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Abstract: Dynamic spectrum detection has attracted increasing interest in drone or drone controller
detection problems. Spectrum sensing as a promising solution allows us to provide a dynamic
spectrum map within the target frequency band by estimating the occupied sub-bands in a specific
period. In this paper, a robust Student’s t-distribution model is built to tackle the scenario with a
small number of observed samples. Then, relying on the characteristics of the statistical model, we
propose an appropriate goodness-of-fit (GoF) test statistic regarding a small number of samples.
Moreover, to obtain a reliable sensing, bilateral hypotheses of the test statistic are both used to make
a decision. Numerical simulations show the superiority of the proposed method compared with
other schemes, including the unilateral hypothesis-based GoF testing and the conventional energy
detection, in a small number of sample cases.

Keywords: spectrum sensing; Student’s t-distribution; powerful goodness-of-fit test; cognitive drone
network

1. Introduction

Nowadays, due to the rapid development of the wireless communication, the number
of civil unmanned aerial vehicles (UAVs) has increased significantly in recent years, which
could cause many problems for city administration [1]. Reliable detection of UAVs or
their controllers is a prerequisite for further administration [2–4]. Cognitive radio (CR) [5],
which enables dynamic detection of surrounding signal spectrum, becomes a promising
solution for frequency detection. More specifically, the whole spectrum can be divided
into sub-bands and different signal occupancies can be estimated [6–8]. It has been widely
applied to drone networks in order to create promising infrastructures of cognitive drone
networks, in which multiple resource-constrained sensor nodes are equipped with cog-
nitive ability [9–12]. As the fundamental prerequisite for CR, namely spectrum sensing
(SS) [13,14], reliable and quick detection of signal existence is the key for further strategy
and decision.

To dynamically estimate the existing spectrum, many algorithms have been developed,
including cyclostationary feature, matched filter, waveform-based detection [15–17], etc.
However, these algorithms need to acquire prior knowledge of primary user (PU), which is
difficult in practice, i.e., illegal quad-rotor drone intrusion. Therefore, blind detection tech-
niques that do not need prior knowledge about PU are developed, for instance, the energy
detection (ED) scheme [18–20] and the eigenvalue-based estimation [21–23]. ED is one com-
monly adopted method due to its simplicity for implementation, but the noise uncertainty
in practice significantly degrades its detection performance. Thus, the eigenvalue-based
blind detection is proposed to settle the disadvantage of ED by analyzing the covariance
matrix. The corresponding eigenvalues are utilized to increase the robustness against
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noise uncertainty. Unfortunately, it needs a large number of samples to obtain a good
performance, and has relatively high complexity.

Some GoF test-based strategies have been proposed to achieve better estimation
performance given a small number of available samples [24–30]. In [31], the Anderson–
Darling (AD) test is exploited to achieve reliable detection under a small number of samples.
On the basis of this, the authors in [32] make use of a Student’s t-distribution test for fully
blind detection with noise uncertainty. In [33], the Kolmogorov–Smirnov (KS) test, a non-
parametric GoF method, is used to perform a fast and reliable spectrum sensing, which is
also robust to non-Gaussian noise and channel uncertainty. In [34], the authors utilize a
powerful GoF test to achieve non-parametric sensing for Middleton noise scenario. In [35],
the characteristic of non-symmetrical differences is exploited to construct the unilateral
right-tail AD test. In [36], the ratio between maximum eigenvalue relative to the trace is
exploited to achieve blind detection. However, only one side of the binary hypothesis
information is used in all of the above works. That is to say, only the null hypothesis
is considered. Therefore, the reliability of the decision may be improved by using the
bilateral hypotheses.

To address the above problems, an enhanced detection method based on the GoF test
using bilateral hypotheses for a small number of samples in cognitive drone network is
proposed in this work. One of the main objectives is to obtain a short signal processing
and a real-time decision. Considering the case that there is only a single-radio module at
SU, the sampling period of the observation sensors is expected to be as short as possible.
Moreover, we consider a special information environment where there is only few steady
state receptions available. First of all, we propose to utilize the Student’s t-distribution
in order to address a small number of sample problems, which are collected by the low
power sensor nodes (SU) in the cognitive drone network. In fact, the performance of ED
using Gaussian approximation becomes good only when sufficiently large sample size is
available [37]. It has been shown that the Student’s t-test is the optimal test in spectrum
sensing given a small number of samples [38,39]. Then, taking into account the limitations
of the traditional GoF test (e.g., AD test and KS test) under a small number of samples, the
powerful GoF test [40–44] is introduced to precisely evaluate the distance between common
cumulative distribution and the empirical distribution of observation. As in the proposed
method in [45], the statistic based on the likelihood ratio is used, which is substantially more
powerful than the traditional statistic. The main contribution stands in the proposition
of the powerful GoF test to accommodate the small samples situation. Finally, two new
statistics based on bilateral hypotheses are calculated based on the statistical characteristic
of Student’s t-distribution, and a high reliability sensing decision is obtained based on
bilateral hypotheses.

The rest of the paper is organized as follows. The traditional unilateral hypothesis-
based GoF test is introduced in Section 2. The proposed scheme is illustrated in Section 3,
where the Student’s t-distribution-based statistical model is provided. A powerful goodness-
of-fit test statistic Zc is introduced for computing the distance between the common cu-
mulative distribution of the observations and the empirical distribution, and the bilateral
hypotheses information is utilized for high reliability decision. Numerical simulations are
discussed in Section 4 and the conclusions are provided in Section 5.

2. Traditional GoF Test Based on Unilateral Hypothesis

The traditional sensing scheme on the basis of GoF test using unilateral hypothesis
is presented in this section. Spectrum sensing aims to detect the existence of PU signal in
a specific frequency band for a given set of observed samples. This can be expressed as a
traditional GoF test problem, which can be written as:

H0 : Fn(x) = F0(x)

H1 : Fn(x) 6= F0(x)
(1)
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where H0 is the null hypothesis and H1 is the alternative hypothesis. F0(x) denotes the
cumulative distribution function (CDF) of noise distribution of H0 hypothesis, while
Fn(x) represents the CDF of collected samples, which can be calculated by using the
empirical CDF

Fn(x) = |i : xi ≤ x, 1 ≤ i ≤ n|/n (2)

where |S| represents the cardinality of a given set S, and n denotes the number of samples
utilized for acquiring the statistical distribution.

In other words, the detection problem is turned to a problem of testing the null
hypothesis against the alternative hypothesis. Assuming that Z is a statistic for testing H0
against H1, which is defined as [46]

Z =
∫ ∞

−∞
Zxdw(x). (3)

Here, w(x) represents some weight function and large values of Z and reject the null
hypothesis H0. The power of Z depends on Zx and w(x), and the natural candidate for Zx
is generally considered as the Pearson χ2 test statistic defined as follows [46]:

P2
x =

n(Fn(x)− F0(x))2

F0(x)(1− F0(x))
. (4)

For a traditional GoF test, Zx in Equation (3) is firstly replaced by P2
x . Then, various

traditional GoF tests have been proposed to evaluate the distance between F0(x) and Fn(x),
and how to choose different weight functions. For instance, the AD test, Kolmogorov–
Smirnov (KS) test, and Cramér-von Mises (CM) test [47,48]. They belong to the one-
side hypothesis test for H0. A one-side hypothesis is utilized for determining whether
the collected samples meet the distribution with CDF F0(x) or not. These GoF tests are
illustrated as follows.

(A) KS test: To evaluate the relative distance, the empirical CDF of collected samples
and the reference CDF are considered in KS test and w(x) = n−1F0(x)(1− F0(x)) is
chosen. Then, the GoF test statistic can be obtained using the largest absolute distance
between the two CDFs, which can be written as

D2 = {sup|Fn(x)− F0(x)|}2. (5)

Here, sup{·} represents the supremum function denoting the maximum value in a
given set. In a practical scenario, it can be rewritten as [49]

D2 =
(

max(D+, D−)
)2

(6)

D+ = max
1≤i≤n

{ i
n
− F0(xi)} (7)

D− = max
1≤i≤n

{F0(xi)−
i− 1

n
}. (8)

(B) CM test: In the CM test, the term dw(x) is set to dw(x) = F0(x)(1− F0(x))dF0(x). In
other words, CM test is an alternative to the KS test. The statistic of the CM test is
defined by

W2 = n
∫ ∞

−∞
(Fn(x)− F0(x))2dF0(x). (9)
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The integral can be divided into n parts as provided in [47]. Then, W2 can be approxi-
mately rewritten by

W2 =
1

12n
+

n

∑
i=1

(F0(xi)−
2i− 1

2n
)2. (10)

(C) AD test: It can be seen from Equation (10) for distribution F0(x), there is not enough
weight to the tails included in W2. Thus, Anderson and Darling generalized the CM
test statistic in order to enhance the difference between the lower and upper tails of the
distribution. By choosing w(x) = F0(x), the AD test statistic is given as follows [48]:

A2 = n
∫ ∞

−∞

(Fn(x)− F0(x))2

F0(x)(1− F0(x))
dF0(x). (11)

For an efficient implementation, the simplified formula of the AD statistic can be
denoted as [47]:

A2 = −n− 1
n

n

∑
i=1

(2i− 1)(lnZi + ln(1− Zn+1−i)) (12)

with Zi = F0(xi). n is the number of the collected samples.

The above traditional GoF test statistics are derived considering the unilateral hypoth-
esis. The spectrum sensing can be reformulated as

H0 : T ≤ η

H1 : T > η
(13)

where T is one of the GoF test statistics D2, W2 and A2, and η is a threshold which can be
found in [47] or be calculated using the Monte Carlo approach. Hence, when T ≤ η, the
null hypothesis H0 can be considered to be accepted and the licensed frequency band is
assumed to be available (not used by the PU).

3. Proposed Enhanced GoF Test-Based Spectrum Sensing Using Bilateral Hypotheses

In this section, an enhanced GoF test-based spectrum sensing technique using bilat-
eral hypotheses is proposed. Firstly, a statistical model of the collected data is provided
considering the Student’s t-distribution, then a powerful GoF test statistic Zc is introduced.
Moreover, in order to obtain an improved decision, bilateral hypothesis information is
utilized and a final decision is made by comparing them.

In order to use bilateral hypotheses for GoF tests, the traditional sensing scheme based
on hypothesis test in Equation (1) can be rewritten as:

H0 : Xi = Wi

H1 : Xi = hst + Wi
(14)

where H0 indicates the absence hypothesis of a PU signal while H1 denotes the presence
hypothesis of the PU signal, respectively. Xi denotes the received samples at time slot
i (i = 1, 2, . . . , l), Wi represents the sample noise contribution. Here, the noise is assumed
to be additive white Gaussian noise (AWGN) with zero mean and variance σ2, and h
denotes the channel gain between PU and SU, and st is the PU signal component. In
addition, considering that the distribution of the PU signal power spectral density is
unavailable in practice, we can make a reasonable, fair, and neutral assumption that the
PU signal distributes uniformly within the entire bandwidth. For example, in many multi-
carrier signals scenarios, the signal is assumed to be a constant in both frequency and time
domains. The received signal is assumed to pass a down converter to a baseband frequency
bandwidth for presentation convenience in this paper. Then, the samples are acquired
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with a sampling rate several times faster than the baseband frequency. Thus, st can be
considered as a constant, st = 1, as shown in [39]. The sensing problem in this case can be
considered as a standard scenario with same variance and different mean value Gaussian
distributions with corresponding hypotheses.

3.1. Statistical Model of the Collected Samples

We consider the case with a small number of samples and need to establish the
test statistic model based on Student’s t-distribution. Hence, we further assume that the
detected signal is a wide-band signal. As shown in [39], the bandwidth to be detected can
be divided into n subbands, where each subband has equal bandwidth. For each subband,
the m collected samples are limited to small numbers. Then, after receiving the samples
at an SU, the samples X = {Xi}l

i=1 are divided into n groups, with m (m > 1) samples in
each group, which indicates that n = l/m. The mean of the samples is defined as X̄j and
the variance is S2

j for the j-th group, respectively. Consequently, we can have

X̄j ,
m−1

∑
k=0

Xmj−k

m
, S2

j ,
m−1

∑
k=0

(Xmj−k − X̄j)
2

m− 1
(15)

where j = 1, 2, · · · , n and k = 0, 1, · · · , m− 1. Let

Yj ,
X̄j

Sj/
√

m
, j = 1, 2, · · · , n. (16)

Note that in order to calculate the following test statistic, the sequence {Yj}n
j=1 is

sorted in increasing order and we assume that Y1 ≤ Y2 ≤ · · · ≤ Yn.
Under H0 hypothesis, PU transmits signal and the received samples follow Xi v

N (0, σ2). Then, Yj follows a v = m− 1 degree Student’s t-distribution. In the case of the
H1 hypothesis, the transmitted signal and noise are both included in the received signal, it
results that Xi v N (µ, σ2), where µ = h. In this case, Yj is proved to follow a non-central
Student’s t-distribution with degree of freedom given by v = m− 1 and δ =

√
mµ2/σ2,

where µ2/σ2 represents the signal-to-noise ratio (SNR) [32,50]. The histograms for different
scenarios and GoFs of Yj for H0 as well as H1 hypotheses are shown in Figure 1, where
SNR = −2 dB and the number of samples l = 64. It can be observed from Figure 1 that the
case with noise only fits the Student’s t-distribution well. Meanwhile, the case including
both signal and noise matches the noncentral t-distribution curve. Moreover, for the same
degree of freedom, we can notice that the noncentral t-distribution curve shifts slightly to
the right side of the red curve of the Student’s t-distribution.

In addition, the curve shape of the Student’s t-distribution tends to approach a zero
mean normal distribution with variance equal to 1. For parameter m, it can also be derived
that the student’s t-distribution is closer to a standard normal distribution if m becomes
larger. In contrast, if m gets smaller, the tails of the Student’s t-distribution tend to locate
at a higher level as shown in Figure 2. Tails with different m values distribute at a higher
level than that of the normal distribution,. Therefore, for small m, it indicates that variables
Yj in Equation (16) tend to take values that deviate from their statistical mean. This
could potentially result in inaccurate computation of the distance between the common
cumulative distribution function and empirical distribution of the observation. Therefore,
we need to accurately estimate the above distance in the next section.
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Figure 1. Histogram for scenarios with signal and without signal, GoF of Yj under different hypotheses.
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Figure 2. Probability density function (PDF) with different degrees of freedom v = m− 1 in Student’s
t-distribution.

It should be emphasized that the collected sample Xi as Yj is reformulated and the
Student’s t-distribution is satisfied with H0 hypothesis while noncentral t-distribution is
met for the H1 hypothesis. Notice that for the H0 hypothesis, the CDF F0(y) relates only
with degrees of freedom v, while F1(y) depends on the term δ =

√
mSNR. The noise

variance σ2 is also assumed to be known, which is the same assumption as ED-based
methods. In addition, taking into account the limitations of the traditional GoF test (e.g.,AD
test and KS test) under a small number of samples, we propose a likelihood ratio-based
powerful statistic instead of the traditional statistic in the following section.

3.2. Powerful GoF Test

To precisely evaluate the distance between common CDF and the empirical distribu-
tion of the observation, a novel GoF test statistic Zc on the basis of the likelihood ratio is
proposed. It is asymptotically equivalent to the Pearson χ2-statistic in Equation (4) under
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large sample situations. For obtaining the test statistic Zc, two kinds of statistic for testing
H0 with H1 are defined by

Z =
∫ ∞

−∞
Ztdw(t) (17)

Zmax = sup
t∈(−∞,∞)

{Ztw(t)} (18)

where Zt is the statistic for comparing H0(t) with H1(t) such that its large values reject
H0(t) and w(t) is one of the weight functions. Note that

H0 = ∩
t∈(−∞,∞)

H0(t) (19)

H1 = ∩
t∈(−∞,∞)

H1(t) (20)

with H0(t) : Fn(t) = F0(t) and H1(t) : Fn(t) = F1(t).
In [45], authors present a natural candidate for Zt, which is the likelihood ratio test

statistic defined as follows:

G2
t = 2n[Fn(t)log{ Fn(t)

F0(t)
}+ (1− Fn(t))log{1− Fn(t)

1− F0(t)
}] (21)

Setting Zt in Equation (17) equal to G2
t and setting the weight function to a proper

value dw(t) = F0(t)−1{1− F0(t)}−1dF0(t), we have

Z =
n

∑
j=1

[log{F0(y)−1 − 1} − bi−1 + bi]
2 + Cn, (22)

where bi = ilog(i/n) + (n− i)log(1− i/n) and Cn is a constant value.
Since bi−1 − bi ≈ log{(n − 1

2 )/(i −
3
4 ) − 1}, we can derive the powerful GoF test

statistic Zc0 compared with the traditional GoF test. It is approximately obtained in the
following

Zc0 =
n

∑
j=1

[log{ F0(y)−1 − 1
(n− 1/2)/(j− 3/4)− 1

}]2 (23)

where F0(y) denotes the CDF of Yj under H0 hypothesis and it can be calculated by [50]:

F0(y) =



1
2 + 1

π tan−1(y), v = 1,

1
2 + y

2
√

v+y2

(v−2)/2
∑

j=0

bj

(1+ y2
v )j

, v even,

1
2 + 1

π tan−1( y√
v )

+ y
√

v
π(v+y2)

(v−3)/2
∑

j=0

aj

(1+ y2
v )j

, v odd,

(24)

where aj =
2j

2j+1 aj−1, a0 = 1, bj =
2j−1

2j bj−1, b0 = 1. In this situation, the statistic Zc0 denotes
the distance between the CDF of Yj under H0 hypothesis and the empirical CDF of the
collected samples. A large Zc0 means that H0 hypothesis is rejected with a large probability.
Otherwise, a small Zc0 means that the H0 hypothesis is accepted. This is just the traditional
GoF test, which is only based on the null hypothesis. However, in the proposed method,
H1 hypothesis is also considered to improve the reliability of the decision.
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Therefore, corresponding to Equation (23), the other GoF test statistic Zc1 based on H1
hypothesis, is given as follows:

Zc1 =
n

∑
j=1

[log{ F1(y)−1 − 1
(n− 1/2)/(j− 3/4)− 1

}]2 (25)

where F1(y) denotes the CDF of Yj under H1 hypothesis and it can be calculated by [50].

F1(y) =



1
2

∞
∑

j=0

1
j! (−δ

√
2)je−

δ2
2

Γ( j+1
2 )√
π

×I( v
v+y2 ; v

2 , j+1
2 ), y ≥ 0,

1− 1
2

∞
∑

j=0

1
j! (−δ

√
2)je−

δ2
2

Γ( j+1
2 )√
π

×I( v
v+y2 ; v

2 , j+1
2 ), y < 0.

(26)

where Γ represents the gamma function and I denotes the regularized incomplete beta
function. In this situation, the statistic Zc1 denotes the distance between the CDF of Yj
under H1 hypothesis and the empirical CDF of the collected samples. A large Zc1 means
that H1 hypothesis is rejected with a large probability. Otherwise, a small Zc1 means that
H1 hypothesis is accepted.

In this section, due to adapting a more appropriate weight function, we derive a new
GoF test statistic Zc0 that is substantially more powerful than the traditional GoF test statis-
tic under a small sample situation. Moreover, we further derive the other powerful GoF
test statistic Zc1, which utilizes the CDF of noncentral t-distribution under H1 hypothesis.
At the end, in order to enhance the reliability of final decision, we propose to make a final
decision based on bilateral hypotheses (Zc0 and Zc1) in the next section.

3.3. Final Decision Based on Bilateral Hypotheses

In this section, we propose to make use of the information from bilateral hypotheses
in order to more accurately detect the PU signal given a small number of received data.
According to the statistical characteristic of the Student’s t-distribution and the noncentral
t-distribution with different hypothesis in Section 3.1, and the two new powerful GoF
test statistics Zc0 in Equation (23) and Zc1 in Equation (25) in Section 3.2, we make a final
decision by comparing these two new GoF test statistics. Moreover, the normalization of
the two GoF test statistics Zc0 and Zc1 can be written as T0 = Zc0/(Zc0 + Zc1) and T1 =
Zc1/(Zc0 + Zc1). Finally, the final decision can be determined based on the following rule:

H0 : T0 ≤ T1

H1 : T1 < T0,
(27)

where the information of bilateral hypotheses are both utilized to make a final decision,
which significantly enhances the reliability of detection with small samples compared with
the decision rule in Equation (13).

4. Simulation Results

In this section, the traditional GoF test (AD test, KS test, and CM test) based spectrum
sensing methods and ED are considered for comparison. We assume that the PU signal is
unknown while the noise power σ2 is available in these methods.

First of all, to present the advantage of the proposed method, Figure 3 shows the
detection probability providing different number of samples of the proposed method, AD
test-based, KS test-based, and CM test-based method with the increasing of number of
samples from 12 to 100 when Pf a = 0.1 and the SNR is −5 dB. The parameter m is set to
4 for the proposed method. As shown in Figure 3, the proposed method surpasses the
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traditional GoF test-based spectrum sensing methods. Particularly, if the number of samples
is smaller than 48, the proposed method has a big improvement of the detection probability
compared to other techniques. In addition, Table 1 shows the detection probability of
compared methods when the number of samples are 32, 40, and 48. We can see that the
proposed method can achieve a detection probability of 0.9514 for SNR = −5 dB. It can also
validate the robustness of proposed method.
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Number of samples is 32

Figure 3. Probability of detection with different number of samples over AWGN channels with
Pf a = 0.1.

Table 1. The probability of detection for different methods when the number of samples are 32, 40,
and 48.

Number of Samples KS Test Method CM Test Method AD Test Method Proposed Method

32 0.8688 0.9070 0.9206 0.9514
40 0.9268 0.9592 0.9632 0.9764
48 0.9614 0.9796 0.9826 0.9866

Moreover, to compare the proposed method and other methods under different SNR
conditions, the detection probability is provided in Figure 4 corresponding to the proposed
method, the traditional GoF test based spectrum sensing methods and ED method with the
increasing of SNR when Pf a = 0.1 and the number of samples l = 32. The parameter m is
set to 4 for the proposed method. It can be seen from Figure 4 that the proposed scheme
greatly surpasses the ED method. Importantly, the proposed method also has a better
performance at low SNR region than the traditional GoF test (AD test, KS test, and CM
test) based spectrum sensing methods. A specific example provided in Table 1 shows the
detection probabilities corresponding to the l = 32 dotted lines in Figure 4 (SNR = −5 dB),
which are 0.9514, 0.9206, 0.9070, and 0.8688 for the proposed method, AD test, CM test, and
KS test, respectively. This also verifies that the proposed powerful GoF test method can
achieve more reliable test statistic, leading to a better detection performance.



Drones 2023, 7, 18 10 of 13

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

SNR (dB)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n

Proposed method
AD test method

CM test method

KS test method

ED method

-5.5 -5 -4.5

0.8

0.9

1
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The receiver operating characteristic (ROC) curves are compared in Figure 5. It is
obvious that the proposed method has better performance than the ED method. Given the
probability of false alarm set to 0.1, SNR of −5 dB and l = 32, the proposed method with
m = 4 has about a 5% and 10% improvement relative to the AD test-based method and KS
test-based method. That is because the proposed method utilizes the powerful GoF test
statistic Zc that outperforms the traditional GoF test. For D2, W2, and A2 in KS test, CM
test, and AD test, it is difficult to find their exact null distributions for finite sample cases. In
the powerful GoF test statistic Zc, we can use the sample mean and the sample variance to
estimate µ and σ2, respectively, and it outperforms the best tests in the literature, including
the KS test, CM test, and AD test [45].
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Figure 5. ROC curves comparison with SNR = −5 dB.

In addition, in order to show the advantages of using the bilateral hypotheses to make
the decision, we compare the proposed method with and without bilateral hypotheses, and
a similar study using the GoF [27] in Figure 6. As shown in Figure 6, the performances of
the proposed method with and without bilateral hypotheses are superior to the method
in [27] and the AD test method. Moreover, the proposed method with bilateral hypotheses
makes full use of the bilateral hypotheses information, which increases the utilization of
the distribution properties. Thus, it has a higher probability of detection compared to the
proposed method without bilateral hypotheses.
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Figure 6. ROC curves comparison with SNR = −5 dB.

5. Conclusions

In this paper, an enhanced spectrum sensing method is proposed on the basis of a
GoF test using bilateral hypotheses in a cognitive drone network. Only a small number
of samples is required by the proposed scheme compared to the traditional ED, which
is attractive for a dynamic weak signal scenario, including illegal drone detection. More
specifically, samples at the SU with statistical model are thoroughly exploited, which
strengthen its capacity for dealing with the small sample size case. Then, a powerful GoF
test statistic Zc is proposed to obtain a better measurement, and bilateral hypotheses GoF
test Zc0 and Zc1 are both used for making a reliable decision. Finally, simulations validate
the superiority of the proposed method compared with the traditional GoF test-based
methods (AD test, KS test, and CM test) and ED method provided a small number of
samples. The capability of proposed method for settling small sample size problem without
sacrificing the detection performance could bring several potential benefits, including
sensing time, energy consumption, and computational burden to the whole drone network.
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