bayes. In the case of the resolution interval
ranging from 3.6 to 5.9 cm, the performance of SVM was superior to that of RF, and the gap
between the quality of their results became larger as the spatial resolution decreased. At
spatial resolutions below 2.9 cm, KNN’s classification accuracy decreased sharply, while it
fell below that of Bayes at 5.3 cm.

Table 7. Overall classification accuracy of each classifier in the Am.

Classifier

Resolution
(cm) 1.2 1.8 2.4 2.9 3.6 4.1 4.7 5.3 5.9

RF
OA 85.3% 85.9% 87.3% 88.8% 85.9% 85.1% 84.4% 83.9% 82.1%

Kappa 0.808 0.816 0.835 0.855 0.817 0.807 0.797 0.790 0.768

SVM
OA 85.2% 85.7% 86.8% 88.3% 86.2% 85.1% 85.1% 84.5% 84.2%

Kappa 0.809 0.815 0.831 0.849 0.822 0.808 0.807 0.800 0.797

KNN
OA 85.5% 86.0% 87.2% 88.3% 83.4% 82.4% 80.7% 78.6% 77.3%

Kappa 0.814 0.820 0.836 0.850 0.787 0.775 0.749 0.730 0.714

Bayes OA 81.3% 82.1% 83.9% 85.0% 82.1% 81.3% 80.2% 79.8% 79.5%
Kappa 0.768 0.769 0.792 0.807 0.767 0.759 0.744 0.735 0.736

3.3.2. Overall Classification Accuracy of the An

The variation tendency of OA and kappa of the four classifiers in the An was basically
the same as that in the Am, and both of them peaked at 2.9 cm resolution (Table 8). As
a whole, the performance of the RF classifier was the best. In the resolution range of
1.2~2.4cm, the accuracy of KNN was higher than that of SVM, but with the decrease of
spatial resolution, that is, in the resolution range of 2.9~5.9cm, the accuracy of SVM was
higher than that of KNN, and the variation tended to be flat.

Table 8. Overall classification accuracy of each classifier in the An.

Classifier

Resolution
(cm) 1.2 1.8 2.4 2.9 3.6 4.1 4.7 5.3 5.9

RF
OA / 87.0% 89.1% 91.2% 89.3% 88.8% 88.6% 88.5% 88.4%

Kappa / 0.832 0.860 0.886 0.861 0.850 0.852 0.850 0.850

SVM
OA / 86.6% 88.0% 91.2% 88.9% 88.2% 88.2% 88.1% 88.1%

Kappa / 0.827 0.846 0.887 0.857 0.848 0.848 0.846 0.846

KNN
OA / 86.7% 88.7% 90.8% 88.2% 88.2% 87.9% 87.9% 87.8%

Kappa / 0.831 0.855 0.883 0.847 0.846 0.842 0.842 0.842

Bayes OA / 82.0% 85.2% 86.8% 86.4% 85.9% 85.7% 85.5% 84.0%
Kappa / 0.767 0.810 0.830 0.824 0.816 0.816 0.811 0.796

3.4. Identification Accuracy of Vegetation Species and Ground Objects

Given the overall superiority of the RF classifier over SVM, KNN, and Bayes, the
classification results of vegetation species and ground objects under the RF classifier were
plotted in this study. The identification accuracy of vegetation species and ground objects
was evaluated by PA, UA, and AA.
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3.4.1. Identification Accuracy of Vegetation Species and Ground Objects in the Am

Disparities between the Am classification results and the ground truth reference image
were most pronounced in the northern, north-eastern, and southern parts of the study area
and are marked in red in Figure 11. In the multi-scale images, hyacinth, duckweed, and
lotus in the northern part of the study area, were more likely to exhibit commission or
omission. In the case of 4.7~5.9 cm images, mixed grass in the northeastern part of the
study area was often incorrectly classified as hyacinth. In the case of the images with the
resolutions of 1.2, 1.8, and 3.6~5.9 cm, a large amount of mixed grass in the southern part
of the study area was incorrectly classified as mixed forest. In the Am, the classification
results of water and construction were relatively consistent with the ground truth reference
image. The spatial scale effect of the Am in the classification was analyzed by employing
PA, UA, and AA.
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Figure 11. The Am classification results under RF classifier; the UAV-RGB image and ground truth
reference image of the study area are shown in Figures 1 and 2, respectively.

In the Am, changes in spatial resolution had no significant effect on the identification
of water. Moreover, the PA, UA, and AA of water were the highest (approximately 95%)
in multi-scale images. In the case of hyacinth, mixed forest, and construction, the PA of
the 1.2~2.9 cm images was very close at 86, 91, and 90%, respectively, and then the PA
gradually decreased in accordance with the decrease in the spatial resolution. As a result
of the change in the spatial resolution, PA exhibited a similar pattern for lotus and bare
areas. PA initially increased and then gradually began to decline, peaking at 88.1 and 82.6%,
respectively, in the 1.8 cm image. In the case of mixed grass and duckweed, PA results
varied greatly depending on the different resolutions. Duckweed exhibited the highest
PA in 2.4 and 2.9 cm images. In the multi-scale images, the UA of lotus, hyacinth, mixed
forest, and construction was close and decreased gradually in accordance with the decrease
in the spatial resolution. As compared with other classes, the UA of duckweed was the
lowest in all the multi-scale images. The highest AA for lotus, hyacinth, and bare was in
the 1.8 cm image, while the highest AA for mixed forest, mixed grass, and duckweed was
in the 2.4 and 2.9 cm images (Figure 12).



Drones 2023, 7, 61 18 of 25

Drones 2023, 7, x FOR PEER REVIEW 19 of 27 
 

was the lowest in all the multi-scale images. The highest AA for lotus, hyacinth, and bare 
was in the 1.8 cm image, while the highest AA for mixed forest, mixed grass, and duck-
weed was in the 2.4 and 2.9 cm images (Figure 12). 

 
Figure 12. Identification accuracy of vegetation species and ground objects in the Am. 

3.4.2. Identification Accuracy of Vegetation Species and Ground Objects in the An 
The disparities between the An classification results and ground truth reference im-

ages were most pronounced in the northern and north-eastern parts of the study area and 
are marked in red in Figure 13. In the An classification results, hyacinth, duckweed, lotus, 
and mixed forests in the northern part of the study area were more likely to exhibit com-
mission or omission, and mixed grass in the north-eastern part was also more likely to be 
incorrectly classified as mixed forest. Similar to the Am classification results, in the case 
of the An results, the classification results of water and construction were relatively con-
sistent with the ground truth reference images. 

Figure 12. Identification accuracy of vegetation species and ground objects in the Am.

3.4.2. Identification Accuracy of Vegetation Species and Ground Objects in the An

The disparities between the An classification results and ground truth reference images
were most pronounced in the northern and north-eastern parts of the study area and are
marked in red in Figure 13. In the An classification results, hyacinth, duckweed, lotus, and
mixed forests in the northern part of the study area were more likely to exhibit commission
or omission, and mixed grass in the north-eastern part was also more likely to be incorrectly
classified as mixed forest. Similar to the Am classification results, in the case of the An
results, the classification results of water and construction were relatively consistent with
the ground truth reference images.

The PA, UA, and AA of water in the An results exhibited the highest accuracy in the
multi-scale images (Figure 14). The PA of lotus, mixed forest, bare, and duckweed was
significantly affected by the spatial resolution, in turn, the PA increased and then decreased
in accordance with the decrease in the spatial resolution, peaking in the 2.9 cm image. In
the multi-scale images, the PA of mixed grass was the lowest as compared to other classes.
In addition, the UA of lotus, hyacinth, and mixed grass also exhibited similar spatial scale
effects. The UA first increased and subsequently declined in response to the decrease in
the spatial resolution, peaking in the 2.9 cm image. Overall, the UA of hyacinth was the
highest, followed by that of lotus and mixed grass. The AA of lotus, hyacinth, duckweed,
mixed forest, bare, construction, and water showed an analogous pattern of change under
the influence of different spatial resolutions. The AA increased gradually in the resolution
range of 1.8~2.9 cm and decreased gradually in the resolution range of 2.9~5.9 cm.
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4. Discussion

As an effective tool for the classification of remote sensing images, GEOBIA has been
widely used in the classification of wetland vegetation species and ground objects [58]. In
using GEOBIA, image segmentation is the first key step. Previous studies have shown
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that the FNEA multi-resolution segmentation algorithm is one of the most popular image
segmentation algorithms used for the identification of wetland vegetation species and
ground objects. Appropriate segmentation parameters directly impact the patch size of
the generated object as well as the extraction accuracy of actual vegetation species and
ground objects. Therefore, it is crucial to determine the optimal segmentation parameter
value for the identification of wetland vegetation species and ground objects [32]. The
FNEA multi-resolution segmentation technology utilized three main parameters: shape,
compactness, and SP. Changes in the SP had a greater impact on the quality of segmentation
results than changes in the shape and compactness [59]. In this study, after determining the
shape and compactness parameters of 0.2 and 0.5, respectively, through trial and error, the
SP was selected by the ESP2 tool in order to overcome the subjective influence of human
perception on the results. However, the current research on the optimal SP is only for a
specific spatial resolution image, and there are still some deficiencies in the research on
the response of aerial images and resampled images with different spatial resolutions. The
results of this study demonstrated that a higher spatial resolution corresponded to a longer
segmentation time as well as a greater optimal SP value (Figure 8). This was because higher
spatial resolutions resulted in larger amounts of data and longer computer processing
times for images. Thus, it is imperative that the effectiveness of image processing be taken
into account in future studies instead of excessively focusing on spatial resolution while
gathering UAV aerial images. Even at the same spatial resolution, the optimal SP value
for the An was somewhat bigger than that for the Am. In light of the fact that the internal
heterogeneity of the image in the An was lower as a result of resampling, an increase in the
SP value was capable of producing segmentation results that were comparable to those of
the Am. As a result of the combination of the ideal segmentation parameters, all types of
vegetation species and ground objects were separated, and each object within an image
was relatively close to the natural boundaries of vegetation species and ground objects,
which was acceptable for further processing.

In GEOBIA, feature selection is the second key step after image segmentation. Due to
the limited spectral resolution of UAV-RGB images and the serious confusion of the spectra
of various wetland vegetation species, this study employed vegetation indexes, texture
features, position features, and geometric features as a means to compensate for the lack
of spectral information. However, having too many feature variables might cause data
redundancy and overfitting, which leads to a reduction in the classification accuracy of
the results. Therefore, this study used the feature space optimization tool in addition to
the MDA method for feature optimization in order to improve the processing efficiency
of high-dimensional data and to calculate the importance of each feature variable. As
demonstrated in previous research, the importance of the vegetation index was highest,
while the importance of the geometric features was lowest [41,60]. However, a sizeable
portion of the important evaluation in this study was accounted for by position features,
specifically X center and Y max. It was possible that this was due to the geographically
constrained nature of the research area selected for this study, which magnified the sig-
nificance of X center and Y max. In other words, the addition of X center and Y max was
more conducive to improving the classification accuracy when classifying wetlands in
small areas. The importance of each geometric feature was generally low. Thus, geometric
features cannot be arbitrarily added in future studies. When comparing the importance
of each vegetation index and texture feature between the Am and the An, red, blue, EXG,
and GLCM mean (0) were found to have relatively high importance, suggesting that when
classifying wetland vegetation species and ground objects, these feature variables should
be taken into consideration first. The results showed that there were significant differences
between the importance of some feature variables between the Am and the An, and the
max_diff feature in the An was more important than the Am in spectral features. Moreover,
the results also indicated that the GLDV contrast (135), GLCM dissimilarity (90), and GLCM
correlation (90) feature in the An were more important than the Am in texture features,
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which was possibly one of the reasons for the higher classification accuracy of the An than
the Am in the final classification results.

RF, SVM, KNN, and Bayes are machine learning classifiers commonly utilized for
image classification, and this study evaluated the performance of these classifiers in the clas-
sification of wetland vegetation species and ground objects by OA and kappa coefficients.
As demonstrated in previous research results, different classifiers functioned differently,
with RF classifiers generally performing the best [55]. Accordingly, the classification of
wetland vegetation species and ground objects should prioritize RF classifiers in future re-
search. This study focused on exploring the responses of these four classifiers to the spatial
resolution of images, and the results indicated that the trends of OA and kappa coefficients
in the Am and the An were relatively the same in the cases of various classifiers. In the
case where the spatial resolution was lower than 2.9 cm, the OA and kappa coefficients
decreased significantly (Tables 7 and 8), which was due to the increasing number of mixed
pixels caused by the decreasing spatial resolution. A pixel might contain information of
multiple classes, and the classification result of the pixel was related to the proportion of
classes in the mixed pixel. Small and fragmented classes were easily replaced by other large
and uniform classes. The edges of the patches were more prone to increase commission
errors or omission errors [61]. However, a higher spatial resolution did not necessarily
mean a better image [24]. For example, the classification accuracy of 1.2, 1.8, and 2.4 cm
images was lower than that of 2.9 cm images, because wetland vegetation species and
ground objects had specific physical sizes, and spatial resolution above a certain threshold
was not conducive to the identification of vegetation species and ground objects [62,63].
Although providing detailed information regarding vegetation species and ground objects,
ultra-high spatial resolution images were obviously harmful in enhancing the phenomenon
of different spectra of the same vegetation species or ground objects. Consequently, this also
increased the difficulty of identifying vegetation species and ground objects. In addition,
the ultra-high spatial resolution caused multiple super-impositions of information, which
greatly reduced the processing efficiency of the images [62,64]. In future research, it is un-
necessary to relentlessly strive for a spatial resolution that is better than the threshold value,
and the flight altitude of UAVs may also improve the operational efficiency by covering a
larger area, thus ensuring the maximum classification accuracy. It was also shown that the
overall classification accuracy of the An was higher than that of the Am, probably because
the images obtained by pixel aggregation resampling contained fewer disparities in spectral
and textural features among homogeneous vegetation species or ground objects and more
disparities in spectral and textural features among heterogeneous vegetation species or
ground objects as compared with the corresponding aerial images [20,65]. Resampled
images were therefore more useful for identifying wetland vegetation species and ground
objects in the spatial resolution range of 1.2~5.9 cm than aerial images.

Based on the RF classifier, the spatial scale effects of each vegetation species and ground
object in classification were explored, which has a good reference for selecting the best
resolution image to identify wetland vegetation species and ground objects. In this study,
the UA, PA, and AA of the RF classifier were calculated for each vegetation species and
ground object in the Am and the An (Figures 12 and 14), and the results indicated that water
exhibited an accurate and stable identification accuracy in the Am and the An, which may be
due to the lesser degree of heterogeneity among water objects formed after multi-resolution
segmentation by FNEA. Moreover, water objects differed significantly from other objects,
resulting in an easier extraction of water in wetland ecosystems. Figure 12 demonstrated
that higher spatial resolution and more informative images, such as the 1.2~2.9 cm images,
were needed if the PA of hyacinth, mixed forest, and construction was to be improved in
the Am. The UA of duckweed was significantly lower than that of other classes in the Am,
which was caused by the fact that duckweed was primarily distributed in the northern
part of the study area, where the vegetation species were highly fragmented. Moreover,
duckweed was heavily mixed with hyacinth, and the duckweed parcels had irregular
shape and size in the multi-scale images, resulting in the level of identification accuracy for
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duckweed being the lowest. In the An, mixed grass exhibited the lowest PA, and mixed
forest exhibited a higher PA. Because mixed grass tended to form mixed pixels with the
surrounding edge areas of mixed forest, mixed grass was easily incorrectly classified as
mixed forest, thus, reducing the identification accuracy of mixed grass. In addition, the
optimal spatial resolution required for the extraction of certain vegetation species or ground
objects varied in the case of the Am and the An. In the Am, some vegetation species and
ground objects (e.g., lotus, hyacinth, and bare) exhibited the highest AA in the 1.8 cm
image, and some vegetation species (such as mixed forest, mixed grass, and duckweed)
exhibited the highest AA in the 2.4 and 2.9 cm images. The AA of most vegetation species
and ground objects changed regularly in the An as a result of the influence of the spatial
resolution, which was possible because the An was resampled from a single image by
pixel aggregation and the imaging mechanism of each scale was quite similar. In contrast,
the Am was acquired by UAV flight at various altitudes in the field, which was easily
affected by wind speed, light, and other disturbing factors during flight, resulting in some
variability in image information at different scales. In the An, the 1.8~2.4 cm images
with detailed characteristics also induced noise in the identification procedure of wetland
vegetation species and ground objects, while the image element mixing phenomenon was
common in the 3.6~5.9 cm images, which meant it was not possible to accurately distinguish
wetland vegetation species or ground objects. The 2.9 cm image in the An was therefore
less noisy and suitable enough for the purpose of distinguishing vegetation species and
ground objects from the diverse wetland environment. In future studies, the designation of
images with optimal spatial resolutions is crucial to obtain the ideal classification results
for vegetation species and ground objects.

5. Conclusions

In this study, the UAVs were flown at different altitudes around the study area in order
to obtain aerial images (Am) with different spatial resolutions, and then the aerial image
with a spatial resolution of 1.2 cm was resampled by pixel aggregation in order to generate
resampled images (An) corresponding to the spatial resolution of the Am. In the GEOBA
method, various machine learning classifiers were employed to classify the vegetation
species and ground objects of the Am and the An, based on the ideal segmentation results
and feature selection. The following conclusions were drawn from this study:

(1) In the image segmentation step of GEOBIA, SP is the most critical parameter in the
multi-resolution segmentation algorithm. It is important to select optimal SP for
images with different spatial resolutions in order to segment each vegetation species
and ground object. In this study, the optimal SP to be set for the resampled image was
larger than that for the aerial image at the same spatial resolution. The optimal SP
progressively declined in accordance with the decrease in the spatial resolution and
also resulted in a significant decline in the required segmentation time.

(2) In the feature selection step of GEOBIA, different feature variables are required for
different spatial resolution images. Aerial images and resampled images differ in
their spectral or texture information due to differences in imaging mechanisms. For
example, in this study, the importance of some spectral features and texture features in
the An was higher than that in the Am. The importance of each feature variable in the
Am and the An was as follows: vegetation index > position feature > spectral feature
> texture feature > geometric feature. Therefore, it is necessary to select appropriate
feature variables for images with different spatial resolutions and different imaging
mechanisms to assure classification accuracy in future studies.

(3) The resampled images typically had better classification accuracy than the aerial
images in the spatial resolution range of 1.2~5.9cm. Moreover, in terms of total
classification accuracy, the RF classifier was more precise, outperforming the SVM,
KNN, and Bayes classifiers. When the spatial resolution fell below a certain threshold,
some small and fragmented classes were susceptible to misclassification because
of the mixed pixel effect. The most adequate resolution was achieved when the
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spectrum or texture exhibited the smallest intra-class variance as well as the largest
inter-class variance.

(4) For the same vegetation species or ground object, the PA, UA, and AA were different
when using different spatial resolution images for classification. In order to achieve a
higher classification accuracy during UAV flight experiments and data processing, it
is crucial to choose appropriate spatial resolution images based on the distribution
characteristics and patch size of each vegetation species and ground object in a certain
study area. It is noteworthy that the optimal spatial resolution required for the same
vegetation species or ground objects differed between aerial images and resampled
images. For instance, in this study, in the Am, the highest extraction accuracy of
lotus and hyacinth was in the 1.8 cm image, and the highest extraction accuracy of
duckweed was in the 2.3 and 2.9 cm images, while in the An, the 2.9 cm image was
the most favorable for the identification of lotus, hyacinth, and duckweed.
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