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Abstract: In this paper, the consensus control of unmanned surface vehicles (USVs) is investigated
by employing a distributed model predictive control approach. A hierarchical control structure is
considered during the controller design, where the upper layer determines the reference signals of
USV velocities while the lower layer optimizes the control inputs of each USV. The main feature of
this work is that a post-verification procedure is proposed to address the failure states caused by
local errors or cyberattacks. Each USV compares the actual state and the predicted one obtained
at the previous moment. This allows the estimation of local perturbations. In addition, the failure
state of the USV can also be determined if a preset condition is satisfied, thus forcing a change in the
communication topology and avoiding further impact. Simulations show that the proposed method
is effective in USV formation control. Compared with the method without post-verification, the
proposed approach is more robust when failure states occur.

Keywords: unmanned surface vehicle; formation control; distributed model predictive control; hierarchical
control; leader–follower strategy

1. Introduction

In recent years, the cooperative control of unmanned surface vehicles (USVs) has
attracted considerable attention in systems and ocean engineering fields, broadening their
applications in territorial surveillance, marine rescue, environmental detection, etc. When
USVs cooperate as a formation [1], they can improve efficiency, reduce costs and switch the
communication topology to provide redundancy in the event of the failure of any single
USV. Formation control mainly solves two problems, namely formation composition and
formation maintenance. Formation maintenance is the core feature of formation control,
and is the main task of the USV navigation stage. The currently available formation
control methods are primarily based on the leader–follower strategy [2,3], behavior-based
method [4,5] and virtual structure method [6–10].

Among these control schemes, the leader–follower strategy has garnered more practi-
cal attention due to its simplicity and practicality; the collaborative control of USVs has
been reported in many excellent works under the framework of a leader–follower strategy.
In [11], to address the formation control problem of underactuated USVs, consistency
theory and the leader–follower method were used along with the adjustment of the control
input such that each USV converged to the reference value, thereby ensuring the expected
formation of the USVs. Park and Yoo [12] deduced the performance functions of connec-
tion maintenance and collision avoidance for a nonlinear USV model, and completed a
robust leader–follower formation tracking design. In [13], under the influences of USV
input overload and external interference, the back-stepping method was used to improve
formation control accuracy.

Formation control is generally divided into three categories based on the control method
under the leader–follower strategy: centralized [14–16], decentralized [17–21] and distributed
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control [22]. In centralized control, there is a need to collect all information from USVs, and the
large scale of the system increases the burden of online computing, which makes it more difficult
to ensure real-time performance. Different from centralized control, decentralized control has
no information exchange between the controllers, and coupling is ignored such that the vehicles
may not achieve cooperative control in most cases. Distributed control allows full autonomy of
the USVs, in addition to having the characteristics of low computational burden, strong fault
tolerance, robustness and scalability; hence, this formation control method is more suitable for
large-scale systems with a greater number of nodes, and it has attracted significant attention
from scientists and researchers [23–27].

Although great progress has been achieved in the distributed formation control of
USVs, the problem involves multi-input, multi-output systems with constraints and cou-
pled tasks, making it inherently difficult [28–32]. Fortunately, distributed model predictive
control (DMPC) has significant advantages in handling this class of problems [33,34].
The DMPC method combines model predictive control and distributed control principles
organically, and is thus robust and flexible [35,36]. Hence, it is an ideal tool for USV
formation control. DMPC has been used to investigate the formation control of vehicles.
Zhao et al. [37] proposed a DMPC method for multi-quadrotor unmanned aerial vehicles
(UAVs) to address the formation and maintenance problem during a cruise flight. The cost
function was designed by introducing the assumed state trajectories of the local vehicle
and its neighbors. Zhen et al. [38] presented a DMPC approach for vehicle platoons with
one-way topologies. The terminal constraint based on the adjacent average value was intro-
duced into the cost function, and then the closed-loop stability was proved. Zhao et al. [39]
proposed a novel distributed coordinated control scheme on the grounds of heterogeneous
UAVs to achieve formation control. Further results were reported by Fan et al. [40], who
proposed a formation control strategy based on a hierarchical DMPC strategy, in which the
upper layer guarantees the leader–follower cooperation between the unmanned vessels
while the lower layer allows the unmanned vessels to track optimal instructions. Note that
DMPC employs a receding horizon optimization during the implementation, which

provides distributed agents with local prediction capabilities; in other words, “as-
sumed” states are available to each agent. The assumed states play important roles in the
formation control. They reflect local disturbances, since the actual states usually differ from
the assumed ones. Furthermore, some failure states caused by local errors or cyberattacks
that are fatal to formation control may also be determined if local predictions can be fully
utilized. These have not been well studied in the existing literature, and thus motivated our
research. In this paper, a hierarchical DMPC approach with post-verification is proposed
for USVs with actuation constraints. Since the inputs of USVs are usually not coupled,
the upper layer mainly considers communication interactions between USVs and generates
the optimal references for the lower layer according to the kinematic model. The lower
layer predictive controller is designed based on the dynamic model to ensure the tracking
performance. The local predictions are employed in three aspects. First, the states within the
prediction horizon are sent to the neighbors for the purpose of formation control. Second,
the assumed states of a USV are incorporated in its local cost function, which improves its
control performance when local disturbances exist. Third, the differences between the actual
states and the assumed states are sent to the neighbor in the post-verification process, which
renders compensations for the local predictions to be used by the neighbors. Moreover,
failure states are determined once the differences satisfy a preset condition, in which case
the communication topology is forced to change to an alternative one, where the affected
USV does not send information to other agents. In this way, the USVs can still maintain
the desired formation, avoiding the phenomenon of formation disorder caused by failure
states. Under the directed and time-invariant communication topology, the upper-layer
controller was considered based on the kinematic model of the USV to generate the optimal
references and the lower-layer controller was designed using the dynamic model to ensure
the tracking performance. By comparing the actual state with the predicted state obtained
at the previous time, the post-verification process can reduce the trajectory deviation caused
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by external disturbances, which can increase the speed of forming the required formation.
In this study, a backup topology is also designed. When the post-verification process meets
the preset conditions, it is judged that the communication information between the two
USVs (communicating according to communication topology G) is wrong or interrupted.
At this time, the topology is forced to change from the normal state to the fault state, so that
the USVs can keep the desired formation while tracking their respective expected paths,
improving the phenomenon of formation disorder due to communication failures.

The main features of the proposed approach are summarized as follows.

1. The USV formation control method has strong robustness with respect to external
disturbances. This is because the local predictions are used by both the single USV
and its neighbors in constructing cost functions. Therefore, it is suitable for USVs that
operate in extreme conditions, such as strong winds.

2. The proposed approach can deal with fatal errors that exist in a single USV or at the
communication level, since the post-verification process compares the actual states
with the assumed ones, which enable it to determine the failure states in time, reducing
the formation error and maintaining the formation shape. Although USVs can be
equipped with advanced communication technologies [41,42], it is still important to
adapt active fault-tolerant control strategies.

The remainder of this manuscript is organized as follows. In Section 2, the mathe-
matical models of a single USV and the formation system are established; in Section 3,
the predictive formation control strategies of the upper DMPC-based and lower MPC-
based controllers are introduced; in Section 4, the algorithmic flow of the control strategy is
presented; Section 5 shows the simulation examples; in Section 6, a summary of this work
is provided.

2. Problem Statement
2.1. Modeling of USV

Consider a group of multiple USVs, labeled 1 to 6. For each USV, the kinematic model
is expressed as follows:

ẋi = ui cos (ϕ)i − vi sin (ϕ)i,
ẏi = ui sin (ϕ)i + vi cos (ϕ)i,
ϕ̇i = ri,

(1)

Mν̇ + C(ν)ν + Dν = Gu, (2)

where [xi, yi]
Tis the position and ϕi is the heading angle of each USV. The vector ν is defined

as ν = [ui, vi, ri], where [ui, vi]
Tis the linear velocity on the X- and Y-axes, and ri is the

angular velocity of the rudder. M = MT > 0 is the inertia matrix including added mass;
the matrix C(ν) is the Coriolis and centripetal forces and moments; the matrix D is the fluid
damping matrix. The vector u = [τu τr]Tis the control input corresponding to propeller
thrust and the rudder deflection angle; the matrix G is a 3× 2 matrix. The dynamic model
of each USV is stated as follows:

m(v̇− ur) = Xh + τu + fu,

m(u̇ + vr) = Yh + λτr,

Ez ṙ = Zh + γτr + fr,

(3)

where (·)h are the hydrodynamic forces and moment; λ and γ are rudder coefficients
connected with speed and yaw moment, respectively; m and Ez are the vehicle mass and
mass moment of inertia, respectively; τr and τu are the rudder deflection angle and propeller
thrust, respectively; u and v are the linear velocities (X-axis and Y-axis), and r is the angular
velocity; and fu and fr are time-invariant current disturbances: fu = 5(sin(1) + cos(1 +
π/2)), fr = 2(sin(1) + cos(1 + π/2)).
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2.2. Communication Topology

The directed graph G = {V , E} is used to describe the communication topology of
the formation system, where V = {1, . . . , Nv} represents the set of nodes in the graph
G(t); E ⊆ V × V represent the set of edges. A =

[
aij
]
∈ RN×N is the set of time-varying

adjacency matrix, which describes the communication among the followers. Edge (i, j)
represents that node i is able to obtain the status information of node j, and we say that
node j is the neighbor of node i. If (j, i) ∈ E , then aij = 1; otherwise, aij = 0. Using
Ni = {j | (j, i) ∈ E} to represent the neighbor set of node i, Oi = {j | (i, j) ∈ E} is
used to represent the collection of nodes that can obtain the information about node i.
The Laplacian matrix L ∈ RN×N is defined as L = D −A, where D ∈ RN×N is named the
degree matrix, and defined as D = diag{d1, . . . , dN} with di = ∑N

j=1 aij, i = 1, . . . , N.

2.3. Control Objective of Multi-USV Systems

Considering the desired formation control problem as demonstrated in Figure 1, USV1
is the leader ship, USV2 − USV6 are the follower ships and each USV follows a preset
formation. The formation requirements are as follows: (1) each USV tracks a provided
straight trajectory; (2) according to the formation matrix, the distance between USVs
can be calculated, and the specific formation matrix is defined in the simulation example;
(3) each USV can exchange position information with the adjacent USVs via communication
networks; (4) if any communication networks fail, standby communication networks can
be quickly switched to maintain the desired formation.
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Figure 1. Illustration of a desired formation motion.

3. Design of Distributed Model Predictive Controller

This section first introduces the controllers used by the upper and lower structures of
the formation system; the upper layer has a DMPC-based controller designed using the
kinematic model, and the lower layer has an MPC-based controller designed using the dy-
namic model for tracking the optimal control input of the upper layer, as shown in Figure 2.
To facilitate the demonstration, six USVs are considered. The upper layer obtains the
formation (i.e., triangle formation) through the communication topology. The distributed
MPC scheme is used to solve for the optimal solution and provides formation commands
to each USVi. The task of the lower controller is to track formation commands and achieve
optimal output.
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Figure 2. Control structure.

3.1. Upper-Layer Distributed MPC

The same length of predictive horizon NP is used in all local problems. Over the
prediction horizon

[
t, t + Np

]
, the used states and input symbols are listed in Table 1,

where k = 0, 1, . . . NP and the assumed state trajectory za
i (t) is essentially the optimal state

trajectory z∗i (t− 1) obtained by solving the optimization problem at time t− 1.

Table 1. States and input symbols.

Symbol Variable Name

uP
i Predicted control input

u∗i Optimal output input
ua

i Assumed control input
Zp

i Predicted state trajectory
Z∗i Optimal state trajectory
Za

i Assumed state trajectory
Za
−ĩ

Assumed neighbor state trajectory

Now we define the optimal control problem for each node i ∈ {1, 2, . . . , N} at time t.
Problem Fi:

min
up

i (0|t),...,u
p
i (Np−1|t)

Ji

(
zp

i , up
i , za

i , za
−ĩ

)

=
Np−1

∑
k=0

li
(

zp
i (k | t), up

i (k | t), za
i (k | t), za

−ĩ(k | t)
)

,
(4)

subject to:

zp
i (k + 1 | t) = φiz

p
i (k | t) + ψiu

p
i (k | t), (5a)

zp
i (0 | t) = zi(t), (5b)

up
i (k | t) ∈ Ui, (5c)

Zp
i (Np | t) = Zp

des,i(Np | t), (5d)

where up
i (0 | t), . . . , up

i
(

Np − 1 | t
)

denotes the unknown variables to be optimized; z−ĩ ={
z−ĩ | (j, i) ∈ E

}
represents the set of neighbor states of the USVi; constraint (5a) shows

the constraint from USV kinematics; constraint (5b) indicates that the current state at time
t is taken as the time initial state of the optimization problem; constraint (5c) denotes the
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control input set and Ui = {umin,i ≤ ui ≤ umax,i}, where umin,i and umax,i are the bounds;
terminal equality constraint (5d) represents the terminal equality constraint of USVi; and
the state predicted by the last step at time t is equal to the desired state, which is mainly
used to ensure the gradual stability of the system.

The function li in (4) is the cost bounded with node i, defined as:

li
(

zp
i (k | t), up

i (k | t), za
i (k | t), za

ĩ (k | t)
)

=
∥∥∥zp

i (k | t)− zdes,i(k | t)
∥∥∥

Qi
+
∥∥∥up

i (k | t)− Vdes,i

∥∥∥
Ri

+
∥∥∥zp

i (k | t)− za
i (k | t)

∥∥∥
Fi

+ ∑
j∈Ni

∥∥∥zp
i (k | t)− za

−ĩ(k | t)− d̃i,j

∥∥∥
Gi

,

(6)

where ‖z‖M ,
(
zTMz

)1/2, and Qi, Ri, Fi and Gi are the weighting matrices. In problem Fi,
the cost function (6) contains four items: (1) The first item corresponds to the penalty of the
weight matrix Qi for the deviation between the predicted state and the target state of USVi,
which represents the expectation of reaching the target state as soon as possible; zdes,i(k |
t) = [xdes,i(k | t), ydes,i(k | t), ϕdes,i(k | t)]T present the target status of USVi. (2) The second
item corresponds to the penalty of the control input with the weight matrix Ri, which
represents that USVi prefers uniform motion. Vdes,i = [udes,i,, vdes,i,, rdes,i,]

T is the desired
speed, which is a constant. (3) The third item corresponds to the penalty of the weight
matrix Fi for the deviation (or self deviation for short) between the predicted track and the
assumed track of USVi. (4) The fourth item corresponds to the penalty for the deviation
between the predicted track of USVi and its neighbor’s assumed track., The offset is d̃i,j
(or referred to as neighbor bias for short), and the weight matrix is Gi, which indicates
that USVi should keep the expected bias running with the assumption state of neighbor
nodes as much as possible. The third and fourth terms are called the self-bias penalty
and neighbor-bias penalty, respectively, while Fi and Gi are called self-bias weight and
neighbor-bias weight, respectively.

At the same time, all USVs in the formation system solve and update the optimization
problems synchronously. From the above analysis, it is seen that the single-node optimiza-
tion problem only uses the assumptions of neighboring node state information and that
there is no global state information; thus, this is an innate problem of the distributed model
predictive control scheme.

3.2. Lower-Layer MPC

After calculating by the DMPC formation controller, the optimal control input u∗i (k | t)
at time t for each USVi will be achieved, and the lower-layer MPC controller will take
optimal control input as the tracking reference Ur = u∗i (k | t). So, we define the lower-layer
optimal control problem :

Problem Pi:

min
wp

i (0|t),...,w
p
i (Np−1|t)

J
(

vp
i , wp

i

)
=

Np−1

∑
k=0

l
(

vp
i (k | t), wp

i (k | t)
)

, (7)

subject to:

vi(k + 1 | t) =Gvi(k | t) + Hwi(k | t), (8a)

wp
i (k | t) ∈ Ωi, (8b)

where wp
i (0 | t), . . . , wp

i
(

Np − 1 | t
)

denotes the unknown variables to be optimized; wP
i (k | t)

and vP
i (k | t) are the predictive control input and predictive state trajectory of the lower-

layer controller, respectively; constraint (8a) shows the constraint from USV dynamics;
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constraint (8b) represent the control input set and Ωi = {wmin,i ≤ wi ≤ wmax,i}, where
wmin,i and wmax,i are the bounds.

The function l in (7) is designed as:

l
(

vp
i (k | t), wa

i (k | t)
)
= α

∥∥∥vp
i (k | t)

∥∥∥2
+ β

∥∥∥wp
i (k | t)

∥∥∥2
, (9)

where α > 0 represents the intensity to penalize the output error from the desired state and
β > 0 represents the intensity to penalize the input error deviated from the desired state.

4. Implementation of the Algorithm

Based on the control strategy proposed above, the algorithm flow of the two-layer
distributed model predictive control is as described in the following steps 1–5:

Step 1: According to the communication topology G, all USVs are given the expected
relative state information d̃i,j of other USVs .

Step 2: Initialization—at time t = 0, assuming that all USVs are in uniform motion
during operation, for each USV take its current state as the initial value of the prediction
state in the prediction time domain at this time, that is, zp

i (0 | 0) = zi(0), the assumed
control inputs and assumed state are defined as{

ua
i (k | 0) = vi(0)

za
i (k | 0) = zp

i (k | 0)
, k = 0, 1, . . . , Np − 1. (10)

where zp
i (k + 1 | 0) = φiz

p
i (k | 0) + ψi · u

p
i (k | 0), k = 0, 1, . . . , Np − 1.

Step 3: At any time t (t > 1), for each USVi in the upper layer:
(1) Obtain the expected state trajectory of USVi (leader ship) directly or indirectly

according to the communication topology, and according to the pre-installed expected
relative state information d̃i,j, solve the desired state trajectory Zdes,i(t) = {zdes,i(k | t) |
k = 0, . . . , Np}.

(2) Optimize the problem Fi according to its current state xi(t), self assumed state
and neighbor assumed state trajectory, and obtain the optimal control input sequence
u∗i (k | t), k = 0, 1, . . . , Np − 1.

(3) Calculate the optimal state trajectory within the prediction range using the optimal
control sequence:

z∗i (k + 1 | t) = φi(z∗i (k | t)) + ψi · u∗i (k | t) , k = 0, 1, . . . , Np − 1,

z∗i (0 | t) = zi(t).
(11)

(4) Compute the assumed control ua
i (k | t + 1) for the next step by discarding the first

term and adding one expected input term; the diagram of the synchronously updating
algorithm is shown in Figure 3.

ua
i (k | t + 1) =

{
u∗i (k + 1 | t) , k = 0, 1, . . . , Np − 2
vdes,i , k = Np − 1

, (12)

the corresponding assumed output is also calculated as:

za
i (k + 1 | t + 1) = φi(za

i (k | t + 1)) + ψiua
i (k | t + 1),

za
i (0 | t + 1) = z∗i (1 | t).

(13)

i.e.,

za
i (k | t + 1) =

{
z∗i (k + 1 | t) , k = 0, 1, . . . , Np − 1
zdes,i(k | t + 1) , k = Np

. (14)
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(5) According to the communication topology G, the assumed state trajectory Za
i (t + 1)

is sent to the USV that can receive its information, and at the same time, the assumed state
trajectory of its neighbors za

−ĩ
(k | t + 1) is received.

(6) The first element of the optimal control sequence is used to implement the con-
trol effort, i.e., ui(t) = u∗i (0 | t), conveying u∗i (0 | t) to its lower-layer control system
as reference.

(7) Post-verification process: The error between the Y-axis outputs of the assumed and
actual output states ei = ya

i (t− 1)− yi(t) are obtained. Then, this error is compensated
for the actual output yi(t + 1) of the system at the next moment. Considering the absolute
value of the error Ei = |ei|, if Ei > σ, take σ = 0.5 cm in the simulation, it is considered that
the communication information between USVs is determined to be wrong or interrupted.
At this time, the communication topology changes from normal to error states.
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z t (2 | )a

i
z t ( | )a

i P
z N t

(0 | )a

i
z t
-
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i
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z t
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Figure 3. Illustration of the upper-layer DMPC algorithm.

Step 4: At any time t (t > 1), for each USVi in the lower-layer:
(1) Obtain the reference Ur = u∗i (0 | t).
(2) Solve the optimization problem Pi, yielding the optimal control sequence w∗i (k |

t), k = 0, 1, . . . , Np − 1.
(3) Apply the first element of the optimal control sequence w∗i (0 | t) to the lower-layer

control system. Calculate the optimal state trajectory within the prediction range using the
optimal control sequence v∗i (k + 1 | t) = Gv∗i (k | t) + Hw∗i (k | t), k = 0, 1, . . . , Np − 1.

Step 5: At time t + 1, repeat the above steps.

5. Results and Discussion
5.1. Simulation Setup

The adopted communication topology is shown in Figure 4a. USV1 is selected as the
leader, and the arrow indicates the signal transmission direction, that is, the information
of the front-end USV (expected state trajectory, assumed state trajectory) can be obtained
by the back-end USV. As shown in Figure 4b, when the communication between USV2
and USV4 fails, USV4 can receive signals from USV5. As shown in Figure 4c, when the
communication between USV3 and USV6 fails, USV6 can receive signals from USV5 and
continue to move on in the desired formation.

In the simulation, the system composed of six USVs is equivalent to a homoge-
neous multi-agent system, so each USV has the same parameters, as follows: m = 30 kg,
u = 1 cm · s−1, Xt = 0, Yt = 0, Nt = 0, λ = 0.02, γ = −0.01 and Ez = 0.3 kgm2. Table 2
lists the the initial state of USVs in the inertial system as well as the expected relative state
between USVs, where d̃i,j = zdes,i − zdes,j, the first and second items of matrix d̃1,j mean
the expected relative state information between USV1 and itself; similarly, the third and
fourth items mean the expected relative state information between USV1 and USV2, and
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so on. As the expected relative state between two UAVs can be obtained by d̃i,j, it is not
listed.; the remaining simulation parameters are shown in Table 3. Theoretically, each
USV can obtain its own expected state trajectory based on the expected relative state with
other USVs. The maximum value of the control input of a USV in the kinematic model
is 2 cm · s−1 and the minimum value is set to −2 cm · s−1; similarly, the maximum and
minimum values of the control input of the USV in the dynamic model are set to 1 cm · s−1

and −1 cm/s, respectively.

(a) Topology1 (b) Topology2 (c) Topology3

Figure 4. Communication topologies. (a) Topology1 is a normal state. (b,c) Topology2 and Topology3
are failure states and red circles represent the faulty ships.

Table 2. Initial and expected relative states.

Number Initial State Expected Relative State d̃i,j

USV1 (−2, 8, 1)T (0, 0,−1,1,−1,−1,−2, 2,−2, 0,−2,−2)
USV2 (−2, 9, 1)T (1,−1, 0, 0, 0,−2,−1, 1,−1,−1,−1,−3)
USV3 (−2, 7, 1)T (1, 1, 0, 2, 0, 0,−1, 3,−1, 1,−1,−1)
USV4 (−2, 10, 1)T (−2, 2,−1, 1,−1, 3, 0, 0, 0, 2, 0, 4)
USV5 (−2, 8, 1)T (−2, 0,−1,−1,−1, 1, 0,−2, 0, 0, 0, 2)
USV6 (−2, 6, 1)T (−2,−2,−1,−3,−1,−1,0,−4,0,−2, 0, 0)

Table 3. Parameters used in the USV DMPC simulation.

Parameter Symbol Numerical
Value Weight Symbol Numerical

Value

Upper Layer

Number of USVs Ns 6 State Qi 1I3
Sampling time Tu 2s Control input Ri 1I3

Prediction horizon Np 5 Assumed state Fi 1I3
Control horizon Nc 4 Formation Gi 1I3

Lower Layer

Simulation steps Nr 50 State downQi 1I3
Sampling time Td 2s Control input downRi 1I3

5.2. Result Analysis

In order to verify that the algorithm can complete the first three control objectives pro-
posed in Section 1, we ran the control algorithm designed in this paper to obtain Figures 5–9.
From these figures, it can be seen that the algorithm designed in this paper could achieve
the desired control objectives, which verifies the effectiveness of the algorithm.
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Figure 5. Output trajectory.

Figure 5 shows the trajectory in plane coordinates. Scatter points are drawn once
every 14 steps. From the trajectory, six USVs could reduce the formation spacing to achieve
triangle formation flying with good formation maintenance effect.
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Figure 6. Upper−layer error.

Figure 6 shows the output error of the upper-layer control system. It can be seen from
the figure that the algorithm could quickly eliminate the upper-level output error. At about
step 15, the error in the three degrees of freedom directions was basically zero.
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0.5

1

Upper-layer input

0 10 20 30 40 50 60 70 80 90

-1

-0.5

0

0.5

0 5 10 15 20 25 30 35 40 45 50

-0.2

0

0.2

Figure 7. Upper−layer input.

Figure 7 shows the control input of the upper layer, which is the first term of the
optimal control sequence u∗i (0 | t) obtained by solving the DMPC-based controller every
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time. From the simulation results, the control input met various constraints, and all six
USVS converged their speed to the expected value at about 15 steps.
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Figure 8. Lower−layer output.

Figure 8 shows the control output of the lower layer. By comparing Figures 8 and 9,
it can be seen that the speed response had a certain time delay, but it was within an
acceptable range.
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-10
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10

Figure 9. Lower−layer input.

Figure 9 shows the control input of the lower layer, which is the first term of the optimal
control sequence w∗i (0 | t) obtained by solving the MPC-based controller each time.

To verify that the algorithm can achieve the fourth point of the control goal, the fol-
lowing simulation was conducted. In the 17th to 30th steps of the simulation, we manually
disrupted communication between USV2 and USV4 and used the communication topology
in Figure 4b. Similarly, in steps 30 to 45, we manually removed the communication between
USV3 and USV6 and used the communication topology in Figure 4c. The system was
observed to switch the topology immediately to maintain the original formation without
the influence of time delay.

The algorithm proposed by Equation (6) is shown in Figure 10, which we call Algorithm 1.
Figure 11 does not depict the hypothetical state in the objective function, that is, it does not in-
clude the cost of the predicted state deviation from the hypothetical state (item 3 of Equation (6))
or the formation cost (item 4 of Equation (6)); we name this as Algorithm 2. Algorithm 3 was
used in [40] and is shown in Figure 12. The difference between Algorithms 2 and 3 is the cost
function of upper controller Ji

(
zp

i , up
i , za

ĩ

)
, so for convenience of explanation, we give only the

flow of Algorithm 2. It can be seen from a comparison of these three figures that the algorithm
with post-verification proposed in this work met the fourth point of the control objectives.
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Algorithm 1: Distributed MPC with post-verification.
At time t = 0 upper-layer and lower-layer system initialization:
At time t (t > 1)
1: Obtain upper-layer system state: zi(k | t), k = 0, 1, . . . , NP − 1
2: Accept neighbor state:za

−ĩ
(k | t + 1), k = 0, 1, . . . , NP − 1

3: Optimize cost function: Ji

(
zp

i , up
i , za

i , za
−ĩ

)
4: Obtain: Ur = u∗i (k | t) and then pass to the lower-layer system
5: Ei = |ei| = ya

i (t− 1)− yi(t). Make up this error in the next time
6: If Ei ≥ σ, then switch topology
7: Obtain lower-layer system state: vi(k | t), k = 0, 1, . . . , Np − 1

8: Optimize cost function: J
(

vp
i , wp

i

)
9: Obtain w∗i (k | t) and apply to system

Algorithm 2: Decentralized MPC.
At time t = 0 upper-layer and lower-layer system initialization:
At time t (t > 1)
1: Obtain upper-layer system state: zi(k | t), k = 0, 1, . . . , NP − 1
2: Optimize cost function: Ji

(
zp

i , up
i

)
3: Obtain: Ur = u∗i (k | t) and then pass to the lower-layer system
4: Obtain lower-layer system state: vi(k | t), k = 0, 1, . . . , Np − 1

5: Optimize cost function: J
(

vp
i , wp

i

)
6: Obtain w∗i (k | t) and apply to system

Remark 1. The condition for switching topology is Ei > σ, after switching the trajectory. If the
communication is no longer interrupted or wrong, the switched topology is always used. This work
assumes that there is always a communication topology that is connected normally, and that there
will be no case where a USV cannot accept the formation information from other USVs.

Remark 2. The stability proof in this work can be found in [26,38].
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Figure 10. Output trajectory of Algorithm 1.
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Figure 11. Output trajectory of Algorithm 2.
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Figure 12. Output trajectory of Algorithm 3.

Figure 10 shows the trajectory evolution using Algorithm 1. We consider that failure
occurred in the communication between USV2 and USV4. The failure state condition Ei ≥ σ
was satisfied. Consequently, Algorithm 1 switched the current topology (Topology 1 in
Figure 4) to an alternative one (Topology 2 in Figure 4). The results show that the method
could effectively reduce the formation error. The maximum error was about 0.1 cm and it
took about three steps to completely restore the original formation. The same condition
was considered in simulations using Algorithms 2 and 3. The results are shown in Figure 11
and Figure 12, respectively. Note that Algorithms 2 and 3 do not adopt the post-verification
procedure, and failed to maintain the original USV formation. The difference between
Algorithms 2 and 3 lies in the cost function. Specifically, Algorithm 3 employs assumed
states of the neighbors in the cost function, which is ignored in Algorithm 2. Simulations
revealed that Algorithm 3 had a faster convergence speed compared with Algorithm 2 as
failures occurred. Hence, the assumed states of neighbors should be taken into account
in the cost function in order to achieve better closed-loop control performance. Similar
results were observed when the communication between USV3 and USV6 was interrupted.
Relevant simulations and analysis are omitted for brevity.

6. Conclusions

In this work, a hierarchical DMPC approach is developed for the formation control
of USVs. The upper layer determines the optimal references for the lower layer based
on the USV kinematic model and the information received from neighbors. It is shown
that the assumed state of the local USV and those of neighbors play important roles in the
cost function, which reduces the influence of external disturbances. In addition, a post-
verification procedure is adopted which compensates the difference between the assumed
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states and the actual ones. It is further shown that post-verification can effectively detect
the failure state, in which case an alternative communication topology is employed to
maintain the USV formation. Simulations reveal the effectiveness of the proposed approach.
Our future research will extend the results to multi-agent systems with time delays and
unmeasured states.
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