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Abstract: In the traditional express delivery sector, trucks are the most available and efficient trans-
portation mode in urban areas. However, due to the pressures of traffic congestion and air pollution
problems, many cities have implemented strict measures to restrict trucks’ access to many zones
during specified time periods, which has caused significant effects on the business of the industry.
Due to their advantages, which include high speed, flexibility, and environmental friendliness, drones
have great potential for being combined with trucks for efficient delivery in restricted traffic zones. In
this paper, we propose a cooperative truck and drone delivery path optimization problem, in which
a truck carrying cargo travels along the outer boundary of the restricted traffic zone to send and
receive a drone, and the drone is responsible for delivering the cargo to customers. The objective of
the problem is to minimize the completion time of all delivery tasks. To efficiently solve this problem,
we propose a hybrid metaheuristic optimization algorithm to cooperatively optimize the outer path
of the truck and the inner path of the drone. We conduct experiments on a set of test instances; the
results demonstrate that the proposed algorithm exhibits a competitive performance compared to
other selected popular optimization algorithms.

Keywords: traffic restriction; truck–drone cooperation; path optimization; metaheuristic; water
wave optimization

1. Introduction

With the rapid development of the social economy and urbanization, we are now facing
increasing traffic congestion and air pollution problems, which have serious effects on the
sustainable development of big cities. To tackle these problems, more and more cities have
implemented traffic restriction measures, such as “tail number restriction methods” that limit
car owners to driving only on alternate days [1] and truck restriction policies that restrict
freight trucks from entering into specified zones during specified time periods [2]. These have
effectively alleviated the pressures of congestion and pollution; however, inevitably, these
measures have significantly affected the business of the logistics industry. In particular, the
express delivery sector, which typically relies on the use of trucks to distribute a large number
of parcels to customers (the majority of whom reside in urban traffic-restricted zones) has
been affected.

In recent years, drones, or unmanned aerial vehicles (UAVs), have shown great potential
in last-mile delivery, as they can reduce operational costs, air pollution, and congestion [3].
During the COVID-19 pandemic, drones appeared as an interesting solution to contactless
delivery, especially for urgently needed medical supplies [4–7]. For instance, the SF express
used cargo drones to transport tons of medical materials to Chinese cities, such as Wuhan and
Ordos, when they were shut down in the spring of 2020 due to the outbreak of the pandemic [8].
Many food service companies also employed drones to deliver food to customers without
human-to-human contact [9]. Because their advantages include high speed, flexibility, and
environmental friendliness, drones can be considered an effective method for circumventing
ground-based traffic restrictions in express delivery.
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The main drawbacks of drones in delivery are the limited payload capacities and
flying ranges, which prevent drones from independently performing larger-scale delivery
tasks. In contrast, trucks have much larger payload capacities and mileages. Therefore,
trucks and drones can cooperate to achieve complementary advantages by using trucks as
moving depots from which drones can repeatedly take parcels and swap/recharge batteries
to surmount their limitations [10–12].

In this paper, we study the problem of using a truck and a drone to cooperatively
deliver parcels to a number of customers in a restricted traffic zone. Initially, the truck
carries all of the parcels, the drone, and the replaceable batteries for the drone to a location
on the outer boundary of the restricted zone. The truck cannot enter the restricted zone.
The drone is responsible for delivering the parcels to the customers. Due to the payload and
range limitations, the drone has to repeatedly return back to the truck to take parcels and, if
needed, swap batteries; meanwhile, the truck can move along the boundary of the restricted
zone to improve the delivery efficiency of the drone, as illustrated in Figure 1. The problem
is to determine the outer path of the truck and the inner path of the drone, such that the
delivery tasks can be completed as early as possible. To efficiently solve the problem,
we propose a hybrid optimization algorithm, which adapts a main population-based
metaheuristic to optimize the inner path (delivery sequence) of the drone and employs
a sub-procedure to determine the truck–drone intersections based on convex relaxation.
We conduct experiments on a set of test instances, the results of which demonstrate that
the proposed algorithm exhibits a competitive performance compared to other selected
popular optimization algorithms. The main contribution of this paper can be summarized
as follows:

• We present the problem of cooperative truck–drone path optimization for delivering
parcels to customers in restricted traffic zones.

• We propose a hybrid metaheuristic and convex relaxation optimization algorithm to
efficiently solve the problem.

• We validate the effectiveness and efficiency of the proposed method on a variety of
test instances.

X

X

X

Boundary of the restricted zone

Customer point

Drone path

Truck path

Truck-drone intersection

Figure 1. Illustration of the cooperative truck–drone delivery.

In the remainder of this paper, we will review the related works in Section 2, formulate
the problem of cooperative truck–drone delivery path optimization in Section 3, propose
the hybrid optimization algorithm in Section 4, and present the experimental results in
Section 5. Finally, we conclude with discussions in Section 6.

2. Related Work

The application of drones in last-mile logistics has been practiced by many delivery
companies. Amazon introduced its Prime Air drone delivery program in 2013 and con-
ducted the first commercial drone delivery three years later [13]. Additionally, in 2016, DHL



Drones 2023, 7, 59 3 of 20

began to use a drone system to deliver consumer goods in the Bavarian community of Reit
im Winkl [14], while UPS cooperated with Zipline (a UAV manufacturer) to deliver blood
for lifesaving transfusions in Rwanda [15]. In China, SF obtained the first operating license
for commercial drone deliveries in 2018 and has developed a number of UAV models
to tackle issues related to the end delivery of special logistics operations, such as ‘local
specialty economy’, medical cold-chain logistics, and emergency aid distribution [16]. In
recent years, many other companies, including Google, FedEx, Russian Post, DPD, AMA,
Alibaba, etc., have also reported the use of drones during delivery [17,18].

Due to the limitations of load capacity and the travel range of UAVs, a typical solution
is to use drones in combination with ground vehicles (trucks), which has attracted recent
attention from both the industry and academia. Based on the roles of drones and trucks
in delivery, the research works can be divided into three classes. In the first class, drones
and trucks have roughly equally important roles. Murray and Chu [19] presented mixed
integer linear programming formulations for two problems, named the flying sidekick
traveling salesman problem (FSTSP) and the parallel drone scheduling TSP (PDSTSP); they
proposed two simple heuristic algorithms to solve problems of small and medium sizes.
Murray and Raj [20] extended the FSTSP to deal with multiple drones, and they proposed
a heuristic method that consists of solving a sequence of three subproblems. Ham [21]
extended the PDSTSP to incorporate multiple trucks, drones, and hubs, where drones can
also perform pick-up tasks; they modeled the problem as an unrelated parallel machine
scheduling and employed constraint programming to solve it. Agatz et al. [22] proposed
another formulation called the TSP with drone (TSP-D); they developed several route-first-
cluster-second heuristics based on local search and dynamic programming. Ulmer and
Thomas [23] studied a same-day delivery problem in which either a drone or a truck could
be used to meet the customer demand, and dynamic programming is employed to decide
the acceptance or rejection of randomly arriving customer orders. Wu et al. [24] considered
a collaborative truck–drone routing problem for contactless parcel delivery in epidemic
areas, in which each customer needs to be served exactly once by either a truck or a drone;
they proposed an improved variable neighborhood descent combined with simulated
annealing, tabu search, and K-means clustering to efficiently solve the problem. Zheng
et al. [25] studied the problem of cooperatively using drones and police cars to search
for and catch escaped criminals; they proposed an evolutionary algorithm for routing the
drones and cars to minimize the expected time of capture. The method has been applied to
a similar problem of the cooperation of drones and ground working units [26,27].

In the second class, drones play the primary role while trucks act as supporting units;
e.g., trucks take parcels to a hub from which drones deliver parcels to customers. Carlsson
and Song [28] studied a delivery system in which a drone provides delivery service to
customers while making return trips to a truck that is itself moving. Wang and Sheu [29]
proposed the VRP with drones (VRPD) with service hubs to which trucks supply items and
from which drones deliver items, and the drones can land only on the hubs; they formulated
the problem as mixed integer programming and developed a branch-and-price algorithm
for the problem. Luo et al. [30] formulated a two-echelon cooperated routing problem for a
truck and a drone that launches and lands on the truck; they proposed two heuristics: the
first constructs a complete tour and then splits it by truck routes, while the second constructs
the truck tour and assigns UAV flights to it. Karak and Abdelghany [31] presented a hybrid
vehicle–drone routing problem for pick-up and delivery services, in which vehicles are
used only as mobile depots for the drones; they proposed an extended Clarke and Wright
algorithm to the problem. Salama and Srinivas [12] studied another problem of truck–drone
cooperation that allows the truck to stop at non-customer locations for drone launch and
recovery; they proposed a hybrid simulated annealing and variable neighborhood search
algorithm for the problem. Bányai [11] presented four models, including first-mile/last-
mile delivery by e-trucks, first-mile delivery by drones from e-trucks, last-mile delivery
by e-trucks, and integrated first-mile/last-mile delivery by drones from e-trucks; they
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conducted a numerical analysis to show that the last model could lead to a significant
reduction in energy consumption and virtual greenhouse gas emissions.

In the third class, trucks play the primary role; i.e., their routes have priorities that
the drones have to follow. Savuran and Karakaya [32] defined a mobile depot VRP which
routes a drone deployed on a mobile carrier to visit fixed targets; they proposed a genetic
algorithm that has been adapted to satisfy the constraints of depot mobility and range
while maximizing the number of targets visited by the UAV. The problem studied by
Boysen et al. [33] fixes a sequence of truck stops and schedules the trips of a drone to
determine its take-off and landing stops. These types of problems are categorized by [34] as
the mothership and drone routing problem, which is solved by a set of heuristics embedded
with a second-order cone program. In other cases, drones support the trucks in ways such
as gathering information for the trucks or providing communication among the trucks [35].
Interested readers can refer to [36] for a survey on drone–truck combined operations.
Compared with the existing studies in the literature, our study considers the problem of
cooperatively planning the truck and drone paths to minimize the service time under the
restricted traffic constraint, in which the truck can only move along the boundary of a
restricted zone.

3. Problem Description

The problem under consideration is to cooperatively schedule a truck and a drone
to provide delivery services to a set of customers in a restricted traffic zone. The input
parameters of the problem are shown in Table 1. At the beginning, the truck carries all
cargo and the drone to the initial location (coordinate) c0. There are n customers that need
to be served, the location (coordinate) of the i-th customer is ci, and the weight of the cargo
to be delivered to the i-th customer is wi (1 ≤ i ≤ n). The maximum load of the drone
is W (without loss of generality, it is assumed that wi ≤ W for any i). Let B denote the
outer boundary of the restricted traffic zone; the velocity of the truck along the boundary
is vr. The maximum distance of the drone (after being fully charged) is D. For the drone,
its velocity changes with its load. The minimum velocity (when it is fully loaded) and
the maximum velocity (when it is not loaded) are denoted as vmin

u and vmax
u , respectively.

When the load of the drone is w, its velocity is calculated as:

vu(w) = vmin
u +

W − w
W

(vmax
u − vmin

u ) (1)

This problem is to determine the delivery sequence of customers (i.e., the path of the
drone), denoted by x = {x1, x2, . . . , xn}, and based on this, the path of the truck consisting
of a set of locations (also called intersections) at which the truck receives the returned drone
for battery replacement and cargo reloading and then re-sends the drone for subsequent
delivery. Assume that the truck carries sufficient batteries for the drone to complete the
delivery task, i.e., battery recharging is not required during the task.

Table 1. Input parameters of the considered problem.

Parameter Description

n Number of the customers
c0 Initial location the truck and the drone
ci Location of the i-th customers
wi Weight of cargo to be delivered to the i-th customer
B Outer boundary of the restricted traffic zone
vr Velocity of the truck
D Maximum distance of the drone
W Maximum load of the drone
vmax

u Maximum velocity of the drone
vmin

u Minimum velocity of the drone
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The first customer cI1 at which the drone needs to return back to the truck to replace
the battery and reload cargo satisfies either one of the following conditions:

• According to the weight capacity limitation, the drone cannot load the cargo for the
next customer:

I1

∑
i=1

wi ≤W <
I1+1

∑
i=1

wi (2)

• According to the power and consequent distance limitation, the drone cannot fly to
the next customer and then return back to the truck:( I1

∑
i=1

d(cxi−1 , cxi )

)
+ d(cxI1

, sI1) ≤ D <

( I1+1

∑
i=1

d(cxi−1 , cxi )

)
+ d(cxI1+1 , sI1+1) (3)

where si denotes the optimal intersection of the truck and the drone on the outer boundary
B to minimize the flight distance of the drone from the current customer xi to the truck and
then to the next customer xi+1. The first intersection sI1 is determined as follows so as to
minimize the back-and-forth travel time of the drone:

sI1 = min{s : s ∈ B ∧
(
d(c0, s)/vr≤ t(xI1)+d(cxI1

, s)/vmax
u

)
:

d(cxI1
, s)/vmax

u + d(s, cxI1+1)/vxI1+1} (4)

where vxI1+1 is the velocity of the drone starting from the truck to the next round’s
first customer xI1+1, which is calculated based on the sum of the weights of customers
{xI1+1, xI1+2, . . . , xI2} according to Equation (1).

Regardless, the intersection should be within the travel ranges of the truck and the
drone. Specifically, if the boundary is convex, the intersection should not exceed the
orthogonal projection of the current customer onto the boundary, as illustrated in Figure 2.

X

X

X X

X
current customer

next customer

truck's farthest position 
(counterclockwise)

truck's farthest 
position (clockwise)

X

Figure 2. An illustration of the intersection of the truck and the drone. Six possible intersection
points are drawn; however, the rightmost intersection is not considered, as it exceeds the orthogonal
projection of the current customer onto the boundary.

Similarly, for each next k-th back-and-forth round, the customer cIk at which the drone
needs to return back to the truck satisfies either one of the following conditions:

Ik

∑
i=Ik−1+1

wi ≤W <
Ik+1

∑
i=Ik−1+1

wi (5)

( Ik

∑
i=Ik−1+1

d(cxi−1 , cxi )

)
+d(cxIk

, sIk )≤D<

( Ik+1

∑
i=Ik−1+1

d(cxi−1 , cxi )

)
+d(cxIk+1 , sIk+1) (6)
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where sIk denotes the k-th intersection (1 < k ≤ K) of the truck and the drone on the outer
boundary B, which is determined as follows:

sIk = min{s : s∈B ∧
(
d(sIk−1 , s)/vr≤ t(xIk )−t(sIk−1)+d(cxIk

, s)/vmax
u

)
:

d(cxIk
, s)/vmax

u + d(s, cxIk+1)/vxIk+1} (7)

where vxIk+1 is the velocity of the drone starting from the truck to the (k + 1)-th round’s
first customer xIk+1.

Based on the above conditions, we can obtain all of the customer locations xI1 , xI2 , . . . , xIK
at which the drone needs to return back. These locations divide the delivery sequence into
K subsequences. Consequently, we can iteratively calculate the velocity v(xi) of the drone
flying to each customer cxi as well as the time t(xi) at which the drone arrives at ci. First,
v(c1) and t(c1) can be directly calculated as

v(x1) = vmin
u +

W −∑I1
i=1 wxi

W
(vmax

u − vmin
u ) (8)

t(x1) = d(c0, cx1)/v(x1) (9)

Next, for each xi that belongs to the k-th subsequence (1 ≤ k ≤ K), but is not the
first location of a subsequence, v(xi) and t(xi) can be calculated based on the previous
customer as

v(xi) = vmin
u +

W −∑Ik
i′=i wxi

W
(vmax

u − vmin
u ) (10)

t(xi) = t(ci−1) + d(cxi−1 , cxi )/v(xi) (11)

For xi, which is the first location of the k-th subsequence (1 ≤ k ≤ K), i.e., i = Ik−1 + 1,
v(xi) and t(xi) can be calculated as

v(xi) = vmin
u +

W −∑Ik
i=Ik−1+1 wxi

W
(vmax

u − vmin
u ) (12)

t(xi) = t(xIk−1) + d(cxIk−1
, sIk−1)/vmax

u + d(sIk−1 , ci)/v(xi) (13)

The objective of the problem is to minimize the time at which the drone serves the
last customer cxn , i.e., the completion time of all delivery tasks, and the problem can be
formulated as follows (where uij are auxiliary variables for ensuring that {x1, x2, . . . , xn} is
a permutation of {1, 2, . . . , n}):

min f (x) = t(xn) (14)

s.t. Equations (1)–(12)

xi − xj + nuij ≤ n− 1, ∀1 ≤ i ≤ n; 1 ≤ j ≤ n (15)

1 ≤ xi ≤ n, ∀1 ≤ i ≤ n (16)

uij ∈ {0, 1}, ∀1 ≤ i ≤ n; 1 ≤ j ≤ n (17)

4. A Hybrid Optimization Method for the Problem

In this section, we propose a hybrid metaheuristic optimization method for the prob-
lem. As shown in the flowchart in Figure 3, the method uses a main procedure that evolves
a population of candidate solutions (i.e., customer delivery sequences) to search for an opti-
mal (or near-optimal) drone path and employs a sub-procedure to optimize the truck–drone
intersections for each main solution x in the population.
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N

For each solution x in the population:

Calculate returning positions to divide the delivery sequence

For each sub-sequence:

Calculate the optimal intersection of the truck and drone

Combine the sub-sequences to evaluate the solution

Calculate the wave length and perform propagation

For each solution x in the population:

Generate a new best solution?

Perform breaking on the new best

Terminate?

return the best-known solution

Y

Y

Randomly initialize a population of solutions for delivery sequences

Figure 3. Flowchart of the hybrid metaheuristic optimization method.

4.1. Main Metaheuristic for Optimizing the Drone Path

The main problem for optimizing the drone path is a sequence optimization problem.
The method randomly initializes a population of solutions, each of which is a random
permutation x = {x1, x2, . . . , xn} of the customer indices {1, 2, . . . , n}. The method then
evolves the solutions using the WWO metaheuristic, which has demonstrated perfor-
mance advantages in sequence optimization compared to other popular metaheuristics,
such as GA, PSO, and BBO.

The basic principle of WWO is to assign each solution x a wavelength λ(x) that is
inversely proportional to the solution fitness and make x search in a range proportional to
λ(x), such that high-fitness solutions search in small ranges, while low-fitness solutions
search in large ranges to balance global and local searches. Initially, all wavelengths are
set to 0.5; at each iteration, the wavelength of each solution x is updated according to its
objective function value f (x) as follows:

λ(x′) = λ(x)α−( f (x)− fmin+ε)/( fmax− fmin+ε) (18)

where α is a constant of 1.0026; fmax and fmin are the maximum and minimum objective
function values in the population, respectively; and ε is a very small positive value to avoid
division by zero.

At each iteration, each solution x performs a propagation operation, which, at each
dimension i from 1 to n with a probability of λ(x), chooses a random subsequence and
reverses it. In this way, the expected number of subsequence reversals on x is nλ(x); the
better the solution, the smaller the λ(x), and a small change in the solution is expected.

After propagation, if the updated solution is better than the original one, it replaces
the original one in the solution. In particular, if the updated solution is better than any
other solution searched before, i.e., it is a new best solution x∗, a breaking operation is
performed on x∗ to produce a random number (between [1, n]) of neighboring solutions,
each of which is obtained by randomly swapping two customer positions xi and xj in the
solution. The best neighbor, if better than x∗, will replace x∗ in the population.
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Compared to the basic WWO algorithm, here, we remove another operation called
refraction, which replaces any solution that stays a predefined number of generations
with a new solution moving towards the best-known solution; instead, we employ a
population reduction policy from the simplified WWO (SimWWO), which reduces the
population size NP from an upper limit Nmax

P to a lower limit Nmin
P by iteratively removing

the current worst solution:

NP = Nmax
P − t

tmax
(Nmax

P − Nmin
P ) (19)

where Nmax
P and Nmin

P are the maximum and minimum population sizes, respectively; t is
the current generation number or the number of fitness evaluations (NFEs); and tmax is the
maximum generation number or NFEs of the algorithm.

Algorithm 1 presents the pseudo-code of the SimWWO metaheuristic for optimizing
the drone path.

Algorithm 1: Simplified WWO algorithm adapted to optimize the drone path
for the problem.

Initialize a population of solutions of customer sequences;
while the stopping condition is not satisfied do

for E do
a

end
chsolution x in the population for i = 1 to n do

Iteratively calculate the state of the drone at cxi ;
if the drone should return back after visiting cxi then

Call Algorithm 2 to calculate the intersection with the truck;
end

end
Evaluate the objective function value of x;
Let x∗ be the best-known solution;
Calculate the wavelengths of the solutions according to Equation (18);
foreach solution x in the population do

Copy x to a new solution x′;
for i = 1 to n do

if rand(0, 1) < λ(x) then
Select a random subsequence of x and reverse it;

end
end
Evaluate the objective function value of x′;
if f (x′) < f (x) then

Set x to x′;
if f (x) < f (x∗) then

Set x∗ to x;
Let K = rand(1, n);
for i = 1 to n do

Generate a neighbor of x∗ by conducting a random swapping;
if the neighbor is better then

Set x∗ to the neighbor;
end

end
end

end
end
Update the population NP according to Equation (19) by reducing the worst solution;

end
return x∗.
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4.2. Sub-Procedure for Optimizing Truck–Drone Intersections

If the drone needs to return back after visiting a customer cxi , we search for an in-
tersection of the truck and the drone that optimizes function (7) using the sub-procedure
shown in Algorithm 2. The sub-procedure defines a recursive function to solve the non-
convex problem by finding an optimal solution to the convex relaxation problem and, if the
optimal solution is not a feasible solution to the original problem, branching the problem
into subproblems (i.e., decompose the McCormick polyhedron into two polyhedra at the
optimal solution point) and solving the subproblems recursively [37].

Algorithm 2: Algorithm for finding the intersection of the truck and the drone.
Calculate the two farthest positions that the truck can reach in the clockwise and
counterclockwise directions, respectively;

Initialize the best-known solution B∗ as NULL and its objective value f ∗ as +∞;
Denote the original problem as P;
Function OptimalSolution (P)

Obtain the convex relaxation problem P′ of P by McCormick envelopes [37];
Removing all undesirable fractional solutions by cutting plane;
if P′ is unsolved, then return B∗;
Let S be the optimal solution to P′;
if S is a feasible solution to the original problem P, then

if f ∗ > f (S) then
f ∗ = f (S);
B∗ = S;

end
else

Branch P′ into two subproblems, P1 and P2, i.e., decompose the McCormick
polyhedron into two polyhedra at S;

Let B1 = OptimalSolution (P1), B2 = OptimalSolution (P2);
if f (B1) < f (B2) then

B∗ = B1, f ∗ = f (B1);
else

B∗ = B2, f ∗ = f (B2);
end

end
return B∗;

end;
B∗ = OptimalSolution (P);
return the optimal solution B∗.

5. Computational Experiments

We construct nine problem instances based on selected regions of the city of Hangzhou
in Zhejiang Province, China. Table 2 gives the basic information about the test instances,
including the number of customers, the areas and perimeters of the restricted traffic zones,
the average distance between the customers, and the average weight of the demands of
the customers. The areas of these regions are most suitable for one truck and one drone to
efficiently perform delivery tasks (for larger areas, larger numbers of trucks and drones are
expected). For these instances, we set the maximum velocity of the truck as vr = 30 km/h
(according to the average velocity on urban roads in common conditions), the velocities of
the drone as vmax

u = 100 km/h, vmin
u = 30 km/h, the maximum distance of the drone as

D = 20 km, and the maximum load of the drone as W = 30 kg (according to the technical
performance of a typical type of drone for express delivery).
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Table 2. Basic information about the nine problem instances.

Ins. n Area (km2) Perimeter (km) Average Distance (km) Average Weight (kg)

1 10 2.00 6 0.733 3.10
2 15 2.00 9 1.414 2.33
3 20 2.25 6 0.695 2.65
4 25 2.00 9 1.520 2.76
5 30 2.00 6 0.720 2.27
6 35 2.25 6 0.770 2.23
7 40 2.00 9 1.635 2.60
8 45 2.25 6 0.665 2.36
9 50 2.00 6 0.737 2.32

For each test instance, we compare the adapted SimWWO algorithm with the following
six metaheuristic algorithms for permutation optimization:

• A GA that uses linear order crossover and shift-change mutation [38].
• A BBO algorithm [39] adapted to this problem using subsequence migration [40].
• A DE algorithm for permutation optimization based on floating-to-integer mapping [41].
• A discrete PSO adapted to this problem using subsequence learning [42].
• Enhanced BBO [43] that integrates local and global subsequence migration.
• Basic WWO [44] adapted to this problem using subsequence reverse propagation.

For each algorithm, we tune its control parameters to the nine problem instances,
which results in the parameter setting, shown in Table 3, that exhibits the best average
performance on the whole test set.

Table 3. Control parameters of the comparative algorithms.

Algorithm Parameter Setting

GA NP = 30, crossover rate: 0.95, mutation rate: 0.2
BBO NP = 30, mutation rate: 0.1
DE NP = 30, crossover rate: 0.9, scale factor: 0.5
PSO NP = 30, maximum inertia weight: 0.9, minimum inertia weight: 0.4
EBO NP = 30, maximum maturity: 0.6, minimum maturity: 0.3
WWO NP = 30, maximum wave height: 12, maximum number of breaking waves: 12
SimWWO Nmax

P = 30, Nmin
P = 6, maximum number of breaking waves: 12

To ensure a fair comparison, we set the termination condition as the maximum number
of objective function evaluations (NFEs) that reaches 2000n for all algorithms. We run each
algorithm 30 times for each instance. Table 4 presents the maximum, minimum, median,
and standard deviation (std) of the objective values over the 30 runs of each algorithm
for each instance, where the best median value on each instance is shown in bold; the
last row gives the averaged median values of the nine instances. The best median value
among the seven algorithms for each instance is shown in bold. A nonparametric Wilcoxon
rank sum test is conducted to compare the results of the algorithms for each instance,
and a superscript † before a median value indicates that there is a significant difference
between the result of SimWWO and that of the corresponding comparative algorithm (at a
confidence level of 95%). Moreover, the box plots in Figure 4a–i give the median, minimum,
maximum, first quartile (25%) and third quartile (75%) of the objective values obtained
by the algorithms for instances 1–9, respectively. For illustration, Figures 5–13 show the
resulting routes obtained by the different algorithms on instances 1–9, respectively.
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Figure 4. Box plots of the results of the comparative algorithms on the nine test instances. (a) Ins. 1.
(b) Ins. 2. (c) Ins. 3. (d) Ins. 4. (e) Ins. 5. (f) Ins. 6. (g) Ins. 7. (h) Ins. 8. (i) Ins. 9.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5. Resulting drone routes (in dash lines) and truck routes (in solid lines) obtained by the nine
algorithms on instance 1. (a) GA. (b) PSO. (c) DE. (d) BBO. (e) EBO. (f) WWO. (g) SimWWO.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6. Resulting drone routes (in dash lines) and truck routes (in solid lines) obtained by the nine
algorithms on instance 2. (a) GA. (b) PSO. (c) DE. (d) BBO. (e) EBO. (f) WWO. (g) SimWWO.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 7. Resulting drone routes (in dash lines) and truck routes (in solid lines) obtained by the nine
algorithms on instance 3. (a) GA. (b) PSO. (c) DE. (d) BBO. (e) EBO. (f) WWO. (g) SimWWO.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 8. Resulting drone routes (in dash lines) and truck routes (in solid lines) obtained by the nine
algorithms on instance 4. (a) GA. (b) PSO. (c) DE. (d) BBO. (e) EBO. (f) WWO. (g) SimWWO.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 9. Resulting drone routes (in dash lines) and truck routes (in solid lines) obtained by the nine
algorithms on instance 5. (a) GA. (b) PSO. (c) DE. (d) BBO. (e) EBO. (f) WWO. (g) SimWWO.

(a) (b) (c) (d)

(e) (f) (g)

Figure 10. Resulting drone routes (in dash lines) and truck routes (in solid lines) obtained by the nine
algorithms on instance 6. (a) GA. (b) PSO. (c) DE. (d) BBO. (e) EBO. (f) WWO. (g) SimWWO.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 11. Resulting drone routes (in dash lines) and truck routes (in solid lines) obtained by the nine
algorithms on instance 7. (a) GA. (b) PSO. (c) DE. (d) BBO. (e) EBO. (f) WWO. (g) SimWWO.

(a) (b) (c) (d)

(e) (f) (g)

Figure 12. Resulting drone routes (in dash lines) and truck routes (in solid lines) obtained by the nine
algorithms on instance 8. (a) GA. (b) PSO. (c) DE. (d) BBO. (e) EBO. (f) WWO. (g) SimWWO.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 13. Resulting drone routes (in dash lines) and truck routes (in solid lines) obtained by the nine
algorithms on instance 9. (a) GA. (b) PSO. (c) DE. (d) BBO. (e) EBO. (f) WWO. (g) SimWWO.

As we can observe from the results, the adapted SimWWO achieves the best median
values among the seven algorithms for all instances. For instance 1, there are five algorithms
(except GA and PSO) that obtain the same best median value; however, only SimWWO
obtains the best median value in all 30 runs. For instance 2, DE, WWO, and SimWWO
obtain the same best median value, and both WWO and SimWWO obtain the best median
value in all 30 runs. For the remaining instances 3–9, SimWWO uniquely obtains the best
median values among the seven algorithms. According to statistical tests, SimWWO obtains
significantly better results than GA, PSO, and BBO for all nine instances and better results
than DE, EBO, and WWO for eight instances. From the box plots, we can also observe that
the deviation of the resulting objective function value of SimWWO among the 30 runs is the
smallest among the comparative algorithms, which validates the robustness of SimWWO.
Averaged over the nine instances, the median delivery time of the solution obtained by
SimWWO is only 48.96% of that obtained by GA, 65.6% of that obtained by PSO, 77%
of that obtained by DE, 80.6% of that obtained by BBO, and 78.45% of that obtained by
EBO. In addition, Figure 14 presents the convergence curves of the algorithms for the nine
instances, which shows that DE converges quickly for the first two small-size instances, but
the convergence speed of SimWWO is the fastest for the remaining medium- and large-size
instances. In summary, the experimental results demonstrate the performance advantages
of SimWWO over the other comparative algorithms in solving the considered problem.
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Table 4. Experimental results of the seven algorithms for the nine test instances.

Ins. n Metrics GA PSO DE BBO EBO WWO SimWWO

1 10

median † 0.0548 † 0.0483 † 0.0444 † 0.0444 0.0444 † 0.0444 0.0444
max 0.0628 0.0530 0.0483 0.0451 0.0489 0.0451 0.0444
min 0.0451 0.0445 0.0444 0.0444 0.0444 0.0444 0.0444
std 0.0056 0.0025 0.0017 0.0002 0.0008 0.0003 0.0000

2 15

median † 0.1194 † 0.0920 0.0832 † 0.0834 † 0.0835 † 0.0832 0.0832
max 0.1738 0.1268 0.0979 0.0974 0.0967 0.0833 0.0832
min 0.0884 0.0832 0.0832 0.0832 0.0832 0.0832 0.0832
std 0.0198 0.0138 0.0028 0.0029 0.0041 0.0000 0.0000

3 20

median † 0.1118 † 0.0912 † 0.0830 † 0.0793 † 0.0844 † 0.0760 0.0730
max 0.1331 0.1184 0.0901 0.0861 0.0904 0.0867 0.0748
min 0.0931 0.0839 0.0767 0.0742 0.0786 0.0714 0.0714
std 0.0079 0.0073 0.0034 0.0032 0.0032 0.0038 0.0011

4 25

median † 0.2399 † 0.1476 † 0.1268 † 0.1257 † 0.1259 0.1153 0.1150
max 0.2882 0.2060 0.1677 0.1498 0.1562 0.1476 0.1155
min 0.1787 0.1190 0.1166 0.1192 0.1163 0.1147 0.1147
std 0.0294 0.0269 0.0119 0.0083 0.0111 0.0059 0.0002

5 30

median † 0.1784 † 0.1401 † 0.1151 † 0.1171 † 0.1264 † 0.1077 0.1012
max 0.2160 0.1661 0.1319 0.1264 0.1352 0.1212 0.1086
min 0.1575 0.1226 0.1023 0.1075 0.1141 0.0958 0.0899
std 0.0168 0.0101 0.0067 0.0045 0.0055 0.0068 0.0037

6 35

median † 0.2159 † 0.2162 † 0.1976 † 0.1472 † 0.1761 † 0.1323 0.1195
max 0.2418 0.2348 0.2190 0.1611 0.1907 0.1437 0.1294
min 0.1939 0.1874 0.1847 0.1147 0.1567 0.1048 0.1039
std 0.0117 0.0108 0.0084 0.0081 0.0092 0.0105 0.0072

7 40

median † 0.4163 † 0.2473 † 0.2046 † 0.2090 † 0.1850 † 0.1247 0.1238
max 0.5232 0.3696 0.2566 0.2337 0.2274 0.1268 0.1250
min 0.3262 0.1807 0.1510 0.1682 0.1578 0.1232 0.1232
std 0.0537 0.0498 0.0243 0.0174 0.0174 0.0009 0.0006

8 45

median † 0.2479 † 0.2288 † 0.1919 † 0.1737 † 0.1800 † 0.1455 0.1398
max 0.2775 0.2512 0.2138 0.1825 0.1972 0.1686 0.1495
min 0.1993 0.1855 0.1470 0.1575 0.1620 0.1226 0.1226
std 0.0169 0.0185 0.0156 0.0059 0.0095 0.0108 0.0067

9 50

median † 0.3304 † 0.2169 † 0.1708 † 0.1832 † 0.1895 † 0.1406 0.1376
max 0.3774 0.2569 0.1990 0.2200 0.2132 0.1620 0.1466
min 0.2997 0.1633 0.1447 0.1664 0.1496 0.1171 0.1167
std 0.0204 0.0224 0.0127 0.0119 0.0124 0.0111 0.0068

average (median) 0.2127 0.1587 0.1353 0.1292 0.1328 0.1077 0.1041
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Figure 14. Convergence curves of the comparative algorithms for the test instances. (a) Ins. 1. (b) Ins.
2. (c) Ins. 3. (d) Ins. 4. (e) Ins. 5. (f) Ins. 6. (g) Ins. 7. (h) Ins. 8. (i) Ins. 9.

6. Conclusions

This paper studied the problem of cooperative truck–drone path planning for deliver-
ing parcels to customers in a restricted traffic zone that forbids the access of the truck. We
propose an adapted SimWWO algorithm hybridizing convex relaxation to efficiently solve
the problem. The experimental results demonstrate that the proposed algorithm always
obtains the minimum median objective values (i.e., delivery completion time) for all nine
test instances among seven comparative algorithms, and its averaged objective value over
the nine instances is around 50∼80% of that obtained by the state-of-the-art algorithms. The
current problem considers only one drone sent and received by the truck, which is normal
in practice because the space inside a truck carrying many parcels is often limited and
cannot accommodate more drones. However, for large-scale vehicles, multiple drones can
be used to improve delivery efficiency. Therefore, our ongoing study is now considering a
more complex scenario using multiple drones, for which we are developing more effective
and efficient algorithms, such as multi-population swarm intelligence algorithms [45,46]
and neural optimization with reinforcement learning [47–49].
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