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Abstract: Wildfires have become a global problem in recent years. Authorities are looking for various
technological and auxiliary solutions to deal with this environmental crisis. One of the advances
being utilized in the forest fire field and its aftermath is unmanned aerial vehicles (UAVs). UAVs
play a fundamental role in wildfire-fighting solutions due to their ease of use and high accessibility.
However, the energy constraints of a single UAV and the fire areas make monitoring challenging.
Therefore, to address these issues, we propose a monitoring application called Phoenix. We make three
main contributions with the Phoenix application. Firstly, we implement a monitoring application
consisting of path planning, graph engine, and modified TSP algorithms to help the UAV’s fire
tracking and shorten its route. Secondly, we develop a network architecture to transfer the tracking
data we obtained to provide information to the fire brigade and other firefighting units. Thirdly,
we provide energy optimization for a single UAV mission. The first part of the application uses the
elliptical fire model and simulation. In addition, Phoenix utilizes fuel moisture content ( f mc) data
of the fire zone to analyze the critical fire regions. The simulation results show that our Phoenix
application reduces energy consumption by 38 % and enhances coverage by up to 51%.

Keywords: wildfire surveillance; fuel moisture content; path planning; energy efficiency; drone coverage

1. Introduction

Wildfires are conspicuous natural phenomena that the world has had to face in recent
years. With the negative effect of global warming, the number of wildfires has increased
and become widespread worldwide. In 2019, devastating wildfires started in Australia
that caused the death and displacement of 3 billion animals [1] and continued to burn
until the first quarter of 2020. Wildfires are one of the most significant natural disasters,
threatening both natural life and humanity. The adverse impact of wildfires is not limited
to the nearby environment. Other consequences that emerged from the wildfires were
abnormally increased phytoplankton blooms and carbon dioxide release that adversely
affected marine ecosystems [1].

Unfortunately, the Australian wildfires were not the only long-term destructive natural
disasters in the last years. California, Turkey, Greece, and Italy suffered from forest fires
caused by dry weather and high temperatures [2]. According to the reports, the 2020 and
2021 summers were the hottest recently. It took days and months to extinguish the fires.
The results of the report [3] from the European Commission’s Joint Research Center (JRC)
state that there is an apparent increase in both the number of fires and the burnt area in
2020, as seen in Figure 1. As the number and severity of the fires increase, the extinguishing
efforts are also becoming insufficient. Firefighters are not adequate to control the giant fires
in huge areas. Because of these extreme conditions, countries have had to take advantage
of ground and aerial support units during the firefighting process.

With the increasing number of fires in recent years, efforts to intervene and control
fires have also started to develop rapidly. In particular, while aerial intervention plays a
critical role in extinguishing fires, the strategic use of UAVs has increased considerably.
UAVs are utilized for various purposes, including data collection for pre-fire forecasting,
monitoring, and firefighting. Additionally, UAVs are capable of carrying out activities
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related to post-fire rehabilitation. Using UAVs in such a crucial role has led to a diversity of
wildfire applications being developed. Both industry, academia, and government agencies
have increased the use of UAVs in wildfire research.

 -

 5,000

 10,000

 15,000

 20,000

 25,000

 A
lg

er
ia

 A
us

tr
ia

 B
ul

ga
ria

 C
ro

at
ia

 C
yp

ru
s

 C
ze

ch
 R

ep
.

 F
in

la
nd

 F
ra

nc
e

 G
er

m
an

y
 G

re
ec

e
 H

un
ga

ry
 It

al
y

 L
at

vi
a

 L
eb

an
on

 L
ith

ua
ni

a
 M

or
oc

co
 N

et
he

rla
nd

s
 N

or
th

…
 N

or
w

ay
 P

ol
an

d
 P

or
tu

ga
l

 R
om

an
ia

 S
er

bi
a

 S
lo

va
ki

a
 S

lo
ve

ni
a

 S
pa

in
 S

w
ed

en
 S

w
itz

er
la

nd
 T

ur
ke

y
 U

kr
ai

ne

N U M B E R  O F  F I R E S

2020 2010/19   average

 -
 20,000
 40,000
 60,000
 80,000

 100,000
 120,000
 140,000
 160,000

 A
lg

er
ia

 A
us

tr
ia

 B
ul

ga
ria

 C
ro

at
ia

 C
yp

ru
s

 C
ze

ch
 R

ep
.

 F
in

la
nd

 F
ra

nc
e

 G
er

m
an

y
 G

re
ec

e
 H

un
ga

ry
 It

al
y

 L
at

vi
a

 L
eb

an
on

 L
ith

ua
ni

a
 M

or
oc

co
 N

et
he

rla
nd

s
 N

or
th

…
 N

or
w

ay
 P

ol
an

d
 P

or
tu

ga
l

 R
om

an
ia

 S
er

bi
a

 S
lo

va
ki

a
 S

lo
ve

ni
a

 S
pa

in
 S

w
ed

en
 S

w
itz

er
la

nd
 T

ur
ke

y
 U

kr
ai

ne

B U R N T  A R E A

2020 2010/19   average

,

,

Figure 1. Number of fires and burnt areas in 2020 and between 2010 and 2019 according to JRC report
for countries [3].

Moreover, large-scale forest fires are more challenging to fight than smaller fires.
The environmental conditions of forested areas, such as mountainous and hilly terrain, can
affect the direct reaction to the fire. In addition, the density of trees can also impede access
to the fire area. Because of these factors, UAVs are of great importance in fire monitoring.
Additionally, UAVs are cost-effective and physically easy to transport by fire units, which
increases their use in wildfires.

The widespread use of UAVs in different domains and the fact that they have been
the subject of prominent on-site computation studies have developed several applications.
The cost of employing UAVs in aerial networks is dropping, which extends a wider range
of applications [4]. However, wireless communication is more vulnerable to attack and
data theft than wired communications. In this context, the authors of [5] propose a security
solution that uses the DEA window analysis and Malmquist index to prevent data theft
that may occur in aerial networks created using drones. In [6], the authors attempted to
minimize energy consumption while increasing the coverage area of aerial base stations
(ABSs). In this context, the authors used the hidden Markov model (HMM) method to
calculate the next state of mobile users. They also used reinforcement learning to reduce
energy consumption and position the drones in the right places as aerial base stations.
In [7], the authors proposed a framework that utilizes deep reinforcement learning methods
to overcome UAV network control issues. The framework contains a programmable control
interface and learning engine. The authors of [8] proposed a search-and-rescue application
for natural disasters using UAVs. The application monitors disaster areas to detect victims.
It modifies the UAVs’ path according to the victims’ locations. It also provides a neural
network-based prediction mechanism for future victim detection.

The interest of both academia and industry has shifted towards developing new solu-
tions and technologies in order to cope with drastically increased wildfires around the globe.
In this study, we categorize the related literature into two major groups: wildfire monitoring
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and detection. In order to provide reliable monitoring during disasters such aswildfires,
Afghah et al. [9] proposed to employ autonomous UAVs to deal with hard-to-reach sites
during a fire. Furthermore, they suggested a distributed model with a framework that
provides maximum coverage with a minimum number of UAVs to group many UAVs into
several coalitions. Various studies [10–13] used a cellular automata model to analyze fire
propagation. Rashid et al., in [10], proposed a wildfire monitoring model that combines
a computational model and social media-driven drone sensing (SDS) methods. Their
model utilizes social media signals for a cellular automata-based computational model.
They also combined their model with meteorological data to analyze wildfire prediction.
Giuseppi et al. in [11] suggested a monitoring application that utilizes satellite data. An-
other study [12] provided a UAV swarm for a searching and tracking method for wildfires
using temperature levels. Yet another study [13] focused on a fire propagation model that
employs a geographical information system. Genetic algorithms support the model to
verify the results. The authors in [14] suggested an application model for monitoring the
evolution of wildfires. Ref. [14] integrated real-life terrain maps, fire propagation models,
and wind models to plan trajectories for fixed-wing UAVs. Their model adapts generic
variable neighborhood search (VNS) to integrate maps and models. Furthermore, previous
studies [15,16] have utilized Kalman filter-based solutions. One study [15] proposed a
UAV cooperation method for monitoring wildfire contours. A distributed optimization
problem for coverage was formulated using a mathematical model and derivation. In [16],
the authors suggested a method that provides a scalar field wildfire model and a Kalman
filter-based estimation approach. They aimed to estimate and monitor fire conditions and
fire contours during wildfires and collect the related data with a group of UAVs. In [17], the
authors suggested an Internet of Things (IoT) application that detects fires and estimates
fire intensity employing UAVs. Ref. [17] implemented a convolutional neural network
(CNN)-based model, XtinguishNet, for the estimation of fire intensities. Their model
categorizes fire images as high, medium, and low intensity. In addition, the application
collects weather and wind data from the fire zone using sensors. Zhao et al. proposed a
CNN-based saliency detection method that uses UAV imagery in [18]. In [19], the authors
utilized 360-degree sensor cameras and a deep CNN to segment smoke and fire images.
Ref. [20] proposed an early smoke detection system that uses machine learning-based image
segmentation techniques and a cloud-based application. The authors in [21] suggested a
forest fire detection and monitoring method to decrease false warnings in wildfires. Their
suggestion included code identification, smoke motion detection, and fire classification
methods. In [22], Muhammad et al. proposed an early fire detection system based on a
CNN for indoor and outdoor locations. Additionally, they developed a cognitive radio
channel selection method for cameras. Ref. [23] suggested a CNN-based fire detection from
related videos. To decrease the computational complexity, they provided fully connected,
non-dense CNN layers. The authors of [24] implemented a CNN-based prediction model
to analyze and model forest fires. They trained their model using past forest fire data
from Yunnan, China. In addition, they evaluated their results with well-known machine
algorithms such as support-vector machines and random forests.

Nevertheless, despite all the advantages of UAV use, the terrain and fire conditions
can make fire monitoring challenging. Taking these challenging conditions, including
smoke, mountainous fire areas, and dense forests, into account, we propose an application
called Phoenix to monitor the fire situation and send the necessary information to the fire
departments. This proposed method’s novelty is combining physical and stochastic fire
model perspectives and employing them to analyze and monitor fire areas. The proposed
Phoenix application consists of two main parts: a monitoring part and an information-
sending part for firefighters. To sum up, our contributions in this study are:

• We implement the Phoenix method, which consists of a path planning algorithm, a
graph engine algorithm, and a modified TSP algorithm for monitoring. In this part,
we utilize the elliptical fire model and fire simulation to map possible fire zones for
the UAV to monitor. Then, we identify the critical paths of the fire zone using fuel
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moisture content data. In the last step, we calculate new flying paths according to the
critical path and temperature of the fire area.

• We analyze and optimize energy consumption for a single UAV for a critical wildfire
mission according to altitude and prior fire zones.

• We provide performance evaluation for our proposed method, which compares differ-
ent fire area sizes and several clusters in terms of cost, energy consumption, coverage
delay, and coverage ratio.

The rest of the paper is organized as follows. In Section 2, we provide detailed informa-
tion about our proposed method, where we explain our problem formulation, envisioned
network architecture, and developed optimization algorithms. Then, Section 3 outlines the
details of our simulation setup and evaluates the performance of the proposed framework.
Lastly, we conclude our paper by summarizing our contributions and describing future
work in Section 4.

2. Proposed Method and Application

In this section, we explain our proposed method in two parts: Application Architecture
and Network Architecture. We give the details of our proposed method and algorithms in the
Application Architecture section. The Network Architecture section contains the components of
the network topology we propose for fire areas. Then, we provide an energy optimization
formulation and its constraints.

2.1. Application Architecture

Our proposed application architecture has four main parts: topology design and path
planning, a monitoring center, an alert system, and coverage and energy optimization, as shown in
Figure 2. The details about the application architecture are given in the below subsections.

Monitor 
Center

Topology Design and 
Path Planning

Coverage and Energy 
Optimization

Alert System

Ground 
Units

Base 
Station

Backup 
Vehicle 
Teams

Fire 
Info 

Center

A2G link
Coverage vision
Path

Figure 2. System Architecture.

Topology Design and Path Planning

Path Planning Algorithm: In the topology design and path planning module, we
implement the path planning algorithm, as shown in Algorithm 1, which consists of two
parts: a graph engine and a modified TSP algorithm. Fire models come first when analyzing
the spread of fires and the factors affecting them. The main fire models are stochastic,
deterministic, and empirical, as seen in Figure 3. The empirical model contains physical
and semi-empirical [25] models. We utilize the elliptical fire model [26], this elliptical fire
model is a physical fire model approach, in the first phase of the path planning algorithm,
as shown in Figure 4. The elliptical fire model is shown in Figure 5. The model describes
a fire’s behavior according to physics laws. Fire spreading from other ignition points
continues to spread elliptically according to Huygens’ principle [25]. We implement the
elliptical fire model in our fire simulation to generate the graph G(V, E, w). We use fire
points to calculate V, E, and w. V = {V0, V1, V2, . . . , Vn} is a set of vertices representing
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fire ignition points and dense fire clusters. E = {E0, E1, E2, . . . , Ek} is the set of edges and
possible paths between two vertices. w is the weight function, which is the set of Euclidean
distance values between two adjacent vertices. To calculate V, according to the elliptical
fire model [26] shown in Figure 5, a specific fire point P(x, y)′s coordinates x and y are
calculated as follows:

x = c · t f ire + at f ire cos θ (1)

y = b · t f ire sin θ (2)

where θ is the perimeter angle at the X axis, and 0 ≤ θ ≤ 2π. t f ire is the propagation time
from the ignition point to the point P(x, y).

Moreover, we need to calculate the fire spread rates to predict and analyze the spread
of fire points. The maximum fire spread rate and backfire spread rate are calculated
as follows:

Rmax = a + c (3)

Rback = a− c (4)

where a and b are fire spread rates according to the wind direction for the X and Y axes,
respectively. c is the constant moving rate of the center of the ellipse. Rmax and Rback play a
crucial role in mapping the fire clusters and edges between related points.

After the path planning algorithm determines the fire zones using the fire model, it sends
the generated G to the graph engine.

StochasticDeterministic
Empirical

Physical Semi-
empirical

Phoenix

Fire Models

Figure 3. Fire models.

G

Path Planning

Graph 
Engine

Modified 
TSP

G’

G’ Cost

Fire points

-fmc+G
-Temp check

-Prior paths
-Cost

-Calculate G with fire points 

Simulation and 
Fire Model

Phoenix

1

2

3

4

Figure 4. Phoenix Architecture.
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Figure 5. Elliptical Fire Model [26].

Algorithm 1 Path Planning Algorithm.

1: function PATH PLANNING
2: Calculate and define G(V,E,w) . Computing fire points with simulation and fire

model
3: G

′ ← Phoenix Path(G) . Mapping fmc values and checking temperature levels and
updating G

4: return Modified TSP(G
′
) . Calculating the cost of G

′

5: end function

Graph Engine: The graph engine has two objectives. The first one is to map fuel
moisture content ( f mc) values in the region, and the second is to check the temperature
values in the area that must be monitored. In other words, the graph engine converts
G(V, E, w) from the path planning algorithm to G

′
(V
′
, E
′
, w
′
).

f mc is a value indicating the proportion of water in plants. f mc helps determine a
region’s wet and dry mass of vegetation. f mc is one factor that directly affects fire [27]. f mc
impacts the distribution, behavior, and growth of fire and also gives an idea about whether
the fire will spread to the relevant area [28].

The algorithm starts with mapping the f mc values to the related graph G, as shown in
Algorithm 2. The fire area A is divided into small and equal subareas such that
A = {a00, a10, a20, . . . anm}. Each subarea has its own f mc value. The f mc value of subarea
ai is calculated as in Equation (5):

f mcai =
wwai

− wdai

wdai

(5)

where wwai
is the wet weight and wdai

dry weight of the fuel content of the area ai.
The average f mc value of the fire point P(x, y) in the area ai is calculated as follows:

f mc(x,y) =

x+ n
2

∑
i=x− n

2

y+ m
2

∑
j=y−m

2

f mc(i,j)
|x−i|+|y−j|

n×m
(6)

The algorithm checks f mc values of each vertex of G. If the f mc value of the vertex
is smaller then θ f mc, which is the threshold of f mc values, the vertex is marked as prior
because in areas where f mc values are low, the growth and spread rate of a fire are higher.



Drones 2023, 7, 19 7 of 14

The aim of checking the fmc values is to prioritize monitoring areas with high spread and
growth risk. Secondly, the algorithm controls the temperature of the paths for a UAV flight
during wildfire. There are two main elements to consider for removing the edges:

• Flight distance for safety;
• Energy constraints for a UAV.

If the temperature of the edge is higher than the safe temperature θtemp, the algorithm
removes the edge from the graph G. The algorithm updates G, taking into account the
edges removed, and creates a new graph G

′
(V
′
, E
′
, w
′
). Additionally, the graph engine

ensures that at least one connection edge remains between vertices.

Algorithm 2 Graph Engine Algorithm.

1: function GRAPH ENGINE(G(V, E, w))
2: Map f mc values to G
3: for all Vertex in V do
4: if Vertex f mc < θ f mc then . Possible flammable vertex, cover it first
5: Give priority to Vertex
6: end if
7: end for
8: for all Edge in E do
9: if Edgeareatemp > θtemp then . If an edge is too hot to flight remove it from G

10: Remove Edge from G
11: G

′ ← Update G
12: end if
13: end for
14: return G

′
(V
′
, E
′
, w
′
)

15: end function

Modified TSP Algorithm: In catastrophic environmental events such as wildfires,
where a single UAV will be deployed, it is essential to determine the flight path. In fact,
in addition to planning the path, ensuring that a single UAV completes the flight without
running out of battery requires detailed planning. Because of this, we adapt a three-
stage detailed path planing mechanism. The path planning algorithm and graph engine
algorithm generate and update the graph for the UAV to monitor the fire area completely
and correctly. In the modified TSP algorithm, as shown in Algorithm 3, the goal is to ensure
that the UAV moves in a planned manner. Therefore, we adapt the well-known travelling
salesman approach to our problem.

Algorithm 3 Modified TSP Algorithm.

1: function MODIFIED TSP(G
′
)

2: cost = 0
3: Select and start with initial vertex V

′
i

4: if There is uncovered vertex in G
′

then
5: Find the closest vertices of V

′
i

6: if Vertices have priority then
7: Move to closest prior vertex V

′
close

8: else
9: Move to closest vertex V

′
close

10: end if
11: cost = cost + costE′close

12: V
′
close ← V

′
i

13: end if
14: return cost
15: end function
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The modified TSP algorithm first determines the initial vertex for the UAV to monitor.
This vertex determination is based on the location of the ground station and the location of
the nearest vertex. If there are vertices equally distant from the ground station, which can
be more than one initial vertex, the modified TSP algorithm selects the vertex with priority as
the initial vertex. The modified TSP algorithm repeats the vertex selection until no uncovered
vertex exists. The reason for monitoring priority areas at this stage is to cover all vital fire
areas within a specific time interval. Less important fire areas, i.e., areas less likely to grow
and spread to other areas, can be monitored later. However, fires that spread and grow in
risky areas are challenging to recover from.

Moreover, after completing the vertex selection, the modified TSP algorithm calculates
the path cost between the vertex where the UAV is located and the selected vertex, which
is costE′close

. After each vertex selection, the modified TSP algorithm calculates the path cost

to obtain the total cost. The algorithm evaluates the total cost for benefit in coverage and
energy optimization. Some factors that affect the total cost are:

• The size of the fire area;
• The number of fire ignition points;
• The distance of fire clusters from each other.

Additionally, other factors that affect the fire conditions also affect the total cost, such
as wind speed and direction.

2.2. Network Architecture

Communication is crucial both during and after natural disasters in many ways,
including for disaster assessment and recovery. In order to minimize the damage of the
disaster, it should be ensured that communication is not harmed and persists. The natural
disaster may have damaged network infrastructure. In such cases, ad hoc networks, where
no infrastructure is needed, come into play. However, communication infrastructure might
or might not collapse in natural disasters such as wildfires. This is because there may be no
extensive network infrastructure to affect communications directly in areas where wildfires
occur. Because of all these reasons, we propose a network architecture that contains an ad
hoc network in the fire area containing ground units, a base station, and backup vehicle
teams, as shown in Figure 2.

Fire Area: Our application uses an ad hoc network to transmit monitored information
about the fire in the fire area. The ad hoc topology contains the UAV and the ground station
(GS). The UAV and GS connection is the most critical link in our network architecture
because the UAV sends the monitoring information about the fire situation to the GS via
this link.

In the second phase, the GS can inform the vehicular backup teams about the status of
the fire via base stations. Vehicular backup teams are directed according to the growth rate
and position of the fire. The GS also provides information to the fire information center,
which is the center of the fire brigades. Depending on the severity of the situation, the fire
information center contacts the medical units and rescue teams and directs them. There
may be no occupants or people in the area, but animals suffer a lot due to the destructive
effect of fires.

2.3. Coverage and Energy Optimization

Due to high temperatures in wildfires, UAVs must fly at a certain altitude to safely
complete their missions. The fire level may change in some regions, affecting the flight
altitude. The flight altitude should be revised for flights in areas with increased fire height.
In addition, temperature sensors are useful for calculating unsafe flight altitudes.

However, as the flight altitude of the UAV increases, the energy they consume increases.
A flight plan should be made considering terrain and fire conditions if there is only a
single UAV. A flight plan should be organized in the most optimal way for the reasons
and conditions of the UAVs’ flight mission [29]. This planning should also consider the
maximum flight time that can be achieved with the batteries and the energy it will consume
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when returning to recharge the UAV. The consumed energy of a UAV in time slot ti is
calculated in [30] as follows:

E(ti) = f ly(ti)α f lyt f ly + asc(ti)δhh + desc(ti)γhh (7)

where β is the energy loss coefficient during flying, δ is the energy loss coefficient during
ascending, and γ is the energy loss coefficient of descending. t f ly is the flying time in
the ti time slot of the UAV, and h is the flight altitude. The coverage area of a UAV is
calculated as:

Covarea(h) = π(h tan
φ

2
)2 (8)

where φ is the coverage angle of the UAV.
Increasing the flight altitude increases the UAV’s coverage area. Nevertheless, we

cannot directly increase the flight altitude to increase the coverage area. While we can
provide the required flight level for high temperatures, we must recognize the negative
impact this has on energy consumption. Instead of providing the required coverage,
the priority is to ensure a safe flight level and minimize energy consumption. In order to
minimize energy consumption, flights with a single drone should be carried out without
exceeding the safe flight level.

For all these reasons, we can keep the flight altitude at a minimum and constant as
much as is practicable and increase the area that can be covered per unit of time. To do
this, we can also use the fire model and heuristics to neglect fewer priority areas in the first
stage. Depending on the fire’s characteristics, flight planning can be made in advance for
areas with certain splash zone hazards. According to these constraints, we minimize the
total consumed energy Econsumed:

min ∑
0<i<N

E(ti) (9)

s.t. hsa f ety ≤ h ≤ hmax (10)

0 < t f ly ≤ tmax (11)

Total Covarea ≥ θcoverage (12)

0 < φ < π (13)

where tmax is the total flight time of the UAV according to battery constrains. The coverage
area threshold θcoverage is calculated according to the safety flight altitude hsa f ety and the
minimum flight time. If there are critical fire zones, they should be designated first.
The designated crucial fire zones are identified as prior zones and covered accordingly.
Temperatures can increase to levels that can be hazardous for UAV equipment and flight
in specific fire areas. Therefore, flights over these regions are impractical and should
be avoided.

3. Performance Evaluation and Results

In this section, we will evaluate the cost, energy, and coverage improvement ratio
results. For this, we first obtained the points of the fire area with the help of a fire simulation.
We used Firesite and FlamMap for our fire simulations. In the simulation, the t f ire value
was equal to 1, and the values of a, b and c were equal to 30, 18, and 2, respectively.
After obtaining the fire points, we used this data in the second step of our simulation.
In this step, we used Matlab and UAV Toolbox to analyze the results of our proposed
method. In this simulation environment, we took hsa f ety as 30m. We also set our flight
time as 20 min. We ran the simulation 50 times for each scenario. The obtained results are
presented with a confidence interval level of 95%.

In our first scenario, we took the fire area as 500× 500 m. Then, we assumed that the
number of fire clusters was 20. In the other stages, we increased the size of the fire pits and
the intensity of the fire. As the fire intensity increased, the safe temperature level increased
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and is exceeded in most places. This reduced the number of safe routes for the drone to
cover the fire clusters. Then, we evaluated detailed cost results, as shown in Figure 6. In the
first measurement, 25 percent of usable paths became unusable; in the second measurement,
50 percent became unusable; and in the third, this value was 75 percent. To compare the
results we obtained, we enlarged the fire area to 1000× 1000 m and 1500× 1500 m. As can
be seen in Figure 6a, the cost increases in the 500× 500 m area as the number of useless
routes increases. We also observe the steps we applied by increasing the fire clusters. We
took fire clusters 40 and 50 for area sizes 500× 500 m, 1000× 1000 m, and 1500× 1500 m,
as shown in Figure 6b,c, respectively.
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Figure 6. Cost results for (a) 20 fire points, (b) 40 fire points, and (c) 50 fire points.

In the next step, we compared our proposed Phoenix and modified TSP algorithms
with the traditional TSP algorithm. As shown in Figure 7, we examined the results of these
methods in terms of coverage delay on three different fire area sizes. In Figure 7a, we
compare the average coverage delay results of 20 fire clusters. The results contain the total
average delay result of our base path model, 25% reduced safe paths, 50% reduced safe
paths, and 75% reduced safe paths according to our proposed algorithm. In Figure 7b,c,
the 40 and 50 fire clusters are compared according to the above criteria. Although our
proposed Phoenix method increases the cost by eliminating paths, it shows better results
than TSP. The reason for this is that the Phoenix method prioritizes the areas to be monitored
according to the fire clusters.
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Figure 7. Average coverage delay for (a) 20 fire points, (b) 40 fire points, and (c) 50 fire points.

Next, we evaluated our energy optimization and coverage results. For the consumed
energy results, we again compared the average results of our baseline model and the
models with reduced paths according to the Phoenix method with the traditional TSP.
As can be seen in Figure 8, our model does not show a radical increase compared to the
Phoenix results both when we increase the fire area and when we increase the number
of fire clusters. However, when our proposed algorithm is compared to TSP, we observe
a remarkable increase in energy consumption both for increasing the fire area and for
increasing the number of fire clusters. Secondly, we discuss our coverage improvement
ratio compared to the traditional TSP algorithm in Figure 9. The coverage improvement
ratio is calculated by removing re-monitored areas and carrying out a comparison with
traditional TSP. Figure 9a shows the results of the base model and the model with reduced
safe paths compared to the results of the Phoenix for a 500 × 500 size fire field for fire
cluster numbers of 20, 40, and 50, respectively. In Figure 9b,c, we also consider the results
for 1000 × 1000 and 1500 × 1500 fire areas. According to the results, the rate of increase
in the coverage rate is higher when the number of fire clusters is high and the fire area is
small and moderate. The speed of the coverage improvement ratio decreases as the fire
area and the number of fire clusters increase.
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Figure 8. Energy consumption comparison results for Phoenix and TSP.
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Figure 9. Coverage improvement ratio for (a) 500 × 500 area size, (b) 1000 × 1000 area size, and
(c) 1500 × 1500 area size.

4. Conclusions

We introduce a new algorithm called Phoenix. We use the results obtained using
this algorithm in our modified TSP algorithm. This paper considers the challenges of
effectively monitoring wildfires using a single UAV. We optimize our method accordingly
to increase energy efficiency and coverage. We compare our simulation results with the
traditional TSP algorithm. We obtain improvements in coverage delay results. According
to the consumed energy results, we reduced the energy consumed by 33%, 35%, and 38%
for 20, 40, and 50 fire clusters on average, respectively. Additionally, we obtain a 51%
improvement in coverage with our proposed solution. In future work, we will focus on the
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network architecture and increase the number of UAVs in the topology. We will also focus
on the communication issues in the alert system in the network. Lastly, we will develop
a test bed in a joint project with an industrial aviation company in the near future and
schedule both quadrocopter and fixed-winged UAV flights over the northern forests of
Istanbul, where we can simulate our fire model in conjunction with actual flights to further
validate our framework.
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