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Abstract: Positioning of unoccupied aerial systems (UAS, drones) is predominantly based on Global
Navigation Satellite Systems (GNSS). Due to potential signal disruptions, redundant positioning
systems are needed for reliable operation. The objective of this study was to implement and assess
a redundant positioning system for high flying altitude drone operation based on visual-inertial
odometry (VIO). A new sensor suite with stereo cameras and an inertial measurement unit (IMU) was
developed, and a state-of-the-art VIO algorithm, VINS-Fusion, was used for localisation. Empirical
testing of the system was carried out at flying altitudes of 40–100 m, which cover the common flight
altitude range of outdoor drone operations. The performance of various implementations was stud-
ied, including stereo-visual-odometry (stereo-VO), monocular-visual-inertial-odometry (mono-VIO)
and stereo-visual-inertial-odometry (stereo-VIO). The stereo-VIO provided the best results; the flight
altitude of 40–60 m was the most optimal for the stereo baseline of 30 cm. The best positioning accu-
racy was 2.186 m for a 800 m-long trajectory. The performance of the stereo-VO degraded with the
increasing flight altitude due to the degrading base-to-height ratio. The mono-VIO provided accept-
able results, although it did not reach the performance level of the stereo-VIO. This work presented
new hardware and research results on localisation algorithms for high flying altitude drones that are
of great importance since the use of autonomous drones and beyond visual line-of-sight flying are
increasing and will require redundant positioning solutions that compensate for potential disruptions
in GNSS positioning. The data collected in this study are published for analysis and further studies.

Data Set: https://doi.org/10.23729/f4c5d2d0-eddb-40a1-89ce-601c252dab35.

Keywords: outdoor drone; UAV; UAS; VIO; stereo-VIO; vislam; remote sensing

1. Introduction

Over the last decade, unoccupied aircraft systems (UAS, drones) have gained much
popularity. Although flights under visual line-of-sight control are currently the most com-
mon, autonomous flights and beyond visual line-of-sight (BVLOS) operation are enabling
a new generation of autonomous applications ranging from the delivery of commercial
packages and medical supplies, surveying and mapping to military operations and logistic
missions [1]. The availability of reliable position and orientation information is crucial for
the autonomous navigation of drones [2]. Drones rely on different types of sensors to obtain
odometry information and for navigating through known or unknown environments. The
most commonly used positioning approach is to use global navigation satellite system
(GNSS) receivers and an inertial measurement unit (IMU). The code-based GNSS position-
ing provides a few meters accuracy whereas the Real-Time Kinematic (RTK) carrier-based
method with differential GNSS (DGNSS) correction improves the positioning accuracy to a
centimetric level [3]. However, GNSS positioning is not sufficiently reliable as the accuracy
is degraded or the signal may be blocked by the presence of buildings, trees, or due to the
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reflection of the signals from walls or other objects [4,5], and might also be subjected to
intentional interference [6]. Furthermore, the RTK GNSS positioning requires real-time
correction signals from the ground station or CORS/VRS services (Continuously Operating
Reference Station/Virtual Reference Station); the interruptions in the connection reduce
the accuracy [7]. Complementary positioning systems are thus required in autonomous
systems to improve the reliability of positioning to enable secure and reliable operations in
various environments [8].

Visual odometry (VO) is an odometry technique used in various domains, such
as robotics, automotives, and wearable computing. It is the process of estimating the
ego-motion of a system using the input from a single or multiple cameras attached to
it [9]. Earlier works have explored the idea of using images from a monocular camera
or stereo cameras mounted on a drone to calculate ego-motion using VO [10–15]. Other
studies [16–18] have mapped the region along with the path and developed visual simulta-
neous localisation and mapping (SLAM) algorithms. SLAM is the process of simultaneously
building a map of the environment and localising the system in that map [19]. Inertial data
can be incorporated with visual data to increase the accuracy and robustness, resulting
in VIO and visual-inertial SLAM (VISLAM) solutions [20–23]. Recently, a comprehensive
optimization-based estimator for the 15-D state of a drone, a visual-inertial-ranging-lidar
(VIRAL), was proposed [24]; data from IMU, ultrawideband (UWB) ranging sensors, and
multiple onboard visual-inertial and lidar odometry subsystems were fused in order to
eliminate the drift in the solution. A novel VISLAM algorithm performs state estimation
even in low illuminated and low textured environments by utilising line features along with
the point features, rather than using only the point features in the images [25]. Another
study developed a robust VISLAM framework to provide accurate results even in the
presence of dynamic and temporary static obstacles, which was not specifically addressed
in previous studies [26]. There has also been significant developments in the utilization of
deep neural networks to solve the odometry problem [27].

Integrating VO/VSLAM algorithms with outdoor drones enables them to perform
autonomous flights without relying on GNSS. Open-source implementations of VO and
VSLAM algorithms are already available, and they have been evaluated with the data
collected using drones. Previous studies have compared state-of-the-art VIO algorithms
with publicly-available drone datasets [28] and implemented autonomous drone navigation
using the odometry output from the VINS algorithm [29–31]. In most of the VIO/VISLAM
studies, the drone has been flown inside building or at low altitude [24,32–34]. Only
a few studies have implemented these algorithms for drones flying at high altitudes,
such as altitudes of 40–100 m. A stereo visual pose estimation adapting the traditional
stereo-VO paradigm was presented in [12]. Their results for a 2 m wingspan fixed-wing
unoccupied aerial vehicle flying at 30–120 m altitude over a 6.5 km trajectory indicated
that stereo-VO outperformed the monocular VO; however, accuracy was still relatively
low. Modifications were proposed to the state-of-the-art ORB-SLAM2 algorithm in [35] to
improve its reliability; the initial algorithm did not manage to reconstruct the trajectory
with the DJI Phantom 4 based video.

VO and VSLAM algorithms are considered relative positioning solutions. If the start-
ing position is known in the global Earth fixed coordinate system, the relative trajectory
could be translated to the global coordinate system as well. The challenge with relative
positioning methods is their drifting. Therefore, mainstream solutions for absolute position-
ing without GNSS complement the VO solutions by matching the drone images to existing
maps, orthophotos or satellite images [36]. These methods are not as sensitive to drifts
but the low drift performance is advantageous as it improves robustness, e.g., to potential
failures in matching the drone images to the reference datasets.

The objective of this study was to investigate stereo-VIO for high flying altitude drone
operation. Due to the lack of suitable sensor suites, a new stereo-visual-inertial sensor
system capable of providing useful data at high altitudes was developed. A state-of-the-
art VIO algorithm, the VINS-Fusion, was used for testing. In the preliminary study, we
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evaluated several algorithms, the ORBSLAM-3, FLVIS and VINS-Fusion [37]; the VINS-
Fusion outperformed other algorithms, thus further studies were focused on it. The
performance of the system in different configurations, including stereo-VO, mono-VIO and
stereo-VIO, at flight altitudes ranging from 40 m to 100 m with respect to ground truth
data, was assessed in this study. Since similar data are not publicly available to develop
and/or test localisation systems for high flying altitude drone flights, we publish the
data collected for this study, accompanied with sensor calibration details and the ground
truth information.

2. VINS-Fusion—A Stereo-Visual-Inertial Odometry Algorithm

VINS-Fusion is an extension of VINS-Mono, which is a tightly coupled, non-linear
optimisation-based state estimation method based on fusing data from a minimum set of
sensors [20]. In VINS-Mono, IMU measurements are pre-integrated and fused with fea-
tures extracted from monocular camera images to estimate the 6 degree-of-freedom (DOF)
position and orientation of the robot or the sensor suite. It also enables relocalisation, has a
robust initialisation procedure, 4-DOF pose graph optimisation, map merging and map
reuse features. In VINS-Fusion, apart from a monocular camera and an IMU, additional
sensors, such as cameras and LIDARs, can be integrated seamlessly to improve estimation
results, given sensor measurements are modelled as general residual factors, and these
residual factors are added to the cost function of the optimiser. Both VINS-Fusion and
VINS-Mono share a similar pose estimation pipeline, but VINS-Fusion is designed as a
general framework which supports multi-sensor combination [38]. The main stages of the
VINS-Fusion algorithm, the data collection, initialization, estimation, relocalisation, and
global pose estimation are described in the following.

2.1. Data Collection and Preprocessing

Each sensor is considered as a factor that provides a measurement in VINS-Fusion.
In this study, the types of sensors were limited to visual and inertial. An overview of the
framework is shown in Figure 1. In the case of a stereo camera and IMU suite, the inertial
data are collected at a higher frequency than the image capture rate. This ensures multiple
inertial measurements between two consecutive images. Shi–Tomasi corners are extracted
from the input stereo images and they are matched in the left and right image. As new
images are received, the detected features are tracked using the Kanade–Lucas–Tomasi
(KLT) sparse optical flow algorithm [39]. Sufficient corner features are detected to maintain
a minimum number of features in each frame while enforcing uniform feature distribution
over the frame. Keyframes are selected based on the number of tracked features and the
average parallax of tracked features in the input images.

Figure 1. Pipeline of VINS-Fusion. Adapted from [20].
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The IMU data collected between two consecutive image frames were pre-integrated to
calculate relative velocity and rotation of the IMU. Pre-integration of IMU reduces the need
of repropagating the states during optimisation, which is a computationally expensive
process. As explained in [20], the relative velocity and rotation can be calculated using the
IMU measurements and the biases of the accelerometer and gyroscope. The biases of the ac-
celerometer and gyroscope are modelled as random walk which are estimated continuously.
Repropagation of IMU values is performed only if the bias estimation changes the bias
values significantly. Since IMU propagation is not needed repeatedly, the pre-integration
method reduces the computational resource usage in optimisation-based algorithms.

2.2. Initialisation

The highly nonlinear tightly coupled VIO have to be initialised accurately at the begin-
ning by loosely aligning the pre-integrated IMU values with the vision-only structure [20].
To accomplish this alignment, rotation and translation between the latest frame and one
of the previous frames in the sliding window is computed using the five-point algorithm.
There should be sufficient parallax and stable feature tracking between these two frames.
An arbitrary scale is set and 3D points are triangulated. Also using perspective-n-point
(PnP) algorithm, poses of all the other frames in the window are determined. Finally a
full global bundle adjustment is applied to minimize the total reprojection errors of all
observed features. This vision-only structure-from-motion (SfM) generates a pose graph
where the only parameter is the arbitrarily set scale.

The IMU initialisation results in calculating the gyroscope bias, initialising velocity,
gravity vector and metric scale, and gravity refinement. Gyroscope is calibrated using
the relative rotation between two consecutive frames calculated by visual SfM and the
results of IMU pre-integration. This new gyroscope bias is used to repropagate all the
IMU pre-integration terms. The velocity, gravity vector and the metric scale are initialised
using the information obtained from the SfM and the new IMU pre-integrated terms. The
gravity vector is refined by constraining its magnitude to the known value. Finally, rotation
between the world frame and the camera frame are computed by rotating the gravity vector
to the z axis, and all the variables from the reference frame to the world frame.

2.3. Estimation

A sliding window based state optimisation is performed in VINS-Fusion where the
nonlinear least square problem of minimising the cost function is solved using Newton-
Gaussian or Levenberg-Marquardt approaches. Ceres solver [40], an open source C++
library for modeling and solving large optimisation problems, is used in the implementation.
The state vector includes the position and orientation of the body in the world frame, depth
of each feature observed in the first frame, and the IMU measurements corresponding
to each image in the sliding window which includes the position, velocity, rotation and
the IMU biases. As the number of states increases with time, a marginalisation process
is incorporated to reduce the computational complexity. This process removes previous
measurements as new measurements are added to the optimisation sliding window, but
retains useful information from the measurements being removed. In the implementation of
VINS-Fusion, ten key frames are maintained in the sliding window. When a new key frame
is added, the visual and inertial factors associated with the first frame are marginalised out.

2.4. Relocalisation

The sliding window with marginalisation method of estimation introduces drift that
accumulates over time. A tightly coupled relocalisation technique is incorporated to re-
duce this drift. The first step for relocalisation is the loop detection. The state-of-the-art
library for converting images into a bag-of-words representation, DBoW2 [41], is used for
loop detection. The features are detected and described using binary robust independent
elementary features (BRIEF) descriptors [42]. Upon detecting geometrical and temporal
consistency between the descriptors, DBoW2 returns the loop-closure candidates. Relocali-
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sation process aligns the sliding window to previous poses where poses of all loop-closure
frames are constant. After this, all the IMU measurements, visual measurements and the
feature correspondences in the sliding window are optimised jointly which reduces or
eliminates the drift.

2.5. Global Pose Estimation

A global pose-graph optimisation is performed in addition to the pose-graph optimisa-
tion performed in the sliding window to ensure that the set of previous poses are registered
in a globally consistent manner. The roll and pitch are fully observable in visual-inertial
systems. They are absolute states in the world frame while the position and the yaw values
are relative estimates in the reference frame. This results in drift accumulation only in x, y,
z, and the yaw angle. So, the pose-graph optimisation is performed after fixing the roll and
pitch values, which is a 4-DOF optimisation.

VINS-Fusion supports map merge, save, and load features. For every keyframe, a
node is added to the graph with its pose information. Edges between the nodes are defined
by either the relative transformation between two frames or if the frames are relocated with
loop closure. Along with the node, feature descriptors of corresponding frames are also
saved. This graph can be saved and later loaded, which can be connected with a new graph
whenever another frame is relocated with one of the nodes in the loaded graph.

3. Platform Development
3.1. Hardware

VINS-Fusion supports various sensor configurations including monocular vision with
inertial data, stereo vision data, and stereo vision with inertial data. In order to leverage
the maximum potential of VINS-Fusion, this work used a stereo camera and IMU setup.
This section describes the developed sensor suite, hardware and software configurations,
calibration of sensors and integration of this system on a commercially available drone.

Off-the-shelf sensor suites for visual-inertial systems are readily available on the mar-
ket. Intel RealSense T265 packs two fisheye cameras, an IMU and a video processing unit,
which provides raw sensor data along with accurate tracking results [43]. Nerian Karmin3
stereo camera series offers stereo cameras with different baselines, which can be paired up
with their SceneScan system to extract data from the cameras synchronously [44,45]. Even
though these systems allow quick testing by eliminating the need of developing a sensor
suite, those were not suitable for this study. The T265 has a very short baseline of 10 cm
while the Karmin3 series offers a maximum baseline of 25 cm (Nerian also provides custom
baseline stereo setup). A shorter stereo baseline results in larger depth error, and the depth
uncertainty increases as the height increases. To minimise these issues, a custom sensor
suite with an adjustable baseline and fully controlled components was developed to collect
the visual and inertial data.

Along with cameras and IMU, a suitable computing device of a small form factor
was chosen. Following factors were considered while developing the system. For an easy
integration of the sensor suite with the computer, the computer should be compatible
with Linux to run robot operating system (ROS) [46] in it, and the availability of ROS
drivers for sensors is desired. The weight of the system should be less than the payload
capacity. The camera should have a global shutter sensor, and availability of manual
triggering, exposure control and binning are desired. The IMU should be able to output
the data at a frequency of at least 100 Hz and it should have trigger control options for
synchronisation. Availability of optional RTK corrected GNSS data are preferred as it can
be used for generating ground truth data, and also as the major positioning technique while
the GNSS satellites are available.

The sensor system comprises two Basler acA2440-75uc [47] cameras and one Xsens
MTi-680G RTK GNSS/INS [48] IMU which are mounted on an aluminium bar. This sensor
system is connected to GIGABYTE GB-BSi5H-6200-B2-IW (rev. 1.0) mini computer [49]
universal serial bus (USB) 3.0 interface. This system is shown in Figure 2.
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Figure 2. Stereo camera and IMU setup connected to the Intel NUC mini computer.

The Basler cameras output colour images of 2448× 2048 resolution at maximum 75
frames-per-second (FPS). It has a 2/3 ′′ global shutter sensor of size 8.4 mm× 7.1 mm, and a
physical pixel size of 3.45 µm× 3.45 µm. Basler provides a ROS package along with camera
application programming interfaces (API) for interfacing their cameras easily with the ROS
environment. A Fujinon HF6XA-5M 1:1.9/6mm lens was attached to each camera [50]. It
was a 6.23 mm fixed focus length lens with maximum resolution of 3.45 µm pixel pitch.
The cameras were configured to output monochrome images since the algorithms in this
study use monochrome images. The frame rate of the camera was also reduced to the range
15–25 FPS in order to obtain a realtime performance.

The Xsens MTi-680G RTK IMU is capable of streaming out inertial data at a frequency
of 400 Hz with an accuracy of 0.25◦ for roll and pitch values, 0.5◦ for yaw value [48]. The
sensor system was synchronised without using any signals from an external triggering
circuit. The Xsens module generated trigger signals based on its internal 400 Hz SDI
sampling clock. This signal, with desired skip factor (to reduce the output frequency),
triggered the right camera through its input GPIO pin. The right camera sent trigger signals
to the left camera when it captured an image. Since there were no external triggers present,
the synchronisation was not exact. On average, a temporal difference of 200 µs was present
between the corresponding stereo images.

The universal serial bus (USB) 3.0 devices caused interference to wireless devices with
lower radio frequencies [51]. The cameras transferred data through USB 3.0 cables which
interfered with the GNSS signals by reducing the signal-to-noise ratio of GNSS signals. In
order to reduce or fully eliminate this problem, camera cables and the USB 3.0 hub were
shielded using copper foil tape.

Cameras were fixed on an aluminium channel where the position of one of the cameras
could be adjusted to predefined points to have multiple baselines. In this study, cameras
were positioned in the same direction at a distance of 30 cm to form the stereo pair. The IMU
was placed in between the cameras. The transformations between sensors were obtained
after the calibration. The mini computer and the aluminium channel on which the sensors
were mounted were attached to a frame which could be easily attached to the drone. The
frame was attached without using a gimbal as shown in Figure 3.

Figure 3. Sensor suite and the mini computer mounted on the drone.
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3.2. Software

Data from both cameras and the IMU were processed in VO and VIO modes. ROS
version of VINS-Fusion was available, and sensor drivers were compatible with ROS. Basler
provides a ROS package to interface with their cameras. The pylon_camera package is a
ROS wrapper for their C++ application programming interfaces (API) [52] which can be
used to retrieve images from and to configure various parameters of the camera. Images
from the camera were of size 2448× 2048 px (5 Mpix). To have a real time performance,
images were subsampled to reduce their size to 612× 512 px (0.3 Mpix). The VINS-Fusion
algorithm expects both images to have the same timestamp. The short temporal difference
of 200 µs between the corresponding stereo image pairs was neglected, and timestamps of
images were set to the same value before they are processed further.

IMU data were acquired from the sensor using the xsens_mti_ros_node ROS package
provided by Xsens [53]. RTK corrections provided by FinnRef, a Finnish network of refer-
ence stations [54], were streamed to the mini computer using NTRIP whenever available.
The RTK corrected GNSS data could be used as ground truth information if the corrections
were streamed while collecting the data.

3.3. Calibration

Stereo cameras and the IMU were calibrated to obtain their intrinsic and extrinsic
parameters. A multisensor calibration toolbox, kalibr [55], along with imu_utils [56],
was used to calibrate the sensor suite. imu_utils produced IMU noise model parameter
values. Images were subsampled to 0.3 Mpix before using them for calibration. Stereo
camera calibration was performed to calculate intrinsic and extrinsic parameters for each
camera using the Kalibr toolbox [57]. Finally, using the above two results, a stereo camera
and IMU joint calibration was performed in Kalibr [58]. All the sensor parameters were
published along with the sensor data.

The IMU measurement model used in Kalibr for stereo camera and IMU joint cali-
bration contained two types of errors: additive noise and sensor bias. The angular rate
measurement, ω̃, was modelled as

ω̃(t) = ω(t) + b(t) + n(t). (1)

Here, ω was the actual angular rate. This measurement model was for a single axis
of gyroscope. The fluctuations in the sensor signal were modelled with a zero-mean
continuous-time white Gaussian noise n(t) and the variations in sensor bias were modelled
with a random walk b(t). Both of these parameters were calculated for the accelerometer
and the gyroscope of IMU. These noise model parameters were obtained by analysing the
Allan standard deviation of the IMU data [59]. This was performed by the imu_utils tool
with the IMU data collected while the IMU was kept stationary for a duration of two hours.

For the stereo camera calibration, stereo image pairs were recorded at a low frame
rate of 4 FPS as a Bag file. An Aprilgrid board [60] was used as the calibration target. The
camera was kept stationary and the board was moved while recording the data. Patterns on
the Aprigrid targets could be detected individually, which simplified the data collection as
the calibration could be performed even if the target was only partially visible in the image.

A joint IMU-stereo camera calibration was performed to calculate the extrinsic param-
eters, namely the rotation and translation of cameras with respect to the IMU frame. In
this case, the calibration target, Apriltag, was kept stationary and the sensors were moved
while collecting the data. Image pairs were collected at a 20 FPS rate and the IMU data
were collected at 100 Hz rate. Sensors were moved in such a way that all rotations and
accelerations axes of the IMU were excited. This recorded data, along with the results
of individual IMU and stereo camera calibrations, were processed together in Kalibr to
calculate the transformation between the IMU and the cameras.
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4. Experiments

The drone was flown near the FGI office building in Masala, Finland, in predefined
paths marked by waypoints to collect the data. These waypoints were defined in UgCS
drone mission planning and flight control software [61] which generated the mission plan.
Flight altitude and flight speed were modified and uploaded to the drone before each flight
using this software. The mapping area comprised a building, parking area, road and forest.
The area above which the drone was flown is shown in Figure 4. This image was recon-
structed using the images from the 60 m, 2 m/s dataset in Agisoft Metashape software [62].
Other datasets were also collected by flying the drone in similar paths. Various steps of
the experiments are described in Algorithm 1 and they are detailed in below subsections.

Algorithm 1 Experiment.

1: Define and upload the flight mission containing waypoints and flight speeds to the drone.
2: Start the mission.
3: Record sensor data till the mission ends.
4: Collect ground control point (GCP) locations for reference.
5: Run VINS-Fusion in different sensor configurations with the collected sensor data and store

the estimated drone trajectory.
6: Generate the ground truth data with Agisoft Metashape software using the stereo images

and the GCP data.
7: Compare the estimated trajectory with the ground truth by calculating the error metrics.

Figure 4. The area above which the datasets were collected. This image was reconstructed using the
images from the 60 m, 2 m/s dataset in Agisoft Metashape software. The flight path is marked in
the image.

4.1. Drone Data Collection

The frame rate of both cameras and the IMU output frequency were kept fixed for
each dataset at 16 FPS and 100 Hz, respectively. The exposure time of the cameras was
adjusted based on the lighting conditions before each flight. These values, along with
flight parameters and external conditions, are given in Table 1. Each dataset in this table
was collected on different days, due to which external factors such as lighting and wind
conditions were not the same during each flight. Sample images from each dataset are
shown in Figure 5. Dataset 2 was over exposed while datasets 3 and 4 were underexposed.
Cameras and IMU output the data to the Intel NUC minicomputer over the ROS network.
Recording of sensor data started at an arbitrary time during takeoff and ended during
landing, and varied for each dataset. These sensor messages were stored as bag files in the
mini computer for further processing.
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Table 1. Recorded datasets.

Altitude (m) 40 60 80 100 Exposure
Time (µs)

External
Conditions 1Speed (m/s) 2 3 4 2 3 4 2 3 4 2 3 4

Dataset 1
√ √ √

500 gentle breeze

Dataset 2
√ √ √

1000 moderate
breeze

Dataset 3
√ √ √

1000
cloudy,

moderate
breeze

Dataset 4
√ √ √

1200
cloudy,
strong
breeze

1 Wind speed data collected from Finnish Meteorological Institute’s website, and mentioned in Beaufort scale.

Figure 5. Sample images from collected datasets. Images in each dataset has different illumination
due to different lighting conditions during data collection (a) Dataset 1—normal exposure. (b) Dataset
2—overexposed. (c) Dataset 3—underexposed. (d) Dataset 4—underexposed.

4.2. Data Processing

The VINS-Fusion algorithm was evaluated in offline processing mode in which the
collected sensor data were processed later to estimate the trajectory. Open sourced ROS
package implementation of VINS-Fusion was installed and was configured with sensor
calibration details. Additional parameters related to feature tracking and optimisation were
configured as given in Table 2.

Table 2. VINS-Fusion parameters.

Feature Tracking
Parameters Value Optimisation

Parameters Value

Max number of
tracked features 150 Max solver iteration

time 0.04 ms

Min distance between
two features 30 px Max solver iterations 8

RANSAC threshold 1 px Keyframe parallax
threshold 10 px

The collected data were given as input to the algorithm. Three different sensor
configurations—monocular camera and IMU (mono-VIO), stereo camera (stereo-VO), and
stereo camera and IMU (stereo-VIO)—were tested while estimating the trajectory. The
estimated poses were in local coordinates where the origin was the starting point of
the flight.

4.3. Reference Trajectory

The reference trajectory was obtained by post-processing the recorded images along
with the ground control points (GCP) in Agisoft Metashape software [62]. Previous studies
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have shown that estimation results from Metashape are highly accurate, given that the
image block has sufficient geometric structure and accurately measured GCPs are available
for processing [63]. The GCPs were targeted with the help of markers placed in the mapping
area. Positions of these markers were recorded using a HiPer HR GNSS receiver and an FC-
5000 Field Controller by Topcon Positioning Systems [64,65]. In this work, photogrammetric
bundle block adjustment was performed on the stereo images in Metashape to obtain the
position and orientation of cameras during the image acquisition. Since images were
recorded at 16 FPS rate, adjacent images have high overlap, especially when the drone
had flown at a low speed of 2 m/s. Therefore, the images were subsampled, and this
small sample along with the ground control points were processed. Output of this process
includes the pose of the camera for each image. Poses were generated in both local and
geographic coordinate systems.

4.4. Error Metrics

The quality of the estimated trajectories was evaluated and analysed to understand
and benchmark the performance of the algorithm at different flight conditions and with
different system configurations. Studies have proposed absolute trajectory error (ATE)
and relative pose error as error metrics to evaluate VO/SLAM algorithms [66]. More
informative results were obtained by calculating relative error (RE) for each sub-trajectory
of the estimation [67]. A quantitative performance evaluation was carried out by computing
ATE and RE with respect to the ground truth [68]. It follows a two step approach in which
the estimated trajectory is aligned with the ground truth initially, and the error metrics are
calculated based on the aligned trajectory.

The trajectory alignment was performed based on the Umeyama method [69], which
aligned both the ground truth and the estimated trajectories based on multiple estimated
poses of the trajectory. The alignment process calculated a rotation and translation (and
scale in case of monocular VO) which was applied to the estimated trajectory to align it
with the ground truth.

The ATE of position and rotation gave a single number metric corresponding to the
estimation. For a single state, the error from the ground truth was parameterised as

∆x = {∆R, ∆p, ∆v}, (2)

where ∆R, ∆p and ∆v correspond to the rotation, position and velocity errors respectively.
For the entire trajectory, the root mean square error (RMSE) value was calculated to obtain
a single metric value.

ATErot=

(
1
N

N−1

∑
i=0
‖ ∠(∆Ri) ‖2

) 1
2

(3)

ATEpos=

(
1
N

N−1

∑
i=0
‖ (∆pi) ‖

2

) 1
2

. (4)

If there was a rotation error at the beginning of the trajectory, the final ATErot value
would be higher compared to that corresponding to the case where the rotation error
occurred at the end of the trajectory [68]. Since ATE was sensitive to the time of error occur-
rence, RE, which provided more information about relative changes, was also calculated
along with ATE in this work.

The quality of estimations can also be evaluated by measuring relative relations
between the states at different times since there exists no global reference for VO/VIO
systems [68]. RE was computed by splitting the trajectory into small sub-trajectories,
aligning each of them separately, and calculating the RMSE of the errors between the
ground truth and the aligned sub-trajectory, similar to the computation of ATE. Sub-
trajectories were defined using a set of pairs of states, dk = {x̂s, x̂e}, e > s. These pairs were
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selected based on some criteria (e.g., distance along the trajectory). For each sub-trajectory,
the errors were parameterised as

δdk = {δφk, δpk, δvk}. (5)

Rotation, position and velocity errors in δdk were calculated similar to ATE, and the
error calculation was performed for all the sub-trajectories. Unlike ATE, the relative error
provided a number as a metric for each sub-trajectory as given below.

RErot= {δφk} (6)

REpos= {δpk}. (7)

Estimated trajectories were evaluated based on error metrics ATEpos and RErot. These
metrics were calculated using an open-source tool, rpg_trajectory_evaluation [70],
which is based on [68]. Outputs of this tool included ATE and RE values along with
their plots. To get a single value for the relative error, a combined RMSE value was
calculated from each individual RE.

5. Results and Discussion
5.1. Experiment Results

The collected sensor data were processed using the VINS-Fusion algorithm in offline
mode to obtain the trajectory. The estimated trajectories of three different sensor configu-
rations were compared with the ground truth. Corresponding error metrics are given in
Table 3. Values for the mono-VIO case of 40 m and 2 m/s case were not available as the
estimated trajectory did not resemble the reference trajectory.

Table 3. ATE of position and RE of yaw for the data collected at different flight parameters.

Speed

Height 40 m 60 m 80 m 100 m
Estimation ATE RE ATE RE ATE RE ATE RE

stereo-VO 9.944 2.291 15.668 3.651 62.415 14.276 101.584 9.006
2 m/s mono-VIO – – 55.814 10.394 12.093 1.634 18.409 2.582

stereo-VIO 21.689 3.627 10.563 0.949 4.362 1.414 12.861 1.497

stereo-VO 16.932 6.436 14.092 3.127 56.992 8.953 123.113 9.393
3 m/s mono-VIO 9.462 3.575 16.547 2.182 6.741 4.483 20.302 4.01

stereo-VIO 2.554 2.638 4.744 0.862 7.397 4.034 12.459 4.069

stereo-VO 16.183 2.454 41.240 5.731 71.668 3.651 113.007 3.388
4 m/s mono-VIO 9.957 2.323 15.495 4.883 20.256 2.27 17.909 6.164

stereo-VIO 4.636 1.312 2.186 3.214 9.245 1.819 9.544 4.435

The accuracy of estimation using stereo-VO for the same flight speed degraded as the
flying altitude increased. Plots of estimated trajectories corresponding to 3 m/s flight speed
are shown in Figure 6a. A similar trend was seen in other cases as well, where the flight
speeds were 2 m/s and 4 m/s. Increased drift in position estimations with increasing flight
altitude was due to the decreasing baseline-to-depth ratio of the stereo setup, and it was the
expected behaviour. The error built up quickly due to a poorly triangulated structure, and
the scale was observed weakly at high altitudes due to the constrained stereo baseline [71].
The yaw rotation errors in stereo-VO estimation were higher than 2◦ for all the cases. These
error values were not correlated to flying altitudes or speeds.



Drones 2023, 7, 36 12 of 19

Figure 6. Trajectory estimation by VINS-Fusion plotted along with the ground truth for different
altitudes at a speed of 3 m/s. (a) Stereo visual odometry estimation. (b) Mono visual-inertial
odometry estimation.

Fusing data from an IMU with the visual inputs improved the estimation accuracy,
especially when the conditions for visual estimation were not good. The mono-VIO
estimation had a lower position error compared to the stereo-VO estimation, except for the
data in dataset 1; which had better illumination compared to other datasets where images
were underexposed or overexposed as shown in Figure 5. This resulted in getting better
results for vision only estimation, but only when images had good illumination. For other
datasets, results were better when data from IMU and a camera were used; both rotation
and position errors were lower for the mono-VIO estimation than stereo-VO estimation as
shown in Table 3. Plots of estimated trajectories corresponding to 3 m/s flight speed are
shown in Figure 6b. Scale errors of estimations at flying altitude 60 m and speed 4 m/s are
plotted in Figure 7. A reduced drift in comparison to stereo-VO is seen here as the errors
decreased with the availability of data from multiple sensors.

With stereo-VIO estimation, position error values were reduced drastically. The lowest
error in position estimate was 2.186 m when the drone flew at 60 m height with 4 m/s
speed, and the lowest rotation error was 0.862◦ when the drone flew at 60 m height with
3 m/s speed. The stereo-VIO produced significantly more accurate position and orientation
estimates than mono-VIO and stereo-VO. The trend with the increasing flight height as
seen in stereo-VO was not seen for monocular or stereo inertial estimations. In the case of
stereo-VIO, at speed 3 m/s, the position error increased as the flying altitude increased, but
the rate was only a fraction of that in the stereo-VO case. For other speeds, such a relation
was not seen. The ideal flight speed and flight height were 3 m/s and higher, and 40–60 m,
respectively. For these cases, RMSEs were 2–5 m for position and 0.9–3.2◦ for yaw rotation.
It can be concluded that the integration of IMU into the trajectory estimation stabilised the
trajectory error to an acceptable level. The stereo-VIO estimation plots corresponding to
4 m/s speed are shown in Figure 8.
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Figure 7. Scale errors of estimations at flying altitude 60 m and speed 4 m/s. (a) stereo-VO.
(b) mono-VIO. (c) stereo-VIO.

Figure 8. Stereo visual inertial odometry estimation by VINS-Fusion plotted along with the ground
truth for different altitudes at a speed of 4 m/s.
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Illumination and the scene content of the images influenced the estimation quality.
The 60 m altitude data were recorded in two days as mentioned in Table 1, where im-
ages of 2 m/s and 3 m/s datasets (dataset 1) had good illumination whereas the 4 m/s
dataset (dataset 3) had low illumination because of changes in lighting conditions and
exposure timings. Even though the position error decreased with increased speed at this
altitude, the rotation error increased when the images had low illumination regardless of
the flight speed.

Relative yaw error was almost the same for all datasets collected on the same day. For
dataset 4, rotation errors for all three sets were around 1.4◦ while that of dataset 2 was
around 4◦. For dataset 1, the error for the 40 m, 2 m/s case was larger than that for the
other cases. Images in this set had a uniform pattern when the drone flew over the trees at
a low altitude. This uniform pattern caused the algorithm to estimate poses less accurately.
Absolute rotation errors for the flights at 40 m and 60 m altitude with 2 m/s speed are
shown in Figure 9. For the 40 m case, the absolute yaw error remained constant up to
500 m flying distance, keeping the relative error almost zero, but the error increased when
the drone flew over trees. Additionally, as the flying altitude increased in the 60 m case,
the camera view included distinct objects, which resulted in better feature tracking and
pose estimation.

Figure 9. Absolute rotation errors at flying speed 2 m/s. (a) 40 m flying altitude (b) 60 m
flying altitude.

IMU measurements had a direct impact on the estimation during the initialisation
process as mentioned in Section 2.2. Pre-integrated IMU values were used to calculate
the actual scale for triangulation. The velocity and gravity vector were also initialised
during this process. Since the initialisation process used the data collected during take-
off, jerks or abrupt movements during this time affected the IMU measurements. This
might have resulted in estimating less accurate parameters, in turn reducing the overall
estimation accuracy. The integration of statistics estimation to the VINS-Fusion would
enable the obtaining of theoretical values that could provide further understanding of the
system behaviour.

5.2. Assessment, Contribution and Future Research

An important contribution of this study was the development of an adjustable sensor
system for outdoor stereo-VIO. The results were consistent with respect to theoretical
expectations as well as with previous studies carried out at lower flight altitudes and in
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indoor conditions. The stereo-VO results were at similar levels to those in [10]. The studies
with low altitude flights have shown that the integration of IMU into VO reduces drifts [72];
the empirical results were consistent with this expectation. The decreasing base-to-height
ratio is known to deteriorate the performance of stereo-VO that was also observed in the
results. The stereo-VIO with a baseline of 30 cm provided significantly better results than
the mono-VIO for all flying altitudes of 40–100 m, thus the use of multiple cameras is
recommended for the VIO-based positioning. According to the authors’ knowledge, this
study was the first study to validate these behaviours at a flight altitude range of 40–100 m.

Apart from the sensor configuration, external conditions also affected the estimation
accuracy. It was observed that with better illumination conditions, stereo-VO provided
better estimations than mono-VIO. Errors were larger when the scene had a uniform
texture; flying at a higher altitude to have distinct objects in the frame helped to reduce the
estimation error. Fusing IMU data improved positioning performance and improved the
robustness of the system to the external conditions. Studying the effects of external factors
on IMU, such as jerks or abrupt movements, and thus the effect on estimation quality,
would help improve the estimation. External conditions during the data collection were
different for each dataset; uniform or similar conditions would have enabled more detailed
analysis of impacts of flying heights and speeds. However, experiments with the developed
system confirmed reliable estimations with stereo-VIO in a variety of conditions. Consistent
performance of the system at various flying heights and speeds indicated that this system
would be capable of providing useful pose estimations for GNSS-free operations. Real-time
testing would be required to verify this.

This study showed that with the help of suitable stereo-visual-inertial sensor suite
and sensor fusion algorithms, a reliable localisation system for high-altitude outdoor drone
operations can be developed. It could be used alongside, or replace, existing positioning
systems such as GNSS based systems. The system is useful as a redundant positioning
system to fill gaps in the trajectory measured by GNSS or other positioning techniques.
This study provided new knowledge considering the performance of VIO algorithms at
high flying altitudes; this is of great importance because the use of autonomous drones and
beyond visual line-of-sight flying is becoming possible due to evolving legislation and will
increase enormously in the coming years.

Our future research will continue the development of reliable positioning techniques
for autonomous flying. A well-engineered system capable of real-time estimation will
enable further studies. New odometry or SLAM algorithms can be implemented on this
system—especially since the deep learning based positioning techniques have shown ex-
cellent potential [27] in recent years. Additionally, it is relevant to study the integration
of additional sensors to further reduce the drifts [24]. Further studies could also evalu-
ate whether the robust positioning with stereo-VIO would outperform commonly used
mono-VIO algorithms in positioning systems based on maps or satellite images [36]. For
greater flying altitudes, it might be necessary to increase the stereo baseline; this could be
evaluated in future studies utilising the adjustable baseline concept available in the system.
Future research should also emphasise the system calibration models. We selected models
implemented in the well-known tool Kalibr; the models provided consistent results in our
work. However, if the models did not correspond to reality, this would result in biases and
drifts in the estimations which would reduce the accuracy.

The dataset has been made openly available to facilitate the further research and develop-
ment of VIO algorithms for high flying altitude drone operation for the scientific community.

6. Conclusions

This study investigated visual odometry-based positioning techniques for high-altitude
drone operation. An important contribution of this work was the development and pre-
sentation of a new stereo-visual-inertial sensor suite based on state-of-the-art hardware
components for high flying altitude drone operation as well as empirical studies using this
system. In the performance assessment, the system was used to collect sensor data and the
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VINS-Fusion algorithm was used for localization and to provide a 6-DOF pose estimation so-
lution at flying heights of 40–100 m. Data from three different sensor configurations—stereo
camera, monocular camera and IMU, and stereo camera and IMU—were used to estimate
the trajectory of the drone. Stereo-visual-inertial odometry provided best results with the
lowest position and rotation errors. The lowest RMSE values of absolute translation and
relative yaw error were 2.186 m and 0.862◦ respectively for a 800 m long trajectory at a
flying altitude of 60 m. Apart from the sensor configuration, external conditions such as
illumination and object texture also affected the estimation accuracy.

This study provided new knowledge considering the performance of VIO algorithms
at high flying altitudes. Research on positioning algorithms for high flying altitude drone
flights is of great importance because the autonomous use of drones and beyond visual
line-of-sight flying is increasing and this will require redundant positioning solutions that
compensate for potential disruptions of GNSS positioning.

The data collected in this study are shared with the research community so that these
results can be verified, and the data can be used to develop and test new solutions for high
flying altitude drone localisation.
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